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ABSTRACT

For the anelastic or pseudoincompressible system, the diagnostic continuity equation is the constraint filtering
sound waves. Hamiltonian fluid dynamics considers the pressure force as the reaction force to this constraint.
The author emphasizes the notion of an adjoint operator, as it provides the link between the constraint and the
reaction. The elliptic equation for pressure is-self-adjoint. )

Applied to a discretized model, the author discusses the possibility to maintain this symmetry in the pressure
equation. Its discretization is deduced from one of the anelastic constraints. The author takes the example of a
2D model with orography, discretized on an Arakawa C grid in generalized coordinates. A specific treatment of
boundaries is necessary to prevent Gibbs-like errors in the pressure term.

It is possible to solve the pressure equation by a plain conjugate gradient method. Preconditioning is achieved
by the Laplacian with no orography solved by a fast direct method. Criteria for efficiency depending upon the

domain geometry are given.

1. Introduction

The anelastic equations filter out sound waves by
replacing density, where appropriate, by a reference
state value. Neglecting its temporal variation in the
continuity equation leads to the anelastic constraint,
and pressure becomes a diagnostic variable.

The form of the pressure term in the anelastic equa-
tions is known to be important. Wilhemson and Ogura
(1972) noticed that the original term is not adequate as
it does not lead to conservation of energy when the
reference density varies in the vertical, and as a con-
sequence, there is also no conservation of the vertical
flux of horizontal momentum. Lipps and Hemler
(1982) have shown by a scale analysis how the pres-
sure term had to be modified to cure this problem.

Lorenz (1960) emphasized energy conservation to
derive simplified sets of equations. Energy conserva-
tion is important not only for long-term integrations but
also for the behavior of propagating waves. This ap-
proach was generalized by Hamiltonian methods of
fluid dynamics (Shepherd 1990). Total energy is ap-
proximated, and from there the corresponding equa-
tions of motion are deduced. Other conservations (mo-
mentum, potential vorticity) are corollary.
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The anelastic system (like other systems of meteoro-
logical interest) differs from the general equations for
a compressible fluid by the presence of a diagnostic
equation. This is linked to the presence of a constraint.
(For the hydrostatic primitive system, the hydrostatic
constraint leads to a diagnostic equation for vertical
velocity.) For the anelastic system in two dimensions,
the explicit use of a constraint can be avoided (Scin-
occa and Shepherd 1992) by a streamfunction formu-
lation.

In this paper we explicitly deal (using Hamiltonian
methods) with the constraint of the anelastic system.
Pressure appears as the Lagrange multiplier for the con-
straint, and the pressure force appears as a reaction
force.

However, as Hamiltonian methods are rather tech-
nical, the derivation is made in the appendixes, and we
use as a starting point the property that a reaction force
produces no work. The notion of an adjoint operator is
necessary to make clear the relationship between the
constraint and the reaction force. This is applied to the
anelastic and pseudoelastic equations (Durran 1989).
The approach is general enough to incorporate bound-
ary conditions with orography in the constraints.

These considerations pertain also to the discretized
equations. We will show that an energetically consis-
tent model is obtained only when the pressure equation
is self-adjoint. However, as we shall see, adjoint dis-
cretized operators generally have a pathological behav-
ior when, as in the Arakawa C grid, extrapolations are
necessary to express boundary conditions and deriva-
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tives near the boundary. We will study the adjoint of
derivatives, averaging, and extrapolations that compose
the divergence operator so as to avoid these problems.

The common practice in anelastic models (Clark
1977; Bernard and Kapitza 1992) does not lead to self-
adjoint formulations for the pressure equation, and en-
ergy is not exactly conserved. In these models, a con-
servative form of the pressure gradient is used. It is thus
desirable to show whether a formulation for the pres-
sure problem can be accurate and symmetric and what
its properties are for conservation of total momentum.

With gridpoint models in general curvilinear coor-
dinates, the stencil (number of neighboring points in-
volved in the calculation of the elliptic operator) be-
comes enormous, leading in three dimensions to com-
plex block-diagonal matrices. As in Viviand (1974)
and Vinokur (1974), the present model simultaneously
uses two sets of wind components: Cartesian and con-
travariant (i.e., normal to coordinate surfaces). Extrap-
olations to evaluate derivatives and convert Cartesian
components to contravariant ones near the boundary
are bound to be intricate and, although carefully de-
signed, to lack a firm foundation. Direct methods of
inversion of the Laplacian are accordingly complex,
and expensive in computer time and memory. We want
to examine whether considerations of symmetry may
clarify the choice of the extrapolations.

The equation is usually nonseparable between the
horizontal and vertical due to the presence of metric
terms. The approach common to spectral and gridpoint
methods is to push these terms from the left- to the
right-hand side of the equation: an approximate prob-
lem is solved, which is bound to create defects with
steep orography in mesoscale models. Another possi-
bility is to use an iterative method. The drawback is
that most of these methods become less and less effi-
cient when model truncation or aspect ratio between
horizontal and vertical scales increases, and again, the
solution is bound to be approximate.

The pressure equation without orography is separa-
ble and can be solved efficiently by direct methods
(Clark 1977). With moderate orography, Clark uses
the “‘flat Laplacian’’ as a basis of an iterative method.
We propose to extend this approach and to study the
influence of domain geometry (dynamics of scale fac-
tor and bottom slope) upon the number of iterations
necessary for the elliptic solver.

The pressure equation is a central concern for the
anelastic model, since an overwhelming resource is de-
voted to the sole determination of pressure when orog-
raphy is present. Although a variety of iterative meth-
ods has been designed to cope with nonsymmetric
problems, it is still a challenge to get a simple, accurate,
and efficient determination of the pressure term.

Numerical examples pertain to steady orographic
flows using a 2D periodic anelastic model with a Gal-
Chen coordinate transformation (Gal-Chen and Som-
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merville 1975) and lateral and top sponge layers. The
model is a stripped-down adiabatic version of the Re-
delsperger (1986) model used for convection and
squall-line studies (Redelsperger 1988) and modified
for generalized coordinates.

2. Pressure in the anelastic equations

Following Bonnet and Luneau (1989), the original
Euler equations in conservative form are'

Op
+V-pu=0
o V- pu
dpu + V- (pu X u + pi) = pg
ot
dpb
<2 4+ V-puf = 0.
o V:pu

The fluid is in a closed domain € with a rigid wall
boundary condition -/ s, = 0. The equation of state
is p = pRT. Multiplying the second equation by u, the
third by ¢,(7/8), and integrating, the energy conserved
by the elastic system is

9 = f (%pu-u + peT + pgz)dxdz. (2.1)
1]

It is the sum of kinetic, internal, and potential energy
of the fluid.

a. The anelastic system

The point of view of Hamiltonian fluid dynamics is
to approximate total energy and to derive the equations
of motion from the simplified Hamiltonian. The anelas-
tic equations are cast in terms of u,  only; so has to
be total energy; pressure, as we shall see later, appears
as a Lagrange multiplier. We sketch here the series of
approximations leading to the total energy [Eq. (2.2)]
as in Scinocca and Shepherd (1992), based on the scale
analysis of Lipps and Hemler (1982).

We introduce reference values p(z), 6(z), p(z) in
hydrostatic balance: dp = pgdz. Deviations are the
primed quantities: p(x, z) = p(2) + p'(x, 2), etc.

Potential energy is first-order hydrostatic. Integrating
by parts,? (2.1) becomes

! The symbols have their usual meaning: u is velocity; p is density;
p is pressure; g is gravity; T is temperature; potential temperature 6
is defined by 6 = T(p,/p)™r, where p, is a reference pressure; R is
the perfect gas constant; c, is the calorific coefficient at constant
pressure; and n is the outward vector normal to the domain boundary
0f2. Advection of v by a nondivergent velocity field u is expressed
in conservative form as V-u X v. In a Cartesian coordinate frame,
the components are (V-u X v); = Z; Qu;v;/0x;.

% Potential energy is integrated by parts with the hydrostatic
relation dp = —pgdz fn pgzdxd; = —fn zdxdp = _f sa D2dx
+ [, pRTdxdz.
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X = fn (%pu'u + pc,,T)dxdz + f zpdx.

N

We drop the boundary term. It contains the Lagrange
multiplier p and as such pertains to the boundary con-
straints. We assume p’ < p, so that we replace the
density p by p. Exner pressure is defined as 7 = 7/8,
and at first order, according to Lipps, for convection
scale motions, T' = 76’. Finally, the expression for
the energy of the anelastic system is

I = fa ﬁ(% u-u+ c,,v‘ré’)dxdz, (22)

where 7, the reference Exner pressure, is a function
of z.

Methods of Hamiltonian fluid dynamics (Salmon -

1983 ) were used in appendix A to take the Hamiltonian
(2.2) and the anelastic constraint p = p as the sufficient
starting point to derive the anelastic equations®:

dpu _ _ po

o + V:(puXu)= ga P
ap b _ _
o +V:(pbu)=0.

The anelastic constraint is independent of time and
acts upon the relative positions of the particle parcels,
so it is categorized in classical dynamics as an holon-
omous constraint (Goldstein 1980, p. 377). The pres-
sure force P is the reaction force to this constraint.

Multiplying the first equation by u, the second by
¢,m, and integrating in the whole domain with the
boundary conditions, we get

d%
L —f u-Pdxdz.
dt Q

In appendix A the form of the pressure term, its relation
to the anelastic constraint, and the following properties,
which might seem physically obvious, have been de-
rived.

¢ The pressure term appears in the momentum equa-
tion only.

¢ It produces no work, because it is orthogonal to
all velocities satisfying the anelastic constraint.

We take these properties as a starting point. It will
be simpler to deal with the boundary conditions than
with the more classical derivation of appendix A. These
properties are easy to apply to a discretized model, so
it will highlight the subsequent discretization. The re-

3 The relation V7 = g/8 is necessary to derive the buoyancy term.
The buoyancy is expressed in terms of 8, instead of 6'; it is equivalent.
The difference will be absorbed in the pressure term.
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lation between the constrained velocities and the pres-
sure force is a simple orthogonality condition. To de-
rive the pressure force from this condition we will have
to introduce the notion of an adjoint operator. In the
following we take some care making explicit the vari-
ous vector spaces and metrics used to define the adjoint.

The anelastic constraint and boundary conditions
can be grouped into one with the aid of the linear op-
erator D:

GDEu-—‘-( Y~pu )=O;
—pu-n|sn

9 is a linear operator E — [ acting upon [E, vector space
of model velocities u, and taking its values in F, space
of scalars p defined upon Q X 9.

The adjoint of D, D*, is a linear operator from [ into
E. For it to be defined, we need a scalar product (;) in
E and another {(;)) in F. Then, for any p, the relation

((Dpu; p)) = (u; pD*p), (2.4)

valid for all u, defines D*p.

This relation shows that provided P is of the form P
= pD*p it will produce no work. We need the con-
verse: provided that (u; P) = 0 whenever Dpu = 0,
then p exists such that P = pD*p. It happens to be a
general property of adjoint operators.*

The scalar product in E

(2.3)

(u;u') = f u-u'dxdz
Q
is important as it defines kinetic energy

E.==(pu;u).

N |-

The scalar product in the image [F of 9 is taken as
«pip')) = f pp’ + f pr';
Q a0

it is arbitrary. Changing this scalar product will change
the value of the Lagrange multiplier p but not the pres-
sure term.

With these scalar products the adjoint of 9 is defined.
It is immediate to verify that it is the gradient operator
D*p = —Vp. Thus, from the above-mentioned prop-

4 When the model is discretized, E has a finite dimension N, and
9 is expressed on a basis of vectors as a matrix D. Upon an ortho-
normal basis of E and F, the adjoint is just the transpose of D; taking
u in the null space of D of dimension n, (2.4) shows that Ker(D),
null space of D, and Im(D*), image of D*, are orthogonal:
Ker(D) L Im(D*). It is well known that a matrix and its transpose
have the same rank. For D it is N — n. Thus, [Ker(D)]* = Im(D*). In
the continuous case, the above property holds provided that the image
of D* is a closed subspace. This is the case here for the gradient. For
mathematical aspects, the reader is referred to Girault (1979).
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erty of adjoint operators, the pressure term P, orthog-
onal to all velocities satisfying (2.3), is of the form

P=pVp.

This form of the pressure term is identical to the ones
derived by Lipps and Hemler (1982) and Lipps (1990)
through a scale analysis. The modified anelastic equa-
tions as defined by Wilhemson (1972) do not ensure
conservation of energy. Their pressure term P = Vp is
not in the range of pD*.

b. Elliptic problem for pressure

Let us gather in s buoyancy and advection terms, so
that the momentum equation is
dpu _  _
——=ps —pVp.

Y (2.5)

We have two prognostic equations: one for u and
one for 6 and none for p. Applying the anelastic and
boundary constraints (2.3) to the momentum tendency,
we obtain the elliptic equation for p:

V:pVp=V-'s
Vp-nls =s-n. (2.6)

Its symmetry is best shown when these two equations
are written in the equivalent form

DpD*p = —Dps. (2.7)

For lateral open boundaries the Orlanski radiative con-
dition
Ou-m + Ju-n 0
C =
ot Ox

still leads to the specification of u/d¢- n and to a Neu-
mann problem for p.

3. Pressure term in the pseudoincompressible
system

The pressure term used by Durran (1989) in his
pseudoincompressible system can be guessed in the
same way from his continuity equation and approxi-
mation to the kinetic energy. One uses the pseudoden-
sity

p* =

’

= |

and the constraints have the form
V-p6u=0
134 nl 80 = 0.

In contrast with the energy (2.1), no combination is
made of potential and internal energy involving the hy-
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drostatic approximation. However, the pseudodensity
approximation is used in (2.1) leading to

T
H = f p*(%u-u +gz+ cu§0>dxdz.
The pressure term can be found from the expression of
kinetic energy and the anelastic constraint only. When
(3.1) is satisfied, then

— P
{(u; P) = f ptu-P = f (pbu)- i 0. (3.1)

The adjoint of (3.1) for the above scalar product is
- = 0V -; so a scalar 7 exists such that

P = ¢, 0V,

which is precisely the form appearing in Durran {1989,
Egs. (13) and (14)]. Thus, our derivation of the pres-
sure term is not limited to the Lipps—Hemler anelastic
system.

4, Convergence for the discretized pressure problem

Before dealing with a particular discretization of the
pressure problem, we review some mathematical re-
sults that might be applied to prove convergence of the
pressure term.

As in the incompressible case, the pressure term has
a geometric interpretation as a projector. It has been
shown to be orthogonal to all ‘‘anelastic velocities.”
Let s be a velocity field with Pps # 0; if u is defined
by u =5 — VYp and DPpu = 0, then u is the projection
? of s on the subspace defined by the anelastic con-
straint and boundary conditions. It is orthogonal for the
norm |u|? = (pu; u) defining kinetic energy, so it is
characterized by stationarity of

L(u, p) = |u~s|* + (p; Du))
=(p(u —s);u —s)— (D*p;pu)
or, in conventional notations,

(4.1)

L(u, p) = fn p(u—s)+ fﬂ pu-Vp. (4.2)

a. Discretized variational problem

Discretization of (4.2) is made up of discretization
of the gradient operator, denoted by G, and discretiza-
tion of the integral denoted by brackets (; ), so that (u;
u )~ fyu-u’

The discretized variational problem for a mesh size
h is thus

Li(ay, pr) = (p(w, — $1); 8, — Su)u + (Gpas pus).

(43)

When examining the minimization problem (4.1),
one would expect that convergence of the projection u
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of s would depend solely on a sound discretization of
L. General convergence theorems (see Temam 1984,
p. 45) do not seem to apply in this case, as the quadratic
form {pu,; u,), does not constrain derivatives of u,.’
It is confirmed by the Gibbs-like phenomenon we find
when we use most approximations for the divergence,
which will be displayed in the sequel.

b. Discretized Euler conditions

Euler conditions for (4.1) can use two unrelated dis-
cretizations: G for the gradient and D for the constraint
9. The Euler conditions are

- PG T[w\ _ [P
- = . (44
[ oo 0= (%) ws

Convergence theorems (see Godunov 1977 for refer-
ences) indicate that velocity u, and pressure p, will be
order-m approximations in mesh size & if G and D are
order-m approximations of the gradient and of 9. These
approximations D and G are said to be ‘‘consistent.”’

Given that p and u fields are represented by suffi-
ciently regular finite elements, the discretization of the
gradient and divergence operators is automatic and the
G and — D operators are adjoint.®

On the contrary, in the case of finite differences, if
D is a consistent discretization of 9, then it does not
follow necessarily that D * is a consistent discretization
of the gradient, especially because of the evaluation of
the derivatives at the boundary. In this case it is safer
to adopt separate, nonadjoint discretizations for D and
G. However, the projection ?: s — u is no longer or-
thogonal. It is now a projection upon Ker(Dp) parallel
to Im(pG). The pressure term is then

P = pG(DpG) ™' Dps. (4.5)

The elliptic operator DpG we have to invert is not
necessarily symmetric, and accordingly, energy is not
conserved.

In Bernard and Kapitza [1992, Eq. (5.20)], a sepa-
rate consistent discretization of the product DpG is also

SLet us consider the regularized minimization problem J(u)
= (a—s)+ef (Vu)+ [ AV-u. This is the problem one would
get when adding viscosity in the model with an implicit time step-
ping. The Euler equation is u = s — Vp’+ eAu. For this problem,
convergence in an integral sense for u and its first derivative is guar-
anteed by a proper discretization of the operators appearing in J..

¢ Let velocity be represented on the basis €;, and p on the basis f;:
ux, z) = = ue;(x, z) and p(x, 7) = Z p, f;(x, z). Provided the finite
elements e;, f; are sufficiently regular to have a gradient or a diver-
gence, we define the gradient Vp = 2 ge; by the relation [ ¢Vp
=p [ eVfi = g [ &g or g = M (J ¢VfIpi, with the mass
matrix given by (M,); = I e;¢;. The augmented divergence V-u
= X d, f; is defined by fij'u =u [ V& —u fmﬁei~n. From
[£V-e& + [ Vf-e; = 0 it is apparent that the two operators V and
V- are adjoint.
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designed. No mathematical proof of convergence of the
pressure term is given.

5. Discretization with the Arakawa C grid and
orography :

We need to abandon the Cartesian system of coor-
dinates in order to ease the uneven boundary conditions
produced by orography. We found it simpler to con-
sider generalized coordinates instead of limiting our-
selves to a modified vertical coordinate.

The momentum equation in (2.3) is projected onto
the Cartesian basis vectors (i, k). The horizontal com-
ponent of velocity u = u-i is a scalar, so no Christoffel
symbols are needed for the advection term ( Viviand
1974; Vinokar 1974). The evolution equation for u is

%’i = —V-(Fuu) — i-5Vp.

The change of coordinates is apparent only in the di-
vergence and gradient operators.

a. General coordinates

Dutton (1986) provides an adequate treatment of
general coordinates. We summarize here only the re-
lation of the gradient and divergence to the Cartesian
components and show that two different expressions
can be used as a basis to the conservative and noncon-
servative (Thompson 1985) discretizations of the gra-
dient. : '

e Covariant basis and contravariant components.
The terrain-following coordinates (¥, i = 1, 2) = (&,
7) are defined in relation to the Cartesian coordinates
(x/,j =1,2) = (x, z) and basis vectors (i/,j = 1, 2)
= (i, k). The vectors tangent to the isolines of X' are
given by

o o
i ox 0Ox
€ 1
= J% where Ji= (5.1
{CZ} {k} - Ox @ )
: 9z 0z,

and are called the covariant basis (the contravariant
basis vectors are e = Vx*). We relate the contravariant
components iz’ to the Cartesian ones ;. From u = i'e;
= w;i’, with (5.1), we get

u'= Clu; where
o _or
C=(s)"'= ! oz i (5.2)
x gl/2 _g & ’ ‘
ox Oox
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where g''*> = det(J}) is the volume element used to
calculate integrals in the new coordinate system:

ff(x, y)dxdy = fg”zf(f, 7)dxdz. (5.3)
e Nonconservative gradient. The gradient of a sca-

lar is defined as the vector satisfying
op

ox'

Its scalar product with any vector u is

ei'v

. )
uVp=u'e Vp= ﬁ’—i,
Ox
so the Cartesian components are

i/Vp= C”gg—,

In the case of a Gal-Chen grid (Gal-Chen and Som-
merville 1975),

0Oz
1 o7

(@) Oz
oz) \" oz !
gzivpz (azap_ 628p>i+6p

(5.4)

C:

and

e Divergence. Using (5.3), the Stokes formula is

f g"%u-Vpdidz
Q

=—f gl/ZPV'udfd2‘+f pa-m, (5.5)
Q o0

so V-u in terms of the contravariant components is

V-u=g"*(0g"%/0x") or, in terms of the Cartesian.

components, using (5.2), is

ox'

- g 1/2
* Conservative gradient. Another expression for the
gradient can also be found by applying the divergence
formula. As the constant unit vectors i/ of the Cartesian
basis have a null divergence, i’-Vp = V-i’p, so
1 acij g 1/2 p
g ox

With the Gal-Chen grid, we get

Oz _ [0 (02 \_ 0 (0z \]., 6 o
5z VP~ [8)? (az‘p> az(af"’)]' tar k-

(5.6)

i’-Vp = (5.7)
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The two expressions of the gradient, (5.4) and (5.7),
are equivalent, as can be seen from the derivatives of
(5.2). However, discretized derivatives do not com-
mute with averaging operators, so discretizations start-
ing from (5.4) or (5.7) are not necessarily equivalent
unless what are coined ‘ ‘metric identities’’ are satisfied
(Thompson 1985).

b. The grid and the basic operators

The Arakawa C grid is used. Grid mesh size in trans-
formed coordinates is assumed to be unity: Ax = AZ
= 1. The domain 2 = [0, I] X [0, K] is rectangular.

Cartesian u and contravariant # velocity components
are defined at the same grid points N,; N, nodes have
integer abscissa. We distinguish nodes on the boundary
ON at ¥ = 0, I. In the same way we define a grid N,,
for w (see Fig. 1).

The grid is staggered, so the calculation of win (5.2)
necessitates averaging of u at N,, points. On the bound-
ary ON, u has to be extrapolated. It is a common prac-
tice in finite-difference methods to ease programming
by considering fictitious points outside the domain. We
extrapolate u to an extended grid N, with points at Z
= —lf5, K + 1/ and then average to ON.

We also define the N, grid, where momentum diver-
gence will be evaluated. Boundary values of pressure
are separate variables. They are located at 7 = 0, K so
as to form the extended grid N,.

The classical Schumann operators are used:

5x9=0<f+l,5>—9<f—1,_),
2 2
md= le(z+L.7)+0(z-1.7

X _2 292 ,Z .

¢. Discretization of V- and V

[N R

1) CONTRAVARIANT COMPONENTS

We use the following definition of the metric coef-
ficients: 9z/0z — 6,z, 0z/0x — 6.z, Ox/0x = b.x, Ox/
07 = 6,x, with x, z being the Cartesian coordinates of

X X X
4 4
X X X X X X X
3 olo o o ofo 3 o o0 o
X X X X X X X
N 2 olo o o ojo N 2 o o o
X X X X X X X
1 olo o o olo 1 o o o
X x X X X X X
0 0
X X X
-1 -1
0 2 4 0 2 4
x x

FIG. 1. Arakawa C grid with I = K = 4; 9N is the square box; (a)
u nodes are labeled by crosses, w nodes by circles; and (b) p nodes
are labeled by crosses, { nodes by circles.
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the N, grid nodes (see Fig. 1). The relation between
the Cartesian components of velocity and the contra-
variant components of momentum is

U gl/2ﬁu
(W) = C( 1/2—
g'"*pw
T —Game, (g7
6xxg_”2' )

- 628
c= |:_6xzmxzeu(g

—l/2,)

(5.8)

where C is a matrix of operators and the dot (-) indi-
cates where to enter the argument. On the first and last
lines of C, m,, are different operators: m,, : N, — N,
and m,, : N, = N,,. The extrapolation e, (resp. e, ) is
used to define u(w) on the extended grid N,(N,,).

2) DIVERGENCE AND CONSTRAINT OPERATOR D

It is necessary for momentum and mean potential
temperature conservation by the advection terms that
the advection be discretized under flux form and, as a
consequence that divergence also be under flux form.
The discretization for the divergence in accord with
(5.6) and (5.8) is

1 u
V-u= F (6, 5Z)Cg”2<w> . (5.9)

Let us show that for temperature advection, with the
divergence (5.6), the conservation equation for @ is
9g'*p 0
ot
The sum over all grid points is null due to periodicity
and the boundary condition W = 0, and mean potential
temperature is conserved. From the identity 6,(Um,9)

= m(Ub,8) + 66,U (5.10) is equivalent to an advec-
tion for € when

= ~6.(Um@f) — 6,(Wmp). (5.10)

6U + 6,W =0,

s0 (5.9) is the right discretization for divergence.

As stated earlier, it is convenient to consider the con-
straint operator D so that divergence and boundary con-
ditions can be merged. Operator D is an approximation
of g'*V-g~" at interior points. Let us denote by D
the D operator in the Cartesian case C = I, g'> = 1.

For simplicity let us show the monodimensional case
I=1;Disa(K + 1) X K rectangular matrix with two
boundary terms at the first and last line:

—wy
Du={é6w or
Wo
-1
B 1 -1
D= (5.11)
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In the non-Cartesian case, D obtains from D by
Du = Bc( ) ) :
w

d. Adjoint of the constraint operator

(5.12)

We want to design a consistent approximation to the
gradient from the adjoint of the constraint D. For this
we need to study the behavior of the adjoint of the basic
extrapolation and Schuman operators, and we will use
the property of composition (AB)* = B*A*.

The adjoint is defined by the relation (2.4). Discre-
tized velocity and pressure are represented by column
arrays of real numbers, and scalar products are repre-
sented by positive-definite matrices M, and M, such
that

(p;p")) =p'M,p’ and
(u;u')y=u™,u' + wM,w’' = u™M,u’.
The adjoint of the matrix representing D from (2.4)
relates to the transpose of D by
D* = M;'D'M,, (5.13)

so not any choice of scalar products will lead to a con-
sistent adjoint. In the case where the M matrices are
identity the adjoint is just the transpose.

1) KINETIC ENERGY AND SCALAR PRODUCTS

Several obvious choices, referred to as u, and u,,,,
leading to kinetic energy are possible according to the
weight we give at nodes located on ON:

(usu'), = uatth + 3, wawh
N, N,
1
(u;u'),, = usu'), — > uptly — Z Wil fe.
ON BN

Discretized kinetic energy is defined by

1/2—=
PU; W or a0

1
E = 3 (g
where discretization u; gives more symmetric formu-
lations, and discretization u, , is a better approximation
of the integral of kinetic energy, based on the trape-
zoidal rule.
We need the discretization of (5.5). A scalar product
has to be defined upon pressure pomts of N,, not only
at inner points. We take

«psp")) = Z pupic-
N,
2) ApjoiNT OF C

With generalized coordinates, we need to consider
the adjoint of the extrapolation operators. Let us show
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that the discretization of C* is consistent for the scalar
product u,,, and an appropriate extrapolation.

We again show the 1D case / = 1. For the scalar
product u,, matrices M are identity and the adjoint does
not differ from the transpose. For u,,,, in the 1D case,
M, = diag(1/2, 1, -+, 1, 1/2).

In the 1D case, the # and w components of wind have
a null x derivative. We thus need only the second line
of € in (5.8) to calculate the 1D divergence. It is built
by the composition of the two following operators:

1) averaging: m,: N,— N, ; _
2) extrapolation (by copy): e, : N, = N,.

We verify easily that the transpose (or adjoint for
u,) of m,e, is the matrix:

2 1
11
(m.e,)'N,—N,: -
11
1 2

We deduce the adjoint for u,,, as in (5.13). It is
(me)* = M, (m,e,)™™,, so

11
1 1
(m.e)* = (m.e,) ™, = -
1 1
11
to be compared with
11
1 1
mN, >N, : -
11
1 1

So we proved
(mzeu)* = mZ‘
Generalized to two dimensions, the result is

_g_”zmxzew(éxz')
g_”26 x-

c* B g_”25zZ'
a _g_llzmxzeu((szx.)

(5.14)

for the scalar product u,,, and extrapolation by copy.
We check that this is a consistent discretization of G *.

3) ADIOINTOF D

The gradient is a linear operator from N, = N,. Again
we show only the one-dimensional Cartesian case /
= 1, C = I. The gradient G, is vertical, and the matrix
Gi is rectangular K X (K + 1):
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2(px — Px-112)
G: N-,,*’Nw Gp = 6.p = Prw1iz — Dr112
2(pi2 — Po)
2 =2
_ 1 -1
ofr G = . (5.15)
1 -1
2 =2

It is easy to check that @ in (5.15) and —D from
(5.11) are adjoint.

Combining the previous results, the adjoint of —D
is the following consistent discretization in nonconser-
vative form of the gradient:

8—1/2612'

Gp = [_ ~172

- g_llzmxzew(éxz’) A
g mxzeu((szx')

g—l/z(sxx, @p.
(5.16)

The extrapolations in (5.16) mean we calculate the
horizontal component of the gradient at the bottom
boundary so that

i 81/2@P|{=O = 8,26,po — 2mJ6,z2(p1/2 — po)].

We conclude that when extrapolation by copy and
scalar product u,,, are chosen, the gradient as in (5.16)
is the adjoint of (5.12) used for the divergence. We
have two adjoint operators consistently discretized.
These operators may be used for a convergent discret-
ization of the pressure term.

However, adjoint discretized operators are not nec-
essarily discretizations of the adjoint operator; for
example, with the scalar product u,, the adjoint
divergence —O* on boundary points is half the
gradient G.

e. Discussion
1) CONSERVATIVE GRADIENT

The kind of discretization used by Clark (1977) or
Kapitza (1992) considers pressure as a physical entity
defined only in the inner domain. So two levels of ex-
trapolation are necessary:

1) define the contravariant components of the pres-
sure gradient at the boundary, and ,
2) go from contravariant to Cartesian components.

Then remains the problem of enforcing boundary
conditions for pressure. The next discretization is in-
dicative and does not show all the extrapolations
needed.

The adequate discretization of the gradient (5.7)
takes into account the localization of p nodes to avoid
extra averaging in the calculation of V- pi. The line
vector representing components of Gp are given by
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(mxézz) .
'—mx( 6xzmz ) )

_mz(ézxmx' )
(mzlsxx ) )

(5.17)

A variety of extrapolations could be designed for

determination of the off-diagonal terms of the above
matrix at the boundaries.

g'"*Gp = (6., 62)[

2) METRIC IDENTITIES

In this section we show that, outside boundaries, the
nonconservative and conservative forms are equiva-
lent.

The horizontal component of the gradient in conser-
vative form is

g'"*V-(pi) = 6Im.(6.2)p] ~ 6;m.(6,zm.p).
We use the identity
b6.(pmu) = b, p + m,(pb.u), (5.18)

in which i, 7 are defined only at inner points of N,, N;.
For the first term it gives

8.26,p + m[pb.(6.2)],
and for the second
—my;(6:26,p) — m[p6,(6:2)1;
thus,
8'*V - (pi) = 6,26,p — m..(6,26,p),

which is the discretization for the nonconservative
form. The two forms are thus equivalent outside bound-
aries. The particular definition of the metric coefficients
we took was necessary. The result is what Thompson
- (1982) coins ‘‘metric identities.”’

—1/2—=

Cg'?pC* = [_

MONTHLY WEATHER REVIEW

(8,2)°87"%p + b.xm,ce, (8~
6xzmxzeu(g pézZ') - 6xxg pmxzeu(ézx')

VOLUME 123

3) CONSERVATION OF MOMENTUM

For an inviscid fluid with orography in an X periodic
domain, there is no conservation of total horizontal mo-
mentum due to the pressure drag. When we use gen-
eralized coordinates, p is a function of X, so there is
really no conservative form for the horizontal part of
the pressure gradient. We might require only that the
horizontal momentum flux varies only due to boundary
contributions.

If the pressure force P is expressed in nonconser-
vative form, the total momentum J created by the pres-
sure term is

I = (i; g'*pGp) = —{(pDg"*pi)),
where Dg'/?pi at interior points evaluates the diver-
gence of pi. For J to present only boundary contribu-
tions for any pressure field, we need this divergence to
be null. This will occur in generalized coordinates only
with a special choice of p at velocity nodes. If the pres-
sure gradient is discretized in conservative form ac-
cording to (5.17), from the metric identities, we expect
the same condition to occur. There is no decisive ad-
vantage from a conservative form of the gradient here.

f- Elliptic equation

The pressure term in (4.5) when taking D from
(5.12) and G from (5.16) is
P = pC*D*(DCg'?pC*D*)'DCg"%ps. (5.19)

The matrix inside the Poisson equation for pressure
is (we display only the first column)

NE

12—
pmxzeuézx ) )

—1/2—

when the same matrix in Bernard and Kapitza {1992, Eq. (3.19)] with our notations is apparently

Q- g7'"p1(6.2)* + (8:2)*)
g7'?p [~ 6. x(me,6,2)me.(-) — 6:x(me,6.x)me,(-)]

The placement of the grid coordinates is the same;
the extrapolations of the grid coordinates and velocities
is the same. The two averaging operators on the diag-
onal terms, unnecessary for a consistent discretization
of the equations, are removed. Off-diagonal terms are
designed differently, so their matrix cannot be self-ad-
joint due to a lack of symmetry in the placement of the

averaging operators and of the term g ~'/%5.

In any case, our elliptic equation for p is not sym-
metric. It is self-adjoint for the kinetic energy, with half
weight given to boundary velocities.

In our derivation, the boundary conditions are treated
explicitly, without any attempt at eliminating the
boundary pressures. This renders the design of a self-
adjoint matrix more clear; it is also straightforward to
cope with nonhomogeneous boundary conditions. -
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FiG. 2. Geometry of the x-periodic channel
used to study convergence.
The pressure term in Bernard and Kapitza is
‘P = 5G(DQD*)Gg%ps. (5.20)

It necessitates the construction of the unrelated opera-
tors G, D, Q. It does not correspond to an orthogonal
projection, so it conserves energy only approximately.

6. Numerical study of convergence— Analytical tests

We study convergence by projecting analytical ve-
locity fields deriving from a gradient (s = Vf) in a
periodic channel of uniform slope a (see Fig. 2) and
a Gal-Chen grid whose mesh is Ax, Az = 0. Only
fields independent of x have been considered: s = s(Z).

The two components of the wind s have been
checked separately.

1) A wind s parallel to the boundaries should be
unchanged by pressure projection: @ = s.

2) A constant wind s orthogonal to the boundary
should have a zero projection: & = §.

This limited test, however, addresses the main prob-
lem of extrapolations in the presence of bottom slope.

We will consider three extrapolations for the Carte-
sian component  at the bottom & = 0 boundary, to be
employed in (5.8), and determine the approximation
u, to the analytical projection u:

D) w1 =0
2) extrapolation by copy u; _ ;2 = Ui 2

3) linear extrapolation u; _ ;> = 2u; 15 — Ui a2}

and similar expressions at the top boundary.

The adjoint of the divergence leads to a first-order-
accurate pressure term near the boundaries only with
the specific choice of scalar product and extrapolations.
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horizontal wind

Fic. 3. Relative error of the wind component parallel
to the boundary in experiment 1.

In other cases, a residual wind parallel to the boundary
oscillates with exponential decay off the boundary. The
relative error e(z) = |s(z)|'|u(z) — w,(z)| has a
maximum amplitude of 15% for a unit slope a = 1,
independent of grid resolution.

The pressure term has been calculated from (4.5) in
the following experiments:

1) G = —D* for the scalar product u,, projection
of the parallel velocity is distorted by extrapolation 1
(Fig. 3) of the orthogonal one by extrapolation 2.

2) G = —D* for u,,, and extrapolation 2 is ade-
quate.

horizontal wind error

FiG. 4. Relative error of the wind component normal
to the boundary in experiment 3.
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3) G = —D* for u,,, and extrapolation 3. The pres-
sure term we derive is not convergent (Fig. 4). The
only choice is then to give up energy conservation and
symmetry.

4) G from (5.17). A nonsymmetric formulation of
the Laplacian is used. Extrapolation 2 (by copy) gives
accuracy equivalent to experiment 2. Linear extrapo-
lation gives a better accuracy.,

Experiment 2 confirms the analytical results of the
previous sections. If a higher accuracy is sought and a
linear extrapolation is used, it is necessary to give up
the symmetric formulation. However, this advantage
might be apparent only for smooth velocity fields.

Integrations of the model to stationary state over a
bell-shaped or semi-elliptic orography compare favor-
ably with Long’s analytical solutions up to 60% slopes
(cf. Figs. 5 and 6).

No noticeable difference was found when the pres-
sure term was calculated along experiment 1 or 2 for
slopes up to 30% (Stein 1994). We suspect that some
compensation of errors occurs in these integrations.
Opposite sign errors for the horizontal wind are gen-
erated in the positive and negative slope regions.

7. The pressure solver

The pressure solver is the heart of an anelastic model
dynamical part, even without orography. It uses most
of the computer resources, so it is important for it to
be efficient and simple, without tuning of parameters,
when orography, domain size, or grid spacing are
changed.

FIG. 5. Stationary 2D flow over a bell-shaped mountain
with NH/U = NL/U = 0.6. Displayed: vertical velocity.
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FiG. 6. Temporal evolution of the vertical flux of horizontal mo-
mentum compared to its theoretical value. Same parameters as in
Fig. 5. .

The elliptic equation for pressure (2.7) is symmetric
and will be solved by a preconditioned conjugate gra-
dient. It is well known (Golub and Meurant 1983) that
conjugate gradient methods solve symmetric linear sys-
tems through a minimization problem. It is here

J(p) = %(D*p; g'?*pD*p).,,, — ((p; Dg'"’ps)).

The gradient of J is
VJ =Dg'?p(D*p + s)

. and is null when (2.7) is satisfied.

A conjugate-gradient method has an efficiency de-
pending upon the condition number of the matrix to
invert [see (B.1)]; the condition number « of the La-
placian depends roughly upon the ratio of the extreme
wavenumbers allowed for by the discretization

L2
KN12+K2E (7.1)
when L > H. We want to precondition the conjugate
gradient method so that the efficiency does not depend
on the number of points in each direction. For this, we
define the operator D by

D =DC,
with g2'/2 and p are ¥-averaged quantities and C the
horizontal average of

6ng_”2 0
0 ‘?xxgl/Z >
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where only diagonal terms are retained. Vertical and
horizontal directions are decoupled. After the horizon-
tal Fourier transform we are left, for each mode, with
a tridiagonal matrix on the vertical to invert. The op-
erator

A = Dg'%5D* (72)

is negative definite and fast to invert, and so qualifies
as a preconditioning for our problem.
The preconditioned gradient is then

VJ=A"'"Dg"%5(B*p —s).

The condition number of the operator A = A~'D
X g'/*pi3* determines the speed of convergence; it is
nearly independent of truncation and aspect ratio Ax/
Az (see appendix B). In Fig. 7 we show a projected

velocity field for an extreme geometry.

8. Conclusions and summary

The anelastic system in a closed domain with rigid-
wall boundary conditions or inflow—outflow-type of
boundary conditions can be handled by a straightfor-
ward extension of the Hamiltonian methods of fluid
dynamics. Pressure appears as the Lagrange multiplier
for these constraints, and the pressure gradient appears
in the momentum equation as the reaction force. Con-
servation of energy is the principle for the derivation
of the equations of motion, including the pressure term.
The pressure term has no action upon kinetic energy.

However, it is not necessary to go into the details of
the Hamiltonian formulation to find the appropriate
form of the pressure force, provided we know it should
conserve energy. A simple mathematical argument
based upon properties of adjoint operators leads us to
the correct form both for the anelastic and the pseu-
docompressible systems. Moreover, it shows boundary
constraints easier to incorporate.

In the discretized model, the divergence operator is
augmented with the normal component of velocity at
the boundary, so it expresses all the constraints at the
same time. Pressure is defined at divergence nodes and
on the boundary. Conservation of kinetic energy re-
quires that the elliptic operator of the pressure problem

is made by composition of the augmented divergence

operator and its adjoint and that the pressure force is
given by the adjoint of this augmented divergence.

However, extrapolations are necessary to define de-
rivatives at the boundary, and the adjoint of a discre-
tized divergence operator is not necessarily a consistent
discretization of a gradient. Numerical examples show
this leads to Gibbs-like error in the pressure term near
the boundaries [ what is referred to in Bernard (1992)
as ‘‘creation of vorticity’’ ] except with some specific
definitions of the metric coefficients, extrapolations,
and kinetic energy. This is consistent with known
mathematical results.
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F1G. 7. Projection of a constant u = 18 m s™' velocity field. Shown
is the resulting field of w. The domain is periodic with Ax = Az. The
orography is half a circle occupying three-fourths of the height.

With these appropriate definitions, we have shown
analytically that the nonconservative gradient can be
written as in (5.16) and is a consistent approximation.

The current practice (Clark 1977; Bernard and Kap-
itza 1992) is to sacrifice energy conservation. Separate,
consistent discretizations are designed for the diver-
gence, gradient, and elliptic operator. Their definition
of the metric coefficients and extrapolations is the same
as here. Clark’s and Bernard and Kapitza’s elliptic op-
erator appears to be very similar to ours, with the re-
dundant averaging operator removed and with a differ-
ent placement of some of the other operators. Redun-
dant averaging operators are necessary for a strict
energy conservation. They appear because our elliptic
operator is the composition of the divergence and the
gradient.

It has to be recognized that, even properly designed,
the elliptic operator is not symmetric. It is self-adjoint
for the scalar product, giving kinetic energy with a half
weight to velocities defined at the boundary.

We have also shown that the nonconservative form
of the gradient is equivalent to the conservative form
outside the boundaries. However, it should be borne in
mind that in order to get only boundary contributions
to the total horizontal angular momentum both forms
are equivalent and require the nontrivial property that
the gradient of p be vertical.

The model using this pressure solver and extrapo-
lations proves accurate for the study of orographic pro-
cesses and compares favorably with Long’s solution
even with semi-elliptic mountains. It is not too sensitive
to the aforementioned details of discretization for shal-
low orography.

The preconditioned conjugate gradient is the choice
method to solve the elliptic problem for pressure, as
shown in Kadogliu (1992) or Kapitza (1987). How-
ever, when the problem is not symmetric, less stable
and more expensive variants have to be employed
[such as GMRES (Kadogliu 1992) or ORTHOMIN
(Kapitza 1987)]. The discretizations advocated here
permit the use of plain conjugate-gradient iterations.
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Clark (1977) uses the same Laplacian operator, dis-
cretized on a rectangular grid (no orography), in his
iterations. We use this operator for preconditioning. It
is solved with an FFT direct method.

Accuracy for a given number of iterations depends
primarily upon the condition number of the precondi-
tioned Laplacian. It is studied in appendix B. A bound
upon condition number has been given. It was found
to be nearly independent of the discretization mesh but
to depend on domain geometry through the slope and
the relative height of orography. The pressure solver
handles even pathological orography easily.

Energy conservation is necessary in the design of
sound systems of equations. Solution of the discre-
tized hydrostatic equations is usually sought to con-
serve energy ( Arakawa 1983 ); for the pressure equa-
tion of the anelastic model, we saw it was difficult to
achieve in the presence of orography; semi-implicit
time stepping or treatment of advection terms by
semi-Lagrangian methods (Ritchie 1987) emphasize
economy or accuracy at the expense of strict energy
conservation.

However, we feel it is desirable, at least as a guide-
line, to examine discretization methods that preserve
the symmetry properties of the Hamiltonian formalism.
Sensitivity studies (Errico and Vukicevic 1992) pro-
vide the need to develop linearized and adjoint equa-
tions. Following the Hamiltonian structure presents the
advantage that most adjoint operators are already part
of the direct model. The anelastic system is a choice
testbed to study such an approach. The pressure term
is used to project tendencies onto velocities satisfying
the anelastic constraint, and acts as a separate layer in
the evolution equations.

Convergence of the model assumes that discretized
adjoint operators are sound discretizations of the con-
tinuous operator they are to represent. Purnell and Re-
vell (1993) present the equations under a clever sys-
tematic form that, although not symplectic, guarantees
energy conservation. The convergence of their discret-
ization should be ascertained. Use of finite elements
normally precludes the type of problem we found with
gridpoint methods.

This study is the first step necessary to derive con-
vergent finite-difference discretizations that would fol-
low the Hamiltonian structure of the anelastic model.
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model in generalized coordinates and participated in
code restructuring prior to adjoint developments. He
was the main user and main thrust for the present de-
velopments. Frequent discussions with L. Amodei
(Météo-France) about convergence of discretized var-
iational problems were particularly fruitful. Remarks
from P. Smolarkiewicz greatly helped to improve the
paper.
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APPENDIX A

Derivation of the Anelastic Equations from the
Hamiltonian Perspective

In this appendix we derive the anelastic equations
from the Hamilton principle. We first derive the form
of the pressure term and the Lagrangian form of the
equations, without taking care of the boundary condi-
tions. We then discuss the general form of the canonical
equations with a constraint in order to give some prop-
erties of the reaction force to be used in section 2a with
boundary conditions taken into account.

Following Salmon (1983), we define a marker a
= (a, b) attached to each fluid parcel. It should be
thought of as related to its original position. We chose
the markers so that dadb represents the mass of the
parcel. For each fluid parcel we should determine the
evolution of its position x(a, ¢) and velocity u(a, ¢) in
time. The total energy of the anelastic system, accord-
ing to Eq. (2.2), will be

I = f [%wu + cpv'r(x)é’(a)]dadb.

The density is a dependent variable determined by the
positions of the fluid parcels x:

_ i(i)]_l
r=lam |

o) _0x0z_0x 0z

8(a) Oadb Obda

is the Jacobian operator, so that the anelastic constraint
is

where

o(a) _
D(x) 3(%) p(x) =0.
We assume no diabatic processes are present. Potential
temperature of a parcel is unchanged during motion;
thus, it is a function of the particle label only.
The modified Hamilton principle is augmented to ex-
press that the system obeys the constraint (Goldstein

- 1980, p. 377); it states that the following integral

J(x,u,p) = f(ud& — H)dadb

+ fpél)(x)dadb, (A.1)
or, replacing,

J(x,u, p) = j [u-ig — %u-u - cpﬁ(x)a(a)]dadb

o(a) _
+ J‘ [6(5{) p(x)]pdadb,
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is stationary under a variation of the position x, the
momentum u, or the Lagrange multiplier for the con-
straint p. The Euler equations of this variational prob-
lem are

X=1u
a=6Ver+P
pP=p,

where P is the reaction force coming from the variation
of the last integral containing the constraint; P appears
in the momentum equation, as the constraint depends
on position only.

To determine P, as in Salmon (1983), we will use
the following:

6[ O(a)] _ [ 8(a)]'25[ 6(X)]
a(x) a(x) d(a)

[6(}()] _0(sx) _ O(x) 8(8x)

d(a) | 8(a) 8(a) 4(x)
o(6x) o
_—a(x) = V- éx,

which, when substituting é for d/dt, are used to derive
the continuity equation

d_dlo@]_ o
dr —dt[c')(x)]_pv "

Along with the constraint p = p, this gives the usunal
anelastic constraint

V-pu=0.
Integration by parts,

J‘ppV'éxdadb= fpsz-chdxdz

= —f 6x-Vp?pdxdz = —-J. 6x-(Vpp + pVp)dadb,

is also used in the following transformations:

d(a) _
é f [6(x) - p(x)]pdadb

= f(—pV-&x — 6xVp )pdadb

= fth'[Vﬁp + pV(p — p)ldadb,

and, finally, using the constraint
P = Vpp(x)
so the pressure term is a gradient.
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A general derivation of the equations of motion in
canonical form from (A.1) will highlight the role of

the constraint 9D and its adjoint. We need to define sca-
lar products

(u;v) = fu-vdadb = fpu-vdxdz,
or scalars

Ups g = qudadb

and the functional derivative of ¥ with respect to x is
defined by
6H = <é% ; 6x> ;
ox

9 is linear, so the variation of the integral expressing
the constraint is

8{p; Dx)) = ((p; Dbx)) = (D*p; bx).

The first two equations may be written as

6
249 D*p

+
¢ é
(@) e |
i 6%

bu

(A2)

where d is the antisymmetric tensor

01
J= (_1 0) .
This form of the equations of motion is said to be ca-
nonical.

Here D does not depend on time. It is linear, so,
differencing in time,

P(x) = GD<@> = 0.
bu

The time derivative of energy is
ig_c: — .‘S_gci . W + _6_g_£ . U
a \ox "/ \6u’
OH
= — * =
<6u »0%p > 0

so the reaction force does not produce energy. The
pressure force D*p is orthogonal to any x or X satis-
fying the constraint. This is the property we rely on in
the main part of the paper, with scalar products defined
in the Cartesian space and not as here in the phase
space. The form (A.2) and property (A.3) hold only

(A3)
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bound on cond number

volume ratio

1
slope

FiG. B1. Bound on condition number in terms
of volume ratio and slope of orography.

for a holonomous, linear constraint depending on po-
sitions only.

APPENDIX B
Efficiency of the Solver

For moderate steepness and heights, the ‘‘flat La-
placian’ A defined in Eq. (7.2) is a good enough ap-
proximation to the true one A so that the Richardson
method (Golub and Meurant 1983, p. 193) is a possible
method of solution, even with a nonsymmetric
operator. _

Let us define A = A~'A. The Richardson iteration
is

un+l =u, + a&—l(b - A)urn
and the error is
€ = (I - aA)"eOa

so the method is convergent when we choose « so that
p(I — aA) < 1. For nonsymmetric matrices, the error
bound is expressed as

(e,; €,) < p[(I — aA)"(I — aA*)"|(e;; &), (B.1)

where p(A) is the spectral radius of A. As for a non-
symmetric matrix, p(AA*) > [p(A)]?, no majoration

- =
o ™

»

- =
)
4

eigenvalue

-

A

0 100 200 300
FiG. B2. Eigenvalues of the preconditioned elliptic operator for
pressure. Scalar product ,,,. Domain width equals 20. Domain height,

equals 17. Orography is a Witch of Agnesi h = a = 5.
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Fig. B3. Same as Fig. B2 but for a semicircle a = 5.

of the error norm is given in terms of the eigenvalues
of A. Only in the case of symmetric matrices will it be

(e,;e,) < [p(I — aA)]?"(ey; €).

The conjugate gradient method works for any sym-
metric matrix A; a majoration for the error is expressed
as a function of the condition number «, ratio of the
extreme eigenvalues Kk = A/ Amin (Golub and Meurant
1983, p. 222):

k—1

2n+2
(e,; Ae,) < 4( ) (eo; Aep).

k+1

For n > 1, with low orography, we have observed Ay,
— 1= 1 — Nun = 0.5(x — 1). Residual error is better
for the conjugate gradient than for the Richardson
method with @ = 1 in aratio2"'.

Let A = DCC*D* and A = DCC*D*, and let us
obtain bounds upon the eigenvalues of A~'A. We as-
sume C and C are invertible. o

Let ? be the orthogonal projection upon Im(C*D*)
and v be an eigenvector of §(C~'CC*C™*); then,

C'CC*C *v =\v +n,
with v = C*D*p, n in KerDC, and then
A~'DC(C'CC*C *)v
= (DCC*D*)""(DCC*D*)p = \p,

46

34L N

X(km)

FIG. B4. Leading eigenvector of the preconditioned elliptic
-operator for pressure. Geometry is identical to Fig. B2.
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FiG. BS. Same as Fig. B4 but for the semicircle of Fig. B3.

s0 \, the eigenvalue of (G'CC*C*), is also an ei-
genvalue of A~'A and is bounded by the spectral ra-
dius p of the symmetric matrix C7'CC*G™ *:

A< p(C'CCH*C*),
In the same way, considering A ~'A, we find
p ' (GT'CC*C*) <\,
so considering both,
K(AT'A) < k(C'CC*C *),

where C'C pertain to the transformation x’ — x. For
a Gal-Chen type of coordinate,

— Ax' 0
_| —
&= (* o)

c- 1 Az 0
AxAz \ Ahm,,e, Ax)/’

Ax’
_ Ax 0
G-'C =
Az’ Az’
AxAz ™ AL

With an x-uniform grid, the bound on the condition
number depends upon the two quantities: volume ratio,
Az'/Az = HIH — z, where H is the top height of the
domain, and slope s = (Az'/AxAz)6,z ~ (H/H
— z)(8;z/8x). Figure B1 shows the condition number
of the above local matrix (with no averaging operator
m,e,) in terms of maximum s and maximum volume
ratio. Averaging tends to decrease the effect of the
slope for high-wavenumber fields. Except for the av-
eraging operator, the € matrices are local. Vector fields
that are gradients have no special orientation, so we
expect these bounds to be meaningful. For a given
orography and total height H, these bounds are inde-
pendent of the number of points used in the discretiza-
tion.
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Numerical experiments confirm these bounds on the
condition number k. The domain has Ax = Az, H
= 18Az, L = 20Ax; a is the half-width of the bell-
shaped { Witch of Agnesi, z(x) = A/[1 + (x/a)?*]17"}
orography. Maximum height of orography is h:

a, h 51 55 59 9,9
x observed 1.2 2.8 7.7 4.5
bound on 1.3 4.5 17 6.6 .

At the difference of the preconditioning used by
Kapitza (1988), the spectrum of A ~'A (Figs. B2 and
B3) presents no eigenvalues near zero. For the Witch
of Agnesi, extreme eigenvalues are inverse of each
other. Leading eigenvectors (Figs. B4 and B5) point
at maximum height for the Witch of Agnesi and at max-
imum slope for the ellipse.
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