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Abstract. The weak- or wave-turbulence problem consists of finding statistical states of a large
number of interacting waves. These states are obtained by forcing and dissipating a conservative
dispersive wave equation at disparate scales to model physical forcing and dissipation, and by pre-
dicting the spectrum, often as a Kolmogorov-like power law, at intermediate scales. The mechanism
for energy transfer in such systems is usually triads or quartets of waves. Here, we first derive a
small-amplitude nonlinear dispersive equation (a finite-depth Benney–Luke-type equation), which
we validate, analytically and numerically, by showing that it correctly captures the main determinis-
tic aspects of gravity wave interactions: resonant quartets, Benjamin–Feir-type wave-packet stability,
and wave-mean flow interactions. Numerically, this equation is easier to integrate than either the
full problem or the Zakharov integral equation. Some additional features of wave interaction are
discussed such as harmonic generation in shallow water. We then perform long time computations
on the forced-dissipated model equation and compute statistical quantities of interest, which we
compare to existing predictions. The forward cascade yields a spectrum close to the prediction of
Zakharov, and the inverse cascade does not.
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1. Introduction. The weak- or wave-turbulence problem consists of finding sta-
tistical states of a large number of interacting waves. These states are obtained by
forcing and dissipating a conservative dispersive wave problem at disparate scales
and predicting the spectrum, often as a Kolmogorov-like power law, at intermediate
scales. In dispersive waves, the energy transfer between waves occurs mostly amongst
resonant sets of waves, usually triads or quartets of waves. Here we consider only
quartets since triads do not exist in surface gravity waves. Quartet resonances occur
when the product of a pair of waves has a component with the same frequency and
wavenumber as the product of two other waves. For simple waves ei(kj ·x−ω(kj)t), this
means

k1 + k2 = k3 + k4,(1.1)

ω(k1) + ω(k2) = ω(k3) + ω(k4).(1.2)

In dispersive problems, these resonant sets are sparse, in contrast to nondispersive
problems, where interactions are dense in Fourier space ((1.2) is always satisfied). The
deterministic dynamics of isolated resonant quartets are modeled by sets of coupled
nonlinear differential equations for the wave amplitudes and are well understood (see
[10]). The dynamics of quartets which are not isolated (allowed to interact with other
quartets) are poorly understood. In the limit in which all possible quartets are active,
statistical theories of wave turbulence apply.

∗Received by the editors February 4, 2002; accepted for publication (in revised form) September
16, 2002; published electronically March 26, 2003.

http://www.siam.org/journals/siap/63-4/40206.html
†Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus, OH 43210

(berger@oblon.com).
‡Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706

(milewski@math.wisc.edu). The research of this author was partially supported by NSF-DMS and a
Sloan Research Fellowship.

1121



1122 K. M. BERGER AND P. A. MILEWSKI

The initial work on wave turbulence was done by Hasselmann [14], Benney and
Saffmann [7], and Benney and Newell [5], who introduced the statistical closures based
on the resonant wave interactions. Zakharov [29], through conformal transformations,
solved the resulting kinetic equation and obtained the power law for the Kolmogorov
spectrum. The particular physical context for these initial results was the ocean
surface gravity wave spectrum.

Majda, McLaughlin, and Tabak [19] started the numerical investigation of the pre-
dictions of weak turbulence theory using a nonlinear Schrödinger-like (NLS) model
equation. Adding large-scale forcing and dissipation to their one-dimensional model,
they investigated the turbulent cascades of energy and initially showed that
Zakharov’s [29] prediction for the energy spectrum did not hold, proposing a sim-
pler, yet unrigorous quartet-based scaling to explain their results. More recent work
by Cai et al. [9] and Zakharov et al. [30] shows that several meta-stable spectra can
coexist in the system, with the Zakharov spectra being among those observed.

Classical, small-amplitude periodic gravity waves, discovered by Stokes, are un-
stable to small modulations through the Benjamin–Feir instability. This result was
derived independently by Lighthill [15], Benjamin [1], and Whitham [26], and con-
firmed experimentally by Benjamin and Feir [2]. One can obtain the result by an-
alyzing the slow modulation of gravity waves and deriving an NLS equation for the
evolution of the wave envelope (see Hasimoto and Ono [13] and Zakharov [28], among
others). A plane wave solution of the NLS equation corresponds to the Stokes wave,
and it can be shown for waves of wavelength 2π

k in water of depth H to be unstable
when kH > 1.363. (Waves in deeper water are unstable, and the NLS switches from
“defocusing” to “focusing.”) Davey and Stewartson [11] generalized this result to two
spatial dimensions, deriving a more complicated NLS-type equation. This result for
two-dimensional waves was derived independently a few years earlier, however, by
Benney and Roskes [6], albeit in a slightly different form.

Here we investigate wave interaction and turbulence numerically for an equation
describing small-amplitude gravity water waves. We perform wave interaction ex-
periments and long time wave turbulence computations using a finite-depth Benney–
Luke (fBL) equation [21]. To validate this model, we first show, analytically and
numerically, that the fBL equation correctly captures the main deterministic aspects
of resonant gravity wave interactions: resonant quartets and the Benjamin–Feir-type
wave-packet stability. Some additional features of our numerical results are discussed:
the generation of harmonics in shallow water and the long time frequency downshift
of unstable wavepackets. For the wave-turbulence experiments, we compare the com-
puted wave spectrum to predicted spectra. We note that the use of a single partial
differential equation, rather than the full water wave equations, makes computing
complex surface wave dynamics possible. All of our work is for a one-dimensional free
surface. Although the computation of the two-dimensional free surface problem is
not fundamentally different, we restrict our attention to the one-dimensional problem
because of computational time constraints.

We note that there is a fundamental difference in the wave interaction problem
between the one-dimensional and two-dimensional free surface. In two dimensions
and infinite depth, the fundamental interaction mechanism is resonant quartets. The
quartet interaction coefficients, however, vanish as the waves become parallel to each
other, and therefore, for one-dimensional infinite depth, quartets are not important.
Thus in a one-dimensional deep water system, the strongest mechanism for energy
exchange between Fourier modes is the Benjamin–Feir instability, which is local in
Fourier space, and the slower quintet interaction, which requires quartic terms in the
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equations to be modeled correctly. The Benjamin–Feir instability is also relevant for
two-dimensional free surface problems.

For a one-dimensional free surface over water of finite depth, there exist quartet
interactions (which vanish as |k| → ∞ to agree with the deep water limit). Therefore
the one-dimensional finite depth problem is a computationally accessible useful test
for the more relevant two-dimensional problem. That is why we restrict our numerical
calculations to waves that are long enough to be influenced by the bottom.

The remainder of this paper is organized as follows. In section 2, we derive
the fBL equation. Next, in section 3, we derive the nonlinear Schrödinger equation
from the one-dimensional fBL equation using a multiple-scales approach, in a manner
similar to Hasimoto and Ono, who started from the full water wave equations. This
NLS equation correctly predicts the Benjamin–Feir instability limit, which we verify
numerically using the fBL equation. In section 4 we derive a set of new partial
differential equations that describe the coupled evolution of quartets and the induced
mean flow for one-dimensional finite-depth gravity waves. We then show that solutions
to these quartet equations closely match numerical solutions of the fBL equation,
when initialized with four waves that satisfy the resonance conditions. We also study
a model of the interaction of a primary wave and its quasi-resonant second harmonic
in shallow water to explain the quartet simulation results. Finally, in the last section,
we investigate wave turbulence numerically using the fBL model.

2. The Benney–Luke equation for gravity waves in finite depth. The
Benney–Luke equation [4] describes the evolution of three-dimensional, weakly non-
linear waves in shallow water. Recently Milewski and Keller [22] derived a more gen-
eral Benney–Luke model for waves in water of finite depth, shown here in a slightly
different (and corrected) form:

utt + Lu+ εN1(u, u) + ε2N2(u, u, u) = 0(2.1)

with quadratic terms

N1 = (∇u)
2
t + (Lu)

2
t + ut∆u− utLutt(2.2)

and cubic terms

N2 =
1

6
∇ · (∇u (∇u)

2
) + (∆u− L2u)

(
utLut − 1

2
(Lu)2

)
+ 2ut∆utLu

− 2ut(∇u · ∇Lu)t + 2Lu(∇u · ∇Lu) +
1

2
L2u(∇u)2.(2.3)

In this equation, ε = a/H 	 1 is the ratio of wave amplitude a to depth H, u(x, y, t)
is the velocity potential at the undisturbed free surface z = H, and L is the opera-
tor L = (−∆)

1
2 tanh[(−∆)

1
2 ], resulting in the dispersion relation ω2 = |k| tanh(|k|).

The water surface is given by H + η(x, y, t), where, to leading order, η = −ut.
The fBL is derived as follows. Using the depth H as both the horizontal and ver-
tical length scale, a as the scale for typical free surface displacements, a

√
gH as

the velocity potential scale, and
√

H/g as the time scale, the dimensionless water
wave equations can be written in terms of the velocity potential φ(x, y, z, t) and free
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surface displacement η(x, y, t) as

∆φ+ φzz = 0, 0 < z < 1 + εη,(2.4)

φz = 0, z = 0,(2.5)

ηt + ε(∇η · ∇φ)− φz = 0, z = 1 + εη,(2.6)

φt +
ε

2
(∇φ)2 +

ε

2
φ2

z + η = 0, z = 1 + εη.(2.7)

Expanding the two surface boundary conditions about z = 1 and eliminating η leads
to a single boundary condition in φ at z = 1, correct to O(ε2):

φtt + φz + εQ1(φ, φ) + ε2Q2(φ, φ, φ) = 0,(2.8)

where the quadratic terms are

Q1(φ, φ) =

[
1

2
((∇φ)2 + φ2

z)− φtφtz

]
t

+∇ · (φt∇φ)(2.9)

and the cubic terms are

Q2(φ, φ, φ) =

[
−1

2
φt((∇φ)2 + φ2

z)z + φtφ
2
tz +

1

2
φtzzφ

2
t

]
t

+ ∇ ·
[
1

2
(∇φ)((∇φ)2 + φ2

z)− (∇φ)φtφtz − 1

2
(∇φz)φ

2
t

]
.(2.10)

Next, we solve Laplace’s equation with the bottom boundary condition, obtaining

φ(x, y, z, t) = cosh[z(−∆)
1
2 ]Φ(x, y, t),(2.11)

with

u(x, y, t) = φ(x, y, 1, t) = cosh[(−∆)
1
2 ]Φ(x, y, t)(2.12)

being the velocity potential at z = 1. With this notation, it follows that φz(x, y, 1, t) =

Lu and φzz(x, y, 1, t) = −∆u, where L is defined as L = (−∆)
1
2 tanh[(−∆)

1
2 ] and has

the symbol L̂(k) = |k| tanh(|k|). Thus if û(k, t) is the Fourier transform of u(x, t),
then

Lu =
1

2π

∫ ∞

−∞
|k| tanh(|k|)eik·xû(k, t)dk.(2.13)

Substitution into the boundary condition (2.8) yields, after some simplification, the
fBL equation (2.1).

We note that since ε is the ratio of the amplitude of the free surface displacement
to depth, the wave slope appears to be arbitrary. However, note that for |k| large the
wave slope η̂x = O(|k|3/2û) and that in (2.1), Nj = O(|k|(1+3/2j)ûj), thus implying
that solutions of the fBL are relevant only if the wave slope is also small as waves get
short compared to depth. For the shallow limit, |k| small, η̂ = O(|k|û), η̂x = O(|k|2û),
and Nj = O(|k|(2+j)ûj), requiring only that η be small.
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A similar equation applies for gravity waves in water of infinite depth, now with
ε being the wave slope (ratio of the amplitude of the surface displacement to a char-

acteristic length scale), and L̂ = |k|. Therefore, L = (−∆)
1
2 , which, in the case of one

horizontal dimension, is L = −∂xH, where H is the Hilbert transform. For the deep-
water limit, the derivation must be modified slightly. The origin of the vertical axis
is shifted to the undisturbed fluid level, and the bottom boundary condition becomes
|∇φ| → 0, z → −∞. Expanding the two surface boundary conditions about z = 0 and
eliminating η again leads to (2.8). Solving Laplace’s equation with the new bottom
boundary condition modifies the depth dependence of the velocity potential:

φ(x, y, z, t) = ez(−∆)
1
2 Φ(x, y, t).(2.14)

Correspondingly, the velocity potential at z = 0 is just

u(x, y, t) = φ(x, y, 0, t) = Φ(x, y, t),(2.15)

and L is now defined as L = (−∆)
1
2 and has the symbol L̂(k) = |k|.

In the remainder of this paper we assume that the free surface is one-dimensional.

3. Nonlinear modulation of gravity waves. We consider the slow modula-
tion of one-dimensional gravity waves in water of finite depth using the fBL equation,
obtaining an NLS equation, in agreement with earlier results. This equation pre-
dicts instability for kH > 1.363. Of critical importance in the derivation of this NLS
equation is a wave-induced mean flow, which vanishes in the deep water limit.

3.1. Derivation of an NLS equation. In what follows, we employ the method
of multiple scales, introducing the slow space and time scales X = εx, T = εt, and
τ = ε2t. The NLS equation governs the evolution of wave packets or, alternatively, of
a narrowly peaked Fourier spectrum centered at kc. Thus one expands the governing
equations with k = kc + ε∆k. The equation in physical space is then recovered with
the duality ∂X ↔ iε∆k. Thus, in (2.1) we make the substitutions ∂t → ∂t+ε∂T +ε2∂τ

and ∂x → ∂x + ε∂X and, for L,

L → L− εi
∂L̂
∂k

∂X − 1

2
ε2

∂2L̂
∂k2

∂XX ,(3.1)

where kc is denoted k. The dispersion relation is

ω2(k) = L̂ = |k| tanh(|k|),(3.2)

and

∂L̂
∂k

= 2ωcg(k),(3.3)

∂2L̂
∂k2

= 2c2g + 2ω
∂cg

∂k
,(3.4)

where cg(k) is the group velocity.
After substitution, we have the following equation for u(x, t,X, T, τ):

utt + Lu+ ε

(
2utT − i

∂L̂
∂k

uX +N1(u, u)

)

+ ε2

(
2utτ + uTT − 1

2
ε2

∂2L̂
∂k2

uXX +N2(u, u, u) +M(u, u)

)
= 0,(3.5)
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where

M(u, u) = uT (uxx − Lutt) + 2ut(uxX − LutT ) + iut
∂L̂
∂k

uttX + 2ux(uxT + uXt)

+ 2uXuxt − 2iLu
∂L̂
∂k

utX + 2LuLuT − 2i
∂L̂
∂k

uXLut.(3.6)

Next, we expand u in the small parameter ε as u = u0 + εu1 + ε2u2 + · · · and look for
a single plane wave of slowly varying amplitude and wavelength 2π

k :

u0(x, t,X, T, τ) = A(X,T, τ)eiθ + ∗+B(X,T, τ),(3.7)

where θ = kx− ωt, B is the “mean-flow” component, and the ∗ denotes the complex
conjugate of the preceding terms. We note that although the waves are O(ε), the
mean flow Bx is O(ε2). Substitution into (3.5) leads to a series of equations at various
orders of ε. The O(ε) equation is

u1tt + Lu1 = −
(
2u0tT − i

∂L̂
∂k

u0X

)
−N1(u0, u0).(3.8)

The first terms on the right of the above equation are secular and impose that A is
moving at the group velocity. Thus, with ξ = X − cgT , the right-hand side becomes
3iω|k|2(σ2 − 1)A2e2iθ + ∗, where σ = tanh(|k|), A = A(ξ, τ), and

u1 =
3i|k|2(1− σ4)

4σ2ω
A(ξ, τ)2e2iθ + ∗.(3.9)

Proceeding to O(ε2) terms, the equation is

u2tt + Lu2 =

(
2u1tT − i

∂L̂
∂k

u1X

)
−
(
2u0tτ + u0TT − 1

2

∂2L̂
∂k2

u0XX

)

− (N1(u0, u1) +N1(u1, u0) +M(u0, u0) +N2(u0, u0, u0)) .(3.10)

In this equation, eliminating the secular terms in eiθ and mean flows (ei0) leads to
the two equations

Bξξ =
γ

c2g − 1
(AA∗)ξ(3.11)

and

iAτ + αAξξ = β̄|A|2A+
γ

2ω
BξA,(3.12)

where

γ(k) = 2kω + cg|k|2(1− σ2),

α(k) =
1

2

∂cg

∂k
,

β̄(k) =
9− 12σ2 + 13σ4 − 2σ6

4ωσ2
|k|4.

Integrating (3.11) to obtain the induced horizontal mean flow Bξ = γ
c2
g−1 |A|2 (we

ignore the constant of integration, which would correspond to an imposed weak flow)
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Fig. 3.1. Evolution of a single plane wave and two small side-bands using the one-dimensional
fBL equation. Here kH = 1.344 < 1.363, and stability is expected.

and substituting into (3.12) yields a nonlinear Schrödinger equation for the complex
amplitude A(ξ, η):

iAτ + αAξξ = β|A|2A,(3.13)

with

β(k) = β̄ +
γ2

2ω(c2g − 1)
.(3.14)

The well-known fact that the mean flow vanishes in the deep water limit can be
obtained by writing the mean flow in dimensional variables and taking H → ∞.

3.2. Benjamin–Feir instability. The plane wave solution of the NLS equation
A = A0e

−iβ|A0|2τ for constant A0 corresponds to the Stokes wave train to O(ε2)
(see [13]). Moreover, linear stability analysis (see [10] and [13]) shows that a plane
wave solution to (3.13) will be unstable if the product αβ < 0. Given the finite-depth
dispersion relation, we find α(k) < 0 for all k, and β(k) changes sign at k ≈ 1.363,
becoming positive for k larger than this value. This is the well-known Benjamin–Feir
instability criterion. Note that the induced mean-flow plays an important result in
this derivation, and in the deep-water limit this flow is not present.

To verify the stability predictions of this NLS equation, we numerically solve the
fBL equation with initial condition u(x, 0) = Aeikx + a(ei(k+∆k)x + ei(k−∆k)x) + ∗
corresponding to a primary plane wave of wavenumber k and two side-bands of the
next adjacent wavenumbers. We use a relative amplitude of a = 0.01A with ∆k = 1

32 .
Dimensionally, our wavenumber k corresponds to kH, and we take two values on either
side of the kH = 1.363 limit. Figures 3.1 and 3.2 show the results for kH = 1.344
and kH = 1.438, respectively, on the long time scale τ = ε2t. Note the instability
of the primary mode and the side-bands in the second figure. The calculations do
not show cyclic modulation and demodulation (or recurrence, present for some limits
of the Benjamin–Feir instability) due to the relatively large amplitude of the carrier
wave.

The extension to two dimensions (two-dimensional instabilities of plane waves) is
straightforward, and the fBL equation is an appropriate starting point for an asymp-
totic study (such as that of Davey and Stewartson and of Benney and Roskes) or
numerical experiments.

We note that in our calculations of the unstable Benjamin–Feir regime it is the
lower Fourier side-bands that dominate the spectrum. This “frequency downshift”
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Fig. 3.2. Evolution of a single plane wave and two small side-bands using the one-dimensional
fBL equation. Here kH = 1.438 > 1.363, and growth of the side-bands is observed.

has been observed experimentally [18] and is thought to be a three-dimensional phe-
nomenon requiring a combination of nonlinear wave modulation and dissipation [25].
We do not perform here detailed calculations of this phenomenon; however, we believe
that the equations used here (at least for two-dimensional free surface waves) could
be used for this purpose.

4. Resonant interaction of gravity waves. Nonlinear resonance, an impor-
tant mechanism for the transfer of energy among periodic wave trains, was pioneered
by Phillips, Benney, Longuet-Higgins, and others in the 1960s (see below). The basic
idea is that two or more distinct wave trains can combine to produce a perturbation
with a frequency that corresponds to the natural frequency of a free wave with the
same wavenumber. When this occurs, we have resonance, and the amplitude of the
response grows linearly. Resonance with three waves, known collectively as a triad, is
only possible when the dispersion curve has an inflection point (such as in capillary-
gravity waves). For pure gravity waves, resonance is possible only among sets of four
waves, known as quartets.

The idea of resonance for dispersive waves was first suggested by Phillips [24],
who showed that three gravity surface waves could resonantly force a fourth wave,
forming a quartet. Using the method of multiple scales, Benney [3] derived a coupled
set of ordinary differential equations describing the amplitude evolution of a quartet
of deep water gravity waves. Bretherton [8] showed that these types of coupled or-
dinary differential equations could be solved exactly using Jacobi elliptic functions.
Experimental confirmation of the existence and importance of resonant water wave
interactions was provided by Longuet-Higgins and Smith [17] and McGoldrick et al.
[20]. Hammack and Henderson [12] provide a review of experimental results concern-
ing resonant interaction theory for water waves, while the book by Craik [10] gives a
comprehensive treatment of wave interactions in general, including triads and quartets
in surface waves.

Here we derive a set of equations describing the resonant interaction of four gravity
waves in water of finite depth using the fBL equation. The derivation of these “quartet
equations” will closely parallel that of the NLS equation in the previous section,
except that we will consider the amplitudes of four surface waves as well as the
induced mean flow. A similar derivation in infinite depth leads to a set of equations
whose primary interaction coefficients are zero, indicating that there is no quartet
interaction in the one-dimensional “deep water” case. This is predicted by the analysis
of Longuet-Higgins [16] and shown analytically by Zahkarov [27]. This is not true of
two-dimensional infinite-depth gravity waves, nor of the one-dimensional finite-depth
waves, which we consider here (although the quartet coefficients vanish for |k| → ∞).
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4.1. Derivation of quartet/mean-flow equations. Beginning with the one-
dimensional fBL equation (2.1), we proceed with the method of multiple scales as
before, obtaining (3.5). Again, we expand u in the small parameter ε as

u = u0 + εu1 + ε2u2 + · · ·(4.1)

but now consider a set of plane waves of slowly varying amplitude:

u0(x, t,X, T, τ) = B(X,T, τ) +

4∑
j=1

Aj(X,T, τ)ei(kjx−ωjt) + ∗.(4.2)

Furthermore, we assume that the four plane waves form a resonant quartet satisfying
(1.1)–(1.2). Using the notation θ = kx− ω(k)t, the resonance condition is θ1 + θ2 =
θ3+θ4. Substitution into (3.5) again leads to a series of equations at various orders of
ε. The O(ε) equation is (3.8), and we introduce four frames ξj = X − cg(kj)T moving
at the four group velocities cg(kj) and assume that Aj = Aj(ξj , τ).

The quadratic term N1 is the product of two sums of eight terms each (four plane
waves and their conjugates). We need to keep track of only a subset of the sixty-four
possible quadratic terms, since we are interested in only those terms that can combine
to form quartets at the next order. We will ignore the creation of the conjugate modes,
since they are derivable from the main result for the primary modes. For example, at
this order we need to account for the θ1 + θ2 term, since θ4 = θ1 + θ2 − θ3, but can
ignore the −θ1 − θ2 term, since this is used only in forming the conjugate of the eiθ4

wave. With this in mind, the O(ε) problem can be written

u1tt + Lu1 = −i
∑
a,b

G(a, b)AaAbe
i(θa+θb),(4.3)

in which

G(a, b) = ωa(k
2
b − ω2

b L̂(kb)) + 2ωb(kakb − L̂(ka)L̂(kb))(4.4)

and a, b ∈ {1,−1, 2,−2, 3,−3, 4,−4}, with the notation k−1 = −k1, ω−1 = −ω1,
A−1 = A∗

1, etc. Here the sum is over those combinations of (a, b) that are relevant to
forming quartets, and it varies for which of the four waves is being created.

A particular solution to the O(ε) equation (4.3) is

u1 = −i
∑

a+b �=0

G(a, b)

L̂(ka + kb)− (ωa + ωb)2
AaAbe

i(θa+θb),(4.5)

where, again, the details of the sum (discussed below) depend on the primary wave
being formed. The restriction on the sum (a+b �= 0) is added because both numerator
and denominator vanish (there is no mean flow generated at this order). Proceeding
to O(ε2) terms, the equation is

u2tt + Lu2 =

(
2u1tT − i

∂L̂
∂k

u1X

)
−
(
2u0tτ + u0TT − 1

2

∂2L̂
∂k2

u0XX

)

− (N1(u0, u1) +N1(u1, u0) +M(u0, u0) +N2(u0, u0, u0)) .(4.6)
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In this equation, we seek to eliminate the secular terms in eiθj , j = 1, . . . , 4, and the
zero-mode terms (ei0). Upon transforming to the moving frame ξj = X − cg(kj)T ,
the linear terms on the right-hand side reduce to(

−2iωjAjτ − ωj
∂cg

∂k
(kj)Ajξjξj

)
eiθj +BTT −BXX ,(4.7)

where j = 1, . . . , 4.
On the right-hand side, the terms N1(u0, u1) +N1(u1, u0) will yield cubic terms,

since u1 contains quadratic terms (4.5) and u0 has the original plane waves. We
are interested in only combinations that yield a member of the quartet, i.e., terms
in eiθj . No ei0 terms are created here. The relevant contributions of the terms
N1(u0, u1) +N1(u1, u0) can be written

∑
a,b,c

G(a, b) [G(a+ b, c) +G(c, a+ b)]

L̂(ka + kb)− (ωa + ωb)2
AaAbAce

i(θa+θb+θc) + ∗,(4.8)

in which we keep the notation a, b, c ∈ {1,−1, 2,−2, 3,−3, 4,−4}. Note that c always
comes from the u0 term, and a and b come from the u1 term that was solved at O(ε).
Also, we keep the restriction that a + b �= 0. The notation G(a + b, c) means to use
ka + kb and ωa + ωb for ka and ωa in the expression (4.4).

The term ei(θa+θb+θc) will be equal to eiθj for one of the original θj when a, b,
and c are chosen appropriately. For example, to form terms in eiθ1 , we are interested
in the six permutations of the set {−2, 3, 4} since θ1 = −θ2 + θ3 + θ4. Evaluating
the sum in (4.8) with these six sets of a, b, c yields the term q1A

∗
2A3A4e

iθ1 , where q1

is a coefficient. However, we must also consider permutations of the sets {1, 1,−1},
{1, 2,−2}, {1, 3,−3}, and {1, 4,−4}, since they also lead to terms in eiθ1 . (In using
these values of a, b, c, however, care must be taken to avoid duplicates and the cases
when a + b = 0.) Thus, the contribution of N1(u0, u1) + N1(u1, u0) to the quartet
equations will be (

qjA
∗
l AmAn +

4∑
k=1

pjk|Ak|2Aj

)
eiθj(4.9)

for j = 1, . . . , 4, where l, m, and n depend on j and satisfy θj + θl = θm + θn.
The contributions of the cubic terms N2(u0, u0, u0) are very similar to those of the

quadratic terms N1(u0, u1) +N1(u1, u0), except that they come from u0 directly. We
again sum over five distinct groups of six permutations and obtain the same twenty
terms as in (4.9), but with different coefficients. We add these coefficients to those
obtained from the quadratic terms. The contribution of N2(u0, u0, u0) is∑

a,b,c

H(a, b, c)AaAbAce
i(θa+θb+θc) + ∗,(4.10)

in which

H(a, b, c) = ωaωbL̂(kb)(k
2
c + L̂2(kc)) + 2ωaωbL̂(kc)(kbωb − kcωb − kcωc)

+
1

2
k2

a(3kbkc + L̂(kb)L̂(kc)) +
1

2
L̂2(ka)(L̂(kb)L̂(kc − kbkc)− 2kakcL̂(kb)L̂(kc)).

Note that, like the quadratics, the cubics do not contribute any terms in ei0.
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Finally, M(u0, u0) gives both terms in eiθj and “mean-flow” terms in ei0:

4∑
j=1

(−2kjωj − cg(kj)(k
2
j − L̂2(kj)))(AjA

∗
j )ξj

+

4∑
j=1

(2kjωjBX + (L̂2(kj)− k2
j )BT )Aje

iθj .(4.11)

Equating terms from (4.6) in like powers of eiθ leads to a coupled set of five partial
differential equations governing the evolution of the resonant quartet and the “mean-
flow” term B:

BTT −BXX =

4∑
j=1

(2kjωj + cg(kj)(k
2
j − L̂2(kj)))(AjA

∗
j )ξj ,(4.12)

iAjτ +
1

2

∂cg

∂k
(kj)Ajξjξj =

αj

2ωj
A∗

l AmAn +
1

2ωj

(
4∑

k=1

βjk|Ak|2Aj

)

+
1

2ωj
(2kjωjBX + (L̂2(kj)− k2

j )BT )Aj(4.13)

for j = 1, . . . , 4, where θj + θl = θm + θn. Note that we have intentionally glossed
over some notational inconsistency by using X,T , and ξj as independent variables in
(4.12). Furthermore, the induced mean flows on any particular member of the quartet
from the other three members are rapidly varying on the time scale of (4.13), unless
group velocities are close. However, we will not be concerned with initial conditions
for (4.12) and (4.13) that involve spatial modulation of the four primary waves and
will thus treat (4.13) as a set of ordinary differential equations (see below).

Historically, the derivation of quartet equations was done for deep water, for
which spatial modulation effects are ignored since the mean-flow is known to be zero.
Thus (4.12) would not be present, B = 0 in (4.13), and these equations become
ordinary differential equations. Of course the dispersion relation ω2 = L̂ also changes
for deep water. As noted by Bretherton [8] for the two-dimensional deep-water case,
the primary interaction coefficients αi turn out to be equal. This is also true for
finite-depth quartet equations, which we have confirmed using the fBL model. For
deep water we find αi = 0, as expected. Since the αi are primarily responsible for the
exchange of energy among the four waves (the βjk modify the period and amplitude),
there is no interaction in the one-dimensional deep-water case.

4.2. Quartet simulations. To verify that (4.12) and (4.13) correctly capture
the finite-depth quartet interactions, we compare the solutions to these equations to
a simulation using the fBL equation. Since computing with these five coupled partial
differential equations is computationally intensive, we seek a simpler special case. By
choosing an initial condition in which the amplitude of the four primary waves is not
spatially modulated, we ignore the second term in (4.13) and (4.12) altogether, leaving
a set of four coupled ordinary differential equations. Although an exact solution
involving Jacobi elliptic functions is known for a set of ordinary differential equations
of this form (see [8]), we solve them numerically using a fourth-order Runge–Kutta
method, while we evolve the fBL equation in time using a pseudospectral method. The
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initial condition for both computations is the same. We pick four plane waves among
a discrete set of wavenumbers that satisfy the resonance conditions k1 + k2 = k3 + k4

and ω1+ω2 = ω3+ω4, and give them each an initial amplitude. The quartet equations
govern the four amplitudes as a function of τ = ε2t, while the simulation of the fBL
equation computes the evolution of all the Fourier modes.

The pseudospectral method used here was developed by Milewski and Tabak [23]
and involves the factoring of the fBL equation. Equation (2.1) can be also written as

(∂tt + L2)u = G(u),(4.14)

in which L2 = L = (−∂xx)
1
2 tanh[(−∂xx)

1
2 ] and G(u) = −εN1(u, u) − ε2N2(u, u, u).

We factor the left-hand side by introducing U(x, t) = (∂t − iL)u(x, t) and recast the
equation in terms of U as

Ut + iLU = G(U).(4.15)

Thus the free surface is, to leading order, η = −ut = −Re(U). To solve (4.15),
we transform it to Fourier space, introduce an integrating factor, and numerically
integrate using a Runge–Kutta scheme. Since we compute with U directly and not u,
we choose to initially set the quartet amplitudes to have equal values in terms of U .
The conversion to the amplitudes of u is straightforward. If u(x, t) =

∑4
j=1 Aje

iθj +∗,
then U(x, t) =

∑4
j=1 −2iωjAje

iθj and η(x, t) =
∑4

j=1 iωjAje
iθj + ∗. In the figures

below, we graph the absolute value of the relevant Fourier modes of U(x, t), i.e.,
|Uj | = 2ωj |Aj |.

A slight modification to the fBL equation (2.1) must be made before using our
pseudospectral method. The problem lies with the O(ε) quadratic terms which have
the term −utLutt. Because of this term, we cannot integrate (2.1) in the form given.
With the substitution utt = −Lu− εN1(u, u) +O(ε2), the quadratic term becomes

N̄1(u, u) = 2uxuxt + 2LuLut + utuxx + utL2u,(4.16)

and there is an additional cubic term in the equation which becomes

utt + Lu+ εN̄1(u, u) + ε2
(N2(u, u, u) + utL[N̄1(u, u)]

)
= 0.(4.17)

These modifications are similar to the formal manipulations that one uses to “regular-
ize” the Korteweg–de Vries (KdV) equation and obtain the Benjamin–Bona–Mahoney
(BBM) equation. There are also corresponding changes to the details of the quartet
equations, in particular to the definitions of the functions G(a, b) and H(a, b, c) in
(4.4) and (4.11), respectively. The new cubic term adds

ωaωb(k
2
c − L̂(kc))L̂(kb + kc) + 2ωaωc(kbkc − L̂(kb)L̂(kc))L̂(kb + kc)(4.18)

to the function H.
Figure 4.1 shows the numerical solution of the four coupled quartet equa-

tions using a fourth-order Runge–Kutta scheme. We use the quartet wavenumbers
(k1, k2, k3, k4) = (81, 46, 142,−15)∆k, where ∆k = 1

64 , and the corresponding fre-
quencies ωj to precompute the twenty quartet coefficients. The initial amplitude of
each mode Uj is 0.2. For this quartet, energy is periodically exchanged between the
four waves which is inherently on the τ = ε2t time scale. The total energy, given by∑4

j=1
1

αj
|Aj |2, remains constant.

Figure 4.2 shows the pseudospectral simulation of the fBL equation initialized
with energy only in the same four wavenumbers considered above. We use a total of
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Fig. 4.1. Numerical solution of the quartet equations using a fourth-order Runge–Kutta scheme.
The wavenumbers are (k1, k2, k3, k4) = (81, 46, 142,−15)∆k, where ∆k = 1

64
. The initial amplitude

is Uj = 0.2.
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Fig. 4.2. Simulation of the fBL equation initialized with four waves of the same initial am-
plitude. The wavenumbers are (k1, k2, k3, k4) = (81, 46, 142,−15)∆k, where ∆k = 1

64
. The initial

amplitude is Uj = 0.2, ε = .05, and ∆t = 0.1. We use 1024 wavenumbers in this computation.

1024 wavenumbers with the initial amplitude of each member of the quartet being
Uj = 0.2. Note that energy is periodically exchanged between the four waves on
the long time scale τ = ε2t, as predicted (here ε = .05). On a shorter time scale,
the longest wave in the quartet k4 = −15/64 periodically exchanges energy with
its near-resonant second harmonic, the k = −30/64 mode. This accounts for the
smaller oscillations in the amplitude of this mode. In the next section, we derive the
equations governing this interaction and show that they can be combined with the
quartet equations to correctly predict the simulation results.

Quartets containing wavenumbers closer to the shallow water regime (kH < 1)
will exhibit prominent second harmonic interaction, as the dispersion curve is nearly
linear in this range. This draws energy from the primary quartet and may account
for the slight variation in period between the two quartet graphs. Quartets without
this second-harmonic interaction do not exist for this one-dimensional model because
quartets containing many larger wavenumbers (kH > 1) are very weakly coupled since
the αj → 0 as H → ∞, and other mechanisms such as nonresonant interactions and
Benjamin–Feir instability are relatively more significant.
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4.3. Derivation of second-harmonic interaction. Beginning with the one-
dimensional fBL equation (2.1), we proceed with the method of multiple scales. We
restrict our attention to the slow time scale T = εt since we expect the interaction
to occur on this scale. We also ignore slow spatial variation, consistent with our
integration of the quartet equations above. With the substitution ∂t → ∂t + ε∂T we
have the following equation for u(x, t, T ):

utt + Lu+ ε (2utT +N1(u, u)) = 0,(4.19)

where higher-order terms are unnecessary. Next, we expand u as u = u0 + εu1 + · · ·
with

u0(x, t, T ) = A1(T )e
i(kx−ωt) +A2(T )e

i(2kx−ω(2k)t) + ∗.(4.20)

With the notation ω1 = ω(k), ω2 = ω(2k), θ1 = kx − ω1t, and θ2 = 2kx − ω2t, the
balance of terms at O(ε) in (4.19)

2ω1A1T eiθ1 + 2ω2A2T eiθ2 + ∗ =
∑
a,b

G(a, b)AaAbe
i(θa+θb),(4.21)

in which the function G(a, b) is the same as that derived before for the quadratic terms
(4.4). We can only get terms in e2ik with a = b = 1, for which the right-hand side
becomes G(1, 1)A2

1e
i(2kx−2ω1t) = G(1, 1)A2

1e
iθ2e−i∆t, where the frequency mismatch

is ∆ = 2ω1 − ω2. In a similar way, we can create terms in eik with (a, b) = (−1, 2)
or (2,−1), giving a right-hand side of (G(−1, 2) + G(2,−1))A∗

1A2e
iθ1ei∆t. Thus the

wave-second-harmonic interaction equations are

dA1

dT
= δ1A

∗
1A2e

i∆t, δ1 =
G(−1, 2) +G(2,−1)

2ω1
< 0,(4.22)

dA2

dT
= δ2A

2
1e

−i∆t, δ2 =
G(1, 1)

2ω2
> 0.(4.23)

For k 	 1, ∆ = k3, δ1 = −3k2, and δ2 = (3/2)k2. The transformations A1 → A1e
i∆t,

A2 → A2e
i∆t remove the periodic coefficient (detuning term), yielding

dA1

dT
= −i∆A1 + δ1A

∗
1A2e

i∆t,
dA2

dT
= −i∆A2 + δ2A

2
1e

−i∆t.(4.24)

These equations for ε = O(∆) can be solved analytically. Writing A1 = ρ1e
iφ1 ,

A2 = ρ2e
iφ2 , the equations (4.22), (4.23) conserve

E = − 1

δ1
ρ2
1 +

1

δ2
ρ2
2,(4.25)

H = ρ2
1ρ2 sin(φ2 − 2φ1)− ∆

4

(
1

δ1
ρ2
1 +

1

δ2
ρ2
2

)
,(4.26)

where H is the Hamiltonian in appropriate coordinates. From these, one can conclude
|A1|2 = δ1I(t) + c1, |A2|2 = δ2I(t) + c2, where(

dI

dT

)2

= 4(δ1I + c1)
2(δ2I + c2)− 4

(
H +

∆

2δ2
(δ2I + c2)

)2

.(4.27)

The solution can be written in terms of elliptic functions. For the results described
below, I(0) = 0, c1 = −δ1E, c2 = 0, and H + (∆/4)E = 0.
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Fig. 4.3. Solution of the second-harmonic interaction equations with k = −15/64. The initial
amplitude is U1 = 0.2 for the primary mode and U2 = 0 for the second harmonic. (ε = .05.)
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Fig. 4.4. Numerical solution of the quartet equations with second-harmonic interaction using
a fourth-order Runge–Kutta scheme. The wavenumbers are (k1, k2, k3, k4) = (81, 46, 142,−15)∆k,
where ∆k = 1

64
. The initial amplitude is Uj = 0.2.

For the quartet of waves that we consider here, only the mode k4 = − 15
64 will

generate significant second harmonic energy. Figure 4.3 shows the solution of (4.22),
(4.23). The primary mode is k = − 15

64 with initial amplitude U1 = 0.2, as in the
quartet simulation. The 2k mode has zero initial amplitude. (Note that, for consis-
tency, we show the results in terms of our computational variable U = (∂t − iL)u, as
discussed above.)

A pseudospectral simulation of the fBL equation initialized with energy in only
the single mode k = − 15

64 yields a virtually identical result.
Finally we augment the quartet equations (4.13) with the second-harmonic inter-

action term (for the k4 = − 15
64 mode only) and the second harmonic equation (4.23).

Although these equations combine two time scales and thus are not formally correct,
they give results virtually identical (see Figure 4.4) to those of the fBL simulation of
Figure 4.2.

5. Gravity wave turbulence simulations. Since we have shown that the one-
dimensional fBL equation captures the deterministic dynamics of the water wave
problem, we turn our attention to the simulation of dispersive wave turbulence using
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this equation. Statistical dispersive wave-turbulence theory relies on a closure (see
[14], [7], [5], [29]) that, in essence, restricts the dynamics to the resonant set of waves
satisfying (1.1), (1.2). Briefly, the closure is based on writing (4.15) in Fourier space,

Ût + iωÛ =

∫
Q(k1, k2, k3, k)Û1Û2Û3δ(k1 + k2 + k3 − k)dk1dk2dk3,(5.1)

where Û1 = Û(k1, t). The expression for the “collision” kernel Q is essentially the
quartet coefficients computed previously. From (5.1) one obtains the equation for the
second-order moment nk = 〈Û(k, t)Û∗(k, t)〉:

dnk

dt
=

∫
2 Re Q〈Û1Û2Û3Û

∗〉δ(k1 + k2 + k3 − k)dk1dk2dk3,(5.2)

where 〈·〉 denotes the ensemble average. Next, one writes the equation for the evo-
lution of the fourth-order moments appearing in the integrand of (5.2) in terms of
sixth-order moments. The closure consists in reducing these sixth-order moments to
products of second-order moments (a quasi-Gaussianity assumption). This leads to a
relation of the form

〈Û1Û2Û3Û
∗〉 ∼ Q

n2n3nk + n1n3nk + n1n2nk − n1n2n3

i(ω1 + ω2 + ω3 − ωk)
.(5.3)

Now, substituting (5.3) into (5.2) and replacing the reciprocal of the sum of frequencies
by δ(ω1+ω2+ω3−ωk), one obtains a closed equation that concentrates the dynamics
on the resonant set. (The difference in the sign in front of k3 and ω3 in these delta
functions and in (1.1), (1.2) is just a matter of convention.)

The steady state (dnk

dt = 0) of this resulting equation has two types of solutions:
solutions in statistical equilibrium and solutions with finite fluxes (cascades) of energy.
The latter have been of particular interest in attempts to describe the ocean’s wave
spectrum.

Since these cascades require that the governing equation (4.15) be forced and
dissipated, we augment the equation by adding forcing and dissipation terms (which
are meant to model physical processes such as wind forcing, viscous damping, etc.) at
various ranges of wavenumbers. Then, from long time computations, we observe the
evolution of the energy spectrum until a statistical steady state is reached. Since both
energy and wave action are conserved in this system, we must dissipate at both ends
of the Fourier spectrum and force at some intermediate scale. Thus, the factored form
of the fBL equation (4.15) in Fourier space, with forcing and dissipation, becomes

Ût + iL̂Û = Ĝ(Û) + F̂ ,(5.4)

in which we define the forcing-dissipation function F̂ as

F̂ (k) =




frÛ for kfl∆k ≤ |k| ≤ kfh∆k,

dr1|k|−2Û for kdl∆k ≤ |k| ≤ kdh∆k,

dr2|k|2Û for |k| ≥ Kd∆k,
0 otherwise.

(5.5)

Here kfl, kfh, kdl, kdh, and Kd are integers which define the range of forcing and
the two dissipation ranges, the latter being |k| > Kd∆k. The forcing rate fr is pos-
itive, while the dissipation rates dr1 and dr2 should be negative. The closure theory
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described above appears insensitive on the particular form of the forcing, and this is
confirmed by the numerical simulations. Various forms of forcing (both deterministic
and random) and dissipation (“standard” viscosity and “hyper” viscosity) were ex-
perimented with, and the results did not change appreciably. Our approach is similar
to that of Majda and coworkers (see [19] and [9]), who perform computations with a
simpler NLS-like model equation.

6. Direct cascades. To generate a direct (or forward) cascade over a significant
range, we force at low wavenumbers and dissipate at both the lowest and highest
wavenumbers. We construct the experiment such that the finite-depth regime lies in
the inertial range (the range of wavenumbers that are neither forced nor dissipated) for
reasons mentioned in the introduction. Figure 6.1 compares the dispersion relations
of the shallow water (ω = k), infinite-depth (ω = |k| 12 ), and arbitrary-depth (ω =

(|k| tanh |k|) 1
2 ) problems. We will arbitrarily denote the range 0.5 < k < 2.5 as the

finite-depth regime and indicate this range in our numerical result.
We compute the correlation function

p(k) = û(k, t)û∗(k, t),(6.1)

where the overbar denotes time average (after a statistical steady state is reached).
It can be shown that

p(k) ∼ 1

2π

∫ ∞

−∞
u(x, t)u(x+ r, t)e−ikrdr,(6.2)

when correlations are spatially independent.
Figure 6.2 shows a typical weak turbulence spectrum that we obtain using the one-

dimensional fBL model. The computation uses 2048 dealiased modes with ∆k = 1
100 .

The parameters chosen are ε = 0.05, fr = 0.00001, dr1 = −0.0009, and dr2 = −0.01.
Initially, the system has significant energy only in the lower wavenumbers Û(4∆k ≤
k ≤ 12∆k) = 0.5. All other modes are initialized to Û(k) = 0.00001. We show the
average spectrum from t = 150, 000 to t = 200, 000, computed with the methods
described earlier with ∆t = 0.1.

There are six regions of the spectrum divided by five vertical dotted lines. From
left to right, these are (1) the low wavenumber dissipation range, (2) the forcing range,
(3) the “shallow” inertial range, (4) the “finite depth” inertial range, (5) the “infinite
depth” inertial range, (6) the high wavenumber dissipation range.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

k

ω
(k

)

Fig. 6.1. Finite-depth dispersion relation ω(k) = (|k| tanh(|k|)) 12 . As indicated in the figure,
ω ∼ |k| as k → 0, and ω ∼ (|k|)1/2 for k large. The vertical lines in the figure reflect an arbitrary
choice for the transition region (0.5 < k < 2.5) between these two power laws.
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Fig. 6.2. Experiment 1. Direct cascade using the fBL model with forcing between k = 4∆k
and k = 8∆k and dissipation from k = ∆k to k = 3∆k and for k > 512∆k. Here ∆k = 1

100
and

ε = 0.05. We estimate p(k) by the time average of û(k, t)û∗(k, t) for t = 150, 000 to t = 200, 000
with data every t = 500.

We note that some features of the spectrum seem to change in correlation with
the shape of the dispersion curve. In the shallow and finite-depth regimes, there is a
good agreement with the weak turbulence theory of Zakharov [27] described above.
He predicts a direct cascade of p(k) ∼ |k|−10/3 (in the present variables), subject to
some strict conditions on the wave amplitudes (which are not strictly satisfied in the
computations). Using least-square interpolation of the data yields p(k) ∼ |k|α with
−3 > α > −3.4, depending on where the endpoints of the inertial range are chosen.
The Zakharov slope is shown in Figure 6.2 for comparison. We also note that in the
finite-depth region (region 4) the data is more spread. This is probably because in this
regime the discrete quartets are sparser, whereas in shallower water, wave interaction
is denser, and nondispersive wave steepening plays a more important role.

6.1. Inverse cascade. To obtain an inverse cascade (from high to low wavenum-
bers) we modified the forcing and dissipation parameters from the previous experi-
ment. We force near the deep water regime, between wavenumbers 2.25 and 2.50.
Again, we use 2048 dealiased modes, now with ∆k = 1

200 , ε = 0.05, fr = 0.0006,

dr1 = −0.75, and dr2 = −0.50. Initially, all modes are initialized to Û(k) = 0.
We show the average spectrum from t = 150, 000 to t = 200, 000, computed with the
methods described earlier with ∆t = 0.1.

The results are shown in Figure 6.3. The results here are less clear. In the shallow
water regime there appears to be a region with p(k) ∼ |k|α, with −2.2 > α > −2.4.
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Fig. 6.3. Inverse cascade using the fBL model with forcing between k = 450∆k and k = 500∆k
and dissipation from k = ∆k to k = 2∆k and for k > 512∆k. Here ∆k = 1

200
and ε = 0.05. We

estimate p(k) by the time average of û(k, t)û∗(k, t) for t = 250, 000 to t = 300, 000 with data every
t = 1000.

(We show a slope of α = −7/3 for reference.) Zakharov’s [27] prediction for the shallow
water inverse cascade is |k|−3.0. The reasons for this difference may be related to the
generation of coherent structures (solitons) which are excluded from the theory (by
assuming sufficiently small amplitudes compared to dispersive effects). In fact, the
more recent work on NLS [9], [30] explores the role of coherent structures in the
various spectra observed.

At finite depth, our computed spectrum drops much more steeply. The two visible
peaks in the spectrum are due to the forcing: the peak at higher wavenumbers is over
the forcing region, and the second peak is a direct subharmonic generation from the
forced modes.

7. Conclusion. We have derived a Benney–Luke model for waves in arbitrary
depth and verified its utility by demonstrating its accuracy in important deterministic
water wave phenomena: Benjamin–Feir wave packet instability, resonant quartet in-
teractions, and harmonic generation in shallow water. We have then used the model,
together with forcing and dissipation, to simulate wave turbulence. The numerical
spectra that we obtain agree with Zakharov’s prediction for the direct cascades but
not for inverse cascades. Possible reasons for the departure from Zakharov’s prediction
include the narrow range of applicability of his theory in this regime to avoid soli-
tons. The present work validates the use of the fBL equation for the more interesting
problem of two-dimensional turbulent simulations.
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