MAy 1979

NOTES AND CORRESPONDENCE

619
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ABSTRACT

A variational principle is presented for periodic, finite-amplitude gravity waves in terms of a stream-

function.

1. Introduction

Usually gravity waves are described in terms of
the velocity potential under the assumption of no
vorticity in the fluid. This hypothesis is rather
difficult to justify and not useful if the induced
boundary layer must be studied. In the case of long
crested waves, i.e., for a two-dimensional problem,
a streamfunction representation can be also intro-
duced. Dean (1965) first studied, by means of a
streamfunction, the case of zero vorticity for a
periodic wave system travelling with constant speed
C. He showed that this method can be employed
to represent wave conditions, with a prescribed
uniform steady current and pressure distribution on
the free surface. Dalrymple (1973) has enlarged
Dean’s study for the case of constant vorticity
and more recently Dalrymple and Cox (1976) and
Dalrymple (1977) have studied, in the case of a
vorticity field proportional to the streamfunction,
some interesting current profiles relatec to non-
linear waves.

The aim of this note is to show how to “ormulate
the streamfunction method by means of a variational
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principle in analogy with that of Luke (1967) for
the velocity potential.

2. The problem

We consider a two-dimensional, incompressible
and inviscid fluid in a Cartesian reference frame
x’, z'. The z' axis is directed upward and n(x’,t')
will be the free surface. We discuss only the case
in which n(x’,¢') has the form

n(x,t") = n(x" +ct') = n(x' +ct’ + KL),

where ¢ is the constant wave speed, L the wave-
lengthand K =0, =1, =2, . . . .
Performing a Galilean transformation

ze« 2z
x<—x"+ct';,
t et

we obtain the steady case. In this new moving frame
the free surface m(x) is periodic, i.e.,

n(x) =n(x + L).

For the streamfunction W¥(x,z), the steady two-
dimensional Euler equation is

J.vVY) =0
or
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V2 = F(P).

The pressure p is function of ¥, p = p(¥); the
function F(¥) is not determined by the theory.
The boundary conditions at the flat bottom are

V¥ = constant = V,, z = —-D,
and at the free surface
¥ = constant = V¥, z = n(x)
(VW) + gz = Q = constant, z = n(x)} ’

i.e., the Bernoulli equation.

3. The variational formulation

We now derive a variational formulation of our
problem. Following Whitham (1974), the natural
candidate is

L

I, ¥) = [

0

n
J {1|V¥|? + gz + G(V)}dxdz,
-D

where F(V) = dG/dV is related to the pressure. Our
statement is that the preceding equations are
equivalent to the equations

with the boundary conditions
n(x) = n(x + L),
Y(x) = ¥(x + L),
¥ = ¥, = constant, z = m(x),
¥ = ¥, = constant, z = —D.

To prove our statement we compute explicitly
o, and 8,1.

For 8,1 we easily obtain
8. = [L|V¥[2 + gz + GW)]on =0 at z =1.

This relation is equivalent to the Bernoulli equa-
tion, using the definition

Q= _G(q’n)-
We compute now 8,1:
L " 9v _ oV
8\,,I=J de — 8 —dz
0 _p Ox Oox
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L n il
+ J dx [ ﬂf—S‘I’dz,
_p dV¥

0

which transforms to

L K 0 (0¥
=1} d — &Y
ol 4[0 XJ—D [ax(ax )

+ i(ﬂa\p)]dz
0z \ 0z
L n 2 2 ("‘
_ J de (f’_‘l’+ *V_ ii)ng
o _p \0x% 98y* dV¥
or
n . 6
8\,,I=J [(?anf) - (—\P-aw) ]dz
-p Ox =L -\OX =0
N
+ |- aEe)
0 Ox \ Ox 2=m
+ (ﬂaqf) - (ﬂaqf) ]dx
0z 2=n 0z 2=—D

The first integral on the right vanishes because of
the periodic condition on ¥; the second integral
vanishes because 8 =0 at z = n and z = —D.
Hence for §,/ = 0 we obtain

V2 = dG/dV¥
which completes the proof.
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