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ABSTRACT

Wave gauges and buoys are nowadays available for measuring the directional spreading
of wave energy in the ocean or in laboratory basins. These devices allow to analyse the
directional characteristics of a wave field in a detailed way, by the full analysis of the
directional wave spectrum. This item lies at the core of the present paper, in particular
by considering multi-component gauges, recording simultaneously and over a given
duration several wave signals (typically 3 to 10), either on the same vertical (the so-
called « single-point » systems) or at different locations (wave gauges arrays).

Estimating the directional wave spectrum from so few data is a particularly awkward
problem, for which numerous analysis methods have been proposed. A great number of
these methods are considered in this paper, in particular the ones used within the IAHR
Working Group on Multidirectional Waves. The theoretical backgrounds of these
methods are briefly described. Special attention is focused on the underlying
assumptions of each type of method, in order to highlight and discuss their capabilities
and limitations. To that end, it was attempted to sort the methods and to propose a
tentative classification, not with the objective of finding the « best » method, but rather
to offer a comparative overview of the existing methods with some comments on their
characteristics.

0. INTRODUCTION

This paper is a contribution from the IAHR Working Group on Multidirectional Waves.
This Group was composed of 11 participating laboratories from 10 different countries
in the World. Although most of the Group members were involved in the discussions
related to the various steps of the review and classification of directional wave analysis
Methods, the paper was prepared for the Working Group by Michel BENOIT, assisted
by the co-authors. The contributions and discussions with the other members of the
Working Group are anyway highly acknowledged.
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This paper is organized as follows. Chapter I introduces the scope of the work and gives
some basic definitions. A brief overview of measuring devices for multidirectiona]
waves 1s given in Chapter II. Chapter I1I is devoted to stochastic analysis methods and it
represents the bulk of this paper. Chapter IV discusses deterministic analysis methods
and Chapter V briefly mentions some time-domain approaches. Chapter VI draws up
some conclusions.

L SCOPE OF THE PAPER - BASIC DEFINITIONS

L1  Scope of the paper

This paper is mainly devoted to the linear analysis of ocean surface waves in the
absence of reflection. This corresponds to the so-called "open ocean” case, for which a
lot of methods have been proposed in the scientific literature. It is out of the scope of
this paper to review, present in detail and discuss all the methods that have been
published in the literature for several decades. Several journal papers or book reviews
are available in the bibliography for the reader who is interested in more detailed
descriptions or comparative evaluations of a great part of the methods considered in the
present work (e.g. Horikawa, 1988 ; Benoit, 1992, 1993 ; Kim et al., 1993 ; Brissette
and Tsanis, 1994 ; Benoit and Teisson, 1994 ; Hashimoto, 1997 among other authors).

The main goal of this paper is to provide some general descriptions of the underlying
principles, capabilities and limitations of some of the most widely used methods, and in
particular (but not only) the ones used within the Working Group.

L2  The directional wave spectrum

A directional analysis of field or laboratory wave fields basically consists in
determining the way the energy (or equivalently the variance) of this wave field spreads
over both frequencies (or wave-numbers) and directions of propagation.

This spectral and angular distribution
is formally represented by the
directional energy spectrum of the
wave field E(f,0) (unit : N.m-1.Hz'!
rad-1), a function of wave frequency
f and direction of propagation 6.
Another more widely used variable is
the directional variance spectrum
S(f,08) (unit : m2.Hz-!.rad-1), which 18
directly proportional to the energY
spectrum :

S(£,6) =E(£,8)/ (pg) M
where g is the gra\.ritational
acceleration (g = 9.81 m/s2) and p t¢
water density. ,
S(f,0) is often simply referred as f-h-e
directional spectrum. Its estimatiod

Figure 1: Example of a directional wave

spectrum core of this paper.
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-way 10 describe more practically what the directional spectrum represents may be
'ven on the basis of the decomposition of the wave field into a large number of

“E;emenm sine wave components :

'ﬂ(X’ yt) = 2 am cos[km(x.cosem + y.sinfp) - Omt + (Pm] @

m=1
this expression, the surface elevation 1 is a function of both time t and location (x,y).
It is written as the superposition of M elementary sine‘ waves, each having amplitude
. angular frequency ®p = 2% fy, , wave-number kq, direction 0, and phase ¢, Each
wave component satisfies the linear dispersion relationship (d : water depth) :

Under the assumption that the phases ¢ are randomly distributed over [0 ; 21t] (with an
: yniform probability density), the following relationship holds between the directional
een variance spectrum and the amplitudes of the wave components comprised in the
Sws pidimensional range [f ; f+df] x [0 ; 6 +d 6].
lleg § f+df 6+d6
Y. Lak=s(te)df de .
Clte ¥ f ©

13 Classical decomposition of the directional spectrum

1in ;, The following conventional decomposition of the directional spectrum is often used :
8(f,8) = E(f).D(f.9) &)
E(f) is the classical one-sided variance spectrum, that may be estimated by a single
record of free-surface elevation. It is related to the directional spectrum by :
ads n
‘ E(f) =[ S(£,0) do 6)
ion 0
gl’: i D(f,0) is the Directional Spreading Function (DSF) satisfying two important properties :
[z D({,8)>0 over{0,2x] N
acy 2n
. ] D(f8)de =1 ®
c1s 0
um The former condition expresses that the DSF is a non-negative function, whereas the
nis latter is a direct consequence of (6). The DSF thus models the directional spreading of
(gy the wave energy at each frequency f. The directional analysis problem thus consists in
determining the directional spectrum S(f,8), or equivalently the variance spectrur E(f)
and the DSF D(f,6).
nal It should be noted that the directional variance spectrum may alternatively be expressed
the as a function of wave-number and direction (k, 0) or wave-number vector (ky, ky) =
. (k.cos 0 : k.sin 8). The relationships between these expressions are recalled below :
the S _2n _2rk
iom (f,6) = S, Sk.9) = C, Stkyx.ky) 9)
the

where C, is the group velocity for frequency f, as given by the linear wave theory.
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I BRIEF REVIEW OF EXISTING MEASURING DEVICES :

—_—
A great effort has been devoted in the recent years to the determination of the

directional wave spectrum. Several measurement techniques have been proposed for i,
situ or laboratory applications (see e.g. Horikawa (1988) for 2 more detailed descriptiop
with some photographs).

They can be divided into several groups depending on the way they proceed :

1. the single-point systems : they measure simultaneously at the same locatiop
(i.e. on the same vertical) several properties of waves. In general, these system
record 3 wave signals. The most widely used are :

* the heave-pitch-roll buoy (e.g. Longuet-Higgins et al., 1963 ; Lygre
and Krogstad, 1986 ; Mardsen and Juszko, 1987 ; Brissette and
Tsanis, 1994), which delivers the sea-surface elevation (heave) and
two orthogonal slopes of sea-surface (pitch and roll).

* the two-component current-meter associated with a pressure sensor or

a wave elevation probe (e.g. Briggs, 1984 ; Schiffer and Hyllested,
1994 ; Benoit and Teisson, 1994),

Other possible combinations include three-dimensional current-meter, a buoy
recording three accelerations or three displacements over three axis,...

Among these systems the heave-pitch-roll buoy is probably the most widely
employed for operational use because it is a compact single-point
measurement system of moderate cost and easy keeping. :

The clover-leaf buoy developed by Mitsuyasu et al. (1975) was designed to

Pn _82r1)

measure 6 wave signals, namely the surface curvatures ( ’ >
&t y ax2’ gy2 *dxy

m

addition to the three signals delivered by a classical heave-pitch-roll buoy.

ii. the gauge arrays : they are composed of several sensors set up at various
locations over a fixed frame. The sensors may be either identical (wave
elevation probes) or of various types including for instance current meters and
pressure sensors {(e.g. Hashimoto et al., 1987, 1997 : Benoit and Teisson,
1994).

iii. the remote-sensing systems : These techniques proceed in a different way,
based on spatial correlations, rather than time correlations. Their common
principle is to make a « picture » of the wave field over a given area. The wave
field is assumed to be homogeneous over that area, so that the (wave-number)
directional spectrum may be computed by Fourier transform of the surfacé
elevation field. These techniques include microwave radars (Yackson et al,
1985), aerial stereo-photography techniques,... They have been significantly
developed in the recent years with the use of the Synthetic Aperture Rad&f
(SARY), on the satellite ERS-1 and 2 for example. _

Within the frame of this review we mainly consider measuring systems of types i and ib
recording several wave signals at one or several positions and delivering simultaneously
sampled time series. These systems will be termed multi-component arrays in "-hf’

following. We will thus mainly consider analysis methods based on temporal analysis i

of wave signals at a limited number of locations. Methods based on spatial correlation$
for systems of type iii will thus not be dealt with in this review.
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STOCHASTIC ANALYSIS METHODS :

[1.1 Characterization of stochastic methods :

othods of this class are based on the assumption that the wave field may be expressed
i a form close to (2), but written in a continuous way :

Aoy D = N2 S(£,6) df 6 codk(x.cos8 + y.sind) - 2nft + | (10)
rtant assumption is that the phase function ¢ is randomly distributed over

ith an uniform probability density), expressing that the wave components are
dent of each other. There are no « phase-locked » waves. This remark clearly

emphasizes that these methods are not suitable to deal with situations where such
phase-lock relation exist, e.g. close to a reflective structure. Specific additional

refinements are necessary to deal with this case (see Chapter VI).

In the so-called « stochastic approach », the information on the phase distribution of the

wave field is thus ignored and interest is only focused on the determination of the

directional spectrum. These methods proceed in two steps :

1. perform spectral analysis of the recorded time-series, by computing the
cross-spectra between each pair of signals (cf. IIL.2),

5 determine the directional spectrum (or equivalently the DSF at each
frequency) by inverting the relationship (established in IT1.3) between the
cross-spectra and the directional spectrum, by making use of one of the
methods presented in section IIL.5 and subsequent ones.

An impo
[0; 2] (W
all indepen

III.2 Cross-spectral analysis :
We consider a general multi-component measuring device composed of N sensors. As
seen in chapter II, several of these probes may be located at the same position. Each
probe records a wave signal (surface elevation, velocity, surface slope,...), noted here
for convenience : Po(t) (n =1 to N). The locations of the probes are noted : Xn (n =1 to
N) relative to an arbitrary origin.
The signals are recorded simultaneously at the N probes of the array, over a given
duration T and with a sampling time-step At.
The analysis of the correlation between each pair of signals is performed in the
frequency domain, by estimating of the cross-covariance spectral densities (i.e. the
cross-spectra) Gmq(f) between each couple (P ; Pn), defined by :

+00 i T
G (f) = [ Ryn (1) €271 4t with Rpn(T) = fim %I Pm(t).Pa(t+1) dt  (11)
: T—ee 0

i ]

In practice, the cross-spectra Gy, (f) are usually estimated from the discretely sampled
and finite duration time-series, by digital procedures based on the Fast Fourier
Transform (e.g. Jenkins and Watts, 1968).
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These cross-spectra are usually computed for m < n only, as one can show that Gmn (D) L

and Gy (f) are complex conjugate quantities. The total number of (complex) cross. Wave signa
spectra to compute for a measuring device composed of N probes is thus N.(N+1)/2.
Among these, one can note that : Surface eley

* N are auto-spectra (m = n), which are real quantities. If P,(t) is the surface
elevation time-series, then Gpp(f) s directly an estimation of the variapee

spectrum E(f). Surface slog
* N.(N-1)/2 are actual cross-spectra (m < n), whose real parts C,(f) are called

“coincident spectral density functions" or "co-spectra" and imaginary parts Surface slop

Qm(f) are called "quadrature spectral density functions" or "quad-spectra”,
Velocity (x &
I3 Relationship between the cross-spectra and the directiona] | Velocity (y ¢

spectrum (or the directional spreading function) : -

Within the frame of the linear theory and by assuming that the phases of the various ] 5 Velocity (z

components of the wave field are randomly distributed over [0 ; 2x], the following
equation is obtained between the directional spectrum S(f,8) and the Cross-spectra

G (D) :

vej.'ﬁcal surf.

2n
Gmm=f Hn(f,0) Hy(£,0) e-i kGn*m) S(£,6) 40 (m=1,..N ; m <n) (12) Acceleration
0
which may also be written as an equation over the Directional Spreading Function
D(f,0), by using the decomposition (5) of the directional spectrum :
2n
C%MD=HD] Hum(f,0) Hy(f,8) e-i k-Gnxm) D(£,0) d6 (13
0

H(f, 0) is the transfer function between the surface elevation signal and any other wave
signal Py(t) (pressure, velocity, slope of the surface,...).

The symbol * stands for the conjugate operator, as Hy(f,0) is a complex function in the
general case. :

The transfer function Hy(f,0) may be decomposed in the following form :

Hp(f,0) = hy(f).cos®m § . sinfm g

The quantities hy, 0y and By, depend on the type of wave signal Pp(t). Thei‘ :
expressions are given in Table 1 for several wave signals and by considering the line&f
wave theory results (e.g. Isobe er al., 1984). In this table, the variable ¥ (xy&¥

represents the velocity potential for a long-crested monochromatic wave :
. h(k.(d+z)) s

Y= ..g_ﬂg____ Ak.x - .
1002 ch(kd) exp(l( X u)t))

For convenience, (13) is also rewritten in the following form :

(1)

2n
_ Gon(® _
$mn(f) = B L gmn(f.0) D(f,0) d6
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Pm hm(® on | Bm
ce elevation n= é a: L = %cxp (i.(_lz x- @ t)) 1 0 0
e ]
Burface slope (X axis) %= [ikcos 6] n ik 1] o0
e '
sustace slope (y 23) | L=[iksin o ik o 1
= sl
. : _ ay _[, chlk(d+z)) 9} o k@) | |
Velocity (x X2 ™ [w shkd) ) shkd)
e
. : __ oy _ [ chlk.(d+z) e]  hlk(@+2) o | 1
Velocity (y axis) =3 [m el D
Velocity (2 m_S) ™ [ Lo sh(kd) n e sh(kd)
Vertical surface veloc. m_d¥ 4 n -1 0 0
ot dzl=g
_ . =9uy _ { i o2 hik@+2)) 9} .5 chlk(d+2))
Acceleration (x axis) ay 3 1 hkd) s @l n i _Sh_(zcg_ 1 0
duy [ 2 chik(d+2)) J .5 chk(d+2))
' i =—ZL=|- 9 Liw?
Acceleration (y a>_<xs) ay 3 eh(kd) n iow kD) 0 1
i i = ?.u_zz [- 2 M } . d'l(k(d‘i‘l))
Acceleration (z axis) 3 ~ © shkd) w22 o 0 0
82
Vertical surface accel. a_t;l =w2n - @? 0 0
Displacement (x axis) | &x= ru dt={i chllc(d+2)) cos 6} 7 iCh(k-(d"'Z)) 1 0
P ent (x axis X | X sh(kd) | 0
i { chlk.(d+z) ] ch{k.(d+2))
Displ i Ey=| uydt=|i =24 5ip B q : {d+z) 0 1
splacement (y axis) ¥ | y hed) i 5D
;
, . sh(k.(d+2) sh(k.(d+2))
D}s = dr=| > 4
placement (z axis) | &z | uz { sh(kd) sh(kd) ° °
Dynamic pressure p=p dy _ og ch{k.(d+2)) } N ch(k.(d+z)) 0 0
ot ch(kd) ch{kd)

e,

¥ = wave potential ; o = angular frequency ; k = wave-number ; 6 = direction ; d = water depth

Z = elevation from the still water level ; p = water density ; g = gravitational acceleration

Table 1 : Transfer functions for various wave signals (from linear theory).
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IIl.4 Estimation of the directional spectrum : others

Solving the system of integral equations (12) or (16) for estimating the directiong informr
spectrum of the DSF lies at the core of directional wave analysis. When considering

(16), the problem is to find at each frequency D(f,0), a continuous function over [0 ; 2] an = ]
from a finite (and often very limited} number of equations, given by the Cross-spectra, If (

an infinite number of wave signals were simultaneously recorded (i.e. if we had ap For sir
infinite number of cross-spectra), the DSF could in principle be determined uniquely. be coT

As the operational measuring devices usually have a number of gauges ranging from 3 these

to 10, the mathematical problem is not fully defined and one has to introduce SOme single-
additional assumptions or conditions of the DSF in order to get a unique solution. In the
For instance, for the case of a heave-pitch-roll buoy, recording at the same location the briefly

surface elevation and two slopes on two orthogonal axis (N =3), we have the following
setof signals (1) Pa(t); P3(9) = nct) s o ;%'3&))

This gives the following set of 6 complex cross-spectra :

capabi
as disc

2n
Cr® =[ S(f,0) d6 = E(f) QuHh=0
0
2n
Ca2(f) = E(f).k2 f D(f,6). cos(0)d8 Q) =0
0 As the
2n case,
C33() = E(f).k f D(£,0). sin%(0)d6 Qa3(f) =0 an §i M
0 .
” D(f,9)
Ci2(f)=0 Q12(f) =E(f .k [ D(f,6).cos(6)d0 where
0
2n : i a
Ci3(H)=0 Qu() =Ef k f D(f,8).sin( 6)d@ o
0 iThe m
2 ‘ | ie:
C23(f) = E(f).k2 [ D(f,0).cos(8)sin(8)d8  Qus(f) = 0 determ;

0 - | the rap
From the twelve real cross-spectral coefficients, only six are different from zero. [
Furthermore C(f) does not carry any information about the directional distribution,

but directly gives the variance spectrum E(f). In addition, Cy1(f), Cpy(f), Cs3(f) are
related by the following relationship :

Ca2(f) + Cs3(h) = k2.Cy () (18)
This relation is often used for obtaining an empirical value of the wave number, insteﬂdé
of using the linear dispersion relation (3): A

- ./ Ca(D) + C33(D oy
« \/ Cii(D (19

It is thus possible to compute only five independent coefficients at each frequency, from
which one is devoted to the esti

mation of the frequency spectrum E(f) and the f0 &
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ay be used for the computation of the DSF D(f,8) at this frequency. This
o3 fon may be rewritten in terms of Fourier coefficients of the DSF, defined by :
A 1; 2=
D(£.0). cos (n.8). 48 bn = [ D(£,0). sin (n.0). d6 (20)
0

oint systems (N = 3), only the four Fourier coefficients (aj, by, ap, by) may
They carry all the available information on the DSF. The expressions of
fficients from the cross-spectra are gathered in Table 2 for various

A single-P
“computed.
Lage Fourier coe
ole-point systems.
the following section, several directional methods aiming at solving (16) will be
iefly reviewed and discussed. These methods are not equivalent. Their resolving
pilities and limitations are related to the modelling assumptions they are based on,

o discussed in the next sub-sections.

J1.5 Fourier Series Decomposition Methods

I11.5.1 Truncated Fourier Series Decomposition (TFS)

As the Directional Spreading Function (DSF) is, at least in the general short-crested
case, a continuous function over [0; 2n] satisfying D(f,0)=D(f,2n), it is possible to
write its Fourier series decomposition :

D(f,0) = —23—0— +1 Z [an. cos (n.B) + by. sin (n.G)] (21)
TOT
where a, and by, (n > 0) are given by (20),
2R
and : ag =[ D(f0)de=1 (22)
0

The most straightforward way to use this approach consists in truncating the above
Fourier series decomposition in order to only keep the terms whose coefficients may be
determined from the available cross-spectral data. If we note K the maximum value of
the rank of the decomposition that can be computed, we then get :

~ K

Drrs(f,8) = 5113 +—71E Z [an. cos (n.e) + by sin (n.e)] (23)
n=1

For a single-point measuring devices for instance, only terms of ranks 1 and 2 may be

computed from the co- and quad-spectra (cf. [IL.4). We thus obtain for this estimate :

Drps(f.0) = 1+ % [al.cos (9) + by.sin (9) + ;.08 (2.6) + by.sin (2.9)] (24)
2n

'.I'his' estimate is easy to implement and computationally efficient. But, as a drawback of

its }lmited number of component terms, it may sometimes produce negative values,

which is not acceptable for a DSF. A refinement of this method is presented in the next

o section (cf. II1.5.2), in order to overcome this shortcoming.
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: Expressions of the

Tabl

P
yations
P

first Fourier coefficients of the DSF for various single-po

N wave elevation gauges, the number of harmonics in the
theoretically be increased up to N(N-1)/2, if the gauge pairs are
gman, 1969). In fact, it is often preferable to keep harmonics only
)/2 - 2 (or even less) in order to get a stable estimate.

\ to Fourier coefficients a, and b, are thus obtained from the measured co- and quad-
o ¥ by using 2 lest-squares method. This leads to solve two linear systems of
- one for the harmonics of even rank and one for harmonics of odd rank

'1969).

array Of
geo sition mag
K...ndent (€8 BOT

DO K = N(N-1

[11.5.2 Weighted Fourier Series Decomposition (WFS) :

imate of the DSF from the Fourier series decomposition, it

order to get 2 positive est
g function of the following form (Longuet-Higgins et al.,

ssible to use a weightin

1963):
(25)

2K(6.
Wx(8) = Rk.cos ( 2)
K is the rank of the truncated Fourier series decomposition. The normalisation

where Y :
constant Ry is determined in order to verify :
2n
] Wk(8).d6 =1 (26)
0
which gives after some algebra :
Re = 221(-1 (K|)2 @n
T rmK)Y
The weighting function Wi{() has a finite Fourier series decomposition :
K
W@ =-1-+1) af cos (n.B)
2 Ty (28)
It may be shown after little algebra that its Fourier coefficients read :
n2
&= (K1 (29)
(K-k)! (K+k)!

The DSF estimate based on the weighted Fourier series decomposition is thus obtained
by the convolution of the TFS estimate and the weighting function Wg(0) :

ki

6wFs(f,9) = I D(f,8"). Wk(6'-6) d&’ (30)
0

which finally gives :

~ K
Dwrs(f,9) = ZLE +-1%_'— Y aK (ay. cos (n.8) + by. sin (n.8))
n=1

For the case of single-point measuring devices for instance, K = 2 and the weighting
function takes the following form :

€Y
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Woe) oL sl 2 1

W1(B) = o +n {3 cos (9)+ ¢ cos (2.8)] @)
which then gives the following expression of the DSF estimate :

6wps(f,6) = EIE + -3-% (al.cos (9) + bj.sin (6)) + é (az.cos (2.9) + bs.sin (2.9)) (33)

Compared to the TFS estimate, the WFS estimate is always positive, but the use of the
weighting function usually results in a diffusion of the energy over the directiong
surrounding the main peaks. These directional peaks are systematically lowered and
broadened by this convolution. Due to that, this estimate is not widely used. It may
however be used as a first guess for other iterative methods, due to its computationg|
efficiency.

II1.6 Parametrical Methods

II1.6.1 Direct fitting to parametrical models :

Unimodal models

The common principle of the fitting methods consists in assuming a priori a given
parametrical expression for the DSF and determining the low number of parameters of
this expression from the measured cross-spectra. This approach allows to significantly
reduce the number of unknowns related to the DSF. In the case of a unimodal
parametrical model, the problem is indeed reduced to the determination of two
parameters : the main direction of propagation and a directional spreading factor, which
represents the angular spreading of wave energy around the main direction. These
coefficients are best computed for the first rank coefficients a; and b; of the Fourief
series decomposition of the DSF, but higher rank coefficients could also be
alternatively used.

Several expressions are used for the parametrical unimodal model. For instancé,
Mitsuyasu et al. (1975) proposed the following model :

ﬁlMFM(ﬂe) = A(s) COSZS(..Q'Z_BO)

The normalisation coefficient is found from then condition that the integral of the DSF :

over [0 ; 2] remains equal to 1 (T is the gamma function) :
2251 (r(s+1)f
T I'(2s+1)

A(s) =

coefficient of rank 1 or 2 :
r
Rank1: @9 = Arg(a; +ibj) .

§ =
1-1'1

1+3n+V delan +1

Rank2: 8g=1lAr .
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r, = VaZ +bj (38)

R ihe iattcr case, it should be emphasized that the main direction is given modulo T,
b makes it quite difficult to use. This and the fact that parameters given by rank 1
whic sually more stable than those given by rank 2 lead to recommend the use of the
¥ Iial . by) in determining the parameters of the unimodal model.

i‘l::;,thcr quite widely used model is the Gaussian model, for a wave direction falling in

the range [60 - 703 B0 + 7] :
,. _ 1 . Q.Qt)f.) 39
DIMFG(f’e) - \Q,_‘JEG CXP( 2 02 ( )

qin the main direction 6 and the directional width ¢ are computed from the Fourier
coefficient of rank 1 or 2:

Rakl: ©0=Arg(a; +ib1) o=V -2.In(r) (40)
Rank2: 6o =%Arg(a2 +i.bg) cz'z—én(rl)— 41

Other expressions may be found in the literature (e.g. Borgman, 1969), but their
principle is always similar to the one presented here. Only the expressions giving the
parameters of the model vary from one parametrical model to an other.

Methods of this type were (and are still) widely used as they are very computationally
efficient and robust. Furthermore the corresponding estimate satisfies the various
properties of the DSF. But these methods suffer from some shortcomings related to the
strong assumptions they are based on : by definition, they are only suitable to model
unimodal and symmetrical directional peaks. They are thus unable to detect non-
symmetrical unimodal peaks, nor bimodal sea-states (two directional peaks at the same
frequency). This explains why these methods are not advised here.

The interpretation of results given by these methods thus requires great care. Before
concluding that there is no bimodal conditions (at the same frequency) at a given
location, it is stressed that one should first check that the method used for directional
analysis allows for the representation of two peaks at the same frequency.

imodal models

In order to make the fitting methods more suitable, several authors have suggested to
use bimodal parametrical models (Van Heteren, 1983 ; Benoit, 1992). Those bimodal
models are obtained by a linear combination of two unimodal models such as the one
proposed in the previous section. Again various expressions may be used. We only give
here, as an example, the bimodal estimate based of the Gaussian model :

D f’e = A _(9-81)2 1-A _(9-92)2 A 0,1 42
Domrg(f, 6) mt_olew( 3 oy m——ZO% € [0,1] (42

Th_is type of models has 5 unknowns (8;, 61, 03, 02, L) and is able to model both
unimodal and bimodal sea-states with two peaks at the same frequency.

For single point systems however, the number of available data is limited to 4
Independent Fourier coefficients. One has thus to introduce an additional condition in
order to solve the problem. It is for instance possible to impose G, = 6, (Van Heteren,
1983}, but this somewhat restricts the general capabilities introduced by the bimodal
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expression introduced above. On the other hand, Benoit (1992) tried to use method of
minimisation under constraints by keeping the 5 unknown parameters and introducjp
additional conditions on the variations of these unknowns. These methods are clearly
out of the scope of this presentation and require sophisticated algorithms. They may be
quite efficient, but they are not easy to deal with in the general case. They appear to be

quite sensitive to the first guess given as input to the algorithm. As they may become Introdu
unstable in some conditions, they are not advised for operational use with single-poip several
systems. Metho
For the array of wave gauges however, this method is more suitable as the larger ixpress
number of measured cross-spectra allows for a better determination of the unknowy f§ DmLM'
parameters by using a least-squares method. Benoit and Teisson (1994) developed and

used such a method with an array of 5 probes in laboratory experiments both under - One ci
unimodal and bimodal waves conditions. They showed that the method usually depicts # followi
the correct shape of the spectrum, but that there are still some numerical problems of [§

A~

stability at frequencies located away from the peak frequency. Further improvements on
the numerical algorithms are required in order to make this method more robust in a
large variety of situations.

. DMLM'

where :
I11.6.2 Statistical fitting to unimodal parametrical models : FThe M1
f windov
window

In the unimodal method presented in section II1.6.1, the parameters of the parametrical
model of DSF are determined in deterministic way, by making use of only one
harmonic of the Fourier series decomposition of the DSF. In order to use more dats
information and to proceed to a statistical fitting of the model, Isobe (1990) developeda
Maximum Likelihood Fitting method (MLF) to be used on data from single-point
systems, as a wave elevation probe and a bidimensional horizontal current-meter.

The DSF is still assumed to be given in a standard form. Isobe (1990) used 3
Mitsuyasu-type expression as in (34):

SMLE(f,8) = E().A(s) cosZS(Q—'-zﬁ) )

but the values of the parameters of the models (E(f), 8, s) are the ones which maximize
a likelihood function for the Fourier coefficients of the signals (see Isobe (1990) f“a;;
more details). In addition, a level of noise, noted €, is allowed in the data, so that finally -
we get a set of four unknown parameters at each frequency : !
M =EM;A2=0p;A3=5;h4=9) R
This method requires of course a higher computational effort than the direct ﬁm“'
technique of the previous section. One has to find the set of parameters which m
the Likelihood, i.e. that make its partial derivatives vanish. Isobe (1990) used
Newton-Raphson method for that purpose, but this approach also requires

computation of the second derivatives of the Likelihood function, which makes ¥
algorithm not straightforward to implement. ,
By definition, as presented above, this method is in principle only applicable 28
unimodal and symmetrical DSF. For single-point systems, it is not able to reSC_’l"e
directional peaks at the same frequency, but this extension should be possiblé
interesting for more complex arrays. Isobe (1990) applied his method to field datd 8,
found that its results were very similar to the direct estimation of directional par2 i
such as the main direction and the long-crestedness parameter. ;
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[1.7 Maximum Likelihood Methods :

111.7.1 Maximum Likelihood Method (MLM) :

; R quced by Capon éf al. (1967) in seismic wave detection, and then extended by
trOral authors (e.g. Isobe ef al., 1984 ; Krogstad, 1988), the Maximum Likelihood

‘e::hod (MLM) is based on the assumption that the estimate of the DSF may be
z{xprcssed as a linear combination of the cross-spectra :

1
0= 0nn(f,0).Gmn(f)
Mt ) 50 mZ'n m (44)

One can then show that this estimate is related to the actual DSF D(f,0) by the
following relationship :

2n
ﬁmM(f,B)= J D(f,0).w(6,8") de’
0

where:  w(8.8)= Oy (F,8) . Hn(£,8”).Ha(£,8") (45)

m, n

The MLM estimate may thus be seen as the convolution product of the actual DSF by a
window function w(6,0"). This estimate will best approach the actual DSF as the
window function tends towards a Dirac function 8(8,9").

The estimate that best satisfies this condition is found to be (Isobe et al., 1984) :

DyLm(£.9) = K
DviM S Hu(£,0) Gila(.Hi(£.0) 46)

In the above expression, G (D stands for the elements of the inverse of the cross-
spectral matrix and X is determined from the condition that the integral of the MLM
estimate over [0 ; 2r] is equal to 1. In the case of a single-point measuring system, the
cross-spectral matrix is of dimension 3 and can be inverted analytically, which makes
the method very computationally efficient. For the case of a multi-component array, a
matrix inversion subroutine has to be run. The MLM method is quite widely used and
has proven to have a good level of accuracy in estimating the DSF. Tests on numerical
and laboratory data (Benoit and Teisson, 1994) however show that this method usually
tends to produce broader directional peaks, compared to the target directional spectra.

IIL.7.2 Iterative Maximum Likelthood Methods (IMLM1 ; IMLM?2)

When considering the MLM estimate, one can notice that it is not consistent with the
cross-spectral matrix. This means that the cross-spectra computed from the MLM
estimate differ from the cross-spectra computed from the wave signals. Pawka (1983)
and then Oltman-Shay and Guza (1984) have thus proposed an iterative refinement of
the MLM in order to get a consistent estimate. Two iterative schemes were introduced,
corresponding respectively to the versions 1 (IMLM1) and 2 (IMLM2) of the Iterative
Maximum Likelihood Method, and both based on the following expression :

B a(f,8) = Dhlg (£ 0)+ €(£,0)  with Divrm(f,8)= Dvim(E8) (@47)
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. Brl . v where
DML 0= P D) witn A=1-SMMED @)
Ay Dvm(f, 6) equal |
_ NBH . i1 compc
IMLM2: &(f,8)="—  with A=Dmm(f6)- Amm(E 0) (49) Note t!
v ) equiva
In the above expressions, Af\}IILM stands for the MLM estimate computed from the The E
cross-spectra based on Dﬁvlg_M(f .8). The parameters § and y control the convergence of matrix
the iterative algorithm. Their standard values are in general of order 1 for B and of order th:?hg
10 for ¥ (Oltman-Shay and Guza, 1984). The iterations are stopped after a fixed number tmhe Sp‘
of steps or when a convergence criterion is satisfied on D'INmM(f,B) (Krogstad et al., signals
1988). spectrt
Tests on numerical and laboratory wave (Benoit, 1992 ; Benoit and Teisson, 1994) measuﬁt
show that in most cases the IMLM2 version exhibit more reliable results than the by.Mf
IMLM]1 version. In general, 10 to 20 iterations are required to reach 2 good reliabi
convergence, which produces a significant increase of the computing time compared to data de
the standard MLM approach. However, the IMLM2 is one of the suitable methods that As for
may be operationally used, as it clearly improves the standard MLM estimate, in matrix
particular for single-point measuring devices. It is not very difficult to implement and MLM
very stable if an efficient procedure is used for testing the convergence. tﬁinﬁd
|
I11.7.3 Eigenvector methods (EVM ; IEVM1;IEVM2) :
This method originally used in acoustic wave detection was applied to directional wave )
analysis by Mardsen and Juszko (1987) for single-point measuring systems. The Ehlsd”
ased

theoretical background is similar to the MLM approach, but they introduce the
additional assumption that it is possible to split the matrix of cross-spectra M into nois¢

and signal components :
M=S+ N (50)
where S is an estimate of the signal component of the cross-spectral matrix and Nisan
estimate of the noise component. The partitioning of the noise and signal components I8
achieved through the diagonalization of the cross-spectral matrix, which allows to ﬁqd
the eigenvalues and eigenvectors of this matrix. The cross-spectral matrix 18
theoretically Hermitian, definite and positive : all these eigenvalues are thus real ap

positive. Mardsen and Juszko (1987) proposed that the largest eigenvalue is related t0
the signal component whereas the two lower ones span the noise component. . ¢

furthermore used the fact that the noise component is orthogonal to the sigm

component. For a multi-component array, the separation of the cross-spectral M2
into signal and noise is more critical. Some indications to apply this method to that

of measuring device may be found in Barrodale et al. (1985).

Compared to the MLM, only the noise component of the directional spectri®
minimized, which finally gives an estimate of the form :
Devm(£.8) = K n
T *
>, Hm(f,8).Nmn(D).Ha(£,0)

m, n
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B o 1 IS determined from the condition that the integral of the DSF over [0 ; 2x] is
‘ 4 1o 1. As for the MLM, ﬁ{,{n(f) stands for the elements of the inverse of the signal

nent matrix N.
& ihat if all three eigenvalues were assumed to span the signal, the method would be
:valent to the MLM.

gt EVM requires an algorithm to find the eigenvalues and eigenvectors of a complex

ix (dimension 3 for a single-point system) : it is thus less computationally efficient
MLM (about twice the CPU time on tests performed by Benoit, 1992). This
thod being more oriented to signal detection than the MLM, the directional peaks of
E: spectrum are usually more sharp and narrow. Applied to numerical simulated
signals, this method usually appears less efficient than the MM in estimating the target
nectrum (Benoit, 1992). In fact, this approach is much more recommended to real
measured signals with a significant level of noise in the data. Comparisons performed
py Mardsen and Juszko (1987) confirm in comparison to other methods that the

reliability of the EVM estimates decreases as the noise level on numerical simulated

data decreases.

As for the MLM method, the EVM estimate is not consistent with the cross-spectral
matrix. It is thus possible to set up the same iterative procedure as presented for the
MLM in the previous section. We thus obtain two Iterative EigenVector Methods,
termed IEVM1 and IEVM2 respectively, based on the schemes introduced for the
MLM (Mardsen and Juszko, 1987).

II1.8  Long-Hasselmann Method (LHM)

This method was proposed by Long and Hasselmann (1979) and Long (1980). It is
based on an inverse technique, applicable to the problem of fitting a model to some
data, representing integral properties of the function to be estimated. An initial simple
estimate (e.g. a uniform DSF, a Fourier series decomposition estimate TFS or WEFS, a
unimodal fitted parametrical model) is iteratively modified to minimize a "nastiness”
function that takes into account the various conditions on the spreading function,
namely the equations given by the cross-spectra, the condition of unit integral of the
DSF, the fact that the DSF should remain positive).

This method also takes into account the statistical variability of the cross-spectral
estimates. The « optimal » estimate is the one which minimizes the nastiness function.

For a single-point system, this estimate finally takes the following general form :

6LHM(9) = AMAX [0 ; 13(6) + L] + By cos 6 + U3 sin O + |14 cos 20 + L5 sin 29] (52)

wh;re B(e) is the initial estimate and y; (i=1,...,5) are model coefficients determined by
an iterative algorithm, in order to satisfy (in statistical sense) the various constraints
mentioned above. The application of this method to buoy data is described in detail by
Long (1980).

This method usually produces reliable results for the DSF, although it was observed
both on numerical and laboratory tests (Benoit, 1992 ; Benoit and Teisson, 1994) that
the peaks of the estimate are often somewhat broader and lower compared to the target
Peaks. This method is thus not very suitable to analyse sharp and thin directional peaks,
unless the initial estimate is already able to do so. Furthermore, at least for single-point
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systems, the interpretation of the results of this method may be delicate due to the But thi:

operator in (52). Due to its truncated Fourier series-like expression, LHM estimate mj overpre
have some lobes whose negative portions will be truncated by the MAX operator. The double
remaining positive part of these lobes may be interpreted as secondary directional peas 1994).
in the DSF, whereas they are sometimes just spurious peaks produced by the method. numer!
Finally, the method is quite difficult to implement and rather time consuming, so that j constit
is in fact not very widely used for operational analysis. ;)5“::?
u
it with -
II1.9 Maximum Entropy Methods (MEM1 ; MEM?2)
The Maximum Entropy Methods have been adapted from the theory of probability to _
directional wave analysis due to the similarities between a DSF and a probability R
density function (PDF). Indeed, both a DSF and a PDF are positive functions, whose : gl;ziffiig

integral is equal to 1. In fact, a DSF may be seen as the PDF of the wave energy over
the directions of propagation.

The principle of these methods is to define an « entropy » function, which has to be
maximized under the various constraints given by the cross-spectra equations. Two

£ by Kot

such methods have been proposed depending on the definition used for the entropy.

11191  Maximum Entropy Method - Version 1 (MEM]1) :

The first definition for the entropy was proposed by Barnard (1969), and then adapted
to single-point systems by Lygre and Krogstad (1986). This approach is more
specifically used in spectral analysis. Some authors suggest to rather speak of « change
in entropy » (Nwogu et al., 1987).

The entropy H is defined by :

21 "
H®) = - f In( D(8) ) d6 :

0
The basic idea of MEM1 is to search a estimate that maximizes the entropy Hi

whose two first harmonics of the Fourier series decomposition are identical to the oné&

of the TFS estimates (i.e. obtained from the measured co- and quad-spectra). Lygre
Krogstad (1986) established that the estimate satisfying these conditions has
following form :

Dmemi1(8) = -
2n | I- Fl.(cos 0 - i.sin B) - Fz.(cos 20 - i.sin 29)|2

where F) and F; are complex numbers, obtained from the complex Fourier coeffic

¢ and ¢ of the DSF (¢ =a +ib; and co=ap +iby):

g
1- Flc’; - FZC;
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The main advantage of this method lies in its high computational efficiency-3
addition, the MEMI| estimate is always consistent with the cross-spectral data.
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i this estimate also presents a quite important drawback in the fact that it consistently
utrpredic"s the height of the directional peaks. Furthermore, it sometimes produces
oV eaks on unimodal cases (Benoit, 1992 ; Kim et al., 1993 ; Brissette and Tsanis,

1994). This latter shortcomiqg was also noted by the authors of the method both on
umcrical test-cases and flgld _observations (Lygre and K{ogstad, 1986). This
constitutes a quite severe limitation of the approach, because in the presence of an
stimate with two peak§, one can not systematically conclude to a bimodal sea-state.
;)ue to this, it is not advised to use only that method for wave analysis, but rather to run

it with other methods in a comparative evaluation exercise.

I11.9.2 MEM2 or Maximum Entropy Principle (MEP) :

This approach is based on the Shannon definition for the entropy, which is more
specifically used in probability theory. It has been applied to directional wave analysis
by Kobune and Hashimoto (1986) and Nwogu et al. (1987) for single-point systems,
and extended to wave probe arrays by Nwogu (1989). In scientific literature, this
method is called MEM2 or MEP (for « Maximum Entropy Principle »). The entropy H»
we iry to maximize is defined by :

2n
H,0) = - [ X 6) In(D(8) ) d8 (56)
0

The constraints to be satisfied are (as for the MEM1 method) the values of the first four
Fourier coefficients of the DSF determined from the-cross spectral data, together with
the condition of unit integral of the DSF over [0 ; 27t].

It may be shown (e.g. Kobune and Hashimoto, 1986} that the estimate satisfying these
conditions has the following form :

L+l
DmEM2(8) = exp{ > HI-QI(B)} 7
I=1

where the q;(6) functions are defined on (16). The important point is that these
functions are some combinations of sin and cosine functions of 8. The p (I=1,..., L+1)
coefficients are unknown Lagrange multipliers. L is the number of independent and
non-zero real cross-spectral quantities from the system of N sensors. The ]
coefficients are determined by solving the non-linear system of equations given by the
L cross-spectral equations and the condition of unit integral of the estimate.

In the case on single-point measuring systems, we have N=3 and L=4 (see section
I1.4), thus 5 equations and the estimate (57) takes the following form, suitable to model
both unimodal and bimodal DSF :

ISMEMZ(B) =exp ( -JL1 - 1Ly cos O - p3 sin O - pgcos 20 - pssin 20) (58)
For wave arrays consisting of more than 3 probes, it is possible to increase the number
of harmonics in the Fourier series appearing in (57). Nwogu (1989) introduced a
method to find the most suitable order of this decomposition. The numerical procedure
then used for solving the system of non-linear equations may be based on classical
techniques, e.g. Newton-Raphson or Levenberg-Marquardt.

The MEP or MEM2 estimate appears to be very suitable in most of cases. From its
definition (57), it is clear that it is always positive. Tests on numerical or laboratory
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tests have proven that this method is equally efficient for dealing with unimoda g | This

bimodal sea-states (Nwogu et al., 1987 ; Nwogu, 1989 ; Benoit, 1992 ; Kim er al techn:
1993 ; Benoit and Teisson, 1994). ' deterr
The method is however not simple to implement (especially for wave probe arrays) apq © Akaik
requires more computing time than most of methods presented above (e.g. WFg ' _
IMFG, MLM, IMLM) due to the iterative algorithm needed for solving the set of non- | AIC =
linear equations. Recently, Kim et al. (1994) proposed some approximations to the where
numerical scheme of the MEM2 method, in order to remove occasional convergence _ perfor
problems that may occur with real sea data. " the Al
Although the numerical effort associated with MEM2 is quite important, this method is ~ Thist
very recommended if one wishes to get a precise and reliable directional analysis. In . estim
particular, several authors suggest that it is probably the most powerful and reliable § : advan
technique for estimating the DSF when using single-point measuring systems (Nwogu * spectr
etal., 1987 ; Benoit, 1992 ; Kim et al. , 1993, 1994 ; Benoit and Teisson, 1994), © test-Ci

: :t systen

i} tothe

11.9.3 Extended Maximum Entropy Principle (EMEP) :

Recently, Hashimoto et al. (1994) developed the Extended Maximum Entropy Principle
(EMEP), which represents an improvement to the MEP for the general case of a multj-
component array, but is equivalent to the MEP for single-point measuring systems
(delivering 3 wave signals).

Based on the MEP estimate (57), the following expression is adopted for the EMEP
estimate, which again yields only positive values :

_ K
Demep(f, 0) = Lexp {z [Ak cos (k.9)+ By. sin (ke)]} (59
A k=1
2n

K
with: A= exp {Z [Ak cos (k.9)+ By. sin (ke)]} do

k=1

0

In (59) the coefficients Ay and By (k = 1,...,K) are unknown parameters. If we note L
the number of co- and quad spectra both different from zero and independent from each
other, we get L independent equations of the problem. Each equation corresponds to the
difference between the measured co- or quad-spectrum and the model co- or quad-
spectrum, obtained by substitution of (59) in the general expression of the cross-spectr
(12) or (16).

In fact, Hashimoto et al. (1994) do not impose this difference to be zero, but consid?f
the possible existence of errors in the cross-spectral data and note g (I=1,...,.L) this
difference. The g residuals are assumed to be independent of each other and the
probability of their occurrence is expressed by a normal distribution having zero med?
and a variance 62 given by the cross-spectral estimates (see Hashimoto ef al. (1994) fof
details). The optimal estimate is then the one which minimizes the sum of the squares
the residuals :

L.
Y e 50
I=1
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s leads to a non-linear problem which may be solved by applying Newton’s
" chnique of local linearization and iterations (Hashimoto ef al., 1994). The
gﬁermination of the optimal finite order K of the model (59) requires the use of

Akaike’s Information Criterion (AIC) (Akaike, 1973) :

AIC=L (n(2m) + 1+ In(G%) + 4K +2 (61)
where 82 is an estimate of the variance of g; (1=1,...,L). In practice, the computation is
Aformed from lower (K=1) to higher orders, in order to stop at the order minimizing

f;e AIC.

This method 18 superior to the MEP in the sense that the number of harmonics in the
estimate (59) is directly adapted to the available cross-spectral information. Another
advantage of this method lies in the fact that statistical variability in the measured cross-
spectra is accounted for in the analysis. Hashimoto et al. (1994) showed on numerical
test-cases that this estimate gives the same results as the MEP method for single-point
systems. For multi-component measuring devices, the EMEP gives results comparable
to the Bayesian Directional Method (see I1.10).

II1.10 Bayesian Directional Method (BDM)

This method is based on the Bayesian technique used in probability theory. It has been
adapted to the problem of directional wave analysis by Hashimoto et al. (1987). Among
the methods presented in this chapter, it is probably the most awkward to implement for
pumerical analysis, but also the most powerful in terms on resolving capabilities as no a
priori assumption is made about the shape of the DSF.

The range [0 ; 2x] is divided in a number of K sub-ranges or segments, each having a
width of A@ = 2n/K. The BDM estimate of the DSF is simply considered as a
piecewise-constant function over each segment. It is defined by a series of K values x,
(each value corresponding to the logarithm of the constant value of the BDM estimate
on each segment) :

x =In[Dppm(®0] where By = (k-1/2)A8 (62)

A K _ I if (k-1)AB < 6 S kAD

Depm(8) = ), exp (x )1k(8)  with L(®) = . (63)
=1 0 otherwise

K is usually in the order of 40 to 90, which means a rather high number of unknowns, in
particular with respect to the number of available equations, given by the expressions of
the co- and quad-spectra. Furthermore possible errors in the estimated cross-spectra are
taken into account, so that these equations are assumed to be verified in a statistical
sense. This method clearly presents a stochastic feature in dealing with the cross-
spectral data.

The system of non-linear equations given by the co- and quad-spectra is completed by a
smoothness condition of the estimated DSF. This is mathematically expressed by the
ftlzllowing relationship between three consecutive values of the estimate :

E (ko1 - 2% + X1 — O (64)
=1
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An hyperparameter u is introduced in order to combine the above smoothness conditigp
and the equations giving the cross-spectra. The value of this hyperparameter js
determined as the one which minimizes the ABIC criterion (Akaike Bayesiay
Information Criterion) (Akaike, 1973).

Due to its large number of degrees of freedom, the BDM is able to represent almost a|]
kinds of DSF shapes : unimodal, bimodal and even trimodal, symmetrical peaks or
not,... This method is more specifically devoted to multi-component arrays, for which
the number of available cross-spectra is quite large. Benoit (1992) and Benoit ang
Teisson (1994) have however shown that the method still produce correct results whep
applied to single-point systems (application to numerical and laboratory simulated
data). For single-point systems however, the BDM requires quite a lot of computing
time for a result whose accuracy is usually comparable to those of more rapid analysis
methods (e.g. MEM2).The BDM is therefore not advised for such single-point systems,
For multi-component arrays, it i1s usually considered as one on the most powerfu]
techniques to analyse any kind of spectra.

IV DETERMINISTIC ANALYSIS METHODS

IV.1 Characterization of deterministic analysis methods :

While stochastic methods presented in chapter III rely on the random phase assumption,
the deterministic methods retain the phase information inherent in the data set to be
analysed. As opposed to the stochastic approaches, methods for deterministic analysis
of directional waves are sparse.

While the stochastic methods rely on the cross-spectra between the different measured
quantities, most deterministic methods utilize the complex Fourier coefficients of each
signal. The process of splitting a wave field into a number of wave components each
given by a direction, an amplitude and a phase is often referred to as deterministic
decomposition. The surface elevation may then be seen as a superposition of numerous
sine components, in a generalized form of (2} :

M N |
nxy,t) = Z Z amn cos{km(x.cosen + y.sinfp) - ®mt + (pmn]

m=1 n=1 ‘
where subscript m refers to frequency bins and subscript n to directional bins. The

deterministic analysis approach assumes a large number M of frequencies, but a loW -

number N (i.e. N = 1 or 2) of directions per frequency, so that both the amplitude 2m
and the phase @y, of each component may be determined from the Fourier coefficients
of the recorded time-series. Smoothing the decomposition data can then provide &
estimate of the underlying directional spectrum.

Another application of the decomposition data (which will not be pursued here) is th¢
deterministic reproduction of a wave field, also by starting from an expression like (69): "1
It deserves to be mentioned that a wave field constructed using a discrete st O

frequencies is not spatially homogeneous if more than one wave component appears
each frequency. Spatial variation is typically present near reflecting structures, W
the wave field in open waters is homogeneous.
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[v.2 General approaches for deterministic analysis :

f"-umably the first deterministic method for direct@onal spectral analysis is the work
panicker and Borgman (1970, 1974), who derived the so-called "locked phase
ethod". Their work resembles the early stochastic models in using a Fourier expansion
% e directional distribution at each frequency. In this respect it differs from the
: ;f) Jlowing approaches, which assume a few discrete directional components at each
f:,quency. According to Sand (1979), it seems probable that the "locked phase" method
was never used in practice, and we are not aware of any applications of the method
ince then. The reason for this is unknown, but it appears that the poor resolution
isnherent in the directional Fourier expansion makes is less attractive than more recent

ethods.
?hc locked phase method was derived for wave elevation gauge arrays (Panicker and
Borgman, 1970) as well as for measurements of more general wave properties

anicker and Borgman, 1974). The remainder of deterministic methods all basically
assume that the sea-state can be approximated by a sum of a few unidirectional wave
components at each "raw" frequency. When smoothing is applied to reduce the variance
of the spectral density then a large number of components representing a directional
distribution are typically present within each frequency bin. Except for the work by
Prislin et al. (1996), the remainder of the deterministic approaches were confined to
single-point measurements {e.g. the surface elevation and components of particle
velocity measured at the same vertical.)

A common feature of the work by Sand (1979, 1984) and Lundgren and Klinting
(1987a, 1987b) is that each set of complex Fourier coefficients were used in
determining two components.

Let : C,=A,-iB; and C;=A,-iB, (66)
denote the complex Fourier coefficients resulting from the respective Fourier
transforms of two orthogonal velocity time series measurements, then the vector
(Ay, A,) determines the direction of one component and (B, B,) determines the
direction of the other. It turns out that this approach has the undesirable property that
the two directions depend on the phase of the underlying signals, except in case the two
directions coincide. In other words, changing the origin of the time axis yields another
set of directions. This makes the approach physically unsound. However, reasonable
resuits have been obtained using this concept and one may conjecture that the problem
is reduced in the subsequent smoothing process, aithough this is not clear.

IV.3 Single and Double Direction Analysis (SDA ; DDA) :

Schiffer and Hyllested (1994) devised two different methods for deterministic
decomposition, assuming one and two components per frequency, respectively [N = 1
or 2 in (65)]. The corresponding directional wave analysis were termed Single Direction
Analysis (SDA) and Double Direction Analysis (DDA), respectively. The first method
was basically to find the principal direction from complex Fourier coefficients of the
velocity components and assign this direction to a wave component with amplitude and
Phase taken from the Fourier coefficient for the surface elevation. The directional
Spectrum was then obtained by smoothing the raw decomposition data in direction as
Well as in frequency. The second method resembled the approach by e.g. Sand (1979) in
the assumption of two components at each frequency. However, these components were
found by determining the directions and complex amplitudes of two crossing wave

Cu
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trains requiring their superposition to match the complex Fourier coefficients from the
measurements of surface elevation and horizontal velocity components. The solutiop
was found analytically and situations where no solution was possible were identifieq,
As in the SDA the raw decomposition data were smoothed to obtain the directiopg
spectrum. The energy at frequencies where no solution could be obtained was discardeg
(approximately 5-10 % in practical applications). Although the SDA and DDA methods
are fundamentally different from stochastic methods, they usually produce results
which are very similar to those of e, g MEM2 method (Hawkes et al., 1997).

IV.4 Other deterministic work

Recently Prislin er al. ( 1996) introduced a hybrid between a deterministic and a
stochastic method in a framework allowing for mixed instrumentation. Their idea is to

chosen. Despite the problem of inhomogeneous wave fields encountered when more
than one component is present at each frequency, the use of several components may be
attractive for an accurate description of the local wave field. However, the approach of
starting with a stochastic method requires spectral smoothing which implies
comparatively large frequency bins. Although several wave components are allowed at
each frequency in this approach, the total number of wave components for all
frequencies may be smaller than €.g. using just one component per frequency in raw
decomposition data with a very fine frequency resolution.

The work of Prislin et al. (1996) does not really represent a new technique for
estimating directional Spectra, but rather a way of using the directional information to
deterministically describe the local wave field.

V. TIME DOMAIN ANALYSIS METHODS

Time-domain analysis methods are quite sparse in operational applications. We only
report below some general ideas about this approach of analysis, as these methods were
not used within the JAHR Working Group on multidirectional waves. A first way of
presenting this approach is to consider the distribution of kinetic and potential wave
energy at each time-step for a single-point measuring systemn composed of a surface
elevation probe (signal 1) and a bi-dimensional current-meter (signals U and V) :
Distribution of kinetic energy : The kinetic energy E = U2 + V2 and the angle of wave
energy propagation are computed, allowing for finding the distribution of kinetic energy
against direction.

Distribution of potential energy : The potential energy is computed from n2. By using
the wave direction determined above, it is also Possible to get a plot of the distribution
of potential energy against direction.

These basic remarks represent the starting point of more sophisticated approaches, such
as the Instantaneous Direction Spreading Function by Egozcue and Arribas (1991).
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g this paper, We made an attempt to review, present and, to a certain extent, classify a
' 1erge nuUMbeEr of directional analysis rnet.hod;; for lmear‘waves 1n open water conditions.
e exercise is quite difficult because we did not coqs1der all th; methods presented in
¢ scientific literature, nor perform any comprehensive comparison of the methods on
on test-cases. We rather focused on the main modelling assumptions associated to

each method in order to highlight their advantages/shortcomings.

According to the authors, the main points that deserve to be mentioned are :

* one should not think that all the methods have similar capabilities. When looking
at a plot of an analysed directional spectrum, one should keep in mind which
method was used for the analysis. This may to a certain extent have some
influence on the conclusions from the analysis. For instance, one should not
conclude that there is no case of crossed waves at the same frequency if the
method used is unable to detect such case (e.g. fitting to unimodal model method).

* Some of the methods have a high level of parameterization (e.g. the Fourier Series
decomposition methods or the fitting to unimodal parametrical models) while
other ones are able to model a large variety of directional shapes (e.g. EMEP,
BDM, DDA).

* The methods are not equivalent in terms of implementation and computing time.
Benoit (1992) shows that there is a ratio of almost 10 000 between the quickest
and the lowest methods for a heave-pitch-roll buoy.

* It seems important to preferably use methods that try to fit to the data in a
statistical sense (MLF, EMEP, BDM) than in a deterministic way (TES, WEFS,
IMF) even if the distinction between both approaches is not always easy.

* The method to preferably use also depends on the type of measuring device and in
particular of the number of wave signals. For a single-point system, reliable
choices for analysis methods are MLM, IMLM2, MEM?2 (or MEP), SDA, DDA
among others. For wave probe arrays, more sophisticated methods may be used :
EMEP, BDM, among others.

Some research axis, not discussed in detail in this paper, concerm

- Analysis of reflection :

In the vicinity of a reflective structure, the wave field results from the superposition of
incident and reflected wave components. These components are phase-locked and this
phase relationship is in contradiction with the “random phase" assumption the
Stochastic methods of Chapter III are based on. Special refinements are then
Introduced : e.g. the Modified Maximum Likelihood Method (MMLM), proposed by
Isobe and Kondo (1984) or the Modified Likelihood Fitting Method (MMLFM) from
Yokoki er al. (1994). It should be noted that the Double Decomposition Analysis
(DDA) is applicable to this case as it permits two directions per frequency. However,
fOr alinear structure, a constraint based on Green law of reflection (DDAC) can further
Improve the results of DDA.

- Analysis of non-linear waves, with in particular :

* the analysis of second-order (superharmonic) spectrum (e.g. Sekimoto, 1995)
* the analysis of the second-order long wave spectrum (e.g. Sand, 1981).

Al thf-{se items are enough to show that the analysis of multidirectional waves still need
0 receive a lot of work and attention.
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