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a b s t r a c t

Many theoretical approaches and implementations have been proposed for the coupling of the three-
dimensional ocean circulation with waves. The theoretical models are reviewed and it is shown that
the formulation in terms of the quasi-Eulerian velocity circumvents the essential difficulty of alternative
formulations for the Lagrangian mean velocity. Namely, models based on this Lagrangian velocity require
an estimation of wave-induced motions to first order in the horizontal gradients of the wave field in order
to estimate the vertical flux of wave pseudo-momentum. So far, only three-dimensional wave models
have been able to provide these estimates, and all published theories based on the simpler Airy theory
are not consistent at the leading order, because they ignore or incorrectly estimate the vertical momen-
tum flux. With an adiabatic example on a sloping bottom it is shown that this inconsistency produces
very large spurious velocities. These errors are independent of the slope for the inviscid case, and are still
significant when a realistic vertical mixing is applied. A quick diagnostic of the potential accuracy of a
theoretical model is the vertical profile of the wave-induced forcing terms: if it is not uniform over depth
in adiabatic conditions then it will produce spurious artificial flow patterns in conditions with shoaling
waves. Although conceptually more challenging, the quasi-Eulerian velocity theories only introduce
minor modifications of the solution procedure for the standard primitive equations: a modification of
the surface boundary condition for the mass conservation, the addition of the Stokes drift in the tracer
advection equations, and sources of momentum and turbulent kinetic energy with associated surface
and bottom fluxes. All the necessary modifications of primitive equation models are given in detail. This
implementation is illustrated with the MARS3D model, which passes the test of the adiabatic shoaling
waves.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Three-dimensional oceanic flows can be strongly forced or
modified by waves, in particular in the nearshore (e.g. Longuet-
Higgins, 1970; Newberger and Allen, 2007a) and the coastal ocean
(Lentz et al., 2008). Yet the numerical modelling of these complex
flows is only slowly coming of age, with recent works using quasi-
three dimensional (Haas et al., 2003) or fully three dimensional
models (Uchiyama et al., 2009). Although models capable of resolv-
ing the wave motion are becoming feasible on small scales, as
shown by Lubin et al. (2006), the demands of coastal zone manage-
ment in terms of coverage and resolution are still barely met by
depth-integrated models in which the wave motion is averaged
over the phase of at least the short waves (e.g. Reniers et al.,
2004). There has thus been a large effort to develop models of
ll rights reserved.
intermediate complexity, capable of resolving the vertical struc-
ture of the mean flow which may be needed to account for mixing
and dispersion (Svendsen and Putrevu, 1994) while still keeping
the hydrostatic approximation for the mean flow. Similarly, a prop-
er representation of near-surface currents and drift requires the
introduction of wave effects, in particular the Stokes drift and
wave-induced mixing (e.g. Rascle and Ardhuin, 2009). For these
applications, the wide community of users of numerical models
for the ocean circulation such as POM and ROMS (Blumberg and
Mellor, 1987; Shchepetkin and McWilliams, 2003) is calling for
minor modifications to make these models capable of representing
waves effects.

A large body of often conflicting theoretical results have been
published on the form of the wave-modified primitive equations
that would be suitable for such models. We may cite, in chronolog-
ical order, Dolata and Rosenthal (1984), Jenkins (1989), Weber and
Melsom (1993), Rivero and Arcilla (1995), Péchon and Teisson
(1994), Groeneweg and Klopman (1998), Mellor (2003), Perrie
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Fig. 1. Example profiles of net wave-induced forcing over a sloping bottom in the
test case proposed by Ardhuin et al. (2008a) (Hs = 1.02 m, T = 5.26 s, no mixing. The
bottom slope is �2 = 0.0798. More details in Section 4). 1 is the terrain-following
vertical coordinate with 1 = 0 at the surface and 1 = �1 at the bottom.
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et al. (2003), McWilliams et al. (2004), Xia et al. (2004), Newberger
and Allen (2007b), Ardhuin et al. (2008b), Ardhuin et al. (2008a),
and Mellor (2008). Although each of these work is based on a par-
ticular set of hypotheses, for example some assume a horizontally
uniform wave field, it is expected that all theories should agree on
the most simple cases that they are supposed to cover. In practice
this is not the case because some of these theoretical models are
not self-consistent.

Our purpose is not to blame this or that author for inconsisten-
cies, limitations, or mistakes. The goal of the present paper is rather
to help people implement correctly the effect ot waves in a prim-
itive equation model. Here we explain why some of the wave-aver-
aged equations may appear different but still represent correctly
the same reality, and we give some constraints that should be
obeyed by wave-averaged equations so that model developers
can make their own judgement of the published equations, even
before implementing them. One basic test of the wave-induced
forcing should be that it is uniform over the vertical in adiabatic
conditions with a stationary wave forcing, for example for waves
shoaling on a slope. Recent published equations from Mellor
(2003, hereinafter M03) and Mellor (2011a) to Mellor (2008, here-
inafter M08) and Mellor (2011b) and Xia et al. (2004) do not verify
Fig. 2. Relationships between wave-averaged theories according to their choice of mom
link: b can be derived from a. In the case of McWilliams et al. (2004) and Ardhuin et al. (2
while the first is only adiabatic. Names that appear in red correspond to theories that are
the total momentum, the problem generally comes from the vertical flux of momentum
(1999). (For interpretation of the references to colour in this figure legend, the reader is
this condition, as illustrated by Fig. 1. This inappropriate forcing
profile is due to a minor inconsistency in the M03 derivation or
more fundamental problems in M08. This problem was first
pointed out by Ardhuin et al. (2008a, hereinafter AJB08), and its
practical consequences are shown for the first time. Although er-
rors in the underlying theoretical model are likely to be dwarfed
by parametrization errors in the case of strongly dissipative envi-
ronments like the surf zone, they may still explain some of the dif-
ferences found between various models (e.g. Haas and Warner,
2009).

We also take the present opportunity to present the approxi-
mated Generalized Lagrangian Mean equations (glm2 � z) by Ard-
huin et al. (2008b) (hereinafter ARB08) in a more readable form,
giving details on how they were implemented in the MARS3D flow
model (Lazure and Dumas, 2008). These steps have already been
pioneered by McWilliams et al. (2004) and Uchiyama et al.
(2009) with equations that are mathematically consistent with
those in Ardhuin et al. (2008b). These more theoretical presenta-
tions are often obscured by their generality and completeness.
We thus here present the equations and implementation in the
most simple form, warning the reader when the simplification
causes a loss of generality. The present paper is thus an introduc-
tion to Ardhuin et al. (2008b) and McWilliams et al. (2004)
oriented towards practical implementations. For a physical discus-
sion one may read Lane et al. (2007). We focus here on non-dissi-
pative conditions where exact solutions are most easily found, and
we refer to Uchiyama et al. (2010) for further discussion of wave
breaking, mixing and bottom friction parametrizations.
2. Theoretical analysis of wave-averaged equations for the
Lagrangian velocity

2.1. A brief review

Theories can be categorized according to two criteria (Fig. 2).
First, the equations are depth-integrated or not. For the depth-inte-
grated equations, with some approximations related to wave non-
linearity, the problem is clear. Second, the momentum balance can
take two forms, which are equivalent (Longuet-Higgins and Stew-
art, 1964; Garrett, 1976; Smith, 2006). One form of the equations is
for the total momentum in the water column M (fM in Phillips
1977, page 62), and the other is for the momentum of the mean
flow only Mm (cM in Phillips 1977, page 61). M, is related to the
mass transport velocity, which naturally arises when working with
entum variable and depth integration. An arrow from a to b indicates a derivation
008b), the second derivative in the vertical current profile is neglected in the second,
not fully consistent with their originating hypotheses. In the case of 3D theories for
and may only arise on a sloping bottom, not explicitly considered by Groeneweg
referred to the web version of this article.)



Fig. 3. Illustration of the momentum fluxes into a moving control volume defined
by the (possibly moving) position vector of the control volume, N(x,y,z, t) = x + n
(where x is the mean position and n is the volume control displacement). Here the
control volume moves in a circle and is shown for 4 wave phase, w = 0�, w = 90�,
w = 180� and w = 270�. u is the full flow velocity (including waves and current). The
fluxes are the sum of advective fluxes through the facets and the pressure acting on
the possibly sloping facets. For the advective part, the velocity is relative to the
moving facet, which produces terms like �u@n3/@t.
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fluxes of well-mixed solutes. For a mean current �u that is uniform
below the level of wave troughs, the other momentum variable is
approximately Mm ¼ q�uD where D is the mean water depth and
q is a depth-averaged water density. The wave momentum1 is simply
the difference Mw = M �Mm, and it is a horizontal vector. Hence, Mm

may be more closely related to the mean current measurable by a fixed
instrument. This interpretation, however, has to be considered with
caution, since there may be different ways to extend the definition of
�u from the wave troughs to the wave crest level, which is needed for
a model that includes surf zones and adjacent shallow areas.

These details cannot be ignored when considering the three-
dimensional sets of equations, for the total momentum qU, where
U is the Lagrangian velocity or the mean flow momentum qû,
where û is the quasi-Eulerian velocity, see Eq. (2). Andrews and
McIntyre (1978) have derived exact equations for U and û that
are equivalent.

Thus, at the same order of approximation, we only have one set
of equation for U and another for û. Both sets of equations are
mathematically equivalent. Any other equation must have some
internal inconsistencies. We shall illustrate this statement for
M03, because these are the most widely used equations, and we
give enough details on other sets of equations, such as Xia et al.
(2004), so as to make the problem obvious.

2.2. A generic recipe for three-dimensional theories

Any theory for wave-averaged equations goes through three
steps. First, the control volume in which the momentum is aver-
aged must be defined. For depth-integrated equations, this is sim-
ply the full water column. For three-dimensional equations, there
is a vertical discretization. The control volume may be moving, fol-
lowing all or part of the wave motion (Fig. 3). The mean position
x = (x,y,z) of the volume, is associated with the actual position
n(x,y,z, t) = (n1(x,y,z, t), n2(x,y,z, t), n3(x,y,z, t)) such as

xþ nðx; y; z; tÞ ¼ ðxþ n1ðx; y; z; tÞ; yþ n2ðx; y; z; tÞ; zþ n3ðx; y; z; tÞÞ:
ð1Þ

The boundaries of the volume at time t0 are the sides of an elemen-
tary cube centered of x and deformed by the transformation
x ? x + n.
1 The wave pseudo-momentum is defined as a quantity that only involves the zero-
mean displacement of the water particles, and may differ from other definitions that
could include the mean flow response, as explained by McIntyre (1981). For
simplicity, we shall call ‘momentum’ the pseudo-momentum.
For the Eulerian average, the volume does not move, it keeps its
original cubic shape and orientation, and n = (n1,n2,n3) = 0. For the
average defined by Mellor (2003), the horizontal displacements
are zero, n1 = 0 and n2 = 0, and n3 follows the wave motion. This
is the simplest possible form of a wave-following coordinate, and
it thus has a great appeal.

Second, the momentum balance of the volume is the result of
body forces and momentum fluxes through the boundary. These
fluxes involves an advective part (qu2 for the horizontal advection
of horizontal momentum and qu w for the vertical advection) and a
stress part that is the product of the stress tensor with the unit vec-
tor normal to the boundary. Neglecting shear stresses for simplic-
ity leaves only the pressure p for the stress. In general, the sides of
the control volume are sloping, which is very important for the ex-
act definition of the momentum fluxes: the momentum flux asso-
ciated to pressure forces is not a diagonal tensor in general
coordinates. For example, if and only if a surface is not horizontal
or vertical, there is a pressure-induced vertical flux of the horizon-
tal momentum through it.

For n – 0, the control volumes have tilted facets, with a flux of
horizontal momentum through the sloping bottom and top. The
corresponding flux of the x-component of the momentum is p
@n3/@x. Fluxes due to sloping iso-coordinates are often forgotten
(e.g. Xia et al., 2004; Mellor, 20082) or poorly approximated (e.g.
Mellor, 2003).

Last, the averaged equations can be transformed to another
coordinate system, such as terrain-following coordinates. Averag-
ing can cause an implicit distortion of the coordinates, for example
the mean flow may appear divergent although the original flow is
not. This effect may be easily corrected (see e.g. Ardhuin et al.,
2008b for the transformation of approximated Generalized
Lagrangian Mean equations to Cartesian and terrain-following
coordinates).

Because of the large difference in density between air and
water, the use of a standard Eulerian average, used by Rivero and
Arcilla (1995) or Newberger and Allen (2007b), is problematic in
the region between crests and troughs, where both air and water
are to be found. A strict Eulerian average produces a continuously
varying density q from about 1.29 kg . m�3 to 1026 kg . m�3, which
is not compatible with the usual primitive equation models as it
would introduce a strong diffusion of properties, including heat
content, between the atmosphere and ocean. Mathematical exten-
sion of the velocity field across the interface have been used by
McWilliams et al. (2004), but it provides quantities that have, a pri-
ori, no simple physical interpretation since they are not given by a
known averaging operator. Yet, Ardhuin et al. (2008b) showed that
the resulting velocity actually corresponds to the quasi-Eulerian
velocity ðû; v̂ ; ŵÞ first introduced by Jenkins (1989): this is the
mean Lagrangian velocity (U,V,W) minus the wave-induced drift
(Us,Vs,Ws),

ðû; v̂; ŵÞ ¼ ðU;V ;WÞ � ðUs;Vs;WsÞ: ð2Þ

This definition requires a wave-following coordinate system. The
averaging is also connected to the choice of the momentum vari-
able, which varies between different theories, as summarized in
Fig. 2.

2.3. Momentum equations

In the previous section, we defined the control volume and we
presented the different averages existing in the literature. We
write now the generic equation for the mean momentum (e.g.
2 In that work, the control volume is identical to the one in M03, but an Eulerian
verage of the pressure is taken, making the averaged equations inconsistent. The

nsequences of this error are discussed in Bennis and Ardhuin (2011).
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mean Lagrangian velocity or quasi-Eulerian velocity) obtained after
averaging on the control volume. The mean can be Eulerian, GLM
or following n3. Neglecting buoyancy, Earth rotation, mixing and
viscous effect, the generic conservation equation for the mean
momentum quðwhere u¼ ðu;wÞ and ð�Þ is the averaging operatorÞ
in the control volume and with motion restricted to a vertical plane
is

@ðquÞ
@t
þ @ðqu�uÞ

@x
þ @ðqu �wÞ

@z
¼ F; ð3Þ

with F a forcing term due to waves and water levels which explicitly
given below.

The rate of change of the momentum (the first term on the left
hand side of Eq. (3) equals body forces (such as gravity, absent for
the horizontal momentum qu), plus the divergence of fluxes of
momentum. The mean flow advective fluxes appear in the left
hand side of (3), the other fluxes constitute the forcing term F.
For a generic control volume, F is

F ¼ Fuu þ Fuw þ Fpx þ Fp3; ð4Þ

(see Brekhovskikh and Goncharov (1994) for more details) with the
horizontal advection

Fuu ¼
@ðq~u2Þ
@x

: ð5Þ

�u is the horizontal velocity associated to the wave propagation such
as

�u ¼ kac½expðkzÞ cosðkx� rtÞ�: ð6Þ

where k is the wavenumber, a is the wave amplitude, c is the phase
speed, r is the frequency.

The vertical advection (where ~w and ~n3 are, respectively, the
vertical velocity ~w ¼ kac½expðkzÞ sinðkx� rtÞ� and the vertical posi-
tion associated to the wave propagation)

Fuw ¼
@½ð ~w� @~n3=@tÞq�u�

@ðzþ n3Þ
; ð7Þ

is important for fixed (Eulerian) control volumes (e.g. Rivero and
Arcilla, 1995) but is negligible for the M03-AJB08 volume, designed
to make ~w� @~n3=@t as small as possible.

The last two terms are the pressure gradient across the sides of
the volume, here assumed vertical,3

Fpx ¼
@p
@x
; ð8Þ

and the vertical divergence of the pressure-induced flux through
the sloping iso-surfaces of the vertical coordinate,

Fp3 ¼
@Sp3

@z
¼ @

@z
~pð@fn3=@xÞ
h i

; ð9Þ

which is zero in Eulerian averages, for whichfn3 ¼ 0 (wherefn3 and ~p
are respectively the vertical displacement and pressure induced by
waves). We recall that �p can be different for different control vol-
umes, i.e. in the case of M03-AJB08 the pressure is nearly hydro-
static, which is not the case of a fixed control volume for which a
�q~w2 correction occurs. This derivation was correctly done by
M03 for his control volume. Using the notations of that paper,
~s ¼ n3 ¼ ~n3; n1 ¼ 0; n2 ¼ 0. On the contrary, Xia et al. (2004) com-
pletely omitted the vertical flux. In the case of Mellor (2008) the
average of the vertical flux gradient Fp3 was not estimated and re-
placed by an Eulerian average of the pressure gradient, which is
3 These sides actually have an angle in the case of the Generalized Lagrangian Mean
(GLM), giving more complex equations.
not consistent with the Lagrangian average of the other terms, as
described by Bennis and Ardhuin (2011). We will thus not discuss
further that paper.

2.4. Estimation of ~pð@fn3=@xÞ: the fundamental problem of the
Lagrangian approach

This vertical flux term redistributes wave momentum over the
vertical. Thus, if that term is omitted, as in Xia et al. (2004), the
depth-integrated equations can still be correct. However, omitting
this term, or giving an inconsistent approximation for it, generally
produces a non-uniform profile of the net wave-induced force
Fpx + Fp3 in the absence of wave breaking (see Fig. 1). In the adia-
batic limit, without mixing or friction, there is no possible balance
of this force with the pressure gradient induced by the sea surface
slope, which is not a physical situation. Here is a mathematical
description of the problem.

The equation of motion are given by Mellor (2003) (his Eq.
(34a)). When we neglected the Coriolis force, density stratification,
mixing and after applying the continuity equation, the equations
correspond to Eq. (3) for the particular case of the control volume
that follows only the vertical wave-induced motions and with mo-
tion restricted to a vertical plane. The equation is similar to the fol-
lowing equation and rewritten in a terrain following vertical
coordinate, 1, it is

@U
@t
þ U

@U
@x
þW

D
@U
@1
¼ F

D
: ð10Þ

where (U,W) is the Lagrangian-mean flow field.
The force on the right hand side is given by Eq. (4) with

Fuw ¼ 0; Fpx ¼ �gD @ĝ
@x (where ĝ is the mean surface elevation), Fuu

and Fp3 are given in Appendix D. Over a sloping bottom in finite
water depth, Fuu is of the order of the bottom slope e2, and a con-
sistent solution of Eq. (3) requires an approximate of Fp3 to the
same order. Because this is the product of ~p and ~s, each of these
two terms must be estimated to first order in e2. Airy theory, which
is the solution for waves over a flat bottom and is used by M03 and
almost all parameterizations, is thus insufficient. By analogy with
the problem of estimating the reflection of waves over a sloping
bottom (Meyer, 1979), we conjecture that there is no general ana-
lytical expression for the vertical flux Fp3 in terms of local wave,
water depth and current properties, even in the limit of small bot-
tom slopes.

So far we have no proof for this conjecture, but it is supported
by several facts. First of all, all published analytical expressions
are based on Airy theory and either ignore the vertical flux Fp3, this
is the case of Walstra et al. (2000) and Xia et al. (2004), or give
erroneous expressions for it, as in Mellor (2003, 2008, 2011a,b).
Their error is easily seen by comparing, for our adiabatic test case
with shoaling waves, the net force F, including the pressure gradi-
ent due to the surface slope. All of these theories give a strong ver-
tical shear for F as in Fig. 1, whereas it should be uniformly zero,
allowing a stationary solution. We observe that only Ardhuin
et al. (2008b) proposed a correct estimation of Fp3, but they used
the now classical approach of approximating the three-dimen-
sional wave problem as a series of modes with different vertical
structures and amplitudes that vary on the horizontal. For irrota-
tional flows, the exact solution to the Laplace equation and bound-
ary conditions is recovered in the limit of an infinite number of
modes. The first mode corresponds to the Airy wave solution while
the other evanescent mode are not propagating modes, but they
correspond to the near-local adjustment of the wave field to the
topography. Contrary to the wave action equation which is hyper-
bolic, the equations for the amplitudes of the evanescent modes
are a set of coupled elliptic equations. As a result, these modes
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are not functions of the local water depth only but they are gener-
ally defined by the water depths over the entire domain. Very often
the adjustment is only significant over one wavelength and for
steep slopes, as in the simplest problem of wave propagation over
a step (e.g. Rey et al., 1992; Rhee, 1997). In that case, the adapta-
tion of the iso-potential lines clearly extends over a finite distance
from the step showing that the solution is indeed not only a func-
tion of the local (flat) bottom properties and amplitude of the
freely propagating waves. The same is true, although less conspic-
uous, for a smooth bottom (e.g. Athanassoulis and Belibassakis,
1999).

Obtaining the solution of the coupled equations is a formidable
computing task (e.g. Magne et al., 2007), even if the series of modes
is made to converge faster, as is the case with the vertical mode
decomposition proposed by Chandrasekera and Cheung (1997).
What looks like a mathematical curiosity has dramatic conse-
quences in terms of wave-driven flows, with very large spurious
errors for poorly approximated profiles of Fp3, as we shall see in
Section 3. Given this impasse, the only option available today is
thus to work with the quasi-Eulerian velocity.
3. Equations for the quasi-Eulerian velocity

In order to facilitate the implementation of quasi-Eulerian
equations, we give here a short and simplified account of Ardhuin
et al. (2008b). Starting from the general equations of Andrews and
McIntyre (1978), and Ardhuin et al. (2008b) have given an approx-
imation to second order in the wave non-linearity and transformed
the equations with a change of the vertical coordinate, so that the
Jacobian associated with the averaging procedure is equal to one,
and both the resulting quasi-Eulerian flow field ðû; v̂ ; ŵÞ and
Lagrangian-mean flow field (U,V,W) are non-divergent.

The quasi-Eulerian flow field does not contain wave momen-
tum, and this is the main difference with the M03 theory. Solving
for ðû; v̂ ; ŵÞ removes the problem of the approximation of the ver-
tical fluxes of wave momentum in Sp3 (Eq. (9)) because the tricky
part is a vertical flux of wave momentum: without wave momen-
tum there is no problem anymore in the vertical fluxes of the qua-
si-Eulerian momentum. The influence of waves on the mean quasi-
Eulerian current appear as forcing terms (A1, A2, B1, B2, C1, C2, C3
in the Eqs. (11), (12), (15)).

In order to simplify the equations we generally give the wave
forcing expressions for monochromatic waves as a function of
the surface elevation variance E. In the case of quasi-linear random
waves the corresponding forcing is simply the sum of the mono-
chromatic wave forcing with E replaced by the elementary eleva-
tion variance E(f,h)df dh (where f and h are, respectively, the
wave frequency and direction), as detailed in Appendix C. The fol-
lowing GLM equations use the Cartesian z coordinate. However,
the most of coastal hydrodynamical models (e.g. Marsaleix et al.,
2008) use equations in terrain-following coordinates (A), further
transformed in flux form (B). This last form is most compact be-
cause the vertical stokes drift Ws disappear from it.

3.1. Momentum, mass, and tracer conservation

For simplicity we neglect the effect of the vertical current shear
and partial standing waves in the wave forcing term, so that Eq.
(42) in Ardhuin et al. (2008b) becomes4
4 Although derived via a different approach, the resulting equations are mathe-
matically equivalent to the ones given by Uchiyama et al. (2010), except for the
Bernoulli head term (our J) in which we have neglected the effects of the current
profile. Here they were derived from a quasi-Eulerian average of the flow, as detailed
in Ardhuin et al. (2008b), which has a clear physical interpretation as the Lagrangian
mean minus the Stokes drift.
@û
@t
þ û

@û
@x
þ v̂ @û

@y
þ ŵ

@û
@z
� f v̂ þ 1

q
@pH

@x

¼ f þ @v̂
@x
� @û
@y

� �� �
Vs �Ws

@û
@z
� @J
@x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A1

þ bF m;x þ bF d;x þ bF b;x|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A2

; ð11Þ

and

@v̂
@t
þ û

@v̂
@x
þ v̂ @v̂

@y
þ ŵ

@v̂
@z
þ f ûþ 1

q
@pH

@y

¼ � f þ @v̂
@x
� @û
@y

� �� �
Us �Ws

@v̂
@z
� @J
@y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B1

þ bF m;y þ bF d;y þ bF b;y|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B2

; ð12Þ

where the left hand side is the classical primitive equation model
for the quasi-eulerian velocity ðû; v̂ ; ŵÞwith pH the hydrostatic pres-
sure, ðbF m;x; bF m;yÞ the mixing effects (that redistribute momentum).
The right hand side contains the forcing terms (see A1, B1, A2, B2
terms, with only the A1 and B1 terms for adiabatic case) where
ðbF d;x; bF d;yÞ the source of quasi-Eulerian momentum that is equal to
the sink of wave momentum due to breaking and wave-turbulence
interaction, ðbF b;x; bF b;yÞ the source of quasi-Eulerian momentum that
is equal to the sink of wave momentum due to bottom friction,
which should only be included when the wave bottom boundary
layer is resolved, J the wave-induced mean pressure (Eq. (20)),
and (Us,Vs,Ws) the three-dimensional Stokes drift.5 Mixing is also
influenced by waves, but this aspect will not be discussed here
(see Craig and Banner, 1994; Groeneweg and Klopman, 1998; Rascle
and Ardhuin, 2009; Uchiyama et al., 2010). The second lines in Eqs.
(11) and (12) contain the vortex force introduced by Garrett (1976)
in this context, and further discussed by Lane et al. (2007) and Smith
(2006).

The mass conservation is

@û
@x
þ @v̂
@y
þ @ŵ
@z
¼ 0; ð13Þ

and the evolution of a conservative passive tracer concentration C is,

@C
@t
þ @

@x
ðûþ UsÞC|ffl{zffl}

C1

24 35þ @

@y
ðv̂ þ VsÞC|ffl{zffl}

C2

24 35þ @

@z
ðŵþWsÞC|fflffl{zfflffl}

C3

24 35 ð14Þ

¼ @

@x
cx
@C
@x

� �
þ @

@y
cy
@C
@y

� �
þ @

@z
cz
@C
@z

� �
: ð15Þ

where c = (cx,cy,cz) is the turbulent diffusivity.
All four conservation equations are valid from the bottom

z = � h to the local phase-averaged free surface ĝ.
However, with the mode splitting, there is another important

modification that is made through the barotropic mode. The sur-
face kinematic boundary condition is given by

@ĝ
@t
þ ðûþ UsÞ

@ĝ
@x
þ ðv̂ þ VsÞ

@ĝ
@y
¼ ŵþWs: ð16Þ

It thus appears that, as in McWilliams et al. (2004) or Newberger
and Allen (2007b), there is a source of mass at the surface that com-
pensates the convergence of the Stokes drift. In surface-following
coordinates there is no velocity through the surface and ŵþWs

vanish, leaving only the convergence of the Stokes drift to force
the usual mass conservation equation (see Appendix A: Eq. (A.3)).
5 Although the vertical component of the Stokes drift may not be familiar to the
ader, it appears, just like the horizontal components, in the general definition of the
ave pseudo-momentum (Andrews and McIntyre, 1978; Ardhuin et al., 2008b). In

articular for inviscid conditions over a sloping bottom it is physically obvious that
e drift of water particles must follow the bottom and thus must have a vertical
mponent. In practice Ws can be computed from (Us, Vs) as the full Stokes drift flow is

pproximately non-divergent (Ardhuin et al., 2008b).
re
w
p
th
co
a
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For tracers, because the equations are unchanged (only for the
explicit presence of the Lagrangian mean velocity), the boundary
conditions are unchanged from classical primitive equation
models.

3.2. Wave-induced forcing terms

The three-component Stokes drift (Us,Vs,Ws), wave-induced
pressure term J, and momentum source due to wave dissipation
ðbF d;x; bF d;yÞ, can all be computed from only a few local parameters.
These include the wave-induced surface elevation variance E, the
phase-averaged water depth D ¼ hþ ĝ, the wavenumber vector
k = k(cosh,sinh), the intrinsic radian frequency r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanhðkDÞ

p
,

the water depth D. For random waves, these expressions are easily
extended by summing over the spectrum and replacing E by the
elementary variancce E(f,h) dhdf (see Appendix C).

The horizontal Stokes drift vector (Us,Vs) is given by,

ðUs;VsÞ ¼ rkðcos h; sin hÞE coshð2kzþ 2khÞ
sinh2ðkDÞ

: ð17Þ

At the lowest order (e.g. Ardhuin et al., 2008a), the full Stokes drift
flow is non-divergent and verify,

@Us

@x
þ @Vs

@y
þ @Ws

@z
¼ 0: ð18Þ

As a result, the less well-known vertical Stokes drift component is
given by the horizontal divergence of (Us,Vs),

WsðzÞ ¼ �Usjz¼�h
@h
@x
� Vsjz¼�h

@h
@y
�
Z z

�h

@Us

@x
þ @Vs

@y
dz: ð19Þ

In adiabatic conditions, the only other term is the wave-induced
mean pressure J,

J ¼ g
kE

sinhð2kDÞ : ð20Þ

In the coupled system, the horizontal Stokes velocity is computed in
the coupler from the frequency spectrum of the surface Stokes drift,
which is provided by the wave model, so that the wave model does
not need to know the depths of the flow model levels. This also
allows to force the flow model with a stored wave output that is
independent of the flow model vertical resolution (see http://tiny
url.com/2wr6hoa for details). The vertical component Ws is ob-
tained by solving Eq. (19).

No definite theory exists for the force induced by wave dissipa-
tion ðbF d;x; bF d;yÞ, as only the depth-integrated force is known (e.g.
Smith, 2006). Still it is important to follow some general principles.
Namely, the energy lost by waves when breaking is the source of
surface turbulence and the corresponding wave momentum is
the force ðbF d;x; bF d;yÞ. One should be careful to avoid double counting
by making sure that the wind to wave momentum flux is not in-
cluded in the wind stress used as a surface boundary condition
for the flow model.

An empirical parametrization for the vertical profile must be
used. We may clearly distinguish between the force due to wave
breaking and that due to bottom dissipation (Walstra et al.,
2000). We know Soc the amount of energy given up by waves as
they break, either in finite depth or deep water (e.g. Thornton
and Guza, 1983; Ardhuin et al., 2010), and Sbf the loss of energy
due to bottom friction (e.g. Ardhuin et al., 2003). With a strong ver-
tical mixing due to breaking waves the vertical distribution of the
momentum source is not very important (Rascle et al., 2006). Wave
dissipation may be provided as surface stress, with a vertical
profile given by the delta function dz;ĝ,
ðbF d;x; bF d;yÞðzÞ ¼ ðsoc;x; soc;yÞdz;ĝ

¼
Z

k
r
ðcos h; sin hÞSocðf ; hÞdz;ĝdf dh; ð21Þ

where Soc(f,h) is the spectral density of the waves-to-ocean energy
flux, equal to the dissipation source function in the spectral wave
energy balance (e.g. Ardhuin et al., 2010).

3.3. Boundary conditions at the bottom

The bottom friction is absent in the test cases presented here.
However, for case with bottom friction, the following equations
can be used.

Starting from the bottom, at z = �h, for a non-resolved wave bot-
tom boundary layer, the momentum lost by waves due to bottom
friction is lost in the bottom (Longuet-Higgins, 2005) and should
not be added in the water column ðie:ðbF b;x; bF b;yÞ ¼ ð0;0ÞÞ, and the
horizontal velocity should be prescribed as velocity at the bottom
given by the streaming solution of (Longuet-Higgins, 1953), still
approximately valid for turbulent bottom boundary layers (e.g.
Marin, 2004),

ðû; v̂Þjz¼�h ¼ 1:5ðUs;VsÞjz¼�h ð22Þ

and the vertical velocity is naturally

ŵ ¼ �û
@h
@x
� v̂ @h

@y
: ð23Þ

We note that many parameterizations have been proposed for the
bottom stress Kz

@û
@z where Kz is the (varying) eddy viscosity. Eq.

(22) could be used for the quasi-Eulerian velocity at the bottom.
If the wave bottom boundary layer were resolved then the appro-

priate bottom boundary condition is: ðû; v̂Þjz¼�h ¼ ð0;0Þ. In this
case, one should introduce near the bottom the source of
momentum

ðbF b;x; bF b;yÞðzÞ ¼
Z

k
r ðcos h; sin hÞSbf ðf ; hÞGðzÞdf dh; ð24Þ

where G(z) is a function that integrates to 1 across the wave bottom
boundary layer. This may be re-written

ðbF b;x; bF b;yÞðzÞ ¼ ðswb;x; swb;yÞGðzÞ: ð25Þ

The wave bottom stress vector (swb,x,swb,y) corresponds to the
momentum lost by the wave field via bottom friction and can be
computed by the wave model. According to Walstra et al. (2000),
the vertical distribution function G(z) can be defined such as

GðzÞ ¼ 1� Dþz�ĝ
dwbbl

if � Dþ ĝþ dwbbl P z P �Dþ ĝ;

GðzÞ ¼ 0 if z > �Dþ ĝþ dwbbl:

(
ð26Þ

where dwbbl is the wave bottom boundary layer thickness.
Another important condition is the energy lost by waves due to

bottom friction, which is a source of turbulent kinetic energy in the
bottom boundary layer. The total energy is the same integral as Eq.
(24), without the k

r factor, and replacing the profile G(z) by a
parametrization follow that may Mellor (2002).

3.4. Boundary conditions at the surface

At the surface, the stresses are imposed, giving the upper
boundary condition for the turbulent momentum flux,

Kz
@û
@z
¼ sa;x � saw;x ð27Þ

where sa,x and saw,x are, respectively, the x-component of the wind
stress and of the wave-supported stress

https://domicile.ifremer.fr/,DanaInfo=tinyurl.com+2wr6hoa
https://domicile.ifremer.fr/,DanaInfo=tinyurl.com+2wr6hoa
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ðsaw;x; saw;yÞ ¼
Z

k
r
ðcos h; sin hÞSatmðf ; hÞdf dh; ð28Þ

where Satm(f,h) is the spectral density of the wind to wave energy
flux (e.g. Ardhuin et al., 2009), approximately equal to the input
source function in the spectral wave energy balance. Here again
the other boundary condition for the flux of turbulent kinetic en-
ergy is given by the loss of wave energy due to breaking, and
wave-turbulence interaction, and the same integral as (21) without
the k

r factor. This flux may also be distributed as a near-surface
source.

3.5. Lateral boundary conditions

When open boundary conditions are used, one may impose a
zero mass flux to facilitate the numerical convergence (Rascle,
2007), which takes the form,

ðb�u; b�v Þ ¼ ð�Us;�VsÞ: ð29Þ

where ð�Þ denotes the depth-integrated variable.

3.6. Some details about the practical implementation

The quasi-Eulerian equations are implemented in the flow mod-
el MARS3D (Lazure and Dumas, 2008). MARS3D is coupled with the
wave model WAVEWATCH III (Tolman, 1998; Tolman, 2009)
thanks to the coupler PALM (Buis et al., 2008). Parts of the addi-
tional terms in the momentum equations are not computed inside
the flow model. The terms @J

@x ;
@J
@y,
bF d;x; bF d;y are computed inside the
Fig. 4. Coupling process between the wave model (WAVEWATCH III) a
coupler with fields from the wave model, which are the wave mean
induced pressure, the significant wave height, the wave-to-ocean
stress and with fields from the circulation model: the mean sea
surface elevation and the sigma levels. The other terms for the
momentum equations are calculated inside the MARS3D model be-
cause the knowledge of the current, the coriolis term, the thickness
of wave bottom boundary layer and the roughness length is re-
quired. In this view, the following fields from waves are transmit-
ted by the coupler to MARS3D: the three components of the Stokes
drift, the norm of the orbital velocity near the bottom, the root
mean square wave height, the intrinsic radian frequency, the wave
number, the wave direction, the wave dissipation due to bottom
friction, the wave mean induced pressure derivatives, the bF d;x

and bF d;y terms and one term used with open boundary conditions
that is equal to � J

g. The fields exchanged between the models are
shown on Fig. 4.

We modify the depth-integrated continuity equation in order to
implement the new surface boundary condition (see eq (A.3)). We
use the depth-integrated horizontal components of the Stokes drift
which are computed inside the MARS3D model from the Stokes
drift, provided by the coupler.

The coupled model can be used in one-way or two-way cou-
pling mode. Only the communications drawn with solid arrows
(see Fig. 4) are used when the one-way mode is applied. For the
two-way coupling mode, all communications are activated.The
coupling procedure starts with the hydrodynamical model which
sends the currents and sea surface height to the wave model via
the coupler. Then, the wave model computes all the wave param-
eters and sends them to the coupler. Using the sea surface height
nd the hydrodynamical model (MARS3D) via the coupler (PALM).



Table 1
List of wave-forcing terms required to force an ocean circulation model solving for the
quasi-Eulerian velocity. The J term is a 2D field when the effect of the vertical shear of
the quasi-Eulerian current is neglected, as done here. In general J is a 3D forcing field
(Ardhuin et al., 2008a). The terms swb,x and swb,y are only used when the wave bottom
boundary layer is resolved.

Term Type See eq.

Us 3D (17)
Vs 3D (17)
J 2D or 3D (20)
saw,x 2D (28)
saw,y 2D (28)
soc,x 2D (21)
soc,y 2D (21)
swb,x 2D (25)
swb,y 2D (25)

Table 2
Overview on the numerical simulations.

Hs (m) T(s) Vertical mixing Set of equations One/two-way coupling

1.02 5.6 No M03, ARB08 One-way
0.34 5.6 No M03, ARB08 One-way
0.34 13 No M03, ARB08 One-way
1.02 5.6 Yes M03 One-way
0.34 5.6 Yes M03 One-way
0.34 13 Yes M03 One-way
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Fig. 6. Stokes velocity in x-direction for Hs = 1.02 m, T = 5.26 s and Kz = 0 m2 . s�1.
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and the sigma levels which come from hydrodynamical model, the
forcing terms are computed and sent to MARS3D. The exchange be-
tween the models are done at a coupling time step which can be
larger than the time steps of the individual models. The coupled
model has been designed to run in parallel across multiple proces-
sors in order to reduce the computing time. For the moment the
spatial grids are the same for the both models and we have not
used the internal re-gridding capabilities of PALM.
x (m)

z 
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Fig. 7. Solution given by quasi-Eulerian analysis for the inviscid sloping bottom
case with Hs = 1.02 m, T = 5.24 s and without mixing. Lagrangian velocity U (first
panel, contours are equally spaced from �0.01 to 0.025 m s�1) and quasi-Eulerian
velocity U � Us (second panel). The thick black line is the bottom elevation.
3.7. Summary of new terms introduced

The forcing of the wave field on the ocean circulation requires
the knowledge of all the fields listed in Table 1.

Compared to equations for the Lagrangian mean velocity, such
as those by Mellor (2003), the amount of wave forcing data to be
transferred is significantly reduced, since the latter form requires
the 3D fields Sxx, Syy and Sxy, as well as the 3D fields Us and Vs to cor-
rect the velocities before applying the turbulence closure (Walstra
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et al., 2000). This lower complexity of the quasi-Eulerian equations
for the 3D case is contrary to the 2D case, in which seven 2D fields
are needed, versus 3 to 5 (if properly dealing with the bottom
boundary condition) for the depth-integrated Lagrangian equa-
tions. In both cases, for a full consistency of the ocean circulation
and wave model, one should also use the wind stress of the wave
model, as discussed by Janssen et al. (2004), and a proxy of the
breaking wave heights, possibly the wind sea wave height (Rascle
et al., 2008).

The wave model can also be used to provide energy fluxes for
the surface flux of turbulent kinetic energy (Janssen et al., 2004),
or the near-bottom flux of turbulent kinetic energy (TKE) due to
bottom friction (Mellor, 2002). For the adiabatic conditions consid-
ered here all the stresses saw, swb, soc are zero, together with these
fluxes of TKE.

4. An adiabatic test case for 3D wave-current models

4.1. Description of numerical set-up

This adiabatic test has a known numerical solution. It is adapted
from Ardhuin et al. (2008b) and corresponds to steady monochro-
matic waves shoaling from 4 to 6 m depth on a slope without
breaking nor bottom friction, and for an inviscid fluid. Here the
bottom is symmetric with the bottom sloping back down to 6 m,
in order to allow periodic boundary conditions if needed (see
Fig. 5). Both waves and bottom topography are uniform in the y-
direction. The flow is confined to a channel with free-slip boundary
Fig. 8. M03 model: Solution given by the coupled model after 15 min of integration: La
(second panel). The thick black line is the bottom elevation. Hs = 1.02 m, T = 5.26 Kz = 0 m
conditions (North and South boundaries). The East and West
boundaries are open (see Fig. 5).

Several wave conditions are tested:

– Significant wave height: Hs = 0.34 m or Hs = 1.02 m.
– Wave period: T = 5.24 s or T = 13 s.
– Wave direction: h = 90�.
– Wave steepness: �1 = 0.0266 or �1 = 0.0798.

Our MARS3D model configuration uses 100 sigma levels regu-
larly spaced, 5 active points in the y-direction and 78 active points
in the x-direction. The time step was set to 0.05 s for the
Hs = 1.02 m tests (and 1 s for Hs = 0.34 m). The ARB08 model has
been tested with one active point in y-direction and the time step
was set to 1 s for all numerical simulations. An overview on the
numerical simulations is given in Table 2. For the sake of simplic-
ity, the wave model time step is taken equal to the flow model time
step.

For these shoaling waves the group velocity varies a little (5.4%)
from 4.89 m . s�1 to 4.64 m . s�1, due to the fact that the non-
dimensional depth kD is close to unity. Because the current is much
less than the group speed, the waves propagate with a nearly con-
stant energy flux, resulting in a small increase of wave amplitude,
by 2.7%, in the shallower part of the domain.The Eulerian analysis
of such a situation was given by Longuet-Higgins (1967). With
Hs = 0.34 m and T = 5.24 s, the Longuet-Higgins solution gives a
mean water level 0.32 mm lower in the shallow region, and both
studies by Rivero and Arcilla (1995) and Lane et al. (2007), clearly
grangian velocity U (first panel) and Lagrangian velocity minus Stokes drift U � Us
2 . s�1.
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show that there is no other dynamical effect: the Eulerian mean
current is steady and simply compensates for the divergence of
the wave-induced mass transport (see Fig. 7). Because the relative
variation in phase speed is more important, from 6.54 to
5.65 m . s�1, it produces a strong divergence of the Stokes drift
(see Fig. 6), which accelerates in shallow water. The quasi-Eulerian
velocity is irrotational, thus nearly depth-uniform, and compen-
sates the Stokes drift divergence by a strong convergence. This sit-
uation is a stationary solution.
Table 3
M03 model: Surface velocity at x = 200 m for different model settings. The settings
corresponding to the test in Ardhuin et al. (2008b) are given in the second line
Hs = 0.34 m, T = 5.6 s Kz=0 m2 s�1. The surface velocity values are written for T = 900 s,
where Hs = 1.02 m and for T = 2700 s where Hs = 0.34 m.

Hs(m) Tp(s) Kz(m2 . s�1) Resulting U(m . s�1)

1.02 5.6 0 0.1698
0.34 5.6 0 0.0537
0.34 13 0 0.0110
1.02 5.6 2.8.10�3 0.1094
0.34 5.6 2.8.10�3 0.0185
0.34 13 2.8.10�3 0.0026
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Fig. 9. ABR08 model: Lagrangian velocity u (first panel) and Quasi-Eulerian
velocity û(m/s) (second panel) which is equal to the Lagrangian velocity minus the
Stokes drift. Hs = 1.02 m, T = 5.24 s and Kz = 0 m2 . s�1. The thick black line is the
bottom elevation.
4.2. Numerical results obtained with different sets of equations based
on quasi-Eulerian and Lagrangian velocities

Although the inconsistency of most equations for the Lagrang-
ian velocity have been described in Ardhuin et al. (2008b), no re-
sult have yet been published on the actual consequences of this
inconsistency. We chose to illustrate these consequences with
the equations by Mellor (2003) that have been used in other stud-
ies, unfortunately without a detailed analysis.

A first important test of the model is the solution for the mean
sea surface elevation, which is given by Longuet-Higgins (1967).
This is correctly reproduced by Mellor (2003) equations and the
quasi-Eulerian equations. We will now consider the currents. The
reference Lagrangian velocity using for the comparison is obtained
from the quasi-Eulerian analysis as U ¼ ûþ Us (see Fig. 7). The ref-
erence solution exhibits a vertical shear that is entirely due to the
Stokes drift (see Fig. 6) and the quasi-Eulerian velocity is homoge-
neous over the water column.

The MARS3D model is now used to solve either the M03
equations or the Eqs. (11) and (12). In the case of the M03 equa-
tions the wave induced forcing has a strong vertical gradient
which is unrealistic (see Fig. 1). As a result, a strong surface
velocity develops, associated to a counter-current below of com-
parable magnitude (Fig. 8). This circulation pattern is very differ-
ent from the known correct solution (Fig. 7). In spite of the small
bottom slope and wave steepness, in only 15 min the resulting
velocity reaches 17 cm s�1, which is about 10 times the correct
solution shown in Fig. 7. Further, if the model is integrated for
a longer time, the region of positive acceleration on the up-slope
meets the region of negative acceleration on the down-slope,
resulting in large vertical velocities and further strange model
adjustments. This erroneous velocity is clearly driven by the
erroneous wave-induced force term F, which is proportional to
gDe2

1e2, where e1 is the wave steepness, e2 is the bottom slope
(Ardhuin et al., 2008a). For the bottom shape and wave period
chosen here, the maximum value of F is 0.29 gDe2

1e2. Obviously,
the depth dependence of F plays an important role. Since F be-
comes depth-uniform for kD ? 0, one may expect that the prob-
lem could vanish in shallow water. Unfortunately, in practice,
the velocity at which the current first stabilizes (here after
15 min), is independent of e2, provided that the change in water
depth remains the same. If the bottom topography is stretched
by a factor 1/a in the x direction, the slope increases by a factor
a and the change advection compensates the local increase of F.
Mathematically, Eq. (10) follows a Froude scaling: when x is re-
placed by x0 = ax and t by t0 = a2t, the equation is unchanged if
F0 = aF, and thus U(x0, t0) = U(x, t). As a result, for any wave field
approaching the shore from deep water, even on a very gently
sloping continental shelf, there will be a very large spurious on-
shore velocity at the surface. Based on the present case, this
velocity can exceed 10 times the Stokes drift. This momentum
is generated where kD � 1, and self-advects onshore. Obviously,
some realistic mixing will reduce this effect. Using a realistic
constant eddy viscosity of 2.8 � 10�3 m2 . s�1 only reduces the
current by about a factor 2 to 3 (see Table 3). This factor de-
pends on the wave amplitude since the introduction of viscosity
breaks the Froude scaling.

We also test the ARB08 model mainly based on Eqs. (11) and
(12). This model solve now the quasi-Eulerian velocity (Lagrangian
velocity minus Stokes velocity). In order to compare with the
Lagrangian reference solution (see Fig. 7, first panel), we add the
Stokes velocity to the model solution.

The ARB08 model give a quasi-Eulerian current solution û (see
Fig. 9), and thus differs from the M03 model which give the
Lagrangian current. The dynamic effect of the waves is conveyed
by dynamic forcing terms (see terms A1, A2, B1, B2 in Eqs. (11)
and (12)) and an equivalent mass source at the surface (Eq. (16)).
The quasi-Eulerian current is nearly depth-uniform as expected
(Fig. 9). As a result, the Lagrangian current given by the ARB08
model (Fig. 9, first panel) is similar to the reference current
(Fig. 7, first panel). The flow structure and the intensity of the flow
are within a fraction of a percent. So, we can conclude that the
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ARB08 model correctly simulates for this case the three-
dimensional flow in presence of waves.
5. Conclusion

It was demonstrated here that equations for the three-dimen-
sional wave-forced circulation that are formulated in terms of
the Lagrangian mean velocity (total momentum) and use analytical
functions of the local wave field and topography can produce very
large spurious velocities. This result was anticipated by Ardhuin
et al. (2008b) who showed that the vertical flux of momentum is
a priori not a function of the local water depth, and can be esti-
mated from non-local evanescent wave modes that contribute to
the general solution of the Laplace equation over a sloping bottom.
The magnitude of the problem is revealed by the present study.
These come from poor approximation of the vertical flux of wave
momentum, and they persist errors when a reasonable vertical
mixing is included. These error may become negligible in the surf
zone, but they may also play a big part in the differences in vertical
velocity profiles reported by Haas and Warner (2009), when com-
paring a version of ROMS solving the Mellor (2003) equations with
SHORECIRC (see their Fig. 4). We also wish to point out another
common source of differences between model results. Some mod-
els, like SHORCIRC solve for the quasi-Eulerian mean velocity
U � Us while ROMS solved for the Lagrangian mean velocity U.
The difference between the two is the Stokes drift, which can be
very large in the surf zone, up to 30% of the wave phase speed (Ard-
huin et al., 2008b).

From the present model results, we conclude that today there is
no acceptable short-cut to a three-dimensional equation for the
Lagrangian velocity U: the only possibility would be to solve for
the wave motion to first order in the bottom slope. This can be
done with a model of the kind developed by Athanassoulis and
Belibassakis (1999) and Gerosthathis et al. (2005), with at least
10 vertical modes. Given the large effort required for a 4 by 4 km
region with only 3 modes (Magne et al., 2007), this is hardly a
practical solution. The only practical solution avalaible today is
thus the use of a momentum equation for the quasi-Eulerian
velocity, such as proposed by McWilliams et al. (2004), Newberger
and Allen (2007b), or Ardhuin et al. (2008a). This approach has
been applied to surf zone problems by Rascle (2007) and Uchiyama
et al. (2010).
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Appendix A. glm2 equations in sigma coordinates: momentum,
mass, tracer conservation

Let (x,y,z, t) denote the cartesian coordinate system and
(xw,yw,1, tw) the sigma coordinate system.

@û
@tH
þ û

@û
@xH
þ v̂ @û

@yH
þcW @û

@1
� f v̂ þ 1

q
@pH
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� @1
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� �
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þ bF d;x þ bF m;x þ bF b;x; ðA:1Þ
and
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@v̂
@xH
þ v̂ @v̂

@yH
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�Ws

D
� @v̂
@1
� @J
@yH
� @J
@1
� @1
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where

� 1 ¼ z� ĝ
D

is the sigma coordinate with ĝ the mean elevation, h

the bottom depth and D ¼ ĝþ h the mean water column depth,

� cW ¼ @1
@t
þ û
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@y
þ ŵ
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� �
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¼ � 1
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� 1
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� @1
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¼ �ð1þ 1Þ

D
� @ĝ
@t

,

� ðbF b;x; bF b;yÞ are only used when the wave bottom boundary layer
is resolved.

The depth-integrated continuity equation becomes

@ĝ
@t
þ @½Dðûþ UsÞ�

@xH
þ @½Dðv̂ þ VsÞ�

@yH
¼ 0: ðA:3Þ

where ð�:Þ denotes depth-integrated variable.
The evolution of a conservative passive tracer concentration C

is,
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where

� The modified vertical velocity x is defined by
x ¼ ŵþWs þ D
@1
@t
þ Dðûþ UsÞ

@1
@x
þ Dðv̂ þ VsÞ

@1
@y
: ðA:5Þ
� bF cm is the turbulent mixing.

Appendix B. Flux formulations of the quasi-Eulerian glm2
equations in sigma coordinates: momentum, mass, tracer
conservation
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where x is defined by Eq. (A.5) and ðbF b;x; bF b;yÞ are only used when
the wave bottom boundary layer is resolved.

The continuity equation becomes

@ĝ
@t
þ @½Dðûþ UsÞ�

@xH
þ @½Dðv̂ þ VsÞ�

@yH
þ @x
@1
¼ 0; ðB:3Þ

and the evolution of a conservative passive tracer concentration C is
defined by Eq. (A.4).

We notice that only the horizontal components of stokes drift
(Us,Vs) must be known with this formulation. The Ws depending
terms are removed.

Appendix C. Explicit form of random wave forcing terms for the
quasi-Eulerian velocity

For random waves, Eq. (17) becomes

ðUs;VsÞ ¼
Z

rkðcos h; sin hÞEðf ; hÞ coshð2kzþ 2khÞ
sinh2ðkDÞ

df dh; ðC:1Þ

where E(f,h) is the spectral density of the surface wave elevation
variance, usually known as the wave spectrum, the state variable
of most numerical wave models, and the wave-induced pressure
term becomes,

J ¼
Z

g
kEðf ; hÞ

sinh 2kD
df dh: ðC:2Þ
Appendix D. Forcing terms for the Lagrangian mean velocity

The force that is given by the horizontal divergence of the flux
of horizontal momentum (Sxx) is

Fuu ¼ �
@Sxx

@x
¼ � @

@x
D�u2 þ ~p

@~s
@1

 !
: ðD:1Þ

Using Airy theory, Sxx is given by,

Sxx ¼
Z

kDEðf ; hÞ½cos2 hFCSFCC þ ðFCSFCC � FSSFCSÞ�df dh; ðD:2Þ

and the vertical profile function FCS changes with f and is defined by

FCS ¼
cosh½kDð1þ 1Þ�

sinhðkDÞ ; ðD:3Þ

with similar definitions for FSS (respectively FCC), replacing cosh in
the numerator (respectively sinh in the denominator) by sinh
(respectively cosh).

The horizontal force that is given by the vertical divergence of
the flux of vertical momentum (Sx3) is

Fp3 ¼ �
@Sx3

@1
¼ @

@1
ð~p@~s=@xÞ: ðD:4Þ

In this case, Airy theory is insufficient for a consistent approxima-
tion. Yet Mellor (2003) still used Airy theory, thus producing the
erroneous expression,

Sx3 ¼ �
Z
ðFCC � FSSÞ � Eðf ; hÞ @FSS

@x
þ FSS

2
@Eðf ; hÞ
@x

� �
df dh: ðD:5Þ
References

Andrews, D.G., McIntyre, M.E., 1978. An exact theory of nonlinear waves on a
Lagrangian-mean flow. J. Fluid Mech. 89, 609–646.

Ardhuin, F., Jenkins, A.D., Belibassakis, K., 2008a. Commentary on the three-
dimensional current and surface wave equations’ by George Mellor. J. Phys.
Oceanogr. 38, 1340–1349, URL http://ams.allenpress.com/archive/1520-0485/
38/6/pdf/i1520-0485-38-6-1340.pdf.
Ardhuin, F., Marié, L., Rascle, N., Forget, P., Roland, A., 2009. Observation and
estimation of Lagrangian, Stokes and Eulerian currents induced by wind and
waves at the sea surface. J. Phys. Oceanogr. 39 (11), 2820–2838, URL http://
ams.allenpress.com/archive/2541-2558/39/11/pdf/i1520-0485-39-11-2820.pdf.

Ardhuin, F., O’Reilly, W.C., Herbers, T.H.C., Jessen, P.F., 2003. Swell transformation
across the continental shelf. part I: attenuation and directional broadening. J.
Phys. Oceanogr. 33, 1921–1939.

Ardhuin, F., Rascle, N., Belibassakis, K.A., 2008b. Explicit wave-averaged primitive
equations using a generalized Lagrangian mean. Ocean Model. 20, 35–60.

Ardhuin, F., Rogers, E., Babanin, A., Filipot, J.-F., Magne, R., Roland, A., van der
Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., Collard, F., 2010. Semi-
empirical dissipation source functions for wind-wave models: part I, definition,
calibration and validation. J. Phys. Oceanogr. 40 (9), 1917–1941.

Athanassoulis, G.A., Belibassakis, K.A., 1999. A consistent coupled-mode theory for
the propagation of small amplitude water waves over variable bathymetry
regions. J. Fluid Mech. 389, 275–301.

Bennis, A., Ardhuin, F., 2011. Comments on the depth-dependent current and wave
interaction equations: A revision J. Phys. Oceanogr., 36 pp. 1403–1419.

Blumberg, A.F., Mellor, G.L., 1987. A description of a three-dimensional coastal
ocean model. In: Heaps, N.S. (Ed.), Three Dimensional Coastal Ocean Models.
American Geophysical Union, pp. 1–16.

Brekhovskikh, L.M., Goncharov, V., 1994. Mechanics of Continua and Waves
Dynamics. Springer-Verlag, Berlin, p. 342.

Buis, S., Piacentini, A., Déclat, D., 2008. PALM: a computational framework for
assembling high performance computing applications. Concurrency Computat.:
Pract. Exper. 18 (2), 247–262.

Chandrasekera, C.N., Cheung, K.F., 1997. Extended linear refraction-diffraction
model. J. Waterway, Port Coast. Ocean Eng. 123 (5), 280–286.

Craig, P.D., Banner, M.L., 1994. Modeling wave-enhanced turbulence in the ocean
surface layer. J. Phys. Oceanogr. 24, 2546–2559, URL http://ams.allenpress.com/
archive/1520-0485/24/12/pdf/i1520-0485-24-12-2546.pdf.

Dolata, L.F., Rosenthal, W., 1984. Wave setup and wave-induced currents in coastal
zones. J. Geophys. Res. 89 (C2), 1973–1982.

Garrett, C., 1976. Generation of Langmuir circulations by surface waves - a feedback
mechanism. J. Mar. Res. 34, 117–130.

Gerosthathis, T., Belibassakis, K.A., Athanassoulis, G., 2005. Coupled-mode, phase-
resolving model for the transformation of wave spectrum over steep 3d
topography. a parallel-architecture implementation. In: Proceedings of OMAE
2005 24th International Conference on Offshore Mechanics and Arctic
Engineering, June 12–17, 2005 – Halkidiki, Greece. ASME, New York, N.Y., pp.
OMAE2005–67075.

Groeneweg, J., 1999. Wave-current interactions in a generalized Lagrangian mean
formulation. Ph.D. thesis, Delft University of Technology, The Netherlands.

Groeneweg, J., Klopman, G., 1998. Changes in the mean velocity profiles in the
combined wave-current motion described in GLM formulation. J. Fluid Mech.
370, 271–296.

Haas, K.A., Svendsen, I.A., Haller, M.C., Zhao, Q., 2003. Quasi-three-dimensional
modeling of rip current systems. J. Geophys. Res. 108 (C7), 3217. doi:10.1029/
2002JC001355.

Haas, K.A., Warner, J.C., 2009. Comparing a quasi-3d to a full 3d nearshore
circulation model: SHORECIRC and ROMS. Ocean Model. 39, 91–103.

Janssen, P.A.E.M., Saetra, O., Wettre, C., Hersbach, H., 2004. Impact of the sea state
on the atmosphere and ocean. Ann. Hydrograph. 6e série 3 (772), 3-1–3-23.

Jenkins, A.D., 1989. The use of a wave prediction model for driving a near-surface
current model. Deut. Hydrogr. Z. 42, 133–149.

Lane, E.M., Restrepo, J.M., McWilliams, J.C., 2007. Wave-current interaction: a
comparison of radiation-stress and vortex-force representations. J. Phys.
Oceanogr. 37, 1122–1141.

Lazure, P., Dumas, F., 2008. An external-internal mode coupling for a 3d
hydrodynamical model for applications at regional scale (MARS). Adv. Water
Resour. 31, 233–250.

Lentz, S.J., Howd, M.F.P., Fredericks, J., Hathaway, K., 2008. Observations and a
model of undertow over the inner continental shelf. J. Phys. Oceanogr. 38,
2341–2357, URL http://ams.allenpress.com/archive/1520-0485/38/11/pdf/
i1520-0485-38-11-2587.pdf.

Longuet-Higgins, M.S., 1953. Mass transport under water waves. Phil. Trans. Roy.
Soc. Lond. A 245, 535–581.

Longuet-Higgins, M.S., 1967. On the wave-induced difference in mean sea level
between the two sides of a submerged breakwater. J. Mar. Res. 25, 148–153.

Longuet-Higgins, M.S., 1970. Longshore currents generated by obliquely incident
sea waves, 1. J. Geophys. Res. 75, 6778–6789.

Longuet-Higgins, M.S., 2005. On wave set-up in shoaling water with a rough sea
bed. J. Fluid Mech. 527, 217–234, (an audio recording of a conference by
Longuet–Higgins on this topic is available at http://av.fields.utoronto.ca:8080/
ramgen/03-04/waterwaves/longuet-higgins.rm. URL http://av.fields.utoronto.
ca:8080/ramgen/03-04/waterwaves/longuet-higgins.rm)

Longuet-Higgins, M.S., Stewart, R.W., 1964. Radiation stress in water waves, a
physical discussion with applications. Deep Sea Res. 11, 529–563.

Lubin, P., Vincent, S., Abadie, S., Caltagirone, J.-P., 2006. Three-dimensional large
eddy simulation of air entrainment under plunging breaking waves. Coastal
Eng. 53, 631–655.

Magne, R., Belibassakis, K., Herbers, T.H.C., Ardhuin, F., O’Reilly, W.C., Rey, V., 2007.
Evolution of surface gravity waves over a submarine canyon. J. Geophys. Res.
112, C01002.

Marin, F., 2004. Eddy viscosity and Eulerian drift over rippled beds in waves. Coastal
Eng. 50, 139–159.

https://domicile.ifremer.fr/archive/1520-0485/38/6/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-38-6-1340.pdf
https://domicile.ifremer.fr/archive/1520-0485/38/6/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-38-6-1340.pdf
https://domicile.ifremer.fr/archive/2541-2558/39/11/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-39-11-2820.pdf
https://domicile.ifremer.fr/archive/2541-2558/39/11/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-39-11-2820.pdf
https://domicile.ifremer.fr/archive/1520-0485/24/12/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-24-12-2546.pdf
https://domicile.ifremer.fr/archive/1520-0485/24/12/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-24-12-2546.pdf
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2002JC001355
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2002JC001355
https://domicile.ifremer.fr/archive/1520-0485/38/11/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-38-11-2587.pdf
https://domicile.ifremer.fr/archive/1520-0485/38/11/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-38-11-2587.pdf
https://domicile.ifremer.fr/ramgen/03-04/waterwaves/,DanaInfo=av.fields.utoronto.ca,Port=8080+longuet-higgins.rm
https://domicile.ifremer.fr/ramgen/03-04/waterwaves/,DanaInfo=av.fields.utoronto.ca,Port=8080+longuet-higgins.rm
https://domicile.ifremer.fr/ramgen/03-04/waterwaves/,DanaInfo=av.fields.utoronto.ca,Port=8080+longuet-higgins.rm
https://domicile.ifremer.fr/ramgen/03-04/waterwaves/,DanaInfo=av.fields.utoronto.ca,Port=8080+longuet-higgins.rm


272 A.-C. Bennis et al. / Ocean Modelling 40 (2011) 260–272
Marsaleix, P., Auclair, F., Floor, J.W., Hermann, M.J., Estournel, C., Pairaud, I., Ulses, C.,
2008. Energy conservation issues in sigma-coordinate free-surface ocean
models. Ocean Model. 20, 61–89.

McIntyre, M.E., 1981. On the ‘wave momentum’ myth. J. Fluid Mech. 106, 331–347.
McWilliams, J.C., Restrepo, J.M., Lane, E.M., 2004. An asymptotic theory for the

interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135–
178.

Mellor, G., 2002. Oscillatory bottom boundary layers. J. Phys. Oceanogr. 32, 3075–
3088.

Mellor, G., 2003. The three-dimensional current and surface wave equations. J. Phys.
Oceanogr. 33, 1978–1989, corrigendum, vol. 35, p. 2304, 2005, see also Ardhuin
et al., vol. 38, 2008.

Mellor, G.L., 2008. The depth-dependent current and wave interaction equations: a
revision. J. Phys. Oceanogr. 38, 2587–2596, URL http://ams.allenpress.com/
archive/1520-0485/38/11/pdf/i1520-0485-38-11-2587.pdf.

Mellor, G.L., 2011a. Corrigendum. J. Phys. Oceanogr. 41, 1417–1418.
Mellor, G.L., 2011b. Reply to comments by A-C. Bennis and F. Ardhuin. J. Phys.

Oceanogr., 1–6.
Meyer, R.E., 1979. Surface wave reflection by underwater ridges. J. Phys. Oceanogr.

9, 150–157.
Newberger, P.A., Allen, J.S., 2007a. Forcing a three-dimensional, hydrostatic,

primitive-equation model for application in the surf zone: 2. application to
DUCK94. J. Geophys. Res. 112, C08019.

Newberger, P.A., Allen, J.S., 2007b. Forcing a three-dimensional, hydrostatic
primitive-equation model for application in the surf zone, part 1:
Formulation. J. Geophys. Res. 112, C08018.

Péchon, P., Teisson, C., 1994. Numerical modelling of the three-dimensional wave-
driven currents in the surf zone. In: Proceedings of the 24th international
conference on coastal engineering, Kobe, Japan. ASCE, New York, pp. 2503–
2512.

Perrie, W., Tang, C., Hu, Y., DeTracy, B.M., 2003. The impact of waves on surface
currents. J. Phys. Oceanogr. 33, 2126–2140.

Rascle, N., 2007. Impact of waves on the ocean circulation (impact des vagues sur la
circulation océanique). Ph.D. thesis, Université de Bretagne Occidentale,
available at http://tel.archives-ouvertes.fr/tel-00182250/. URL http://
tel.archives-ouvertes.fr/tel-00182250/.

Rascle, N., Ardhuin, F., 2009. Drift and mixing under the ocean surface revisited.
stratified conditions and model-data comparisons. J. Geophys. Res. 114, C02016.
doi:10.1029/2007JC004466.

Rascle, N., Ardhuin, F., Queffeulou, P., Croizé-Fillon, D., 2008. A global wave
parameter database for geophysical applications. part 1: wave-current-
turbulence interaction parameters for the open ocean based on traditional
parameterizations. Ocean Model. 25, 154–171. doi:10.1016/
j.ocemod.2008.07.006, URL http://hal.archives-ouvertes.fr/hal-00201380/.

Rascle, N., Ardhuin, F., Terray, E.A., 2006. Drift and mixing under the ocean surface. a
coherent one-dimensional description with application to unstratified
conditions. J. Geophys. Res. 111, C03016. doi:10.1029/2005JC003004.

Reniers, A.J.H.M., Roelvink, J.A., Thornton, E.B., 2004. Morphodynamic modeling of
an embayed beach under wave group forcing. J. Geophys. Res. 109, C01030.
doi:10.1029/2002JC001586.

Rey, V., Belzons, M., Guazzelli, E., 1992. Propagation of surface gravity waves over a
rectangular submerged bar. J. Fluid Mech. 235, 453–479.

Rhee, J., 1997. On the transmission of water waves over a shelf. Appl. Ocean Res. 19,
161–169.

Rivero, F.J., Arcilla, A.S., 1995. On the vertical distribution of h~u ~wi. Coastal Eng. 25,
135–152.

Shchepetkin, A.F., McWilliams, J.C., 2003. A method for computing horizontal
pressure-gradient force in an oceanic model with nonaligned vertical
coordinate. J. Geophys. Res. 108 (C3), 3090. doi:10.1029/2001JC001047.

Smith, J.A., 2006. Wave-current interactions in finite-depth. J. Phys. Oceanogr. 36,
1403–1419.

Svendsen, I.A., Putrevu, U., 1994. Nearshore mixing and dispersion. Proc. Roy. Soc.
Lond. A 445, 561–576.

Thornton, E.B., Guza, R.T., 1983. Transformation of wave height distribution. J.
Geophys. Res. 88 (C10), pp. 5925–5938.

Tolman, H.L., 1998. Effects of observation errors in linear regression and bin-
average analysis. Quart. J. Roy. Meteorol. Soc. 124, 897–917.

Tolman, H.L., 2009. User manual and system documentation of WAVEWATCH-III™
version 3.14. Tech. Rep. 276, NOAA/NWS/NCEP/MMAB.

Uchiyama, Y., McWilliams, J.C., Restrepo, J.M., 2009. Wave-current interaction in
nearshore shear instability analyzed with a vortex force formalism. J. Geophys.
Res. 114, C06 021.

Uchiyama, Y., McWilliams, J.C., Shchepetkin, A.F., 2010. Wave-current interaction in
an oceanic circulation model with a vortex-force formalism: Application to the
surf zone. Ocean Model. 34, 16–35.

Walstra, D.J.R., Roelvink, J., Groeneweg, J., 2000. Calculation of wave-driven currents
in a 3D mean flow model. In: Proceedings of the 27th international conference
on coastal engineering, Sydney. Vol. 2. ASCE, pp. 1050–1063.

Weber, J.E., Melsom, A., 1993. Transient ocean currents induced by wind and
growing waves. J. Phys. Oceanogr. 23, 193–206.

Xia, H., Xia, Z., Zhu, L., 2004. Vertical variation in radiation stress and wave-induced
current. Coastal Eng. 51, 309–321.

https://domicile.ifremer.fr/archive/1520-0485/38/11/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-38-11-2587.pdf
https://domicile.ifremer.fr/archive/1520-0485/38/11/pdf/,DanaInfo=ams.allenpress.com+i1520-0485-38-11-2587.pdf
https://domicile.ifremer.fr/tel-00182250/,DanaInfo=tel.archives-ouvertes.fr+
https://domicile.ifremer.fr/tel-00182250/,DanaInfo=tel.archives-ouvertes.fr+
https://domicile.ifremer.fr/tel-00182250/,DanaInfo=tel.archives-ouvertes.fr+
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2007JC004466
https://domicile.ifremer.fr/10.1016/,DanaInfo=dx.doi.org+j.ocemod.2008.07.006
https://domicile.ifremer.fr/hal-00201380/,DanaInfo=hal.archives-ouvertes.fr+
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2005JC003004
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2002JC001586
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2001JC001047

	On the coupling of wave and three-dimensional circulation models: Choice of  theoretical framework, practical implementation and adiabatic tests
	1 Introduction
	2 Theoretical analysis of wave-averaged equations for the Lagrangian velocity
	2.1 A brief review
	2.2 A generic recipe for three-dimensional theories
	2.3 Momentum equations
	2.4 Estimation of ? : the fundamental problem of the Lagrangian approach

	3 Equations for the quasi-Eulerian velocity
	3.1 Momentum, mass, and tracer conservation
	3.2 Wave-induced forcing terms
	3.3 Boundary conditions at the bottom
	3.4 Boundary conditions at the surface
	3.5 Lateral boundary conditions
	3.6 Some details about the practical implementation
	3.7 Summary of new terms introduced

	4 An adiabatic test case for 3D wave-current models
	4.1 Description of numerical set-up
	4.2 Numerical results obtained with different sets of equations based on quasi-Eulerian and Lagrangian velocities

	5 Conclusion
	Acknowledgments
	Appendix A glm2 equations in sigma coordinates: momentum, mass, tracer conservation
	Appendix B Flux formulations of the quasi-Eulerian glm2 equations in sigma coordinates: momentum, mass, tracer conservation
	Appendix C Explicit form of random wave forcing terms for the quasi-Eulerian velocity
	Appendix D Forcing terms for the Lagrangian mean velocity
	References


