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On the calculation of an attenuation coefficient
for transects of ice-covered ocean

BY LUKE G. BENNETTS* AND VERNON A. SQUIRE

Department of Mathematics and Statistics, University of Otago, PO Box 56,
Dunedin 9054, New Zealand

Exponential attenuation of ocean surface waves in ice-covered regions of the polar seas is
modelled in a two-dimensional, linear setting, assuming that the sea ice behaves as a thin-
elastic plate. Attenuation is produced by natural features in the ice cover, with three types
considered: floes, cracks and pressure ridges. An inelastic damping parameterization is
also incorporated. Efficient methods for obtaining an attenuation coefficient for each class
of feature, involving an investigation of wave interaction theory and averaging methods,
are sought. It is found that (i) the attenuation produced by long floes can be obtained
from the scattering properties of a single ice edge; and (ii) wave interaction theory in
ice-covered regions requires evanescent and damped-propagating motions to be included
when scattering sources are relatively nearby. Implications for the integration of this
model into an oceanic general circulation model are also discussed.

Keywords: surface gravity waves; sea ice; attenuation coefficient

1. Introduction

A significant corpus of research now exists describing how sea ice affects and
is being affected by ocean surface waves, noting that the major part of this
work consists of mathematical modelling. Considerable effort has been put into
understanding how the intensity of waves reduces with distance into the ice-
covered ocean, and, to a lesser extent, how the sea ice itself is altered by the
waves. While not the main focus of this paper, the latter’s consequences for sea
ice are actually highly topical because in the Arctic, particularly, the sea ice is
adapting to global warming by becoming thinner, less concentrated and physically
weaker (Wadhams & Davis 2000; Serreze et al. 2007; Kwok & Rothrock 2009) and
it is probable that ocean waves will accelerate this enfeebling transformation.

A period of rapid advancement in the understanding of the effects of sea ice
on ocean swell occurred in the 1970–1980s through programmes run by the Scott
Polar Research Institute, UK. Experimental recordings due to Wadhams (1973,
1986), and associated papers, and Wadhams et al. (1986, 1988) first demonstrated
an exponential decay of wave intensity with distance into ice-covered regions, with
a rate depending predominantly on wave period and ice thickness. A relationship
with wave scattering was established, and theoretical models were developed that
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Wave attenuation in ice-covered ocean 137

accorded with the experimental advances. Although insubstantial field data have
appeared since this pioneering era, theoretical advances have continued unabated
(Squire 2007), building on the original model of Wadhams (1973). With certain
exceptions, e.g. Bennetts et al. (2010), work is still restricted to two dimensions
but has reached a level of sophistication at which a numerical description of wave
evolution through an ice pack that resembles natural sea ice in situ is possible
(Kohout & Meylan 2008; Vaughan et al. 2009; Squire et al. 2009). Perhaps most
significantly, it is now understood that multiple scattering must be considered
in conjunction with wave coherence effects and wave localization theory for the
model to exhibit the observed exponential decay properly (Berry & Klein 1997).
One of the purposes of this investigation is to clarify this relationship.

An overriding goal driving the theoretical advances has been to properly embed
interactions between ocean waves and sea ice into ice/ocean models and oceanic
general circulation models (OGCMs)—an attribute of sea ice dynamics that is
currently conspicuous by its absence. Mathematical models are primarily intended
to explain how ocean wave trains evolve spatially as they proceed through fields
of sea ice. However, in an OGCM these results have a direct bearing on sea
ice morphology too because the capacity to damage floes will depend on the
local wave energy. This interdependence is the basis for a recently proposed one-
(horizontal)-dimensional ice/ocean model (Dumont et al. 2011), which is currently
being extended to an operational two-dimensional model, i.e. the ocean surface,
and is seen as a precursor to full assimilation into an OGCM. The work presented
in this paper is intended to provide the wave evolution kernel for such models,
and seeks methods and approximations to alleviate some of their computational
load, which is particularly acute in the two-dimensional setting.

Natural sea ice floating in the ocean can take several forms that affect the
passage of ocean waves and swells variously, most notably by reducing their
amplitude. Near the ice edge, i.e. the boundary between the open ocean and the
start of the ice cover, the ice is typically fragmented, as aggressive seas infiltrate
the ice canopy causing local floes to bend, fatigue and fracture when they are too
large. In extreme seas the pummelling can create an outer band of ice slurry a few
kilometres across, where it is difficult to distinguish individual floes, or an expanse
of heavily deformed rafted sea ice. A little further into the ice pack, the seas will
have lost some of their ferocity but they still control the floe size distribution by
breaking up substantial floes (Toyota et al. 2011). These portions of the ice cover
are collectively known as the marginal ice zone (MIZ). The MIZ is an interfacial
region that resides at the fringe of the open and frozen oceans, neither fully open
nor fully frozen over—a mélange of ice cakes and floes, habitually pervaded by
slurries of frazil ice and brash. Because the MIZ is the part of the ice cover closest
to open sea, it is a very dynamic region that is affected majorly by incoming ocean
waves and swells and changes of wind and current. Concentration is generally
variable, both spatially and temporally, and the nature of the ice floes making
up the zone is also normally quite heterogeneous as the waves break up floes
differentially.

Beyond the MIZ, after the advancing wave trains have been attenuated
sufficiently that they no longer have the capability to fracture the ice floes, the
sea ice becomes quasi-continuous. On the whole, floes there are vast with the
underlying heterogeneity expressed through features such as cracks, open and
refrozen leads, pressure ridge sails and keels, and variations in the mechanical
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and physical properties such as thickness, attributable to growth history and
lateral rafting events caused by currents and winds. In the current work, these
regions will be referred to as the quasi-continuous ice cover (QCIC).

Free surface ocean waves propagating into and travelling through pack ice can
therefore expect to encounter several different kinds of irregularity during their
passage, particularly depending on physical location. Notwithstanding this, from
a modelling perspective their progression will be determined by: (i) scattering
from a distribution of sizes of discrete ice floes, present at some specified
concentration, in the MIZ; and (ii) reflections from natural imperfections in the
quasi-continuous ice interior. In addition, energy will be lost from the advancing
wave trains because of ‘turbulence’ in the water, the natural inelasticity of the
sea ice and, when the seas are rough, collisions between adjacent ice floes that
are provoked by relentless wave action. Each of these mechanisms causes some
diminution of the wave amplitude in a manner that is known to favour the
passage of long period waves over short periods, so, as explained in the reviews by
Squire et al. (1995) and Squire (2007), the integrated effect of coming upon many
heterogeneities over large distances is a gradual evolution of the wave spectrum
towards longer period energy and the elimination of short period waves.

2. Preliminaries

A two-dimensional fluid domain is considered and will be defined using the
Cartesian coordinates x , in the horizontal direction, and z , in the vertical
direction. The vertical coordinate is oriented upwards and has its origin set to
coincide with the equilibrium surface of the fluid (in the absence of ice cover).
The fluid domain extends to infinity in both horizontal directions, and its bed is
flat and located at z = −h. For the prototype numerical investigations conducted
in this work h is set as 250 m, since this value is sufficiently deep that its influence
is negligible.

The fluid is assumed to be inviscid, incompressible, homogeneous and in
irrotational motion. As the intention is to investigate wave attenuation as a
function of wave period t, a periodic time dependence of a prescribed angular
frequency u = 2p/t, is assumed. The fluid’s velocity field may therefore be
defined as the gradient of a scalar velocity potential Re {(g/iu)f(x , z)e−iut}, where
g ≈ 9.81 m s−2 is acceleration due to gravity, and f is a (reduced) velocity potential
that must be calculated.

For all points in the fluid domain the velocity potential satisfies Laplace’s
equation

v2
xf + v2

zf = 0, (2.1)

where (vx , vz) ≡ (v/vx , v/vz). The impermeable-bed and free-surface conditions,

vzf = 0 (z = −h) and vzf = sf (z = 0), (2.2)

respectively, where s = u2/g is a frequency parameter, are also applied, with the
latter condition holding at the points where the ice cover is absent.

A covering of sea ice extends over a proportion (possibly all) of the surface
of the fluid. Three different features in the ice cover will be considered and are
described in the forthcoming subsections. Fluid motion causes the ice to flex and
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the resulting position of the lower surface of the ice is defined as z = −d(x) +
Re {w(x)e−iut}. Here d = riD/rw denotes the draught of the ice, where D = D(x)
is the ice thickness, and ri and rw denote the densities of the ice and fluid,
respectively. The quantity w is a displacement function that will be obtained as
part of the solution process.

Due to the large lateral dimensions of sea ice in relation to its thickness, it
is customary to model its motion using thin-plate theory. Combining this with
the linearized Bernoulli equation and the assumption of no cavitation between
the fluid and ice, leads to the coupling between the velocity potential and the
displacement function

(1 − sd)w + Fw ′′′′ = f (z = −d), (2.3a)

where a prime denotes differentiation with respect to x , and which is applied at
the linearized fluid–ice interface. (This form of the equation assumes that the
properties of the ice are uniform in a neighbourhood of the point x .) A second
coupling is derived from the linearization of the kinematic condition, to give

vzf = sw (z = −d). (2.3b)

The development of equations (2.3a,b) can be traced to, e.g. Wadhams (1973,
1986).

In equation (2.3a), the quantity F = F(x) is a scaled version of the flexural
rigidity of the ice. It is defined by F = YD3/{12(1 − n)rwg}, in which n = 0.3 is
the effective Poisson’s ratio for sea ice, and Y = 6 GPa is the effective Young’s
modulus for sea ice. The latter is a value that is regularly used in idealized
wave–ice models, although it does not represent all ice types. It varies with brine
volume, and is typically less for multi-year ice than for first-year ice (Timco &
Weeks 2010). The following analysis will remain applicable for any chosen value of
Young’s modulus. Some specific examples of the effects of changing its value will
be given for the case of ridges. However, a thorough sensitivity analysis of wave–
ice interactions to variations in Young’s modulus is not commensurate with the
objectives of the current investigation. It is noted that when the flexural motion
of the ice dominates its response to fluid motion, i.e. when the value of Young’s
modulus is important, its variations are equivalent to variations in the cube of
the ice thickness.

The fluid–ice coupling defined in equations (2.3a,b) is intended for use in
the scattering regime, in which wavelengths are comparable to floe diameters.
More sophisticated models are required to incorporate additional dissipative
mechanisms. Work in this area is ongoing, and, in particular, a viscoelastic
model to parameterize the compounded effects of different sea ice types has been
proposed recently (Wang & Shen 2010).

Equations (2.1)–(2.3) are solved for f and w, along with appropriate radiation
conditions, which ensure that the solution in the far field involves only the incident
wave field and waves scattered by any features in the ice cover. Forcing is produced
by an incident wave of unit amplitude, propagating from x → −∞.

It will be of use in the subsequent analysis to note that in intervals of uniform
geometry, i.e. a constant ice thickness (and draught) or no ice cover, an expression
may be found for the velocity potential as the superposition of waves. From
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this, a similar expression can be found for the displacement function through
equation (2.3b).

When ice is not present, this takes the form:

f(x , z) ≈
N∑

n=0

{
aneiknx + bne−iknx} xn(z), xn(z) = cosh{kn(z + h)}, (2.4)

where an and bn are complex-valued constants that depend on the surrounding
geometry. The quantities kn are wavenumbers that are calculated as the roots k of

k tanh(kh) = s,

which is the free-surface dispersion relation. The primary wavenumber, k0, is real
and positive. It supports propagating waves: incident, reflected and transmitted.
The corresponding coefficients a0 and b0 carry an amplitude and a phase. All
remaining wavenumbers, kn (n = 1, 2, . . .), lie on the positive imaginary axis and
are ordered in increasing magnitude. They support evanescent waves, generated
during the scattering process, which are local surface deflections that decay
exponentially with distance away from the scattering source. The rate of decay
is determined by the magnitude of the wavenumbers, so that the least rapidly
decaying waves appear first in the summation. For the purposes of a numerical
solution, the series in the above representation is truncated at some non-negative
integer value N , which is chosen to be sufficiently large that a desired accuracy
is obtained.

In intervals of constant ice thickness, the velocity potential has the form

f(x , z) ≈
N∑

n=−2

{
aneiknx + bne−iknx} hn(z), hn(z) = cosh{kn(z + h)}. (2.5)

In this case, the wavenumbers are denoted kn , and are the roots k of

(1 − sd + Fk4)k tanh{k(h − d)} = s,

which is the ice-covered dispersion relation (e.g. Squire 2007). As in
the free surface case, the primary wavenumber, k0, is real and positive
and the wavenumbers kn (n = 1, 2, . . .) lie on the positive imaginary axis.
Therefore, propagating and evanescent modes are both supported. For small to
moderate wave periods the propagating waves are typically longer than their free-
surface counterparts and increase in length with rigidity, i.e. thickness. However,
for large periods this is not necessarily the case.

The coupling of the fluid and ice generates an additional type of motion
that is not present in open water. These motions are described as damped-
propagating waves, as they possess a phase, an amplitude and an exponential
decay rate. Their wavenumbers, k−n (n = 1, 2), exist in the upper-half complex
plane, and are mirror images of one another in the imaginary axis. In terms of
the governing equations, the damped-propagating waves are a product of the high-
order boundary condition (2.3a). Their presence removes the usual orthogonality
of the wave motions in the vertical plane.

For the governing equations given above, no wave energy will be lost
from the overall system. However, the methods presented in this work are
intended to accommodate more general cases in which forms of inelastic wave
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damping are incorporated. Damping properties enter the problem through an
imaginary component in the ice-covered dispersion relation and may act as
a parameterization of viscous or hysteresis losses. The effect of an imaginary
component in the dispersion relation is to perturb the wavenumbers, so that they
no longer lie on the real/imaginary axes. In particular, the primary wavenumber
takes on a small imaginary component and therefore becomes k0 + ie.

(a) Floes

A floe is considered to be an interval of ice cover of finite length, separated
from any surrounding intervals of ice cover by open water. For this study, it is
assumed that each floe has a constant thickness and thus scattering is produced
by the ice edges alone.

At an edge of a floe, x = x0 say, the free motion of the plate results in the
dynamic conditions w ′′ = w ′′′ = 0, which represent the vanishing of the bending
moment and shearing stress of the floe, respectively. Furthermore, no lateral
motion of the floes is permitted, and therefore the horizontal fluid velocity is set
to zero on the submerged portion of the ice edge, that is vxf = 0 (−d < z < 0),
where x tends to x0 from the appropriate limit.

(b) Cracks

A crack is formed when the length of an open water interval between two ice
edges tends to zero. The above dynamic conditions remain, but the kinematic
condition is not required. Simple modifications to the crack model are possible.
For instance, a small length of open water may be allowed to remain between the
ice edges, which would model a lead.

(c) Pressure ridges

A pressure ridge is a finite interval in an otherwise uniform ice cover, in
which the thickness varies. It is possible to calculate the scattering produced
by a smoothly varying thickness variation of this kind (Bennetts et al. 2007).
However, here the thickness profile of the pressure ridges considered will instead
be discretized and the mesh refined until convergence of the scattering properties
is achieved to a satisfactory accuracy.

The aim of this work is to determine the attenuation produced by each of these
three features. To achieve this, a large but finite number, M say, of commensurate
features are considered to occupy the ice-covered region of the fluid domain.
As in, e.g. Kohout & Meylan (2008), the transmitted energy is calculated as a
function of M and an exponential curve fitted to an ensemble average of these
data in order to extract the rate of exponential attenuation, which is known as
the (non-dimensional) attenuation coefficient, m say. This has proved to give very
similar results to a method in which the attenuation coefficient is calculated from
a snapshot of the surface displacement (e.g. Vaughan et al. 2009), but is more
stable for large periods.

The investigation is split into, first, that of the wave interactions between
features and, secondly, the scattering properties of the individual features. It
will be seen later that this order gives the most natural flow to the analysis.
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3. An approximation for multiple features

The calculation of an attenuation coefficient is computationally demanding, with
the result that approximation methods are popular. Wadhams (1973, 1986),
for example, proposed such a method for multiple floes where the underlying
assumptions are that (i) no evanescent deflections arise at ice edges so that
only continuity of the surface pressure and the free-edge conditions can be
satisfied; (ii) no backscatter occurs, wave phases are ignored and floes are assumed
long enough that the damped-propagating waves do not contribute to wave
interactions within and between floes. A correction for double scattering was
also given. In fact, however, scattering actually involves an infinite sequence of
reflections between any two interfaces and, as explained by Berry & Klein (1997),
exponential decay follows as a result of wave coherence, i.e. phase interactions,
and positional disorder, i.e. it is a localization effect. This property is visible in
the results of Kohout & Meylan (2008), where the full solution for an individual
floe is also implemented. The extension to multiple features in a QCIC is new to
the current study.

Computational expense is derived from three main sources. The first is in
calculating the scattering properties for a large number of individual features.
The second is in combining these scattering properties to obtain the scattering
properties of the set of features. Finally, these processes must be repeated
a large number of times to form an ensemble. It is important to note that
resonance effects due to wave coherence, which are unrepresentative of the
physical phenomenon, appear if too much repetition is contained in the geometry.
For this reason, a sufficient amount of variation must be included.

The second expense can be alleviated, to some degree, in a two-dimensional
setting, by employing an iterative method for calculating the amplitudes between
scatterers. Consider the case of two adjacent features, a distance s apart. Let
the set of amplitudes (including phases) of the rightward and leftward travelling
waves for these features be denoted by the vectors An± and Bn±, respectively.
The subscript indicates whether the amplitudes belong to waves associated with
the feature on the left (n = 1) or on the right (n = 2), and whether the waves
are on the left (−) or on the right (+) of the feature. The phases of the waves
are normalized with respect to the appropriate edge of the relevant feature. For a
feature embedded in an ice-covered fluid region, i.e. a crack or a pressure ridge, the
amplitude vectors are A = [a0, . . . , aN , a−1, a−2]T and B = [b0, . . . , bN , b−1, b−2]T,
whereas, if the feature exists in an otherwise ice-free fluid interval, i.e. the feature
is an ice floe, the amplitude vectors are A = [a0, . . . , aN ]T and B = [b0, . . . , bN ]T.

The scattering properties of the individual features are encapsulated in their
reflection and transmission matrices, Rn± and Tn± (n = 1, 2), respectively, where

Bn− = Rn−An− + Tn+Bn+, An+ = Tn−An− + Rn+Bn+. (3.1)

These matrices relate the amplitudes and phases of the scattered and incident
waves, and allow for forcing from decaying waves in addition to travelling waves,
which is necessary between features.

The corresponding reflection and transmission matrices for the two features
acting together, R1,2± and T1,2± say, can be calculated by combining the
reflection and transmission matrices for the individual features, to produce
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the identities

R1,2± = Rj±± + Tj±∓LMj∓, j± and T1,2± = Tj∓±LMj±, j±, (3.2)

where j− = 1, j+ = 2, and
(

M1,1 M1,2
M2,1 M2,2

)
=

(
I −R1+L

−R2−L I

)−1 (
T1− 0
0 T2+

)
,

in which I is an identity matrix. The matrix L contains the phase changes
of the waves between the features and is defined as L = �eik0s, . . . , eikN s	
when the fluid surface between the features is ice-free and L = �eik0s, . . . , eikN s,
eik−1s, eik−2s	 when it is ice covered. The notation �·	 denotes a diagonal
matrix.

The above identity is not the most common form of such expressions, but allows
for the number of waves considered in the interaction theory to differ, which is
required when moving from an open water domain to an ice-covered fluid domain,
for instance. The scattering matrices for the entire set of features, R1,M± and
T1,M±, may thus be calculated by beginning with the leftmost two features and
repeatedly applying the above identities with each additional feature until the
rightmost feature is reached.

The size of the matrices that must be inverted at each step of this iterative
algorithm depends on the number of waves considered in the interaction theory,
i.e. the value of N . Computational efficiency therefore relies on selecting the
minimum value of N that will maintain accuracy. Keeping the number of waves
used in the interaction theory to a small value also allows for analytical insight
to be gained.

(a) The marginal ice zone

In figure 1a the number of waves required in the interaction theory between
two floes is investigated. Here the floes are identical, with thickness 3 m and
length 100 m. The transmitted energy is plotted as a function of wave period
for the two separations s = 1 and 5 m. The solid curves denote results in which
interactions involve only the propagating waves, known conventionally as a wide-
spacing approximation (WSA), so called because in this limit the evanescent
waves generated at one scattering source do not interact with other scatterers.
Results are also shown for interactions involving four evanescent waves in addition
to the propagating waves (crosses, N = 4). This number is sufficient that the
results will only change negligibly if additional evanescent waves are added.

The similarity between the corresponding WSA and the approximation that
includes evanescent waves is compelling. Only a minute difference is visible
between the two approximations for the 1 m separation and only for the smaller
wave periods. Moreover, it has been found (in results not displayed) that accuracy
is maintained by the WSA for a full MIZ. From this point on the WSA will
therefore be used for interactions between floes.

In figure 1b the transmitted energy produced by the same two floes is
considered as a function of the floe separation parameter s0. Results are shown
for two wave periods, t = 8 and 12 s. The black-broken curves show the case in
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Figure 1. (a) Comparison of approximations of the energy transmitted by two floes, as a
function of wave period. The solid curves denote the WSA and the crosses denote the converged
approximations (four evanescent waves). The floes are separated by (i) 1 m and (ii) 5 m. (b)
Comparison of the transmitted energy produced using different methods for averaging the
separation of the two floes, and as a function of a separation parameter. The black-broken
curves are the unaveraged results, the crosses are produced by a Gaussian distribution and
the grey curves use a uniform distribution over half a wavelength. The wave period used is
(i) 8 s and (ii) 12 s.

which the floe separation is unaveraged, so that s0 is the separation between the
floes. Its simple periodic structure is due to the fact that no wave energy is lost as
waves travel through intervals of uniform geometry. The floe separation merely
alters the phase of the wave interactions.

The structured behaviour given by this approach is not representative of the
physical situation being modelled. In comparison, the crosses in figure 1b show
cases in which the floe separation is given a Gaussian distribution with mean
s0. Results are calculated as the average of 50 randomly generated simulations.
The standard deviation of the distribution is set to be one-tenth of the mean floe
separation.

It is apparent that, for small separations, the results given by this Gaussian
distribution follow those of the unaveraged data. This is simply because the
standard deviation of the distribution is small at this stage. As the floe separation,
and hence the distribution of separations, increases, the results from the Gaussian
distribution deviate from those of the unaveraged case.

At an average separation of approximately 1.5l, where l, the incident
wavelength, is equal to approximately 100 m for an 8 s wave period and 225 m
for a 12 s wave period, the results calculated using a Gaussian distribution
settle to a relatively constant value. This value coincides with the grey curves,
which are results calculated from an ensemble average in which the floe-
separation distribution is uniform over half of an incident wavelength, l/2. Such
a result is to be expected and would be true for distributions other than a
Gaussian, when the root mean squared separation becomes sufficiently large,
specifically greater than l/2. Insensitivity to floe separation is thus a natural
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consequence of seeking a transmitted energy free of a resonant structure, using
the current model.

Giving the separation a uniform distribution over half a wavelength is nothing
more than an average over all possible phases of the propagating waves between
the floes—a concept that is consistent with the basis of random linear wave
theory (Krogstad 2005). The above analysis therefore clarifies the relationship
between this concept and the distribution of floes (or, more generally, widely
spaced scatterers) used in the current model.

The above findings suggest the use of an averaging technique that was
conceived by Berry & Klein (1997) to describe the scattering of optical waves. It
allows for the transmission produced by any number of scatterers, averaged over
all possible phases, to be found from the properties of the individual scatterers,
with no averaging required. In order to implement the technique, it is necessary
to use logarithmic averaging.

Consider, therefore, two features and define their log-averaged transmission
to be

〈〈log |T1,2−|2〉〉 =
〈
2
l

∫ s0+l/2

s0
log |T1,2−|2ds

〉
, (3.3)

where 〈·〉 denotes averaging over the properties of the individual feature, which
for a floe are its length and thickness. Using the second element of equation (3.2),
along with the WSA, in equation (3.3) and manipulating the resulting expression
in the manner of Berry & Klein (1997), it is found that

〈〈log |T1,2−|2〉〉 = 〈log |T1−|2〉 + 〈log |T2−|2〉. (3.4)

Repeating this procedure systematically gives the log-averaged transmitted
energy for the entire transect of floes to be

〈〈log |T1,M−|2〉〉 = eM 〈log |T0−|2〉,

where the notation 〈log |T0−|2〉 ≡ 〈log |T1−|2〉 = · · · = 〈log |TM−|2〉 has been used
for the energy transmitted by a single feature. The corresponding attenuation
coefficient is therefore given by the simple expression

m = −〈log |T0−|2〉. (3.5)

A similar expression was used by Williams & Squire (2010) for estimation of the
thickness of an ice sheet containing multiple cracks.

Figure 2a compares the attenuation coefficients produced by standard
averaging and logarithmic averaging, i.e. the arithmetic and geometric averages.
As in the previous cases considered in this section, the floes have length 100 m
and thickness 3 m. Although there is a clear gap between the values given by the
two averaging methods, particularly for the mid-range periods, the attenuation
coefficients are similar both quantitatively and qualitatively. Most importantly,
for the results shown here and in other tests that are not presented, the
attenuation coefficients are identical to the first significant figure.

The semi-analytic expression (3.5) is overlaid on the figure. It is almost identical
to the values calculated from the ensemble average, with the noise from the latter
being the only visible difference. Note that, in the situation used to produce these
results there is no averaging of the individual features, so that the brackets 〈·〉 in
equation (3.5) are irrelevant.
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Figure 2. The attenuation coefficient as a function of wave period. (a) An MIZ with identical floes
of length 100 m and thickness 3 m. (b) A QCIC of 3 m thickness containing cracks, and the primary
wavenumber is given an imaginary component of magnitude 10−4. In both cases the WSA is used to
calculate the wave interactions between features and the distribution of their separations is uniform
over half a wavelength. The solid curves show results calculated using ensembles with arithmetic
(light grey, dotted) and geometric (i.e. logarithmic, black) averaging. The crosses are semi-analytic
expressions.

(b) Quasi-continuous ice coverings

Wave interactions between features in QCICs, here cracks and pressure ridges,
must be considered separately to those that occur between floes. This is due
to the presence of damped-propagating waves in intervals of ice-covered fluid,
and is evident from comparison of expressions (2.4) and (2.5), recalling that the
wavenumbers for damped-propagating waves are denoted k−n (n = 1, 2).

Numerical investigations indicate that the damped-propagating waves can have
a significant effect on interactions between features. Examples of this are given in
figure 3, which shows the energy transmitted by two features in an ice covering of
3 m thickness, as a function of the wave period. The corresponding results compare
values calculated using the WSA (solid curves) and an approximation in which
the damped-propagating waves are included in addition to the propagating waves
(crosses).

Figure 3a show results for two cracks. For a 100 m separation (figure 3a(i))
there are clear qualitative and quantitative differences between the results given
by the WSA and an approximation that includes the damped-propagating waves.
As would be expected, the difference is greatest for small wave periods. The
performance of the WSA here is in stark contrast to that seen previously for
floes in figure 1a, for which only a negligible change in the transmitted energy
was produced by the addition of evanescent waves, and at only a 1 m separation.
However, for a 200 m separation of the cracks (figure 3a(ii)), the amplitudes of
damped-propagating waves have decayed sufficiently that they have no influence
on the wave interactions.

The results of figure 3b are for two identical rectangular pressure ridges,
with width 50 m and height 20 m. Although the inclusion of the damped-
propagating waves affects the results for a 50 m separation (figure 3b(i)), it is
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Figure 3. Comparisons of approximations of the energy transmitted by two features in a QCIC, as a
function of wave period. (a) Results for two cracks in a 3 m thick ice cover and (b) for two identical
ridges, of width 50 m and height 20 m, in an otherwise 3 m thick ice cover. The separation of the
cracks is (i) 100 m and (ii) 200 m. The separation of the ridges is (i) 50 m and (ii) 100 m. The solid
curves denote the WSA and the crosses denote approximations that use the damped-propagating
waves in addition to the propagating waves in the interaction theory.

far less pronounced than the case of cracks separated by 100 m. At a 100 m
separation (figure 3b(ii)) there is no visible difference between the WSA and the
approximation that includes the damped-propagating waves.

It is interesting to note that the influence of the damped-propagating waves on
the wave interactions between features here is greater than that of the evanescent
waves, not because they decay less rapidly but because they are generated more
strongly by the features. As the examples given in figure 3 demonstrate, this is
particularly true for cracks. Moreover, the influence of the damped-propagating
waves is dependent on ice thickness, so that, generally, the WSA is valid for
shorter separations when ice is thinner between features.

Figure 4a compares approximations of the transmitted energy produced by two
cracks, as a function of their separation, for the three periods t = 8, 12 and 16 s. As
predicted by the previous results, the approximation that includes the damped-
propagating waves (crosses) is distinct from the WSA (black-broken curves) for
separations smaller than approximately s0 = 150–200 m. The point at which the
deviation between the two curves occurs appears to increase as the period gets
larger, although the difference between the two curves is generally smaller for
larger periods.

For separations less than 50 m an unexpected and spurious resonance is
present in the transmitted energy produced by the interactions involving damped-
propagating and propagating waves. This is particularly apparent for 8 and 12 s
periods but is also evident at 16 s period. However, by including a small number
of evanescent waves the resonances are eliminated. Converged results are shown
by the grey curves. At 8 s period eight evanescent waves are required and for 12 s
and 16 s periods four evanescent waves are required. A resonance is not produced
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Figure 4. (a) Comparison of approximations to the energy transmitted by two cracks in 3 m thick
QCIC, as a function of their separation. The black-broken curves denote the WSA, the crosses are
approximations that include the damped-propagating waves, and the grey curves are converged
approximations. Results are for wave periods (i) 8 s, (ii) 12 s and (iii) 16 s. (b) Corresponding
results in which the separation obeys a uniform distribution over half a wavelength. Results are
calculated using ensemble averages, in which the wave interactions involve only the propagating
and damped-propagating waves (crosses) or have converged (grey curves). The black-broken curves
are the second-order semi-analytic approximations in terms of the decaying component of the
damped-propagating waves.

when the scattering properties for the individual feature are approximated using a
dimension (defined in §4) that is consistent with the interaction theory (examples
not shown).

Away from the resonances the results given by the approximations, with and
without the evanescent waves, are very similar, although a difference is still
visible for 8 s period at small separations. It is therefore evident that the damped-
propagating waves are the dominant additional contributors to wave interactions
at small separations. However, despite this, the examples given in figure 4a clearly
demonstrate that it is necessary to include a number of the evanescent waves in
the interaction theory for closely spaced features in a QCIC. Without them the
transmitted energy can be highly inaccurate around the resonant points.

This is in contrast to the earlier findings for wave interactions in open water,
in which the contribution of the evanescent waves was negligible, even for
small separations. The reasons behind such a fundamental difference are not
currently understood. However, it is assumed that it is related to the non-
orthogonality of the natural modes {hn} in regions of ice-covered fluid, and the
subsequent requirement that each of these modes supports a proportion of the
damped-propagating waves.

For the separations at which the damped-propagating and evanescent waves
influence the transmitted energy, expression (3.4), which is based on the scalar
versions of relations (3.2), is invalid. Instead, the matrix extensions of the relations
(3.2), which include the damped-propagating waves and a sufficient number of
the evanescent waves, must be adopted. The resulting analysis is far less tractable
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than the scalar counterpart. However, if the evanescent waves are neglected, it can
be shown (after laborious algebra) that the log-average of the energy transmitted
by two features may be written

〈〈log |T1,2−|2〉〉 = 〈log |T1−T2−|2〉 + 〈c1〉K + 〈c2〉K 2 + · · · , (3.6)

where K ≡ e−Im(k−1)ŝ = e−Im(k−2)ŝ, in which ŝ = s0 + l/4 is the mean separation. The
coefficients ci (i = 1, 2, . . . ) depend on the reflection and transmission coefficients
contained in the matrices Rn± and Tn± (n = 1, 2). Expression (3.6) is expected to
be valid for sufficiently large separations, and not around the resonances where
the role of the evanescent waves cannot be neglected in the interaction theory.
The zeroth-order approximation is clearly identical to equation (3.4). In principle,
it would also be possible to formulate an expression analogous to equation (3.6)
that includes evanescent waves.

In figure 4b, the log-averaged energy transmitted by two cracks is shown as a
function of the lower limit of their separation. A uniform distribution over half a
wavelength is used for the separation of the two cracks. The three wave periods
t = 8, 12 and 16 s are shown, respectively, in (i), (ii) and (iii).

Three different curves are compared in each panel. The crosses are results from
an ensemble average, calculated using the relations (3.2), for an approximation
that includes the propagating and the damped-propagating waves. It is evident
that the damped-propagating waves have an influence on the transmitted energy
for separations below approximately s0 = 150 m for all three wave periods,
although this is negligible in the 16 s period case until approximately s0 = 50 m.
The grey curves are the corresponding converged approximations that include
a sufficient number of the evanescent waves. They differ from the previous
approximation for separations below approximately 100 m for 8 and 12 s wave
periods, but are indistinguishable for 16 s period.

The black-broken curves are the second-order approximations (in orders
of K ) given by the analytic expression (3.6). These curves follow their
corresponding ensemble averages (crosses) for an interval of separations in which
the damped-propagating waves are significant. However, as would be expected,
the second-order approximations lose accuracy when the cracks become closer.
Although it is possible to extend this interval by increasing the order of the
approximation, it has been found that the convergence is poor due to growth in
certain terms.

In order for the expression (3.6) to be used for more than two features,
expressions for the average values of the remaining reflection and transmission
coefficients contained in the matrices R1,2± and T1,2± must also be produced. The
subsequent relations could then be applied repeatedly, with no averaging required,
to obtain an attenuation coefficient. This process is, however, more cumbersome
than that for the WSA due to the complicated expressions for the coefficients cn
(n = 1, 2, . . .). Unfortunately, no useful simplifications, such as a weak-scattering
approximation, appear to be applicable here.

In reality, most pressure ridges are separated (peak to peak) by 80 to 300 m
(Davis & Wadhams 1995), and the separation of cracks is typically on the order
of kilometres (Sear & Wadhams 1992). The latter statement is deduced from
information about the separation of leads, which are regarded as originating from
cracks, and are more easily detected. Therefore, for a practical application, it is
appropriate to use a WSA to calculate the wave interactions between cracks and
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ridges, as well as floes. If an attenuation coefficient is required for a region in which
it is known that the separation of features is small, then the full approximation
(including damped-propagating and evanescent waves) must be applied.

Of practical importance for the present application is the accommodation of
damping over intervals of ice-covered fluid, in conjunction with a WSA. To do
this, the expression for the attenuation coefficient, given in equation (3.5), must be
modified to account for the additional damping process. Therefore, consider once
more the logarithmic average of the transmitted energy produced by two adjacent
features, using the WSA, but now allowing for a small imaginary component in the
primary wavenumber. From the second element of equation (3.2) it follows that

〈〈log |T1,2−|2〉〉 = 〈〈log |T1−T2−ei(k0+ie)s|2〉〉 − 〈〈log |1 − R1+R2−e2i(k0+ie)s|2〉〉.
The first term on the right-hand side of this identity can be evaluated to be
〈log |T1−T2−e−eŝ|2〉, which differs from its non-damped counterpart only through
the presence of the exponential term. The second integral vanishes when the
primary wavenumber is real. However, when a small imaginary component is
included its contribution is non-zero and its value can be sought by expanding
the logarithm as a series, which shows, up to terms of order 〈e−4eŝ〉, that

〈〈log |1 − R1+R2−e2i(k0+ie)s|2〉〉 =
〈
−4

l
Im

{
R1+R2−
k0 + ie

e2ik0 ŝ
}

sinh
(

el

2

)
e−2eŝ

〉
.

Its contribution is therefore exponentially small, and it is reasonable to discard
it. Hence, the log-averaged transmitted energy for two features, when damping is
included, is

〈〈log |T1,2−|2〉〉 ≈ 〈log |T1−|2〉 + 〈log |T2−|2〉 − 2eŝ. (3.7)

Repeated application of this expression then defines the attenuation coefficient
to be

m = −〈log |T0−|2〉 + 2eŝ. (3.8)
This merely states that the contributions to the attenuation coefficient of the
scattering produced by features and the damping that occurs between the features
are distinct. Of course, an additional imaginary damping component in the fluid–
ice coupling (2.3) may affect the values of the transmission coefficients for the
individual features. This will be studied in §4.

Figure 2b shows the attenuation coefficient as a function of wave period for
a 3 m thick QCIC containing cracks. The distribution of the crack separation
is uniform in the interval 100 m to 100 m+l/2. Damping is also produced by
an imaginary component in the primary wavenumber, which is of magnitude
e = 10−4. The distance between cracks is therefore a determinant of the
attenuation rate.

Results are shown for the arithmetic and geometric means, using ensemble
averages. The semi-analytic expression (3.8) is also overlaid. It is clear that
the damping effect is dominant for the larger wave periods, and consequently
the arithmetic and geometric averages coincide. For smaller wave periods, the
scattering produced by the cracks is the most important process. The minimum
between these two regimes, at approximately an 11 s wave period, corresponds
to perfect transmission by the individual cracks. This type of sensitivity to the
geometrical configuration will be reduced by averaging the properties of the
individual features, and is investigated in §4.
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4. Modelling individual features

It is possible to calculate the scattering properties of the individual features using
a number of methods. The interaction theory outlined in the previous section only
requires that the method produces the value of the transmission coefficient for
situations in which the WSA is applicable, and the relevant scattering matrices
otherwise.

For the purpose of this investigation, an approximation method will be applied,
which is based on the combination of a Hamiltonian variational principle and a
projection of the vertical fluid motion onto a (P + 1)-dimensional trial space
(P ≥ 0), spanned by a finite set of the relevant vertical modes, {h0, . . . , hP} or
{x0, . . . , xP}. It has been used previously for a number of hydroelastic geometries
(e.g. Bennetts et al. 2007; Vaughan et al. 2009). The dimension of the trial space
required to produce accurate scattering properties has been investigated in a
number of these works.

The two-dimensional features that are considered in this work are susceptible
to resonant responses, in which their reflection and transmission vary rapidly over
small parameter intervals. Such resonances are a product of the highly idealized
geometries assumed for the individual features, and are not thought to be
indicative of the physical problem being modelled. A better representation of the
scattering properties of an individual feature can be obtained by calculating an
ensemble average, in which properties are selected from a prescribed distribution.
However, this greatly increases the numerical expense and adds noise. It is
therefore judicious to avoid this procedure where possible.

One compensation for situations in which averaging is required is that a
relatively large dimension of the trial space is often necessary to resolve the
resonances. As averaging is used here to smooth these resonances away, it is
conjectured that accurate results will be possible with smaller dimensions. Note
that the dimension of the trial space, P + 1, is independent of the number of waves
used in the interaction theory between features, N + 1, although it is required
that P ≥ N .

The introduction of an artificial damping term on the energy transmitted by
the features will also be considered. To do this, the fluid–ice coupling (2.3a)
is modified, as in Vaughan et al. (2009), through the addition of an imaginary
component that is proportional to the velocity of the interface, so that

(1 − sd − ig)w + Fw ′′′′ = f (z = −d).

The quantity g is a function of angular frequency, and is defined as g = uG/(grw).
All non-negative values of G are admissible, but the value G = 1.5 × 103 Pa s m−1

has been used for particularly slushy ice (Vaughan et al. 2009), and therefore
provides an upper bound for this study. By comparing with the best datasets
currently available (e.g. Wadhams et al. 1988), it has been found that a value
of G = O(10) is more appropriate. (The units of G have been omitted here and
subsequently for clarity.)

(a) Cracks

Geometrically, cracks only depend on the surrounding ice thickness, and we
may write T0 = T0(DL, DR), etc., where DL and DR are the ice thicknesses to
the left and right of the crack, respectively. The logarithmic average of the
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Figure 5. The energy reflected by an individual crack, as a function of wave period. The ice thickness
is (a) 1 m, (b) 3 m and (c) 5 m. Unaveraged results are denoted by the black-broken curves and
results from an ensemble average, in which the ice thickness obeys a Gaussian distribution, are
denoted by the grey curves. Results for a similar ensemble that includes a damping term (G = 103)
are denoted by the crosses.

transmitted energy is therefore

〈log |T0−|2〉 =
∫∞

0

∫∞

0
pD(DL)pD(DR) log |T0−|2dDLdDR,

where pD is the probability distribution of the thickness on one side of the crack,
which is assumed to be identical on either side of the crack.

The scattering properties of a single crack contain a unique resonant point
at which perfect transmission occurs. Instances of this behaviour are shown by
the black-broken curves of figure 5, which denote unaveraged data. The reflected
energy is given rather than transmitted energy, as it more clearly displays the
resonant behaviour. In any case, these values could be used in place of the
transmitted energy, due to the identity |R0±|2 + |T0−T0+| = 1, and symmetry.
It is evident that the period at which perfect transmission occurs increases as
the surrounding ice becomes thicker, which is caused by the flexural response
of the ice dominating over its mass loading for a greater range of periods (the
former being proportional to D3 and the latter to D, see Vaughan et al. 2007). The
qualitative properties of the results are otherwise as expected, with monotonically
decreasing reflection, i.e. increasing transmission, as wave period becomes larger.

Results calculated from an ensemble average of 100 simulations, in which
the ice thickness obeys a Gaussian distribution, are also presented in
figure 5 (grey curves). The mean values match the corresponding unaveraged
data, and the standard deviation is set as one-third of this mean thickness.
Although the averaging process significantly smooths the resonances, even with
the large standard deviation used here, a shallow concavity remains in their place.
For the results presented in figure 5, 8–16 evanescent waves were included in
the approximation to produce satisfactory convergence for the averaged data,
compared to 64–128 for the unaveraged data. It is noted that a WSA can also be
applied for a crack and would give good accuracy (Vaughan et al. 2007).

As an individual crack has no length, the effects of including viscous damping
are expected to be small. This is confirmed by the data represented by crosses in
figure 5, which give corresponding ensemble averages in which a large viscous
term, G = 103, is included. As noted earlier, the appearance of an imaginary
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term in the fluid–ice coupling displaces the roots of the ice-covered dispersion
relation off of the real/imaginary axes. It is therefore necessary to use an iterative
method to obtain both the real and imaginary components of the perturbed
roots, which increases the numerical expense. While this extra computational load
goes virtually unnoticed for an individual simulation, the run-times for ensemble
averages, especially over large parameter ranges, are greatly increased. The ability
to disregard viscous damping is hence a significant benefit.

(b) Floes

Floes are defined by their thickness and length, and it is therefore possible to
average over both of these dimensions. It is convenient to consider the scattering
response of an individual floe as a combination of the responses of its two
ends. That is, given a floe thickness, reflection and transmission matrices are
calculated for the ends of the floe in isolation, which are, of course, symmetric,
and independent of length. The scattering matrices for a floe of any prescribed
length may then be obtained through a single application of relations (3.1).
Moreover, the number of waves used in the interaction theory between the two
ends of the floe does not have to be equal to the dimension used to calculate the
scattering matrices at the ends. As seen during the analysis of multiple features
in a QCIC, the number of waves required in the interaction theory depends on
the ice thickness, the wave period and the separation of the scatterers (here the
ends of the floe).

The behaviour of a floe with respect to its length is very similar to that of
the separation of two features in a QCIC. For each thickness and period, there
exists a length, usually below 200 m, beyond which the wave interactions within
the floe depend only on the propagating waves, i.e. a WSA is valid. For an
interval of lengths prior to this the interaction theory must be supplemented
with the damped-propagating waves. However, it is possible for wave interactions
consisting only of the propagating and damped-propagating waves to produce
spurious resonances when the floe length is small, and a number of evanescent
waves must be included to capture accurate results.

Two examples of this behaviour are given in figure 6. The results display
different approximations to the energy transmitted by an individual floe, as a
function of its length, l . Figure 6a shows results for relatively strong scattering,
with ice thickness 4 m and wave period 8 s. The converged approximation (black
curve) uses eight evanescent waves in addition to the damped-propagating and
propagating waves. It is evident in this case that a WSA (light-grey curve) is valid
for lengths greater than approximately l = 200 m. An approximation that includes
only the damped-propagating and propagating waves, marginally extends the
validity of the WSA, to approximately l = 150 m.

Figure 6b shows results for a problem that produces weaker scattering, with ice
thickness 1 m and wave period 12 s. A converged solution now only requires the
damped-propagating waves in addition to the propagating waves. No spurious
resonances are encountered. The WSA is valid from approximately l = 100 m
onwards.

Similar to §3, wave interactions within floes are essentially governed by the
phase of the propagating wave. Following the reasoning outlined for multiple
features, an average is taken of the phases, corresponding to half an (ice-coupled)
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Figure 6. Comparisons of the approximate transmitted energy for an individual floe, as a function
of its length. The floe thickness and wave period are, respectively, (a) 4 m and 8 s, and (b) 1 m
and 12 s. The WSAs are shown by the light-grey curves with crosses, the approximations that also
include the damped-propagating waves are the dotted dark-grey curves, and the black curves are
converged approximations (overlaps dark grey in (b)).

wavelength. A set of results for the log-averaged transmitted energy as a function
of the lower bound of floe length, l0, is shown in figure 7 (solid-grey curves).
The data are calculated from ensemble averages of 100 simulations, and floe
thicknesses 1, 2 and 4 m, and wave periods 8 and 12 s are considered. The
dimension of the approximation for the individual ice edges and the number
of waves used for the interaction theory are sufficient to produce convergence.
For the ice edges the dimension ranges between P = 4–64, and is typically larger
for thicker ice and/or a smaller period, as expected. The number of evanescent
waves used in the interaction theory, in addition to the damped-propagating and
propagating waves, is up to 8, and is also typically larger for thicker ice and/or
a smaller period, as well as depending on floe length.

In each case, the transmitted energies produced by the ensemble averages settle
to a constant value after a certain floe length that corresponds to the point at
which the WSA is valid. This constant value can be calculated by exactly the
same manipulations that led to expression (3.4), and produces

〈log |T0−|2〉 = log |t−|2 + log |t+|2, (4.1)

where t± are the transmission coefficients for a single ice edge, with a wave
incident from the open water (−) and from the ice-covered fluid (+), respectively.
Note that the expression on the right-hand side of equation (4.1) may be replaced
by 2 log(1 − |r |2), where r is the reflection coefficient for either of the incident
waves, so that only one of them need be considered.

Higher-order approximations analogous to equation (3.6) that account for
the damped-propagating waves can also be formulated, and second-order
approximations are overlaid in figure 7 (black-dashed curves). Recall that these
approximations tend to the zeroth-order approximation (4.1) when the floe length
is sufficiently large.
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Figure 7. The energy transmitted by an individual floe, as a function of the lower limit of its length.
The wave period is (a) 8 s and (b) 12 s. The ice thickness is 1 m (a(i) and b(i)), 2 m (a(ii) and b(ii))
and 4 m (a(iii) and b(iii)). The solid-grey curves are calculated using ensemble averages, in which the
floe length distribution is uniform over half a wavelength. The black-broken curves are second-order
approximations in terms of the decaying component of the damped-propagating waves.

Consistent with the case of multiple features in a QCIC, the point at which
the WSA is valid depends on both the ice thickness and the wave period. In
particular, the thicker the floe, the longer it must be for the WSA to be accurate.
In the examples shown here, it is usually valid by a length of 200 m, but can be
far shorter for thinner ice.

As expected, the second-order approximations extend the intervals over which
the semi-analytic expressions are valid, compared with equation (4.1). This is
most evident for the cases in which scattering is significant. The corresponding
curves in figure 7 are very close for all l0 greater than at least 100 m. However,
it is also evident that the second-order approximations can be highly inaccurate
for small floe lengths.

Thus far, for each ensemble the ice thickness has been held constant and no
resonant behaviour has been detected. This is a consequence of the non-zero
draught of the floe. For a given floe that floats artificially on the surface of the
fluid, often referred to as a shallow-draught approximation, there exists a unique
resonant period at which perfect transmission of a normally incident wave occurs.
This is analogous to the perfect transmission produced by a crack. However,
it is known that when an Archimedean draught is included this resonance is
eliminated (Williams & Porter 2009), and is actually displaced into the oblique
incidence regime.

It may, therefore, be inferred that no averaging over the thickness of the floe
is required. This is confirmed by results shown in figure 8a, which compares
unaveraged values for the energy reflected by an ice edge with corresponding
ensemble averages. Two thicknesses are considered and the standard deviation
used for the ensembles is one-third of the relevant mean thickness. In both cases,
the ensembles are almost identical to the corresponding unaveraged data.
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Figure 8. (a) The energy reflected by a single ice edge, as a function of wave period. The ice
thickness is (i) 1 m and (ii) 4 m. The grey curves are unaveraged results. The black-broken curves
are results calculated using an ensemble average, in which the ice thickness obeys a Gaussian
distribution. Unaveraged results, in which damping is included (G = 102), are denoted by the
crosses. (b) The energy transmitted by an individual floe, as a function of wave period, and including
damping. The lower bound of the floe length is (i) 50 m, (ii) 100 m and (iii) 200 m. The grey curves
are results calculated from ensemble averages, in which the floe-length distribution is uniform over
half a wavelength, and the black-broken curves are the corresponding semi-analytic approximations,
which assume the WSA.

For MIZ conditions it is therefore possible to calculate the attenuation
coefficient, m, from the canonical problem of wave scattering by a single
ice edge, assuming floes of sufficient length that the WSA is valid. This
assumption mirrors the long-floe approximation adopted by Wadhams (1986) and
Kohout & Meylan(2008). The value of the attenuation coefficient is then simply

m = −2 log(1 − |r |2).
Results for the energy reflected by an ice edge when damping is included are

also shown in figure 8a (crosses), with G = 102 here. As with the case of cracks,
the inclusion of damping has a very small effect on the reflection. However, the
imaginary component will induce decay over the length of the floe. This may be
accounted for in the interaction theory, so that the reflection and transmission
matrices are calculated from the isolated ice edge without damping (G = 0), but
the loss of wave energy over the length of the floe is achieved by using the roots of
the dispersion relation (with the appropriate value of G) in the matrix L. When
the WSA is applied the semi-analytic expression (4.1) may be simply modified in
the same manner that produced equation (3.7).

Figure 8b shows examples of how the WSA of the transmitted energy (black-
broken curves) compare with ensemble averages (grey curves), when damping is
included. Three lower limits of floe length are considered, l0 = 50 m (i), 100 m (ii)
and 200 m (iii), and the ice thickness is set as 2 m in all cases. As expected, the
approximation is least accurate for the shortest floe length and for the smallest
periods, due to the influence of the damped-propagating waves in the interaction
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Figure 9. Profiles of a typical first-year ridge (FYR, (a)) and multi-year ridge (MYR, (b)).

theory. The approximation is otherwise very close to the data produced by the
ensemble averages. Slight deviations are apparent around t = 10 s for the l0 = 100
and 200 m cases, which correspond to the maximum in the imaginary component
of the primary propagating wave, undermining the assumption that the scattering
matrices for the ice edge are unaffected by the damping term.

(c) Pressure ridges

Pressure ridges are complicated structures, displaying a large amount of
variation in their shape, as well as their widths and heights. However, by analysing
the available data for the properties of pressure ridges, Timco & Burden (1997)
identify two typical cross-sectional ridge profiles. Approximate versions of these
will be used in this section.

The two classes of ridge are referred to as first-year ridges (FYRs) and multi-
year ridges (MYRs). Both display variations in their upper and lower surfaces,
known as sails and keels, respectively. The profiles of FYRs and MYRs are
distinguished mainly through the shape of their keels, with the former being
roughly triangular, and the latter roughly rectangular. Both have triangular sails
that are of smaller area than their respective keels.

The profiles of the FYRs and MYRs that will be used in this investigation
are shown in figure 9. Note that the dimensions of the FYR is determined by
specifying any one of its sail height or width, or keel height or width. The
data used by Timco & Burden (1997) contain FYR keel widths ranging from
approximately 10 to 150 m, with most lying in the interval 10 to 30 m. In
comparison, the MYR requires the specification of both a height and a width.
Timco & Burden (1997) are only able to provide information on keel heights,
these being approximately 5 to 40 m, with most around 10 m, although cross-
sectional areas of the keels are also provided, these being at greatest 1500 m2, but
usually below 1000 m2.

It is evident that the typical MYR shown on the right-hand side of figure 9
closely resembles a rectangular ridge. Motivated by this, a mapping of a MYR to
a rectangular ridge was sought, and it was found that a rectangular ridge with
the same keel but with a rectangular sail of height one-tenth that of the keel
and the same width, produces nearly identical scattering properties to a MYR
for the range of dimensions and frequencies under consideration. The rectangular
ridge is computationally efficient as it possesses only two interfaces, compared
with the MYR that must be discretized to some given tolerance. The mapped
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Figure 10. The energy transmitted by individual ridges, as a function of wave period. (a) Results
for FYRs, of width (i) 20 m and (ii) 50 m. (b) Results for MYRs, of (i) width 20 m and height 10 m,
and (ii) width 40 m and height 20 m. Unaveraged results are shown by the black curves and results
calculated from ensemble averages, in which the ridge dimensions obey a Gaussian distribution,
are shown by the grey curves. The corresponding unaveraged results for unmapped MYRs are
denoted by asterisks. Unaveraged results are also shown for Young’s moduli Y = 1 G Pa (crosses)
and Y = 10 G Pa (circles).

rectangular ridge is therefore used in the computations presented in this work.
The corresponding results produced by the exact MYR profiles are given in
figure 10b for comparison (asterisks).

Examples of the energy transmitted by FYRs and MYRs, as functions of wave
period, are shown in figure 10. Figure 10a shows results produced by FYRs,
with (i) for a smaller ridge, of width Kw = 20 m, in ice of otherwise constant
1 m thickness, and (ii) for a larger ridge, of width Kw = 50 m, in ice of otherwise
constant 3 m thickness. Figure 10b uses MYRs, with, again, (i) for a smaller ridge,
Kw = 20 m, Kh = 10 m and surrounding thickness 1 m, and (ii) for a larger ridge,
Kw = 40 m, Kh = 30 m and surrounding thickness 3 m.

For each panel, unaveraged results are given (black curves), as well as results
calculated from an ensemble average (grey). In the ensemble the widths obey a
Gaussian distribution with a mean value corresponding to the unaveraged case
and a standard deviation one-third that of the mean width. No resonant behaviour
is visible in the unaveraged results shown in the examples presented in figure 10,
and none has been found in tests conducted by the authors for relevant parameter
values. This is unsurprising as length resonance is precluded by the stiffness of
the ridge. The results calculated from the ensembles are therefore, as expected,
very close to their unaveraged counterparts. It is concluded that no averaging is
necessary for individual ridges. The dimensions used for the approximations in
these examples span P = 4–32, depending on the wave period and the size of the
ridge. These are typical values for realistic parameter ranges.

The crosses and circles in figure 10 denote corresponding unaveraged results
for Young’s moduli of 1 and 10 GPa, respectively. Although this is not intended
as a definitive investigation of the sensitivity of attenuation to Young’s modulus,
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Figure 11. (a) The energy transmitted by individual ridges, as a function of wave period. The
results in (i) are for a FYR of width 20 m, and in (ii) are for a MYR of width 20 m and height
10 m. The solid curves show the undamped case and the crosses are the case in which G = 102. (b)
Ratios of the transmitted energy including damping to the transmitted energy without damping,
as a function of the damping parameter. The wave period is 16 s, and the ridges in (i) and (ii)
are those used in the corresponding panels of (a). Converged approximations are shown by the
black-broken curves and approximations that neglect scattering are shown by the grey curves.

variation in this parameter is anticipated to be particularly relevant in the case
of FYRs and MYRs. The examples here indicate that a reduction in Young’s
modulus has the most pronounced effect, particularly for small wave periods
and MYRs.

The final investigation concerns the effects of damping on the energy
transmitted by FYRs and MYRs. Figure 11a compares the energy transmitted
by ridges without (black curves) and with (crosses) damping, the latter again
using a value of G = 102. As the effects of damping are proportional to the
scattering produced by a feature, results for the smaller ridges used in figure 10
are presented.

Although the differences between the corresponding damped and undamped
results are very close to one another, there is a clear difference between them,
particularly for the FYR (i). It is also evident that results differ most for large
periods, that is, periods at which scattering is small. However, note that the
differences shown here are for a relatively large damping parameter, G.

In order to ascertain the regime in which the transmitted energy produced by
the ridges must account for damping, figure 11b shows the corresponding ratios of
the damped transmitted energy, E = E(G), to the undamped transmitted energy,
E0 ≡ E(0), as a function of the damping parameter. The largest period in the
range, t = 16 s, is used as it typically produces the most pronounced difference
between the damped and undamped cases.

For both ridges, the ratio E/E0 is linear with respect to G (the abscissa is
scaled logarithmically). Even for the largest value of G the difference between the
transmission produced by the damped and undamped models is only, at most,
4 per cent. However, it has been found for damping parameters of the order
103 that significant differences can be produced for smaller periods. At G = 10,
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the damped and undamped transmitted energies agree to four significant figures.
It is therefore only necessary to include damping for individual ridges, when the
damping parameter becomes large, G ≈ O(102).

Approximations are also included in figure 11b, which give an estimate of the
damping that is expected if scattering is ignored (grey curves). This is calculated
from the imaginary component of the primary wavenumber. For the MYR, which
is mapped to a rectangular ridge, this is straightforward, as the ridge has constant
thickness. However, the thickness of the FYR varies across its length, and the
mean of the wavenumber over its profile is therefore used. This results in a very
good agreement, whereas the approximation for the MYR is far worse, indicating
that scattering is still significant for the MYR at a 16 s wave period, which may
be attributed to the large jump in thickness that occurs at its edges.

5. Conclusions and implications for integration into ice/ocean models and
oceanic general circulation models

As signalled in §1, a strand of the current work is to assimilate wave–ice
interactions into an operational ice/ocean model and, potentially, an OGCM. This
project is underway, with derived scattering kernels being synthesized into a set of
look-up tables that allow wave attenuation to be determined straightforwardly for
sea ice data products furnished by satellite or other sources. Because each look-up
table is accessed many times, efficiency relies on minimizing its dimension.

In summary, the outcomes of the reported study are as follows:

— A WSA between MIZ floes provides extremely high accuracy for all
relevant parameter values; floe separation just alters phase, creating
periodicity in the transmitted energy that can be overcome by giving
the inter-floe phase a uniform distribution corresponding to similarly
distributed separations. Logarithmic averaging produces a semi-analytic
expression that allows the attenuation coefficient to be found from
knowledge of the scattering from an individual floe alone.

— Wave energy is conserved between floes, so averaging results in a non-
dimensional attenuation coefficient that is insensitive to concentration and
maps directly onto the dimensional coefficient used in OGCMs.

— Primarily because of the damped-propagating waves, the WSA is only
valid in the QCIC when features are more than a specific distance apart
that is greater for cracks than pressure ridges and typically less than 200 m
but depends on period and thickness.

— Inelastic damping can be accommodated between QCIC features. Because
scattering and damping are distinct, the modification is simple and the
OGCM look-up table is not required to describe how attenuation varies
with damping.

— If the WSA holds, the look-up table only needs to carry information on
the transmission properties of individual features.

— The consequences of unwanted resonant behaviour that leads to perfect
transmission through cracks can be reduced by statistically distributing
ice thicknesses and averaging, noting also that cracks are unresponsive to
the inclusion of inelastic damping.
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— Floe behaviour with respect to length is similar to that of QCIC feature
separation. A WSA is valid for floes of sufficient length, depending on the
wave period and thickness and, beyond this limit, the average transmission
of an individual floe is insensitive to its length and can be found from the
reflection at an edge with no thickness averaging being required because
draught is included. This considerably reduces the amount of information
that must be stored on floes in an OGCM.

— Pressure ridges were assigned two typical profiles, referred to as FYRs and
MYRs. No averaging of their properties is required and damping needs to
be considered only rarely.

A sensitivity analysis is now essential to minimize the dimensions in any
OGCM look-up tables. Moreover, alternative damping models that assimilate
more general inelasticity need to be explored. To finish, we observe again that the
advent of an operational model that includes ocean wave interactions highlights
the lack of up-to-date detailed field data to support these theoretical advances.

This study is part of Waves-in-Ice Forecasting for Arctic Operators, funded by the Research
Council of Norway and Total E&P Norge. The authors are grateful for this support and that
of the University of Otago.
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