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A Lagrangian Analysis of Turbulent Diffusion

ANDREW F. BENNETT
Institute of Ocean Sciences, Sidney, British Columbia, Canada

This is an analysis of diffusion of a scalar field by molecular transport and isotropic turbulence.
Existing results are surveyed, and some new results are advanced. The discussion is supported with
oceanographic and atmospheric observations of dispersion and diffusion. The existing results were orig-
inally oblained using a variety of mathematical techniques. However, all results are derived here using an
approximate solution of the Lagrangian form of the advection-diffusion equation. The approximation is
equivalent to neglecting the spatial dependence of the transformation factors in the Lagrangian repre-
sentation of the molecular flux divergence. Examinations of the diffusive subranges show the approxi-
mation to justified: infinitesimal line stretching is either controlled by relatively large scale shears
(viscous-diffusive subrange at large Prandtl number) or else is negligible during the diffusion process
(inertia-diffusive subrange at small Prandi] number). Estimation of scalar mean fields, total variances,
and wave number spectra requires, in general, joint statistics of infinitesimal line stretching and either
single particle displacement or particle pair separation. Normality is assumed for displacement statistics;
separation statistics are determined from the Richardson-Kraichnan equation. A simple derivation of
that equation is presented here. Joint stretching-separation statistics are modeled by a uniform shear
flow, with time-dependent amplitudes described by the Wiener process (white noise). With the possible
exception of this random process, the only mathematics required here is elementary calculus, so details
have been kept to a minimum. In the diffusion problems considered here, the turbulence is isotropic.
However, both the approximate solution of the advection-diffusion equation and the equations for joint
displacements are equally valid for inhomogeneous turbulence.
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figurations. Some of these results lack observational support
as yet, while others are controversial to the extent that the
analysis given here does not agree with that given elsewhere.
Lastly, there is a discussion of the total effective diffusivity for
the mean scalar field; it is argued that there is uncertainty
even as to the existence of such a quantity.

An essential feature of the approach here is the use of an
approximate solution of the advection-diffusion equation in
Lagrangian coordinates, thereby emphasizing the hy-
drodynamic aspect of the physics and the relationship with
fluid particle kinematics. This emphasis is at odds with the
mathematical perspective in which the equation is of parabolic
type, rather than hyperbolic type, irrespective of the smallness
of the nondimensional diffusion coefficient or Peclet number.

The approximate solution is obtained by neglecting the spa-
tial Adependence of the transformation factors in the La-
grangian representation of the diffusion aperator. This is
equivalent to assuming that the flow has uniform shear. How-
ever, the uniform shear assumption is not made, in general,
when calculating other Lagrangian quantities such as particle
displacements and separation. The approximate solution per-
mits the formulation of explicit expressions for mean scalar
concentrations, total scalar variance, and scalar wave number
spectra. Evaluation of these expressions requires, in general, a
knowledge of the statistics of the stretching of infinitesimal
elements, jointly with the statistics of either the finite separa-
tion between particle pairs or else the displacement of their
centroid.

In most of the processes here it suffices to know just the
marginal statistics of displacement or separation. There is sub-
stantial theoretical support [Cocke, 1972] and observational
support [e.g., Davis, 1985] for the hypothesis that displace-
ment statistics are asymptotically normal for large time, with
mean and variance in accordance with the classical theory of
Taylor [1921] in the special case of stationary homogeneous
turbulence. There is also a strong attraction toward displace-
ment probability distribution functions (pdfs) which possess
the Markov or group property, at least asymptotically for
large time. This property guarantees weak forms of Corrsin’s
hypotheses, relating Lagrangian statistics at different labeling
times. It is also necessary that the marginal statistics, for the
displacement of one of two particles, be independent of the
second particle. With these three a priori requirements of
asymptotic normality, marginality, and the Markov property,
approximate evolution equations for displacement and separa-
fion pdfs are developed here. The approximations are in the
form of discards of certain triple correlations. There are sev-
eral ways of making such discards, but apparently only one
meets the a priori requirements.

For isotropic turbulence the separation pdf so derived is the
Richardson-Kraichnan equation [Richardson, 1926; Kraich-
nan, 1966; Lundgren, 1981]. The relative diffusivities appearing
in the equation are deduced from their spectral repre-
sentations using dimensional and scaling arguments, in
various subranges, for small and large times. Dimensional
arguments alone suffice for large times but not for the small
time appropriate in inertia-diffusive subranges. On the other
hand, the estimation of diffusivities, or equivalently, La-
grangian velocity correlations, is all that is necessary in some
processes: the separation pdf itself is not required.

In other processes, such as the viscous- -diffusive subrange,
joint statistics of stretching and separation are required. These
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statistics are modeled using uniform shear flow models. The
shear amplitudes have various time dependences: constants
[Batchelor, 1959] and white noise or Wiener processes
{ Kraichnan, 1974]. The latter process is the most sophisticated
mathematical concept invoked here. Comprehensive descrip-
tions for physicists may be found in the work by van Kampen
[1981]. Mathematical details have been avoided in this article,
especially as only elementary calculus is involved. The most
detail is in section 2, on Lagrangian formulation. The pro-
cesses examined in sections 3-6 would appear to be in order of
decreasing complexity, from variance spectra to mean fields.
In fact, the results progress from well established to highly
speculative. Oceanic and atmospheric observations are used to
support theoretical developments. Data range {rom temper-
ature microstructure in fjords to the dispersion of strato-
spheric balloons. Results are briefly summaried in section 8,
with emphasis on the novel aspects. There is a brief allusion to
recent work on anisotropic and wave induced diffusion.

2. LAGRANGIAN FORMULATION

2.1. Formulation

Let C denote the concentration of a passive scalar sub-
stance. It is required to find C at some position x in N-
dimensional space and at some time . The concentration C(x,
t) is determined by the linear advection-diffusion equation, a
source distribution, and initial values.

It will be convenient to use X and s as Eulerian dummy
variables. In terms of these variables the evolution equation
for Cis

oc
a—+u-VC=xV2C+S (1)
'S

where the gradient operator is
V = 0/0X, i=1,2",N
the advecting velocity u = u(X, s) is solenoidal,

V:u=0

the source S = S(X, s) varies in space and time, and « is a
constant molecular diffusivity. For simplicity alone it will be
assumed that initially C vanishes:

C(X,0)=0 2

For each realization of the turbulent velocity field u, and for
each space-time point (x, t), there is a particle path A(x, t)s).
That is, (X, s) lies on the path if and only if

X = Alx, t]s)
The function A is determined by
DA/Ds = u(A, s) ) 3
subject to
A, t|t)=x

So the particle passes through X =x at 5 3
(D/Ds) denotes differentiation with respect to s, with (x, t)
fixed. Note the inverse functional relationship

x = AX, s|1)

LA

= t. The derivative

T
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In terms of the Lagrangian coordinates (x, f) and s, and for a
realization of u, C becomes

C(X, 5) = CTA(x, t]s), s] = C(x, t|s)

in Kraichnan’s [1965] notation.

The Eulerian equation (equation (1)) may be expressed in
terms of the Lagrangian coordinates. The left-hand side is just
the (“total”) derivative of C(x, t|s) with respect to s:

ocC ocC D
— (X, )+ u(X, 5) = (X, ) == C[A(, t]3) 5]
ds 0X; X=Aw, 1y DS
by virtue of (3) and the chain rule for derivatives. In order to
express the right-hand side in Lagrangian form, use the chain
rule in the form

0 0
— C(X, 5) = — C[A(X, s|t), t
5x, (% 9) = 55 CIAX. 5110, 115)

2 Clx, t| )aAj(X |1)
—Cx, tls) = X, s
Ox; 0X,
This may be repeated to obtain a Lagrangian expression for
second derivatives of C(X, s) with respect to X. Hence the
Lagrangian form of (1) is

DC o*C

oC
-— = kVA; - V4, + kV?4,— + S 4)
Ds 0x;0x 0x;

where the summation convention has been adopted, and
S = S(x, t|5s). The detailed forms of the transformation factors
are

04, d
(VA)y=—= |:<—>A,.(X, s| t):’
X, 0X, X = A(x, t]s)

, 924, »
VA= oxax, | \axax, )% 51D
Uy KUy X=Ax, tls)

Like (1), (4) is of advection-diffusion type. The vector V2A acts
like an advecting velocity, but it is not solenoidal. The vectors
VA, alter the rate of diffusion: when s = ¢ they are the unit
vectors &;, but on average they increase as |t — s| increases,
since, as it will be seen, they evolve in the same way as infini-
tesimal line elements. This is a Lagrangian expression of the
familiar statement that turbulence enhances the effective rate
of molecular dissipation of C, by transferring the variance of C
to small scales. In the Lagrangian formulation (equation (4))
the simplicity of the convective derivative (D/Ds) is achieved at
the expense of complicating the diffusion operator. Equation
(4) is no more readily integrated than 1s (1).

2.2. Solution

In order to proceed, the x dependence of the transformation
factors in (4) will be neglected. This assumption will be justi-
fied in subsequent sections using one of the following argu-
ments:

1. Diffusion of the scalar C is negligible.

2. Scalar diffusion is much faster than infinitesimal line
stretching: equilibrium between the external scalar source and
the diffusion sink is attained before the transformation factors
have altered significantly from their spatially uniform initial
values.

3. Line stretching is principally due to velocity shears with
scales much larger than those at which scalar diffusion is sig-

nificant; thus stretching rates are approximately uniform in
space.

4. Only upper bounds for the scalar variance are required,
and adequate bounds are obtained without having to admit
line stretching.

The advantage of the above assumption is that (4) is then
readily integrated subject to the initial condition (equation (2))
[Okubo et al., 1983], yielding

Clx, 1) = C(x, t|1) = fds jdy G(x —y, t, 5)S(y, t]s) (5)
0

The fundamental solution G is most clearly expressed by its
Fourier transform g:

g(k,t—S)=cxp{~le[k-Q-k—ik-L]da} (6a)

where
Qij= VA, -VA; (6b)
L, =V?*4, (6¢)

VA, =VA( ,0la) V2A,=V24( ,0la) (6d)

gk, t,5) = j dxe™™* G(x, t, 5) (6e)

The suppressed argument in ( , 0]|a) indicates that the x
dependence has been ignored. In fact, the arguments ( ,
t|t — a) should be used, but statistical stationarity and time
reversibility will be assumed in subsequent sections. The solu-
tion (5) is represented graphically in Figure 1, which shows the
path [A(y, t|s), s] of a parcel of fluid and the diffusion cloud
G(x —y, t, s). It is emphasized that particle paths will not
necessarily be determined by assuming that the velocity field
has uniform shear.

Now that an explicit, albeit model-approximate, repre-
sentation has been obtained for the scalar concentration C(x,
1), its statistics may be calculated directly.

2.3. Variance Spectrum

Assume that the velocity field u and source distribution §
are independent, isotropic, and stationary random fields, both
with vanishing means (although alternative assumptions about
S will be made in some later sections). Ensemble averages over
one or both fields will be denoted { >, { D5 or { >4
Wher there is no ambiguity, the subscripts will be dropped.
For example,

upy=0 (8>=0 ™

The representation of C provided by (5) may be used to
calculate the spatial covariance of C, at spatial lag r and at
absolute time £:

Cx+D, )Cx, 1)), s = jdslf dszj dylfdyz
0 0

LG +D —y,, 1, 5)GX — ¥, t, 5;)
“ {80y t]5)8(Y2s E1S)DsD ®

In particular, V, the total variance of C, is just the covariance
at zero lag:

V= {CE, ), s ©)
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time 4
t—
5]
I I I =2
X y (v,ts) space
Fig. 1. Graphical representation of the solution (5). The scalar injected by the source S at A(y, t|s), at time s, has

diffused into an ellipsoidal cloud about y at time . The cloud concentration at x at time ¢ is proportional to G(x — y, t, s).
The vertical arrow through [A(y, t|s), s] indicates that G(x — y, s, 8) = 8(%, y). In this graphical representation the diffusing
cloud has been rotated 90° out of the space manifold to which it properly belongs.

As a consequence of the isotropy of u and S, the covariance of
C is a function only of r = |r| and ¢, while V is a function only

of t.
The one-dimensional wave number spectrum of C will be
derived as the Fourier transform of the covariance of C:

F(k, 1) = fda &) de e*PLCx + D, HCX, £, 5
where da (k) is an area element on the surface of a sphere of
radius k. Since the covariance depends only upon r, the Fou-

rier transform depends only upon k, and the integrals reduce
to

Flk, 1) = a(k) f "D aD)BKD)(CX + D, HCx, >, s (10)
0

where
ak)=2mk N=2
1)
ak) = 4nk* N =3
B(kD) = J (kD) N =2
(12)
in (kD
aupy =D g
kD
The total variance V may be calculated as
V =Q2m)~¥ J F(k, 1) dk (13)
0

The variance spectrum F is calculated by substituting the co-
variance representation (equation (8)) into the transform
(equation (10)). The resulting formula includes the Lagrangian
source covariance which may be expressed in Eulerian coordi-
nates:

S(yy, t5)S(yas £l 5205

= (S[A(y;, ts1), 5,1STA(Y,, tls2), 52105

= Vs[lA(yy, t1s;) — Alya t]s5)l 51— 551 (14
where Vi(R, w) is the Eulerian source covariance at spatial lag
R and time lag w:

Vs(R, w) = {SX + R, 5 + w)S(X, 5)> (15)

Vs depends on R and w only, since isotropy and stationarity
have been assumed for S. A very simple model for ¥ will be
adopted:

Vs(R, w) = x8(w)%(IR) (16)

where § is the Dirac delta function, # is defined in (12), and y
is a constant with the same dimensions as S?t and C?t~'. That
is, the source has a “white noise” time dependence [Van
Kampen, 1981]. Since

a(k) JdR ¢*RA(RI) = a(k) fde a(R)B(kR)A(IR)

=20k -0 17

-'ﬁﬁﬁiﬁﬁ!Hﬁ.iﬂﬁﬂﬂﬂ_Iﬂiﬂ!1ﬁﬁi1ﬁﬁiiﬁiﬁﬂﬂiiHHHHHﬁlﬂlﬁ?ﬁﬁHiHiﬁ!‘ﬁﬂiﬂﬁﬂiﬂ%ﬁﬂﬁf_
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the spatial structure of V; corresponds to a source of scalar
variance only at wave numbers k with magnitude k= 1. It is
the behavior of the scalar variance spectrum F(k, 1) for values
of k> which is of interest, and this is independent of the
details of the low wave number source. The model (equation
(14)) simplifies some of the calculations.

In order to complete the evaluation of F, it remains to take
the velocity field average { ), in (8) and (10). The random
variables which actually appear are the transformation or
stretching factors Q and L: see (6) and the single time particle
separation R = A(y,, t|s) — A(y,, t|s). The two distinct times
s, and s, need no longer be considered, since S is delta-
correlated in time: see (14). Thus ¢ ), may be calculated by
multiplying by the joint probability distribution function of
the random variables Q, L, and R at time s (given respective
values of unit matrix |, 0, and r = y; — y, at time t) and then
integrating over Q, L, and R. A little rearrangement using (6)
yields

Fk, 1) = ya(k) J s J dr J aQ f dL JdR
0

- e B(IR)gUk, t, S)P(Q, L, R, 5|1, O, 1, 1) (18)

Hence the determination of F is reduced to estimating the
joint pdf of separation and stretching appearing in (18). This
will be carried out in section 4 for each of the various sub-
ranges of F: inertia convective, viscous convective, inertia dif-
fusive, and viscous diffusive.

Estimates are easier to obtain in the first three subranges,
where g is approximately independent of the stretching vari-
ables Q and L. Then the integration over those variables in
(16) is trivial, leading to

F(k, t) = ya(k) J is Jdr JdR *TBIRPR, s|1, 1) (19)
0

where P is now the marginal pdf for the vector separation R at
time s. Since R has the deterministic or statistically sharp
value r at time ¢, it must be the case that P(R, f|r, 1) = 6(R
—1)=0(R; —ry) -+ 8(Ry —ry) where R =(R,, ---, R,) and
r = (ry, -, ry). In particular, [ dRP (R, t|r, {) = 1, but this
must also hold for all values of s < .

It may be noted that P depends upon the vector R even
though the turbulence is isotropic, since r has a direction (and
vice versa). However, Lundgren [1981] pointed out that the
spherically averaged pdf

P(R, 5|7, ) = a(R)~* f da (R)PR, s|r, 1) (20)

must depend only upon r. The corresponding initial condition
is

P(R, t|r, t) = a(r)”16(r — R) (21)
and the normalization is
f dR a(R)P(R, s|r, =1 22)
]

In terms of this P, the representation (equation (19)) for the
variance spectrum F becomes

803

F(k, t) = ya(k) J’ds jwdr jde a(rya(R)
o Jo o

- Bkr)B(IR)PR, sir, 1)  (23)

The symbol P has now been used to denote three different
pdfs. The displayed arguments indicate which one is involved.
This is simpler, and more informative, than introducing a sep-
arate symbol for each pdf.

In order to use (21) and (23) to calculate F(k, t), an evolu-
tion equation for P is required. Such an equation will be
obtained in the next section. Before proceeding, however, it is
instructive to examine (23). It is easily seen that

oF

ot
where £ is the integral in (23) with P replaced by (0P/0t). The
first term on the right-hand side of (24) represents the source
of scalar variance at wave number I The term £ represents
turbulent transfer of variance to wave number k from other
wave numbers. It is also easily shown that [,* #(k, t) dk = 0,
implying conservation of variance in the absence of a source.
Clearly, development of an evolution equation for the separa-
tion pdf P(R, s|r, t) is equivalent to developing a model for the
spectral transfer rate S(k, t).

(k, ©) = 2n)"xd(k — ) + Sk, 1) 24)

3. SEPARATION PDF

As was mentioned at the end of the preceding section, much
can be inferred from the marginal statistics for the separation
of particle pairs. Specifically, the (scalar) separation of particle
pairs. Specifically, the (scalar) separation pdf P(R, s|r, t) is
required, for s < t. The pdf is known at s = t (see (21)), so an
evolution equation is required. Such an equation will be
derived in this section. The derivation will proceed in stages.
The main result is in subsection 3.4.

3.1

A particle passing through the point X at time s also passes
through x = A(X, s|t) at time ¢, where A is defined by (3) and
is determined by a given realization of the turbulent velocity
field u. For this realization the “micro” pdf of x at time ¢ is

pix, t|X, s) = 8[x — AX, 5(1)]

Displacement of a Single Particle

(25)

Note that the order of the arguments of p is the reverse of that
required in section 2. The reason is that p will be found to
satisfy, approximately, a diffusion equation for which it is na-
tural to take the larger of ¢ and s as the time variable. The
required order of arguments will be obtained subsequently.
For incompressible flow, p satisfies the Liouville equation

% +u ;—i = (26)
where u; = u,(x, t). Hence the “macro” pdf
P tIX 9 = (Olx — A, 5100 @
satisfies
%—1: + <ui gxﬁ,> =0 (28)
The initial condition is
P(x, 5|X, s) = 6(x — X) (29)
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The problem is the estimation of the flux term in (28). To this
end, equations are derived for P and p’' = p — P:

vy Lo - s (30)
o N ok, T o, P
op’ op’
Do o T+ T, 1) (31)
ot 0x;
where u;/(x, 1) = u(x, 1) — {u(x, )}, and
, op' , OP
T1:<uj a—Aj> T, = —u 6_xj (32)
The solution of (31) is
2 t
r= 2 f TIA(x, t]v), v] dv (33)
k=1 Js

which may be used to express the random flux {u,/p") in (30).
So far, this analysis is exact. Two approximations will now be
made:

1. In the contribution to the random flux arising from T,
the arguments [A(x, t|v»), v] are replaced by (x, t). Conse-
quently, this contribution is proportional to {u;(x, )}, which
vanishes. In other words, we neglect the correlation between
u,(x, t) and T,[A(x, t|v), v].

2. In the contribution to the random flux arising from T;,
the arguments [A(x, t|v), v] of 0P/0x; are replaced by (x, t),
while u/(x, t|v) is replaced by u,(x, t|v). These approximations
amount to neglecting triple Lagrangian correlations and yield

Culp> = — f i Dux, 10> do (%P (%, t]X, 5) (34)

~ and so

O iy Z = 2 by “tl)aP (35)
— + uyx, ) — = — | D;;(x, X, t|5) —
ot ! ox; ox;| Y ox;

where the Lagrangian diffusivity D; is the integral in (34).

This diffusion equation has an attractive property. For
stationary turbulence, {u;» is independent of time while D,;(x,
X, t]8) = Dylx, x, t — 5)— Dy(x, X, c0) as t ~ s— co. That is,

(35) has the asymptotic form
O0P/ot ~ QP (36)

where 9 is a differential operator with respect to x, indepen-

dent of time ¢. The asymptotic solution for P is
P~ " 928(x — X) 37

The exponentiated operator should be interpreted as a power
series. It readily follows that asymptotically, P satisfies the
Markov property [van Kampen, 1981]:

Px, t]X, s) ~ fP(x, t|Y, v)P(Y, v|X, s} dY (38)

as v — s and t — v— oo. Equation (38) yields an estimate for
the Lagrangian mean velocity:

opP
ulX, s|t)) = fx % (x, t|X, s) dx (39)
Substituting (38) yields
<ulX, s|5)) ~ f <Y, v|)P(Y, v|X, s) dY (40)

which relates Lagrangian mean velocities. There are analo-
gous expressions relating Lagrangian covariances. These are
examples of weak forms of Corrsin’s hypotheses [Corrsin,
1959]. In the strong form, (40) is assumed to hold for v =1t
rather than as { — v— oo. Then {u(Y, v|8)) = <u(Y, t|1)) =
<n(Y, t)), the Eulerian mean velocity field. The strong form of
(40) can be derived directly from (35) and (39), provided
dD;;/0x, is negligible in comparison with {u,(x, £)); that is, the
turbulence is only weakly inhomogeneous. On the other hand,
approximations 1 and 2 which led to (35) could only be ex-
pected to hold for such turbulence. Finally, consider incom-
pressible, stationary homogeneous turbulence. Then D;; is in-
dependent of x, and P is multivariate normal, with mean (¢
— §)u;> and covariance ' D;(v) dv, in accordance with the
classical theory of Taylor [1921].

It is appropriate to discuss alternatives to approximation 2
used in the derivation of (35).

2% Suppose instead in the contribution to the random flux
term arising from T,, the arguments [A(x, t|v), v] are replaced
by (x, t) everywhere. The resulting Bulerian diffusivity is

Dy* = (t — 9)<u/(x, uj(x, 1))

and the resulting pdf cannot possess the Markov property as
It —s— o0.

2**  Alternatively, suppose in the contribution to the
random flux term arising from T,, the arguments [A(x, t|v), v]
of 0P/0x, are replaced with (x, t) while those of u, are replaced
with (x, v). The resulting Eulerian diffusivity is

1
D** = J {u/'(x, tuj(x, v))y dv

The resulting pdf will possess the Markov property asymp-
totically for stationary turbulence and will be normal for
stationary homogeneous turbulence, but the mean and covari-
ance will not be in accordance with the classical Taylor
theory.

Higher-order approximations to (35) may be found in the
waves by Kraichnan [1977] and Jiang [1985]. The slightly
novel derivation of (35) given here must be about as simple as
can be.

3.2. Joint Displacement of a Pair of Particles
Consider a pair of particles which pass through X and Y at

time s. The macro pdf for passage through x and y, respec-
tively, at time ¢ is
P(x,y, t]X, Y, s) = {6[x — AX, 5s])]o[y — A(Y, s|)]>
(41)
Proceeding as in the above subsection yields

P i 0y L gy, 9y 2L
(3t ui X, axi ui ya - 5 )

2 Iy x 119 4 Dy 3, 119 2

=——{Dy(x, X, t]|s) -— + Dy(x, v, t[s) —

ox, | ¥ 5 ox; g dy;
oP

ay,

' J J.

where

Dij(x, y, t]s) = f u/(x, Quy(y, tlo)> dv  (43)

P ' oP
+ =Dy, x, t]s) Py + Dy, ¥, t]9) 5 (42)

UG BHHRHEHIHTHTT
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Equation (42) was deduced by Lundgren [1981] in a super-
ficially different manner. However, (42) is unacceptable, be-
cause the marginal equation obtained by integrating (42) over
y is not the same as (35), the equation for the marginal pdf
P(x, t|X, s). For example, if (42) is used to obtain the La-
grangian drift of one particle, the result depends upon the
presence of the second particle. It is also readily shown that
(42) predicts a nonzero mean (vector) separation rate for parti-
cle pairs in homogeneous turbulence, which is clearly false.
The shortcomings of (42) may be remedied. For if we return
the second prime in (43) to its original position, it follows that

7}
. u)'(x, Du;(y, tlv)
Y

u. A,
= <uil(x’ t)( >(y) tl”)( y >(yv tlU)>
= < x, z)(a“ '>(y, rlv)><<2—A“->(y, t|v>> (44)
Vi

provided we neglect two-point triple correlations, which is
consistent with the approximate derivation of (42). Moreover,
if the turbulence is nearly homogeneous, then the right-hand
side of (44) is approximately

duj
<u (%, t)( )(y, tIv)>

ou/
u; (X, t) (v, t]v) (45)
l
for incompressible flow. Consequently, the mixed terms in (42)
may be replaced with more satisfactory forms:
oP
Dx_](x Y, tlS) _'—> ay {Dl_](x Y tlS)P}
J ¥

(46)

aP
Dy, x, t]s) Py {Du(y, X, t[5)P}

J

Then the single-particle marginal equation is the same as (35).
For weakly inhomogeneous turbulence, all of the derivatives
in (42) may be moved to the left of the diffusivities. The re-
sulting equation is then the same as that of Kraichnan [1965]
except that in the latter, only the solenoidal parts of the La-
grangian velocities appear in the diffusivities. For example,
u;/(x, t|v) is replaced by u,5(x, t | v) where

0
p {u5(x, t|v)} =0

Such a replacement permits moving the derivatives in the de-
sired manner.

Our approximation (equation (45)) is invalid for strongly
inhomogeneous turbulence. Such a flow may be characterized
by a mean strain rate A greatly in excess of the root-mean-
square strain rate. Hence the displacement of a particle by the
mean flow, through the eddy field, grows as exp [A{f — s)].
Therefore pairs of particles will be moving independently as
soon as t — s = O(A ™), almost irrespective of their initial sep-
aration, and so

P(x,y, t]X, Y, s) ~ P(x, t| X, 5)P(y, t] Y, 5) (47)

which obviates the need for an evolution equation for the
two-particle pdf.
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3.3. Separation of a Pair of Particles

For isotropic turbulence the diffusivity tensors are solen-
oidal in both indices, and so (42) and its variants discussed
above are identical. Let centroid and separation coordinates
be defined by
r=x-—y

R=X-Y

c=3(x+7y)
C=iX+Y)
Then the pair pdf becomes P(r, ¢, t|R, C, 5), and the marginal

pdf for veclor separation

P(r,t|R, s) = fP(r, ¢, t|R, C, 5) dc (48)
is independent of C by homogeneity. It is straightforward to
derive, from (42), the following evolution equation for the
marginal pdf:

2
%}ti - ara:Br f (1,P) (“49)
where
nir, t1s) = Dyy(x, x, £]5) — Dyy(x, ¥, t]5)
The initial condition for (49) is
P(r, s|R, s) = 6(r — R) (50)

Next, we may average the marginal pdf over the direction of R
to obtain a pdf which, since the turbulence is isotropic, de-
pends only on the magnitude r = |r|:

P(r, t|R, 5) = a(R)™* JP(r, t|R, s) da (R) (51)
which obeys
oP %) oP
- =T S |:a(r)71 E] (52)
subject to
P(r, s|R,s) = a(R)"15(r — R) (53)

where #%(r, t|s) is the longitudinal component of the incom-
pressible isotropic tensor #,; [Batchelor, 1960, section 3.4].
Richardson [1926] virtually guessed (52); he did not consider
time dependence for #. Kraichnan [1965, 1966, Equation (3.6)]
derived (52) using his Lagrangian history direct interaction
approximation. Lundgren [1981] derived (52) by only as-
suming a velocity field delta correlated in time. This assump-
tion is equivalent to making approximations (1) and (2) in
subsection 3.1 above. By using the argoments of Batchelor
[1960], the longitudinal diffusivity component # is expressible
as :

r d
nir, t]s) = a(r)” IJ o, t]9) 7 alp) dp (54)
o ~dp
where the relative diffusivity { is defined by
D 1
{r, t]s) = D a2y =2 jdu {<u(x, 1) - u(x, t|v)>
—<u(x, t) - ux +r, p|u)>} (55)
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Fig. 2. Theoretical and observed separation pdfs: relative diffusi-
vity independent of R [Batchelor, 1952] (solid line); relative diffusivity
proportional to R*3 [Richardson, 1926] (dashed line); relative diffusi-
vity inferred from observations of dye concentration in Lake Huron
[after Sullivan, 1971] (dotted line).

Finally, note that (52) and (53) ensure the normalization

J a()P(r, t|R,s) dr =1 (56)
0
provided
oP
a(r)y a——»O r—-0 r-ow
ia

3.4. Reversibility

Our expression (equation (23)) for the scalar concentration
spectrum F(k, t) requires a knowledge of the scalar separation
pdf P(R, s|r, t) for values of the “running” time s less than the
conditioning or initial time t. However, the diffusion equation
(equation (52)) should only be integrated for running times
greater than the conditioning time. Lundgren [19817 obtained
an important result which resolves this problem. It is well
known that for incompressible flow the Jacobian determinant
of the transformatlon X — x = A(X, s|t) has unit magnitude.
Hence

Oo[X — A(x, t]s)] = o[x — A(X, s|1)] (57
and so
P(X, s|x, t) = P(x, t| X, s) (58)
Similarly,
PX Y, s|x,y,t)=Pkx,y,t1X,Y, 5 (59
and so
7 PR, C, sir, c, t) = P(r, ¢, tlk, C 9 (60)
PR, s|r, ) = P(r, t|R, 5) (61)
and finally,
PR, 5|1, 1) = P(r, t|R, 5) (62)

It follows that for s < ¢, P(R, s|r, 1) satisfies

AR AR
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aP— R)! 9 R)n(R op 63
= —a(R) ﬁ[a( n ,Slt)a—R:| (63)

o5
subject to

PR, t|r, t) = a(r)"16(R — 1) (64)

Note that (63) is a “backward” diffusion equation. Once again,
this result is a consequence of incompressibility alone. Neither
stationarity nor homogeneity is necessary.

3.5.  Uniformity of the Approximate Theory

Consider the approximate evolution equation (equation
(35)) for the single particle displacement pdf. If the turbulence
is inhomogeneous, then the Eulerian mean velocity {u,(x, t)>
and the diflusivity D;(x, x, t|s) are functions of x, and in
general, the pdf is not normal even as (t — s)— co. This is in
conflict with Cocke [1972], who proved a centra] limit theo-
rem for integrals such as

T

Alx, t]s)y=x +Ju(x, t)v) dv (65)
under general conditions which appear to include inhomoge-
neity and nonstationarity. The derivation of (35) began with
the definition (equation (25)) of the micro pdf, which, for in-
compressible turbulence, satisfies a Liouville equation with
Eulerian velocity u,(x, t). However, the micro pdf also satisfies
a Liouville equation with Lagrangian velocity u,(X, s|f). The
difference is superficial until an approximation is made for the
random flux term in the equation for the averaged or macro
pdf. The approximations which led to (35) would in the latter
case lead to

P sy Lk X sl (66)
or ¢ M SN G T R B Sl s oy,

where
Ky(X, X, 516 = j X, sy X, siy> o (67)

The solution of (66) is exactly multivariate normal for all
(t — s), with mean and covariance in agreement with the classi-
cal Taylor theory, even for inhomogeneous rionstationary tur-
bulence. There is an analogous equation for the pdf of joint
displacements of particle pairs, also with exactly normal solu-
tions. However, the utility of the Richardson-Kraichnan equa-
tion (equation (52)) lends some credence to (42), for homoge-
neous turbulencé-and (¢t — s) not large. Thus neither of the two
choices of velocity labeling in the Liouville equations leads to
uniformly valid approximations. There must be a generalized
coordinate [ Z(x, t|X, s), v(x, t|X, s)] which behaves like (x, £)
for (¢t — s) less than a velocity decorrelation time and like [A(x,
t|s), s]for (t — s)— 0.

3.6. Stochastic Models

There -is a model for (49). That is, (49) is the forward
Fokker-Planck equation [van Kampen, 1981] for the Ito sto-
chastic differential equation

dr = &2 da(t) (68)

R

U, |
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Probability Density
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9] ; 10 20 30
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Fig. 3. Sample pdfs for (a) zonal and (b) meridional components
of separations of high-altitude balloons, 5 days after release in the
southern hemisphere subtropics. The normal pdfs are included for
reference. The kurtoses are 7.54 and 7.02, respectively [after Er-El and
Peskin, 1981].

where &;; = n;; + 11; and the components of w(t) are indepen-
dent Wiener processes. The tensor & is symmetric so (68) is
meaningful if & is nonnegative. In the Ito interpretation,
£ = &, t|s), and so the nonlinear equation (68) is explicit.
There are analogous 1td models for (42) and its variants. Nu-
merical integration of the models may be a useful technique
for determining the pdfs, or at least some of their moments, in
anisotropic or inhomogeneous turbulence.

3.7. Observations

There have been few attempts to observe the separation pdf
P(R, s|r, ). Dye measurements (Figure 2) in Lake Huron
[Sullivan, 19717 did not support Richardson’s solution of (63),
which is based on the assumption that 5 oc R*? (see section
4.4), The measurements were more consistent with a normal
distribution for R, which may be derived from (49) by as-
suming 7,; is independent of R. This would be the case if the
two particles were moving independently, with normally dis-
tributed displacements, that is, for an elapsed time greatly
exceeding the turbulent decorrelation time. )

The pdfs for the zonal and meridional components of sepa-
ration of high-altitude balloons were estimated by Er-El and
Peskin [1981], on the basis of 178 observations 5 days after
launch. Significantly nonnormal pdfs were found, with kurt-
oses of 7.54 and 7.02, respectively (see Figure 3). For normal
distributions the kurtosis has the value 3.

Surface drifters deployed off the California coast by Davis
[1985] were used to estimate separation pdfs (see Figure 4).
Pairs with initial separations in the range 16 km <r < 30 km
had separations R after 4 days, closely consistent with a
normal distribution for R. Those with initial separations in the
range 4 km < r < 16 km were more likely after 4 days to have
small separations R than in the case of normally distributed R.
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Davis [1985] attributes this result to trapping in small-scale
velocity convergence or else to exponentially growing separa-
tions in a large-scale shear as discussed in section 32. Davis
also presents data purporting to show that n does not depend
on R alone but rather on R and t — s. However, it should be
noted that what is shown is a dependence upon (R*)'/? rather
than the conditional or deterministic value R. This point is
also discussed in section 4.4.

4. CONVECTIVE SUBRANGES OF THE SCALAR
VARIANCE SPECTRUM

The particle pair separation statistics described in the pre-
vious section will be used in this section to construct the
convective subranges of the variance spectrum, that is, the
subranges in which « is so small that scalar diffusion may be
neglected. Conditions under which this approximation fails
(sufficiently high wave number) will be given in the next sec-
tion, which concerns diffusive subranges.

In order to define the scalar subranges, it is first necessary
to describe the subranges of the kinetic energy spectrum.

4.1.

The wave number spectrum for isotropic, stationary turbu-
lence is

Kinetic Energy Subranges

E(k) = a(k) J " dD a(D)BED)Ku(x + D, 1)+ u(x, 0>  (69)
0

It is assumed that this equilibrium spectrum is maintained by
a statistically stationary source, at or around some low wave
number m; the average source strength must match the
average energy dissipation rate & The latter is dominated by
viscous dissipation at high wave numbers. By assumption
there are no sources or sinks at intermediate wave numbers,
so the energy spectrum in such an “inertial” subrange can only
depend on ¢ and the wave number k. By dimensional analysis,

E(k) = K63k~ (70)
a

401
201

0 1 1 1 1 1 .
401

20[

0 ) L1 1 —1 1 T

0 20 40 - 60 80

R.km

Fig. 4. Histograms of separations of ocean surface drifters, 4 days
after release off the California coast: (a) initial separations 4
km < r < 16 km and (b) initial separations 16 km < r < 30 km. The
histograms are based on bins 2 km wide. The smooth curves corre-
spond to a normal distribution for R. [after Davis, 1985].
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Fig. 5. Wave number spectrum of kinetic energy E(k) in a British
Columbia tidal channel. The Kolmogorov wave number k, = (g/v3)'/*
has the value 0.21 m, given &= 0.61 x 107™* m? s~! and v= 148

x 1076 m? s™! (seawater at 8°C). The straight line has a slope of —%
[after Grant et al. 1962].

where K, is the dimensionless Kolomogorov constant. For a
comprehensive discussion, see Monin and Yaglom [1975]. The
inertial time scale £”1/3k~2/% exceeds the viscous time scale
v7'k™? (where v is the kinematic viscosity) if k> k, =
g/*y=3/ Thus (70) can hold only for m « k « ky. If k,, < k,
then E must depend upon ¢ and v, and dimensional analysis
will not suffice. Observations [Grant et al., 1962] (Figure 5
here) indicate very rapid roll-off of E(k) for k > k. At least
one turbulence closure theory, the abridged Lagrangian his-
tory direct interaction approximation [Kraichnan, 1966], is in
impressive agreement with the observations of the “dissipation
range.” It suffices, however, for our purposes to note only the
very rapid decay for k >» k,,, which will be modeled by a trun-
cated form:

E(k) =
E(k) =

Kye 2Pk=5B  k<fk,

k>fk,

(71

where fis some fraction. The observations indicate f = 0.1.

As is indicated by the observations of Grant et al. [1962],
the above description of isotropic turbulence is well substan-
tiated in three space dimensions, but Kraichnan [1967] has
proposed an alternative inertial subrange in two space dimen-
sions. It is characterized by a statistically steady transfer of
vorticity variance {[é;-V x u|>) or enstrophy, from low t_o’
high wave numbers at a rate A, which has the same dimensjons
as t 3. By dimensional analysis the energy spectrum must be

E(k) = K,A*?k 3 (72)
where K, is a dimensionless constant, which it seems appropri-
ate to name after Kraichnan. There is evidence of (72) in large-
scale atmospheric circulation [Boer and Shepherd, 1983] (see
Figure 6). As might be expected, that data does not survive the
stringent tests for isotropy passed by smaller-scale data sup-
porting (70) [Gargett et al, 1984; Gargett, 1985]. The en-
strophy inertial subrange should extend to wave numbers
beyond which the flow cannot be described as two dimension-

al. Young et al [1982] suggest that the upper limit may be
k=10"3m

S
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4.2.

In convective subranges the scalar variance spectrum F(k, ¢)
may be calculated using (23), which requires knowledge of the
separation pdf P(R, s|r, t). The latter will be determined using
the backward Richardson-Kraichnan equation (equation (63)),
subject to the initial or, more correctly, “final” condition
(equation (64)). The longitudinal diffusivity #(R, s|t) is given
by (54) and (55), with the obvious change in notation; thus it
is determined by the structure of the velocity field. It is possi-
ble to relate 5 to the energy spectrum and hence the energy
subranges, since (54) and (55) may be expressed in the form
[Kraichnan, 1966]

Convective Subranges

nR, s|ty=4 fdw fwdk E(R)F (kR) Lk, w —s)  (73)
s 0
where

F(6) =a(6)"" J de a(p)[1 — B(¢)] (74)
0

is a high-pass filter arising from the geometry of isotropic
turbulence,

F(6) 62 06— 0
(75)
FO)—-»N! f0—

and .¢ is a dimensionless Lagrangian spectrum defined by

Pk, w) = &k, w)Ek, 0)~* (76)
where
&k, w) = ta(k) f dD a(D)%(kD)

Jo
-uX, s) - uX + D, s|w)> (77)

Note that &(k, 0) = E(k). See Figure 7 for a graph of #(6),
when N = 3.
4.3. (Enstrophy) Inertia-Convective Subrange

In the enstrophy-cascading inertial subrange of two-
dimensional turbulence, characterized by the time scale A~ !/3
and the energy spectrum (72), the dimensionless function #(k,
w) must be independent of k:

&L= L(wil)

-
-
—

(78)

1000, -
-10 -20

Spectral Slope

N
-40

Fig. 6. Slopes of straight line fits to observations of log E(n)
versus log n in the atmosphere, for the zonal wave number range
14 < n < 25, from Baer [1972] (dotted line), Chen and Wiin-Nielsen
[1978] (dashed line), and Boer and Shepherd [1983] (solid line) [after
Boer and Shepherd, 1983]. ' '

T ——
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Fig. 7. High-pass filier #(0) relating kinetic energy at wave number k to relative diffusivity at separation R, where
0 = kR, in three-dimensional isotropic turbulence. See equation (74).

Combining (72), (73), and (78) yields

t @
n=4 ff[(w — 5)AY] dw j KAk 3F(kR) dk (79)
s 0
However, the limiting forms of & given in (75) imply that the
integral over k, while convergent as k— oo, is divergent as
k— 0. Since the enstrophy spectrum k*E(k) must be integrable,
it follows that E(k) must be overestimated by (72) at the very
low wave numbers where enstrophy is being injected. Thus

j E(k)# (kR) dk oc R? j k2E(k) dk oc R22%®  (80)
0 0
leading to
n= bRt —s)  APE—5)—0 (81a)
n = bR2A13 A8t — 5)— o (81b)

In (81), b stands for different dimensionless constants. This
convention will be used hereinafter. It is easily seen that (81)
holds for any subrange in which the energy spectrum is pro-

10° T T

108}~

3 1 1
2 3
10 10 R, km 10

Fig. 8. Relative diffusivity » as a function of separation R, in-
ferred from observations of high-altitude balioon pairs in the south-
ern hemisphere. The straight line has a slope of +2. [after Morel and
Larcheveque, 1974].

10
104

portional to k™" when n > 3. [Bennett, 1984; Babiano et al,
1985]. Thus atmospheric observations [Morel and Larche-
veque, 1974] and oceanic observations (J. F. Price as cited by
McWilliams et al. [1983]) (see Figures 8 and 9 here), which
support (81), are not necessarily indicative of an enstrophy
cascade. (Note that if # cc R? for some power g, then the rela-
tive diffusivity { in (54) is also proportional to R?%)

According to (81), dispersion is very slow at first, so it is
reasonable to solve the initial value problem of (63) and (64)
for N = 2, using the large-time estimate (equation (81b)) for #,
especially as it is the equilibrium variance spectrum

F(k) = lim F(k, t)
=
which is of interest. The solution is a lognormal distribution
for R [Lundgren, 1981]:

82)

2nRP(R, s|r, t) = (4naR?) ™ Y2 exp [—(L — 20)*/(40)] (83)
10°—
- 700m
- 1300m
104___— R2
:.m : R4/3
t
s L
10%=
2 Lo el 11 o1l
1010 10? 103

R, km

Fig. 9. Relative diffusivity # as a function of separation R, in-
ferred from observations of subsurface ocean drifters at depths of 100
m and 1300 m, at the southern edge of the Gulf Stream recirculation
gyre. The straight lines have slopes of +2 and +% (after J. F. Price,
cited by McWilliams et al. [1983]).
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Fig. 10. Separation variance (R2) as a function of time from
launch, for high-altitude balloons in southern hemisphere subtropics.
The straight line indicates exponential growth [after Er-El and Peskin,
1981].

where L = In (R/r) and o = (t — s)A*/3. It follows immediately
that
(R™y =gt 2 —00 < n< o0 (84)

There is large-scale atmospheric evidence in support of (84) for
n = 2, [Er-El and Peskin, 1981] (see Figure 10). Again, while
these observations are consistent with a relative diffusivity
{ oc R*1™! where t is some time scale such as A~ /® [Lin,
1972], they only imply that E(k) cc k™9, for some g > 3.

In order to calculate the equilibrium variance spectrum F(k)
using (23), (82), and (83), it is convenient to interchange orders
of integration and then use the result that for P given by (83),

T
lim J.P(R, s|r, ) ds = A7 P3EnrH) ! R<r (85a)
t—= o0 JO

1
lim JP(R, s|r, ) ds = A~ 34nR2)~? R>r  (85h)
1= JO

. The time-integrated distribution (equation (85)) is not normal-
ized; this is to be expected since P is normalized for each s (see
(22)). However,- given (85), the Fourier integrals in (23) are
convergent, so the interchange of orders of integration is justi-
fied. Using the identity (equation (17)) then yields [Bennett and
Denman, 1985]

k<l (86a)

(86b)

F(k) = byA~*2kI~2

F(ky = byA "Pk™1 k>1
This spectral shape, O(k™1), is neither red nor blue; every
wave number decade makes the same contribution to the total
variance. The total is infinite as might be expected as t— oo,
given that there is a stationary source of scalar variance and
that scalar diffusion has been ignored. It must be conceded
that the result (equation (86b)) could have been deduced using
dimensional analysis alone, without having to determine the
_ separation pdf (equation (83)) or having to evaluate the inte-
gral (equation (23)). We shall return to this important point
later.
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44,

Consider the three-dimensional energy-cascading subrange
characterized by energy dissipation rate ¢ and Eulerian energy
spectrum (70). On dimensional grounds the dimensionless La-
grangian spectrum Z(k, w) must be of the form [Kraichnan,
1966]

(Energy) Inertia-Convective Subrange

Lk, w) = L(wk?3113)
Combining (70), (73), and (87) yields

(87)

[ ] 1
n=4a J dk K, ek~ 5B F(kR) fdw Lw — k] (88)
0 s

By definition, #(0) =1, and it will be assumed that £ is
integrable from O to co. Then the limiting forms of # given in
(75) imply that the integral over k in (88) is convergent as
k— 0 and as k— o0. Consequently [ Kraichnan, 1966],

n bt —s)ePR¥3 (t — 5)ePR™P 0 (89a)

n = be! PR3 (t — 5)e*R™2P - (89b)

The asymptotic form (equation (89b)) was inferred by Rich-
ardson [1926] from observations. Seemingly substantial sup-
port has been obtained subsequently [e.g., Okubo, 1971] (see
Figure 11 here) over a very wide range of scales: 10 m < R <
10° m(!). However, flow on the larger scales could hardly be
described as three-dimensional isotropic turbulence charac-
terized by a well-defined &. As Okubo [1971] points out, dia-
grams like Figure 11 here are misleading; they are not plots of
D{(R?)/Dt against R; rather, they are plots against (R*)/%
Thus all the “$” curve substantiates is the cubic time depen-
dence: (R?) «c 13, The latter is also characteristic of particle
pairs taking independent random walks in a shear flow (see

1 1 1 1
102 107 100 10 102 108 104
(R2)>"2 km
Fig. 11. Relative diffusivity n as a function of rms separation

{R*>*/2, inferred from observations at the ocean surface obtained in
various experiments. The straight lines have the slope +%; this
merely indicates (R2) o ¢? [after Okubo, 1971].

I
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Fig. 12. Temperature variance dissipation spectrum

(k/k,)*F(k/k,) as a function of k/k,, in an atmospheric boundary layer
in Minnesota. The straight line has a slope of + § [after Champagne et
al.,, 1977].

Bowden [1965] or Appendix T here). In conclusion, it is doubt-
ful that there is any proper, direct observational evidence for
(89b), although recent laboratory measurements by Mory and
Hopfinger [1986] are suggestive. Nevertheless, we shall pursue
its consequences here.

Again, it is argued that (89a) indicates very slow dispersion
at first, so it is reasonable to solve the initial value problem
(equations (63) and (64)) for N = 3, using the large-time esti-
mate (equation (89b)) for 7. The solution is

PR, s|r, 1) = (871.’9R7/6r7/5)—1
- exp [— 902" + R¥3)(48)~ 1]17/2[97'1/3R”3(29)— 17 (90)

where 0 = be!/3(t — 5) > 0, and I,,, is a modified Bessel func-
tion of the first kind. It is readily shown using (90) that
(R?> = be?3(t — 5)>. In the limit R~??6— 0 but R >»r, (90)
has the asymptotic form

P(R, s|r, t) ~ [87@)!1})"?07° exp [—9IR**@40)""]
©n

which is the self-similar solution of Richardson [1926], inde-
pendent of initial separation r. As such, it is not useful for the
evaluation of F using (23). However, all that is required of (90)
is

t
lim JP(R, s|r, ) ds = be~ V3p~ 73 R<r (92a)

t—+ o JO

1
lim JP(R, sir, ) ds=be”PR™"®  R>r  (92b)

1= O

Evaluation of the Fourier integrals in (23) is not as tidy as for
(85), and it is clearest to proceed in stages. First, we calculate
the scalar field covariance at equilibrium:

V(r) = im(C(x + r, HC(x, 1)) 93)

t—r

which is related to F(k) by

F(k) = a(k) j " dr aw)BUr)V () 94)
0

That is, we defer the Fourier integral over r in (23). The ap-
proximate result

V(r) = bye 3123 — b'r2l3) (95)

holds for r « I~ !. Note that the total scalar variance is found
to have a finite equilibrium value:

V(0) == bye~ 113172/ (96)

even though scalar dissipation has been neglected. On the
other hand, it will be seen that the total scalar dissipation rate
has an infinite value rather than the correct value y. Note also
the scalar structure function:

lim{[C(x + 1, 1) — C(x, )]*>

t—co

= 2V(0) — 2V(r) = bye~13r?R (97

Monin and Yaglom [1975] review substantial evidence in sup-
port of (97), over a wide range of scales. The scalar spectrum
F(k) may be determined from (97) using the inverse integral
transform [ Batchelor, 1960, p. 123]

2V(0) — 2V(r) = 2(2m) " J

0

0OF(k)[l — Bkry] dk  (98)

It may be seen by inspection that the solution of (98), given
(97), is

F(k) = bye™ 13k~ (99)

In particular, the integral in (98) is convergent both at k=0
and k = oo. There is a wealth of atmospheric and oceanic data
in support of (99). Gargett [1985] reviews the literature and
presents some new high-quality data (see Figures 12 and 13
here).

The result (equation (99) was originally obtained using di-
mensionless arguments alone, by Obhukov [1949], Corrsin
[1951], and Batchelor [1959]. Detailed calculations as above
would seem unjustified, especially as dimensional arguments
were used to infer the shape of E(k) and hence 5. The justi-
fication is that the success of the detailed calculations provides
support for (89b), Richardson’s 4 law. Batchelor [1952] argued,
to the contrary, that  should be independent of R; on dimen-
sional grounds this implies

n = be(t — s)* (100)

It follows that the diffusivity tensor #;; must be just 6;;. Then
(49) for the vector separation pdf is readily solved, yielding an
uncorrelated multivariate normal distribution for R, with zero
mean and variance

(R?Y = bell3(t — s5) (101)

which is well supported by data, as already mentioned. Com-
bining this result with (19) leads to the equilibrium scalar
variance spectrum

F(k) = bye~ 131" 2B38(k — |) (102)

indicating no cascade of scalar variance. Note that §(k — [) has
the same dimensions as k™ 1.
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Fig. 13. Class-average, 3-moment temperature spectra (k/k,)>*F(k/k,) in a British Columbia fjord, as functions of
k/k,. Class A data pass strmgcnt tests for statistical isotropy and have high signal-to-noise ratios. Class B data depart
from isotropy and have lower signal-to-noise ratios. The envelopes indicate the variance within the classes. The approxi-
mately level segments between the brackets indicate F(k) oc k™ 5/ [after Gargett, 1985].

4.5.  Viscous-Convective Subrange 4.6. Transition

The inertia-convective subrange discussed in the previous
subsection involves wave numbers much less than the Kolmo-
gorov value k. In order to compute the variance spectrum at
wave numbers much greater than k,, it is necessary to deter-
mine P(R, s|r, t) for values of R « k,~'. In particular, the
diffusivity #(R, s|¢) is needed for R « k, ~*. The inertial sub-
range formula (equation (88)) may still be used, provided the
upper limit of integration over k is set at the cutoff fk, (see

(71)), and #(kR) may be replaced by bk*R>. 1t follows that
1= b0t — R Qt —5)— 0 (103q)
n = bQR? Qt — 5)— oo (103b)

where Q = g3k, *? = (g¢/v)!/? is, to within a dimensionless
constant, the rms vorticity.

The approximate diffusivity (equation (103)) is of the same
form as that in the enstrophy inertia-convective subrange
(equation (81)). We may immediately infer from (86) that the
scalar-variance spectrum is

Fk)=byQ k"2 k<l (104a)

F(k) = byQ~ k1 k>1 (104b)

This result was originally obtained by Batchelor [1959], again
by Kraichnan [1974], and also by Lesieur et al. [1981]. There
is no clear supporting evidence for (104) atmospheric or
oceanic data. Convective subranges exist only where the scalar
diffusion rate xk? is much smaller than the strain rate (g/v)"/?,
that is, k « k where ky =k, Pr'/> is the Batchelor wave
number and Pr = v/k is the Prandt]l number. Thus viscous-

convective subranges require k, « k « k, Pri? or 1 «
Pri’2, For air, Pri/2 = .85, while for water, Pri/*? = 26.
However, several of the scalar spectra reported by Gargett
[1985] show “— 2” inertia-convective ranges which flatten out
before rolling off above kp.

AR

The energy spectrum E(k) has a well-defined transition from
the (energy) inertial to the viscous subrange at k = k, /10 (see
Figure 5). All that can be inferred thus far for the scalar spec-
trum is a transition from the — $ inertial-convective subrange
to the “—1” viscous-convective subrange, also at k ~ k,/10.
Thus it is a little surprising that observations [e.g., Gargett,
1985] show well-defined scalar transitions at k = k,,/100. It is
argued here that no other physics need be involved in order to
explain this misalignment; such a large numerical factor is to
be expected. A detailed solution of (63), using a coefficient 5
which interpolates between the £ law (equation (895h)) and the
“2” Jaw (equation (103b)), mlght reveal such a factor, but at
considerable computational effort. The interpolation formula
would be arbitrary; that is, it could introduce arbitrary nu-
merical factors. Instead, an examination of the dependence of
n on E and ¥ will itself reveal an appropriate numerical
factor.

It is sufficient to examine # in the limit (t — s)— co. Let
ZL(k, t) have the inertial range form (equation (87)). As was
stated in the preceding section, the range of integration for k
in (88) is effectively limited to k < fk, ; in any case, this choice
can only prejudice the result in favor of the inertia-convective
subrange form for 5 (i.e., possibly pushing the scalar transition
above k). Then we have

Shy
n = be'? f R "PZ(kR) dk (105)
0
The integral over k in (105) may be evaluated numerically.
The results are shown in Figure 14. They indicate a well-
defined transition for n at a separation R almost a decade
greater than the cutoff length (fk,) . This is indicative of a
scalar transition in wave number space almost a decade below
Jk,. The source of this numerical factor of 26 is the slow rise
of the high-pass filter #(a) from a?/30 for a « 1 to Fas a —
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1 1 1 1

1 2 3

log,o(Rk,)

Fig. 14. Large-time relative diffysivity # as a function of separation, according to the truncated model (equation (71))
for the energy spectrum: f = 1, and the transition from the R? range to the R*? range is at R = 6k, ~* (solid line); f = 0.1,
and the transition is at R = 60k, ~! (dashed line). That is, the transition occurs at a separatlon close to an order of

magnitude larger than the length scale of maximum dlss1pat10n

oo (see Figure 7). Note that the first maximum of & occurs at
a = 6. The shape of # is purely a consequence of the geome-
try of isotropic turbulence.

If the Prandtl number Pr=v/k is not large, then the
viscous-convective subrange should not be well defined. The
inertia-convective subrange should have a smooth transition
to the 1ap1dly decaylng viscous-diffusive subrange described in
the next section. However a clear “bump™ in the scalar spec:
trum is commonly observed for k = O(ky) [Champagne et al.,
1977, Williams and Paulson, 1977]. It is suggested here that
the bump 1s a latent viscous-convective subrange, which exists
because of the tendency of 7 to convert to the 2 law for
k « ky. Similar conclusions were reached by Hill [1978], who
calculated spectra corresponding to several models of the
spectral transfer rate. Those models include two or three d1s-
posable parameters. The analysis here has none.

3. DIFFUSIVE SUBRANGES

So far, scalar diffusion has been neglected; specifically, the
diffusion factor g(k, t, s) appearing in the representation (18)
has been replaced by vnity. This assumes that the initial diffu-
sion rate xk? is much smaller than the turbulent strain rates.
The assumption will now be relaxed; approx1mate forms for g
will be devrsed and dlﬂusrve subrange spectra wrll be calcu-
lated. ’ :

5.1, (Enstrophy) Inertia-Diffusive Subrange

Consider the enstrophy-cascading inertial subrange of two-
dimensional turbulence. It will be seen in section 5.3 that the
rate of mﬁmtesrmal line stretching is characterlzed by the rms
strain rate and so is O(4'7) here, where 1 is the enstrophy
cascade rate. The logarrthmw separation rate for particle
pairs, defined by R~ 2y, is also O(4'3) according to (81b).
These rates are greatly exceeded by the scalar diffusion rate
wck? if (Ak )6 « k. On the other hand, k must be less than
the upper limit of the enstrophy-cascadmg 1nert1al subrange of
the turbulence

In this subrange, infinitesimal line stretching is negligible, so
the diffusion factor g(k, ¢, s) may be approximated by exp
[—xk* — s)]. In particular, the fundamental assumption of
spatially uniform stretching factors is vindicated here; these
factors do not depart significantly from unity'during the diffu-
sion process. Only the marginal statistics of separation are
required, and the short-time relative diffusivity (equatron
{894a)) should be appropriate. Indeed, as a first approximation
it would seem sufficient to approximate the separation pdf
P(R, s|r, ) by its initial form a(R)™'6(R — r). However, such
an approximation leads 1mmed1ately to the scalar varrance
spectrum

F(k) = bya(k)d(k — D(ck?)™* (106)

where a(k) = 2nk for two dimensions. That is, there is no cas-
cade from the injection wave number [, as a consequence .of
having entirely ignored relative diffusion. Clearly, it is neces-
sary to recognize that P has a small but finite spread about
R =r. For example the variance is 0[/12/ 3t — 8)*r?]. A cor-
rection to (106) may be calculated this way, but the result
depends upon the injection wave number [. That is, there is no
universal form for the 1nert1a diffusive subrange here.

- The model used above (and in all of this article so far)
assumes that the scalar field ‘is sustained by an ISOtI'OplC
source. This is an 1deahzat10n A more reallst1c model (and
ong which is far more easrly realized in practice) has no exter-
nal source of scalar variance.but 1nstead has a mean scalar
concentratlon with a gradient. In partlcular it will be assumed
that the gradient is uniform in space and time. Without loss of
generahty it will: be assumed that the gradlent is parallel to
one of the space axes: .

V{C> =T, 0, 0) (107)

In this model the turbulent velocrty field is still assumed to be
statlonary, isotropic, and . with zero mean. Fluctuatlons in C
will be- induced by turbulent advection of the ‘mean scalar
gradient or possibly hy randon_l initial values for C, but this
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latter possibility will be ignored by assuming C' = 0 at ¢ = 0.
The prime denotes a fluctuation in C.

It is easily seen that C' satisfies the advection-diffusion
equation (equation (1)) with the random source S replaced by
—u,(x, 1)[, which is the advection down the mean scalar
gradient. Hence the solution is, according to the repre-
sentation (5),

Cx, t)= —-T fds ~[‘dy Gx —y, t, S)u,(y, t]s) (108)
o

1t is now straightforward to derive an expression for the equi-
librium scalar variance spectrum F(k). Again, the inertia-
diffusive subrange form will be assumed for the diffusion
factor: g(k, t, s) = exp [ —2ick*(t — s)]. The expression for F(k)
includes the Lagrangian velocity correlation ulyy, tls,) - uly,,
tls,)y where 0 < 5, and s, < t. However, we need only
consider (t —s, ;) = O(xkk*)™*, which is much less than the
decorrelation time scales of the turbulence (here O(A~1/3)). As
a result, the Lagrangian velocity correlation may be approxi-
mated by the Eulerian covariance <(uly,, t|t) - u(y,, t|t)) =
u(yy, 1) - uy,, 8)) = V,{y, — y,) for stationary homogeneous
turbulence. The latter is related to the kinetic energy spectrum
by the Fourier transform (equation (69)). With these approxi-
mations the expression for F(k) may be evaluated analytically
to yield

F(k) = bI?E(k)(xk?)~? (109)
In the enstrophy subrange, E(k) = bA%>3k~3, so
F(k) = b2 2= (110)

5.2.

In the energy-cascading inertial subrange, infinitesimal line
stretching proceeds at the rms strain rate Q = (g/v)'/2, while
particle pairs separate at the rate &'/’ (if we consider sepa-
rations r ~ k™). Let k, = &'/~ 3* = k,, Pr¥* If Pr « 1, then
there is an inertia-diffusive subrange, kj, « k « k,, between the
inertial-convective and viscous-diffusive subranges. In this in-
termediate range, (e/v)/? « &'/3k*3 « xk?. That is, the molec-
ular diffusion rate greatly exceeds the local separation rate,
which in turn exceeds the infinitesimal stretching rate. In par-
ticular, the diffusion factor g(k, t, s) has the simple form given
previously, and only marginal statistics of separation are
needed to compute F(k).

The isotropic source model leads to a scalar variance spec-
trum dependent upon the injection wave number ! ; that is, a
universal form is not found. The uniform gradient model Jead-
ing to (109), combined with the energy subrange (equation
(70)), yields

(Energy) Inertia-Diffusive Subrange

F(k) = bT2e23¢ 2~ 1713 (111)
This result is originally owing to Batchelor et al. [1959]. It
was also derived by Kraichnan [1968] using the Lagrangian
history direct interaction approximation. More recently Les-
ieur et al. [1981] and Lesieur and Herring [1985] have derived
(110) and (111) using eddy-damped quasi-normal closure
theory.

It may be noted that all these other derivations assume an
isotropic source model but in effect argue that a low wave
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number component of the scalar field is in practice indis-
tinguishable from a mean gradient in the field. They effectively
identify the (squared) mean gradient I'? with the (scaled)
source strength yxc”'. What is omitted in these other derivati-
vations is the variance production term (CS). It is claimed
here that this term is a source of nonuniversality. The observa-
tions of Clay [1973] in a laboratory channel using mercury
{(Pr = 0.02) clearly support (111), but the experiment is best
described by the mean gradient model. It seems improbable
that an isotropic source can be devised, so this claim will be
difficult to test.

5.3.

As was discussed in section 4.5, there is a viscous-convective
subrange, k, « k « ky = k, Pr'? provided the Prandtl
number Pr is very large. Beyond this range, that is, for k >» kg,
scalar diffusion cannot be neglected. There will be fluctuations
in the diffusion factor g(k, t, s) owing to infinitesimal line
stretching; this proceeds at the local or rms strain rate Q =
(e/v)!'*, as does (logarithmic) particle pair separation (see
(103b)). Thus joint statistics of stretching and separation are
required in order to estimate F(k) using (18). Specifically, what
are required are the joint statistics of finite separation R and
the infinitesimal displacement §A appearing in (6).

To this end it is convenient to introduce the vector h where

Viscous-Diffusive Subrange

0A;
h; = k; —L [A(x, t15), s|1] (112)
0x;

Thenk - Q -k =h-h= h% It is shown in Appendix II that

oh/ds = —WTh (113)
subject to h = k at s = ¢, where
Ou;
Wj=-=1(xtl]s) (114)
0x;
Meanwhile, R satisfies
OR/ds = u(X + R, 5) — u(X, s) (115)

subject to R =r at s =¢. For R « k, !, separation is con-
trolled in the rms sense by eddies of scale k™! = k, ! » R,
so R obeys, essentially,

OR/ds ~ WR (116)

It may be noted that R and h are dual vectors in the sense that
h:«R =k.r, for all s. However, there is no obvious statistical
relationship between the separation R and the vector L ap-
pearing in (6). We shall simply neglect that “drift” term; as a
result, we have

0g/0s = kh?g (117)

subject to g =1 as s = t. This system of random differential
equations (equations (113), (116), and (117)) will provide the
required joint statistics of separation and stretching.

It is shown in Appendix II that the calculation of the scalar
variance spectrum reduces to

Flk,t)=y fda k) fda {)] ftds Jdg P(g,k, t| 1,1, 5)g (118)
0

L1111 1111111111 T T T
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where P is the joint pdf for the system
(119a)
(119b)

0g/0t = —kk?g
Ok/or = —WTk

with g = 1 and k =1 at ¢ = 5. Kraichnan [1974] arrived at this
point by an analogous construction. He proposed a one-
dimensional model for k = k]

okfot = ak (120)
with k = [ at t = 5. The statistically stationary, random strain
rate oft) has a positive mean and a white noise variance 2.
That is, (120) should be written as

dk = {adk dt + 2%k dw (121)

where c(f) is the Wiener process of unit variance [van
Kampen, 1981]. Both (&) and v? are O(Q). Kraichnan argued
that {a) = Nv® where N is the number of space dimensions in
(119b). Once the joint pdf P(g, k, t|1, I, s) for the system (119a)
and (121) has been found, the equilibrium spectrum is given by

© 1
Fk) =xf dt f dg P(g, k, 11, 1, 0)g® (122)
0 (¢]

The joint pdf in (122) satisfies the Fokker-Planck equation
P, = —(a)(kP), + kk*(gP), + v?k(kP,), (123)

in the Stratonovitch interpretation, for which o is regarded as
a process with a vanishingly small decorrelation time [van
Kampen, 1981]. The initial condition is

Plg, k, 011, 1,0)= (g — 1)k — I (124)

Steady state and time-dependent solutions have been obtained
by Kraichnan [1974] and Bennett [1986], respectively. The
solution is particularly simple in the ease v = 0, which corre-
sponds to Batchelor’s [1959] uniform strain model. The spec-
trum is

Fk) = 7<op 7 k™  exp [—xdad MR — 1] (125)

as given by Batchelor. If v > 0, then the spectrum is of the
form

F(K) oc k* exp [ —(2uc0™~ ) 2k] (126)

as k— co and I 0 [Kraichnan, 1974], where w = L(¢adv™?
— 3). However, if the range of integration over g in (122) is
restricted to g, < g < 1 where 0 < Jo» then, still for the case
v > (, the spectrum is asymptotically of the form

Fk) oc kK2"f™ 12 exp [—1eory ™ (dufy) ™ k2]

where f, = In g,. This is essentially of the same form as the
Batchelor spectrum (equation (125)) even though the strain
‘rate « is now random. The cutoff g, may represent the thresh-
old sensitivity of a measuring instrument.

The adoption of a white noise model for the strain rate oft)
as in (121) is extreme. Consider instead the model

(127

dkjdt = kQOM() (128)

where 0 is a standard normal random variable and M is some
positive-valued functional form. It is assumed that @ is inde-
pendent of time or else is a stationary process with a very long
decorrelation time. The spectrum F(k, 8) for a particular reali-
zation of @ is given by the Batchelor form (equation (125)),
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with {a) replaced by QM(8). The spectrum F(k) is obtained by
averaging over 0. Asymptotic forms for F(k) may be obtained
using the method of steepest descent, as k— co. There are
several interesting examples:

M) = ¢°
This lognormal strain rate is a natural choice. The spectrum

is
F(k) oc 27"k~ 2 In (kfky) exp [~ In? (k/k,)]

Note that k,? = Qx~'. Thus intermittency of the strain rate
leads to a very broad spectrum.

M() = O(1)
M(0) = 0(1)

(129)

|6]— oo
{6l — oo
The spectrum is, asymptotically as k— oo,

Fll) oc Y7 k™ exp [~ b, (k/kg)* — by(k/ky)]  (130)

where b, and b, are positive, bounded dimensionless functions
of k/kg. This resembles the Batchelor form (equation (125)).

It is instructive to compare this array of results (equations
(125), (126), (127), (129), and (130)) with observations. Gargett
[1985] provides a review and presents high-quality data from
a turbulent coastal channel (see Figure 15). These recent ob-
servations support the Batchelor spectrum (equation (125)),
but no universal value is found for g = Q<a>7 . (In terms of ¢
the exponential in (125) becomes exp [ —g(k> — 1)k, ~2]). For
large signal-to-noise ratios (small go) Gargett finds large
values for g; this contradicts (127). The most plausible model
is (130); if the spectrum were of this form, then fitting the
Batchelor form to the daia (ie., assuming b, = 0) would lead
to an overestimate for b,. The safest conclusion is that while
theoretical models of the viscous-diffusive subrange are highly
sensitive to model details, Batchelorlike spectral forms are
ubiquitous, but universality is not likely.

6. TOTAL SCALAR VARIANCE

So far, the wave number spectrum of the scalar field has
been examined, given a random isotropic source of scalar vari-
ance. In this section the total scalar variance is estimated for a
variety of sources. ’

6.1.

Consider the source § introduced in section 2. It has white
noise time dependence (equation (16)) and a simple space cor-
relation (equation (16)) corresponding to injection of scalar
variance only at wave numbers with magnitudes |k| = . The
total scalar variance may be estimated by integrating the sev-
eral subranges of the variance spectra.

For the enstrophy inertia-convective range (equation (86)),
the result is

Random Isotropic Source

Vie = bxA™ {3 + In (ke/D} (131)
where k. is the upper limit of the subrange. If this convective
subrange is cut off by scalar diffusion with diffusivity x, then
ke = (Umx™")'? where U = (em~1*/3 is an rms velocity for
the turbulence which has the characteristic length scale m™!
described in section 4.1. Assuming ! ~ m, that is, scalar vari-
ance and kinetic energy are injected at the same wave number,
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Fig. 15. Variance- -preserving plot of temperature variance dlSSlpatlon spectra in a British Columbia fjord, after Gargett

[1985]: Batchelor spectrum (equation (125)) with g = Q¢a)>~ 1
(heavy dashed curve).

yields ko/l & (Ux~im™ )12 = Pel’> wheré Pe is the Peclet
number. Thus

= byl 311 Pe (132)

However the detalled physws of the ranges beyond the en-
strophy inertia convective are not well defined, so no attempt
will be made to estimate their contrxbutlon to the total scalar
variance. The important point is the dependence, if only loga-
_rithmic, of the total variance upon the small scale parameter
ke. ' '
For the energy inertia- convectlve subrange the total scalar
variance has already been obtained (equatlon (96)) as the value

of the structuré function at small separation:
. —1/3 [ 243

Vic = bye (133)

If Pro> 1, there is & viscous-convective subrange k, « k «
k, Pri/? = kg By virtue of (104b), this contrlbutes :

7 Ve =~ byQ ™t In Pr (134)
The ratio of the two contributions (equations (133) and (134))
is '

Vie/Vve = b RE(mf*3(in Pr)~* (135)

where the Reynolds number Re = Um~ v~ 1. Thus the inertia-
convedtive contribution should dominate in the geophysrcal
contest. The coniribution of the viscous-diffusive subrange is
he’g‘ligibie

6. 2. M ean Scalar Gradient

- This state has already been considered in the analysis of the
1nert1a-d1ﬁuswe subrange (see section 5.1). Again, the mean
scalar gradient is

V(C) =T, 0,0 . (136)

a__hd scalar fluctudtions C’ satiéfy the adveetion.—diﬁusioh equd-
tion (equ'aﬁori (1)) with sourée —u,(x, ). Herice C' is given
by (108), while the total variance is

BHEIBBRHT

SIS

= 12 (heavy solid curve) and Batchelor spectrum with g = 4

t 0t
ir? st’lj‘ ds, fdylfdyz (G =¥y, t, 59)
0 0
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V=(C? =

u(y,, ts.))

The physical space diffusioni functions are significant only if
|x — y, ,| are small; they are normalized distribution fuhc-
tions, so'in 4 fifst approximation,

“G(X — ¥q, t, s)uyy, t]sy) -

~ lFZJr dslf t ds; Cu(x, £]5;) - u(x + 2, £]5,)) (138)

where z = |z] is very small, O(xU 'm~*)*? = m™! Pe~172,

For isotropic stationary turbulence we have
<u(x, t]s) - u(x + z, t]5,)> = Vo [z, t — S(sy + 85), 8, — 53]
(139)

which is a Lagrangian velocity covariance W1th one space lag
and two time lags. In the limit as t— oo, (138) becomes

V ~1ir? J dtlf dt, V,(z, t1; ts) (140)
0 o 7
wheré t; =t — 3(s; +5,) and t, = (s — s3); that is,
V ~ir’r f dt, Vo2, ty) (141)
0 .

(mU)~* is an integral time scale for the argunrent
v, over t,:

where T ~
,in V. ,and V., represents the mean of

uw

V(2 t;) = T-lf dt, V(2 ty, ty) (142)
0]

Since z « mi~ L, which is of the order of the space decorrelation
scale for u, it will be sufficiently accurate to set z = 0 in (142).
This does not irnply that molecular diffusion has been entirely
neglected, sihce ¥V, (0, t,) represent a decotrelation of the ve-
locities of two partlcles which were once very close together
(at s, = s, = t; t; = 0). For a given value of ¢; 2 T, their

T —
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separation should be of the order of D = (U?T1,)!/? since the
particles will be making independent random walks (absolute
diffusion), and an estimate of the right order magnitude for V
should be given by
Vo~ bFzT(UZT)”J D V,(D)D (143)
0

where V(D) is the Eulerian velocity covariance at space lag
D:

VD) = {u(x + D, &) - u(x, 1)) (144)
That is, since V,, has the length scale m ™! = UT,
V = bI2m2 (145)

provided the integral in (143) is convergent. If it is not conver-
gent, then the velocity field would have such long range corre-
lations that the uniform mean scalar gradient model would
not be useful. A possible exception might be gradients on the
scale of an oceanic gyre, advected by mesoscale turbulence.
However, the question of integrability of a correlation func-
tion is not answerable in practice, and the estimate (equation
(145)) must bear this stigma. It is bounded but is explicitly
independent of the molecular or small-scale diffusivity k.
Nevertheless, it is implicitly dependent upon the existence of a
nonzero diffusivity since it is the result of a two-particle calcu-
lation (¢, is the time for which the two particles have been
separating after being very close). To explain (145) further,
consider the two particles involved in (138). Initially very
small, the separation of the two particles will grow as (et 3)!/2
as it crosses the energy inertial subrange. The separation will
be of the order of m™! when t; ~ (m 2" )2 = w1y~
Each particle will then have been displaced by about Ut ~
m~1; these displacements will be correlated, but subsequent
displacements will not; thus (138) yields (145). If the early
stage of separation is controlled by an enstrophy inertial sub-
range for which A =~ (Um)?, then separation grows as ze*'’t,,
and so displacements will be correlated until £, ~ m~'U " Y|ln
(mz)], by which time they are ~ Ut,. That is, (145) becomes
V ~bI?m™2 In Pe (146)
Durbin [1980] also argued for (138). That is, total scalar
variance, even in the presence of molecular diffusion, could be
calculated with diffusion neglected, by taking the limit of
scalar covariance at small space lag. He calculated the dis-
placement correlation (equation (138)) by developing a sto-
chastic model for joint motions of particle pairs. However, he
found an unbounded ¥, growing as /2 as t— oo. The reason
is that his stochastic model was based on an Eulerian velocity
correlation V(D) decaying as D23 as D— co. With this
choice the integral in (143) would be divergent. While this
decay rate may be appropriate in the energy inertial range, it
is probably unrealistically slow for D >»> m™1.

6.3.  Random Source of Finite Extent

It would be attractive to be able to model long-range trans-
port of scalars from localized sources, by tracking particles
leaving a point source. For example, let the source strength be
given by

S(x, t) dt = xM?(2na?)~Ni4e =¥ 49D o, (1)

(147)
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where o is the radius of the source which is centered at x = 0,
N is the dimension of the space, and w(t) is the Wiener pro-

cess. The latter has uncorrelated increments:
ddw (t;) dw (1)) = 6(t, — t,) dt, dt, (148)

Note that the total variance of the total source contribution
{ S dt is a linear function of time but is independent of the
source radius o

J<J,S(x, 51) dslfS(x, s,) dsz> dx =yt
0 0

With diffusion neglected (x = 0) the solution for the scalar
concentration is simply

(149)

Clx, 1) = J:ds S(x, t]5) (150)
An elementary calculation then yields
C¥x, ) = 1 L ds {20 + 21 — HKT) =M
exp {—Zix + (¢ — s)}Kup/[o? + 2t — 5)K]}  (151)

In the derivation of (151) it has been assumed that the particle
displacement A(x, t|s) is a multivariate normal random
variable, with mean (¢t —s){(u) and variance 2(t — s)K =
4(t — s)|&'|*>T where T is the Lagrangian integral time scale
of the velocity field. It is also assumed that components of A
are uncorrelated. These assumptions are correct asymp-
totically as (t — s)— oo for isotropic turbulence, as discussed
in section 3. If the integral (151) is divergent as t— co, then
the neglect of scalar molecular diffusion (implied by the use of
(150)) is unjustified. Now (151) is convergent, provided that
{a) # 0. Otherwise, it is convergent only for N > 3. In gener-
al, any long-range transport model will involve a mean flow,
so convergence is the rule. The next issue is the behavior of
the scalar variance as the source radius o — 0. A closed form
for (151) is not available, but inferences may be made by
examining the integrand at ¢ =0. If x # 0, the integral is
convergent as s = 0. If x = 0, the integral is convergent only
for N = 1. However, for small values of (t — s) the variance of
A is in fact ~(t — 5)*{[w'|*) rather than 2(t — 5)K, in which
case the integral diverges even if N = 1, It is concluded that
the use of single particle statistics to model long-range scalar
transport from an isolated source is justified in the sense that
except at the source, the scalar variance is bounded even
though x =0 and even il the source radius is vanishingly
small.

The above calculation was simplified by the adoption of a
normal profile for the source § as in (147), but the results are
not dependent upon the choice. The difficulty at x = 0 was
noticed by Durbin [1980], but the satisfactory behavior else-
where was not described. Chatwin and Sullivan [1979] demon-
strated the existence of “core structures” in clouds of passive
containments using general scaling arguments and also re-
marked on the adequacy of point source models in analyses of
dispersion.

7. ErrecTIVE TOTAL DIFFUSIVITY FOR THE
MEaN FIELD

In previous sections, second-order statistics of C have been
examined: the variance spectrum F(k, t) and the total variance
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{C?%>. In this section the mean concentration {C) is con-
sidered. In particular, the asymptotic response for large time
due to a nonrandom source S(x, £} will be estimated, and the
results will be interpreted in terms of an effective total diffusi-
vity.

Evolution equations for the mean concentration {C) have
been derived by Phythian and Curtis [1978] and by Drummond
[1982] using renormalized series expansions and Feynman
path integral representations of (1), respectively. Both analyses
led to equations of diffusion type. The effective total diffusiv-
ities were in both analyses less than the sum of the Lagrangian
turbulent diffusivity K = N~ "trace(D,)), where D, is the inte-
gral in (34), plus the molecular diffusivity x. This destructive
interference between turbulent and molecular diffusion is evi-
dent in series solutions of (1) and (2) in powers of s derived by
Saffman [1960] and Okubo [1967].

An estimate of (C)> may be obtained directly, using the
representation (5):

1
(Cx, 1)) = jds fdy {G(x — ¥, t, )S[A(y, t|s), s]D> (152)
0
where the average is over the turbulence only, since S is non-
random. Let us assume that the infinitesimal line stretching in
G and the single particle displacement A in § are statistically
independent, since the former is due to integrated shear, while
the latter is due to integrated velocity; this yields

C(x, 1)) = fds de G —y,t, 8D J.dz S(z, s)P(z, sy, 1)
0

(153)

where P(z, s|y, t} is the single particle displacement pdf de-
fined by (27). For homogeneous turbulence, P = P(z — y, 5| 1),
and so (153) is a convolution product which has a simple
representation in wave number space:

(Ck, £y = ers (G, t, )8k, )Pk, s|1) (154)

where overbars denote Fourier transforms. (Previously, g was
used in place of G, but the latter symbol is introduced here for
consistency.) Suppose further that P(z — y, s[t) is normal, with
variance 2(t — s)K, as is asymptotically the case for isotropic
turbulence for t— co. Then P = ¢ ¥#*¢~2)_If molecular diffu-
sion is neglected, then G = 1, and

<Ck, c0)) = (Kk?*)~'S(k)

for a steady source S(x). If molecular diffusion is retained, but
stretching is ignored, then G = e™***¢~9) and (155) holds with
K replaced by the effective total diffusivity K, = K + x. That
is, there is no interference between molecular and turbulent
diffusion.

Let us now retain stretching, using the simple model of
Batchelor [1959] in which there is a nonrandom uniform
shear field with a strain rate € (see section 5.2). Then the
stretching factors grow exponentially in time, and

(155)

Gk, t,s)=exp| — ﬁf (e2X =9 _1) (156)
3 b 29
Substitution of (156) into (154) with a steady source yields

(155) with an effective total diffusivity

(157)

- 1
K.,=K+xll1+ + O(x*K™Y)
K-1

e
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which implies constructive interference between turbulent and
molecular diffusion. Recall the assumption of independence of
stretching and displacement and the use of the nonrandom
uniform strain model.

Finally, assume that stretching is governed by a white noise
strain rate, as in section 5.2. Then the results of Bennett [1986]
may be used to show that

(Glk, t, 8)) ~ b[o(t — s)]7> exp [—<{ap™(t — )/(4v)]

(o PRy K (vt e k) (158)

where z = 1 — ${adv™! and K, is a modified Bessel function.
For large x, Ko(x) ~ bx™!/2¢™* Note that the time and wave
number dependence of G have separated asymptotically, Evi-
dently, there is no longer an effective total diffusivity, accord-
ing to the white noise strain model, and (C(x, o)) does not
satisfy anything like a steady state diffusion equation. It is
concluded that calculations of corrections to the turbulent
diffusivity K, which are after all only O(x/K) = O(Pe™ "), are
highly sensitive to model details. It should also be noted that
the expansions used by Phythian and Curtis {1978] and also
Drummond [1982] ensured that {C) satisfied a diffusion equa-
tion.

8. SuMMARY

An approximate analytical solution to the advection-
diffusion equation has been used to estimate scalar variance
spectra, total scalar variances, and mean scalar fields. The
analysis is fundamentally Lagrangian in character.

The “—1” inertia-convective subrange, in isotropic station-
ary turbulence with an enstrophy-cascading inertial subrange,
is deduced wusing Lundgren’s [1981] solution of the
Richardson-Kraichnan equation with a separation-dependent
relative diffusivity: the “2” law. The “—2” inertia-convective
subrange, for an energy-cascading inert1a1 subrange, is de-
duced from a new solution of the Richardson-Kraichnan
equation with another separation-dependent relative diffusi-
vity: the “4” law. The success of this calculation is shown to
support the % law over separation-independent alternatives.
The —1 viscous-convective subrange, which exists for large
Prandt] numbers, is derived by analogy with the (enstrophy)
inertia-convective subrange. These spectral forms and relative
diffusivities are found in oceanic and atmospheric data. An
examination of the spectral representation of the relative dif-
fusivity indicates that the transition from the —32 law to the
—1 law should occur at wave numbers a decade smaller than
the viscous cutoff k,. This spectral misalignment is regularly
observed. For low Prandtl number, nonuniversal inertia-
diffusive subranges are found for enstrophy- and energy-
cascading turbulence and isotropic scalar sources. However,
the “—7” and “—4I” forms are derived if the isotropic scalar
sources are rcplaced with mean scalar gradients. The latter
form has been observed in the laboratory. Joint statistics of
separation and stretching are needed to describe viscous-
diffusive subranges. These statistics are modeled using uniform
strain fields which are deterministic, or have white noise time
dependence, or have very long decorrelation times. There is a
tendency toward essentially Gaussian spectral shapes at high

wave numbers. However, the shapes are not universal, in -

agreement with recent oceanic observations.

Total scalar variances are estimated for several source con-
figurations. The first is the isotropic source used in the analy-
sis of spectral subranges. In the enstrophy inertia-convective

IINIRInm
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subrange there are equal contributions to the tota] variance
from each decade; thus the total has a logarithmic dependence
on the ill-defined upper and lower bounds in wave number
space. The dynamics of the adjacent viscous-convective sub-
range are not well defined. In energy-cascading turbulence the
total scalar variance is dominated by the contribution from
the injection range. The total scalar variance in the presence of
a mean scalar gradient, but no source, is found to have a finite
value approximately independent of the molecular diffusivity
for the scalar. Nevertheless, the analysis is crucially dependent
upon the existence of a nonzero diffusivity, which causes the
variance to depend on relative turbulent diffusion. The result
just quoted holds for energy-cascading turbulence; for
enstrophy-cascading turbulence the total variance has a mild
dependence upon the molecular diffusivity, via the logarithm
of the Peclet number. The total variance due to emission from
a localized source is shown to be bounded for large time and
independent of the source radius and molecular diffusivity,
except at the source.

Finally, the total effective diffusivity for the mean scalar
field is considered. The interaction between turbulent and mo-
lecular fields can, according to models presented here, be inde-
pendently additive, or else constructive, or else such as to
vitiate the concept of a total effective diffusivity altogether.
Nevertheless, for large Pe the concept of a turbulent diffusivity
must be essentially correct. That is, molecular diffusivity leads
to an evolution equation for the mean scalar field which is not
of diffusion type but must in some sense be close to that type.

The results surveyed here hold for isotropic turbulence.
However, it should be noted that the approximate solution of
the advection-diffusion equation and the pair displacement
equation (equation (42)) (or its varients) are equally valid for
inhomogeneous turbulence. Specialization was only necessary
in sections 4-6, in order to make explicit estimates for relative
and absolute (single particle) diffusivities. The problem of esti-
mating the absolute diffusivity tensor for homogeneous but
anisotropic turbulence was tackled directly by Holloway and
Kristmannsson [1985)]. They devised a second-order turbu-
lence closure simultaneously for the f plane momentum equa-
tions and scalar diffusion equation. The closure was effected
for the Eulerian forms of the equations; consequently, the
scalar diffusivity tensor was expressed in terms of Eulerian
velocity statistics rather than Lagrangian statistics. It was
argued that the diffusivity tensor must be diagonal in east-
west and north-south coordinates, while an approximate
analysis showed that the north-south diffusivity decreased sig-
nificantly with increasing values for the § parameter. It is no
great oversimplification of this result to say that random
Rossby waves are less effective in meridional diffusion than
isotropic turbulence. The reduced meridional diffusivity is an
- expression of a decreased correlation between meridional ve-
locity and the scalar field. A Lagrangian closure may lead to a
different decorrelation.

Estimation of diffusivities for inhomogeneous turbulence is
really beyond the scope of analytical theory. A recent one-
dimensional analysis [van Dop et al., 1985] considers absolute
dispersion. As remarked in section 3, relative dispersion of
particle pairs last only briefly in strongly inhomogeneous tur-
bulence.

APPENDIX I: PARTICLE DISPERSION IN A SHEAR FLOW

Suppose there is a mean shear in the velocity fields, {u) =
(yx3, 0, 0), and suppose that only a transverse velocity compo-

nent fluctuates, (u;"*) = (u,"*) = 0 and <{u,’>> # 0. Consider
two particles with an initial separation R = {r1, 0, 0) suf-
ficiently large in magnitude so that their motions are indepen-
dent. Their motions may be regarded as independent random
walks, so the evolution of the components of their separation
may be modeled by

dR, = yR, dt (A1)
dR, =0 (A2)
dR, = 2K'2 do (1) (A3)

where w(t) is the Wiener process, while K is a constant diffusi-
vity (for stationary homogeneous turbulence). It follows easily
that (R;%) = 4Kt, and (R,R,> = 2Kyt?, s0

(R, = i+ %K'}’zta (Ad)

This £ law for particle separation is widely observed [Okubo,
1971], but (A4) is not a consequence of energy-cascading iner-
tial range scaling.

APPENDIX II: INFINITESIMAL STRETCHING
By definition of X = A(x, ¢]s), there is the identity

x = A[A(x, t|s), s|1] (AS)
Hence
0A, 04
6, =—(X,s|) —(x, t
i aX,( 5| )ax,. (x, t]s) (A6)
which yields
04,
ki=h —(x,t]s) (A7)
Ox;
where
04,
h=k; 5)?1 X, s{t) (A8)

is the stretching vector introduced in section 5.2. From (A7)
and (3} it follows that

Tl i1+ m D 190 (as
- (X t]s —— Julx, t]s) =
Os 0x; ! 0x; X TS )
which becomes

Oh, 04,

Os Ox; .

tls) + h,(:;")(x, t|s) % % t])=0  (A10)

Analogous to (A6), there is the identity

0A4; 0A
0,=—(x, t]s) =2 (X, 5|t 1
(> (x I.S) aX,.( s|t) (A11)

so multiplying (A10) by (84,/6X ) yields

oh ou

— = _p L Al2

0Os ' ox,, (A12)
or

d

—h=-WTh (113)

Os
where

U;
ij:a(x’ IflS) (114)
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Section 5§

T’ mean scalar gradient (see equation (107)).
V,.(r) Eulerian velocity covariance at separation
I.
(see after equation (108)).
ky =k, Pr3* lower limit of inertia-diffusive subrange
(Pr« 1.
i - velocity shear tensor (see equation (114)).
a random strain rate, with mean {a)
and variance v2.
g =Qad>~! constant in universal form of Batchelor
[19597 spectrum (see equation (125) and
after equation (130)).

Section 6

- U =(em™")'? root-mean square turbulent velocity.
Pe=Ux 'm™! Peclet number.
Re=Uv 'm™! Reynolds number.
V,, Lagrangian velocity covariance (see
equation (139)).

Note that other symbols not listed have also been used only
locally or as dummy variables; b and b’ always signify dimen-
sionless constants.
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The expression (equation (18)) for the variance spectrum
may be written as

Flk, t) = x Jda K)a()~* j da () ‘[!ds j dr (eftr g
1]

(A13)

where R and g are random variables satisfying (116) and (117),
respectively. It follows from (116) that R is given by

R = E(t|s)r (Al14)
where
OE
— = WE (A15)
ds
and E(t]|t) =1, the identity matrix. Substituting (A14) into

(A13) and integrating over r yields

Flk, )=y jda K)a() ! fda 1)) j'ds (S[k — ET(¢| s)]g>>

0

(A16)
Now g is given by
t
g = exp |:—1c J h2(z|s) ds’:l (A17)
where by (113),
h(t|s) = E'(s'| Dk (A18)

The expectation in (A16) is the variance of g, conditional upon

k =ET(|s) (A19)
Using (A17)—(A19) and the identity
E(s'}s) = E(s' | ))E(t]5) (A20)

shows that the expectanon in (A16) may be written as {g*)
where

g =—xklg k=WTk (119)

subjecttog=1landk =lats=1.

NOTATION

This is a list of frequently occurring symbols, in order of
introduction.

Section 2
x, X N-dimensional space coordinates.
t, s time variables.
u =u(x, t) N-dimensional fluid velocity field.
x scalar molecular diffusivity.
C = C(x, 1) scalar concentration field.
S = S(x, t) scalar source field.
A = A(x, t[s) position at time s of a particle known to
pass through position x at time ¢
(see equation (3)).
fundamental solution of advection-diffusion
equation in Lagrangian form (equation 4)),
assuming spatially uniform transformation
factors.

G(X -Y. 5 s)

k,L m

N-dimensional wave number vectors. Scalar

IR

gk, t, 5)

QL

DR

<O

V= {Cx, )*>,s
da (k)

F(k, t)

a(k)

Section 3

P("',"'

Dyj(x, y, t}s)
Mij

n

¢

KX, X, s|t)
w(t)

Section 4
E(k)

v
ky = glfdy=3/4

",t)

BENNETT: A LAGRANGIAN ANALYSIS OF TURBULENT DIFFUSION

variance is injected at [ = }1|; kinetic
energy is injected at m = |m|.

Fourier transform of G(x, ¢, s) (see equation
(6))- '

transformation or stretching factors

(see equation (6)).

N-dimensional separation vectors.
ensemble average and fluctuation.

total scalar variance, averaged over turb-
ulence and sources.

in k space; area element on an N sphere of
radius k = |k|.

variance spectrum of scalar concentration
(see equation (10)).

area of N sphere of radius k (see equation
(t1).

spherical average of ¢*® (see equation

(12)).

-+, 1) pdf of values at time s, conditional

on their taking values at time .
intensity of scalar source S (see equations
(15) and (16).

“micro” distribution function for a
given realization: {p)> = P (see equations
(25) and (27)).

Lagrangian diffusivity tensor (equation
(43)).

Lagrangian relative diffusivity tensor
(see equation (49)).

longitudinal component of 7,;.
Richardson’s relative diffusivity

(see equation (55)).

Taylor’s diffusivity tensor (see equation
(67)).

N-dimensional Wiener process, with
uncorrelated components and uncorrelated
increments.

kinetic energy spectrum (see equation
(69)).

mean dissipation rate of turbulent kinetic
energy.

kinematic viscosity.

Kolmogorov wave number.

K, Kolmogorov constant (see equation (70)).
F = F(0) high-pass filter due to geometry of
isotropic turbulence (see equations (74) and
| (75).
¥ = Pk, w) dimensionless Lagrangian spectrum
of kinetic energy (see equations (76) and
(77).
A mean dissipation rate of turbulent vertical
vorticity variance (enstrophy).
V(r) equilibrium scalar covariance at
separation r = [r|.
F(k) equilibrium scalar variance spectrum.
Q = (¢/v)!* root-mean-square velocity shear.
Pr = v/x Prandtl number.
kg =k, Pri/? = (Qx~Y)*? Batchelor’s [1959] cutoff wave

number.
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