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A Lagrangian Analysis of Turbulent Diffusion

ANDREW F BENNETT

Institute of Ocean Sciences, Sidney, British Columbia, Canada

This is an anaJysis of diffusion of a scalar field by molecular transport and isotropic turbulence.

Existing results are surveyed, and some new results are advanced. The discussion is supported wíth
oceanographic and atmospheric observations of dispersion and diffusion. The existing results were orig-
inally obtained using a variety of mathematicaltechniques. However, ail results are derived here using an
approximate solution of the Lagrangian form of the advection-ditfusion equation. The approximation is
equivalent to neglecting the spatial dependence of the transformation factors in the Lagrangian repre-
sentation of the moJecuJar flux divergence. Examinations of the diffusive subranges show the approxi-
mation to Justified: infinitesimal hne stretching is eíther controlled by relatively large scale shears

(viscous-diffusive subrange at large Prandtl number) or else is negligible during the diffusion process
(inertia-diffusive subrange at small Prandtl number). Estimation of scalar mean fields, total variances,
and wave number spectra requires, in general, joint statistics of infinítesimal line stretching and either
single particJe displacement or particJe pair separation. Normality is assumed for displacement statistics;
separation statistics are determined from the Richardson-Kraichnan equation. A simple derrvation of
that equation is presented here. Joint stretching-separation statistics are modeled by a uniform shear
flow, with time-dependent amplitudes described by the Wiener process (white noise). With the possible
exception of this random process, the only mathematics required here is elementary calcul us, so details
have been kept to a minimum. ln the diffusion problems considered here, the turbulence is isotropic.
However, both the approximate solution of the advection-diffusion equation and the equations for joint
displacements are equally vahd for inhomogeneous turbulence.
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1. INTRODUCTION

The widespread use of drifters in meteorology (e.g., Julian
et al., 1977; ErcEI (l/d Peskin, 1981) and oceanography (e.g.,
Freeland et aL., 1975; Colin de Verdiere, 1983; Royer and
Emery, 1984; Davis, 1985; Rossby et al., 1985, and references
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therein, Garrett et al., 1985) requires an examination of recent
analytical theories of turbulent diffusion. ln particular, it is
important to be able to use a knowledge of the turbulent
dispersion of marked fJuid particles in order to estimate con-
centrations of dissolved, passive scalar substances which are
subject to the combined effects of turbulent dispersion and
molecular diffusion ("turbulent diffusion"). Here molecular dif-
fusion may also be interpreted as the mixing effects of smaIl-
scale turbulence or waves, as parameterized by Young et aL.
(1982), for example.

Turbulent diffusion has attracted an enormous amount of
attention, and it is fortunate that there are a number of texts,
proceedings, and reviews on the subject written for the benefit
of meteorologists and oceanographers (Csanady, 1973; Fis-
cher et al., 1979; Harris, 1979; Okubo, 1980; Pasquil and
Smith, 1983; Chat win and Allen, 1985; Hunt, 1985). These aIl
contain careful discussions of the fundamentals, such as the
random-walk model of partic1e displacement. They also con-
tain detailed analyses of diffcult but important problems of
diffusion in anisotropic and inhomogeneous turbulence, such
as planetary boundary layers and coastal waters. However, the
material in these texts appears greatly removed from that
which appears in the later sections of the encyc10pedic treatise
by Monin and Yaglom (1975, sections 23 and 24) and even
further from the highly sophieticated theoretical analyses

which have appeared in the recent llterature. The latter in-
clude renormallzed series expansions (Kraichnan, 1966, 1977;

Phythian and Curtis, 1978), stochastic differential equations
(Durbin, 1980), and Feynman path integrals (Drummond,
1982).

The purpose of this article is to survey the results of the
theoretical analyses, using a unified but simple analytìcalap-
proach which, it is hoped, has the same spirit and level of
complexity of the texts mentioned ab ove. The results include
the various subrange forms for the wave mimber spectra of
scalar variance in isotropie turbulence. There is substantial
observational support for almost ail these forms. The results
also include total scalar variances, due to several source con-
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figurations. Some of these results lack observational support
as yet, while others are controversial to the extent that the

analysis given here does not agree with that given elsewhere.

Lastly, there is a discussion of the total effective diffusivity for
the mean scalar field; it is argued that there is uncertainty
even as to the existence of such a quantity.

An essential feature of the approach here is the use of an
approximate solution of the advection-diffusion equation in
Lagrangian coordinates, thereby emphasizing the hy-

drodynamic aspect of the physics and the relationship with
fluid particle kinematics. This emphasis is at odds with the
mathematical perspective in which the equation is of parabolic
type, rather than hyperbolic type, irrespective of the smallness
of the nondimensional diffusion coeffcíent or Peclet number.

The approximate solution is obtained by neglecting the spa-
tial dependence of the transformation factors in the La-
grangian representation of the diffusion operator. This is
equivalent to assuming that the flow has uniform shear. How-
ever, the uniform shear assumption is not made, in general,
when calcu)ating other Lagrangian quantities such as particle
displacements and separation. The approximate solution per-
mits the formulation of explicit expressions for mean scalar
concentrations, total scalar variance, and scalar wave number
spectra. Evaluation of these expressions requires, in general, a
knowledge of the statistics of the stretching of infinitesimal
elements, jointly with the statistics of either the finite separa-
tion between partic1e pairs or else the displacement of their
centroid.

ln most of the processes here it suffces to know just the
marginal statistics of dis placement or separation. There is sub-
stantial theoretical support (Cocke, 1972) and observational
support (e.g., Davis, 1985) for the hypothesis that dis place-
ment statistics are asymptotically normal for large time, with
mean and variance in accordance with the' classical theory of
Taylor (1921) in the special case of stationary homogeneous
turbulence. There is also a strong attraction toward displace-

ment probability distribution functions (Pdfs) which possess
the Markov or group property, at least asymptotically for
large time. This property guarantees weak forms of Corrsin's
hypotheses, relating Lagrangian statistics at different labeling
times. It is also necessary that the marginal statistics, for the
displacement of one of two particles, be independent of the
second particle. With these three a priori requirements of
asymptotic normality, marginality, and the Markov property,
approximate evolution equations for displacement and separa-
tion pdfs are developed here. The approximations are in the
form of discards of certain triple correlations. There are sev-
eral ways of making such discards, but apparently only one
meets the a priori requirements.

For isotropie turbulence the separation pdf so derived is the
Richardson-Kraichnan equation (Richardson, 1926; Kraich-
nan, 1966; Lundgren, 1981). The relative diffusivities appearing
in the equation are deduced from their spectral repre-
sentations using dimensional and scaling arguments, in
various subranges, for small and large times. Dimensional

arguments alone suffce for large times but not for the smalÍ
time appropriate in inertia-diffusive subranges. On the other
hand, the estimation of diffusivities, or equivalently, La-
grangian velo city correlations, is all that is necessary in some
processes: the separation pdf Itself is not required.

In other processes, such as the viscous-diffusive subrange,

joint statistics of stretching and separation are required. These

',,-

~1

statistics are modeled using uniform shear flow modeIs. The
shear amplitudes have various time dependences: constants

(Batchelor, 1959) and white noise or Wiener processes

(Kraichnan, 1974). The latter process is the most sophisticated
mathematicaJ concept invoked here. Comprehensive descrip-
tions for physicists may be found in the work by van Kampen
(1981). Mathematical details have been avoided in this article,
especially as only elementary ca1culus is involved. The most
detail is in section 2, on Lagrangian formulation. The pro-
cesses examined in sections 3-6 would appear to be in order of
decreasing complexity, from variance spectra to mean fields.
ln fact, the results progress from weil established to highly
speculative. Oceanic and atmospheric observations are used to
support theoretical developments. Data range from temper-
ature microstructure in fjords to the dispersion of strato-
spheric balloons. Results are briefly summaried in section 8,
with emphasis on the novel aspects. There is a brief alliision to
recent work on anisotropic and wave induced diffusion.

2. LAGRANGIAN FORMULATION

2.1. Formulation

Let C denote the concentration of a passive scalar sub-
stance. It is required to find C at some position x in N-
dimensional space and at some time t. The concentration C(x,
t) is determined by the linear advection-diffusion equation, a
source distribution, and initial values.

It wil be convenient to llse X and s as Eulerian dummy
variables. ln terms of these variables the evolution equation
for C is

ae
- + u. VC = "v2e + s
as (1)

where the gradient operator is

v = ajax¡ i = 1, 2, ..., N

the advecting velo city u = u(X, s) is solenoidal,

V.u =0
the source S = S(X, s) varies in spa.ce and time, and" is a
constant molecular diffusivity. For simplicity aJone it wil be
assumed that initially e vanishes:

C(X, 0) = 0 (2)

For each realization of the turbulent velocity field u, and for
each space-time point (x, t), there is a particle path A(x, tls).
That is, (X, s) lies on the path if and only if

X = A(x, tls)

The function A is determined by

DAjDs = u(A, s) (3)

subject to

A(x, t 1 t) = x

80 the particle passes through X = x at s = t. The derivative ..~

(DjDs) denotes differentiation with respect to s, with (x, tf

fixed. Notethe inverse functional relationship

x = A(X, si t)

llUHH.unniminmnnmmnnnHnl1Ii"lliiiin1Hiilllllmml!lrnnnmmnnn~
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(4) The suppressed argument in ( ,D 1 a) indicates that the x
dependence has been ignored. In fact, the arguments ( ,where the summation convention has been adopted, and
t 1 t - a) should be used, but statistical stationarity and time

S = S(x, tl s). The detailed forms of the transformation factors reversibility wil be assumed in subsequent sections. The solu-
tion (5) is represented graphicalJy in Figure 1, which shows the
path (A(y, t 1 s), sJ of a parcel of fluid and the diffusion cloud
G(x - y, t, s). It is emphasized that particle paths will not
necessarily be determined by assuming that the velocity field
has uniform shear.

Now that an explicit, albeit model-approximate, repre-
sentation has been obtained for the scalar concentration C(x,
t), its statistics may be calculated directly.

ln terms of the Lagrangian coordinates (x, t) and s, and for a
realization of u, C becomes

C(X, s) ~ C(A(x, t 1 s), sJ == C(x, t 1 s)

in Kraichnan's (1965J notation.
The Eulerian equation (equation (1)) may be expressed in

terms of the Lagrangian coordinates. The left-hand side is just
the ("otal") derivative of C(x, t 1 s) with respect to s:

Lac ac L D_a. (X, s) + Uj(X, s) - (X, s) =- C(A(x, t 1 S), sJs aXj X=A(x. ris) Ds
by virtue of (3) and the chain rule for derivatives. ln order to
express the right-hand si de in Lagrangian form, use the chain
rule in the forma a
- C(X, s) = - C(A(X, si t), tlsJax¡ ax¡

a aA.
= - C(x, tl s) -- (X, s 1 t)aXj ax¡

This may be repeated to obtain a Lagrangian expression for
second derivatives of C(X, s) with respect to X. Hence the
Lagrangian form of (J) is

DC a2c 2 ac--=KVA..VA.-+K\I A.-+SDs ' J ax¡aXj , ax¡

are

(V A)k == aA¡ == L(~)A¡(X, si t)laXk aXk X=A(x, ris)
a2 A. L( a2) L

\12 A¡ == -- == - A¡(X, si t)axkaXk axkaxk X=A(x, ris)
Like (1), (4) is of advection-diffusion type. The vector \12 A acts
like an advecting velo city, but it is not solenoidal. The vectors
V Ai alter the rate of diffusion: when s = t they are the unit
vectors ê¡, but on average they increase as It - si increases,
since, as it wil be seen, they evolve in the same way as infini-
tesimal line elements. This is a Lagrangian expression of the
familiar statement that turbulence enhances the effective rate
ofmolecular dissipation of C, by transferring the variance of C
to smallscales. ln the Lagrangian formulation (equation (4))
the simplicity of the convective derivative (DjDs) is achieved at
the expense of complicating the diffusion operator. Equation
(4) is no more readily integrated than is (1).

2.2. Solution

ln order to proceed, the x dependence of the transformation
factors in (4) will be neglected. This assumption wil be justi-
fied in subsequent sections using one of the following argu-
ments:

1. Diffusion ofthe scalar C is negligible.
2. Scalar diffusion is much faster than infiitesimal line

stretching: equilibrium between the external scalar source and
the diffusion sink is attained before the transformation factors
have altered significantly from their spatially uniform initial
values.

3. Line stretching is principally due to velocity shears with

scales mu ch larger than those at which scalar diffusion is sig-

-
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nifìcant; thus slretching rates are approximately uniform in
space.

4. Only lIpper bounds for the scalar variance are required,
and adequate bounds are obtained without having to admit
line slrelching.

The advanlage of the above assumption is that (4) is then
readily inlegrated subjeci to the initial condition (equation (2))
(Okubo et al., 1983J, yielding

C(x, t) = C(x, tlt) = ldS f dy G(x - y, t, s)S(y, tls) (5)

The fundamental solution G is most clearly expressed by its
Fourier transform g:

g(k, t - s) = exp f - K l (k . Q . k - ik . L J da L (6a)

where

Q¡j = VAi .VAj

L¡ = \l2Ai

(6b)

(6c)

VAi = VAir ,Dia) \l2A¡ = \l2A¡( , Dia) (6d)

g(k, t, s) = f dxe¡k- G(x, t, s) (6e)

2.3. Variance Spectrum

Assume that the velocity field u and source distribution S
are independent, isotropie, and stationary random fields, both
with vanishing means (although alternative assumptions about
S wil be made in some later sections). Ensemble averages over
one or both fields wil be denoted ( )", ( )s, or ( )",s'

Wher; there is no ambiguity, the subscripts wil be dropped.
For ex ample,

(u) = 0 (7)(S) = D

The representation of C provided by (5) may be used to
calculate the spatial covariance of C, at spatial lag rand at
absolute time t:

(C(x + D, t)C(x, t))",s = ldsildS2f dYif dY2

. (G(x + D - Yi' t, si)G(x - Y2' t, S2)

. (S(YJ t 1 si)S(Y2' t 1 sz))s)" (8)

ln particular, V, the total variance of C, is just the covariance
at zero lag:

V == (C(x, t)2)",S
;.;

t~H

1

r~~

l

(9)
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G(x-y,t,s)

"-

s

x y

00

A(y,tls) space

Fig. 1. Graphical representation of the solution (5). The scalar injected by the source S at A(y, t 1 s), at ttme s, has
diffused into an ellpsoidal cloud about y at tIme t. The cloud concentration at x at time t is proportional to G(x - y, t, 5).
The vertical arrow through CAry, t 1 s), sJ indicates that G(x - y, s, s) = o(x, y). In this graphical representation the diffusing
cloud has been rotated 90° out of the space manifold to which ít properly belongs.

As a consequence of the isotropy of u and S, tne covariance of
C is a function only of r = Irl and t, while V is a function only
of t.

The one-dimensional wave number spectrum of C wil be

derived as the Fourier transform of the covariance of C:

F(k, t) = r da (k) r dD eik'D(C(x + D, t)C(x, t))u,s

where da (k) is an area element on the surface of a sphere of
radius k. Since the covariance depends only upon r, the Fou-
rier transform depends only upon k, and the integrals reduce
to

F(k, t) = a(k) fX)dD a(D)f!(kD)(C(x + D, t)C(x, t)\,s

where

a(k) = 2nk

a(k) = 4nkz

f!(kD) = J o(kD)

(k sin (kD)f! D) =--

N=2
N=3

N=2

N= 3

The total variance V may be calculated as

V = (2n)-N 1'" F(k, t) dk

The variance spectrum F is calculated by substituting the co-
variance representation (equation (8)) into the transform

(equation (10)). The resulting formula includes the Lagrangian
source covariance which may be expressed in Eulerian coordi-
nates:

(S(Yi, tlsi)S(yz, tlsz))s

= (S(A(yl' tlsi), si)S(A(Y2' tlsz), szJ)s

= VS(IA(Yi, tlsJ - A(yz, tlsz)l, si - sz) (14)

where VS(R, w) is the Eulerian source covariance at spatiallag

Rand time lag w:

(10)
VJR, w) == (S(X + R, s + w)S(X, s)) (15)

Vs depends on Rand w only, since isotropy and stationarity
have been assumed for S. A very simple model for VS wil be
adopted:

(11)
VS(R, w) = Xo(w)f!(lR) (16)

(12)
where o is the Dirac delta function, f! is defined in (12), and X

is a constant with the same dimensions as SZt and C2t-i. That
is, the source has a "white noise" time dependence (Van

Kampen, 1981). Since

(13)

a(k) f dR eik-Rf!(Rl) = a(k) 1'" dR a(R)f!(kR)f!(lR)

= (2n)No(k - l) " (17)

nnmmmmimimmmniiiimmmnmtmnnHimirmtlHl"'IH!mm!l"!fHlmmmnn.
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the spatial structure of Vs corresponds to a source of scalar

variance only at wave numbers k with magnitude k = 1. It is
the behavior of the scalar variance spectrum F(k, t) for values
of k )) l which is of interest, and this is independent of the
details of the low wave number source. The mode! (equation
(14)) simplifies some of the ca1culations.

ln order to complete the evaluation of F, it remains to take
the velocity field average ( )u in (8) and (10). The random
variables which actually appear are the transformation or
stretching factors Q and L: see (6) and the single time particle
separation R = A(y l' t 1 s) - A(y 2' t 1 s). The two distinct times
si and S2 need no longer be considered, since S is delta-
correlated in time: see (14). Thus ( )u may be calculated by
multiplying by the joint probabilty distribution function of
the random variables Q, L, and R at time s (given respective
values of unit matrix 1, 0, and r = y ¡ - y 2 at time i) and th en
integrating over Q, L, and R. A little rearrangement using (6)
yields

F(k, t) = xa(k) l'dS f dr f dQ f dL f dR

. eik'rg¡(lR)g2(k, i, s)P(Q, L, R, s IL, 0, r, t)

Hence the determination of F is reduced to estimating the
joint pdf of separation and stretching appearing in (18). This
will be carried out in section 4 for each of the various sub-

ranges of F: inertia convective, viscous convective, inertia dif-
fusive, and viscous diffusive.

Estimates are easier to 0 btain in the first three su branges,
where 9 is approximately independent of the stretching vari-
ables Q and L. Then the integration over those variables in
(16) is trivial, leading to

F(k, t) = xa(k) l'dS f dr f dR eik'rg¡(lR)P(R, s i r, t) (19)

where P is now the marginal pdf for the vector separation R at
time s. Since R has the deterministic or statistically sharp
value r at time t, it must be the case that P(R, tir, t) = ¿¡(R
- r) = ¿¡(Ri - ri) ... ¿¡(RN - rN) where R = (Ri, . . " RN) and

r = (ri, "', rN)' ln particular, J dRP (R, tir, t) = 1, but this

must also hold for ail values of s :s t.
It may be noted that P depends upon the vector R even

though the turbulence is isotropie, since r has a direction (and
vice versa). However, Lundgren (1981) pointed out that the
spherically averaged pdf

P(R, sir, t) = a(R) -i f da (R)P(R, sir, t)

must depend only upon r. The corresponding initial condition
is

P(R, tir, t) = a(r)-i¿¡(r - R)

and the normalization is

f' dR a(R)P(R, sir, t) == 1

ln terms of this P, the representation (equation (19)) for the

variance spectrum F becomes

F(k, i) = xa(k) l'dS f" dr f" dR a(r)a(R)

. g¡(kr)g¡(lR)P(R, sir, t) (23)

The symbol P has now been used to denote three different
pdfs. The displayed arguments indicate which one is involved.
This is simpler, and more informative, than introducing a sep-
arate symbol for each pd£.

ln order to use (21) and (23) to calculate F(k, t), an evolu-

tion equation for P is required. Such an equation wil be
obtained in the next section. Before proceeding, however, it is
instructive to examine (23). It is easily seen that

aF
- (k, t) = (27ifx¿¡(k -1) + ß(k, t)
ai

(24)

(18)

where ß is the integral in (23) with P replaced by (apiat). The
first term on the right-hand side of (24) represents the source
of scalar variance at wave number 1. The term ß represents
turbulent transfer of variance to wave number k from other
wave numbers. It is also easily shown that Jo 00 ß(k, t) dk == 0,
implying conservation of variance in the absence of a source.
Clearly, development of an evolution equation for the separa-
tion pdf P(R, sir, t) is equivalent to developing a model for the
spectral transfer rate ß(k, t).

3. SEPARATION PDF

As was mentioned at the end of the preceding section, much
can be inferred from the marginal statistics for the separation
of particle pairs. Specifically, the (scalar) separation of particle
pairs. Specifically, the (scalar) separation pdf P(R, sir, t) is
required, for s :s t. The pdf is known at s = t (see (21)), so an
evolution equation is required. Such an equation will be
derived in this section. The derivation wil proceed in stages.
The main result is in subsection 3.4.

3.1. Displacement of a Single Particle

A particle passing through the poinrX at time s also passes
through x = A(X, si t) at time t, where A is defined by (3) and
is determined by a given realization of the turbulent velocity
field u. For this realization the "micro" pdf of x at time t is

p(x, tlX, s) = ¿¡(x - A(X, si t)J (25)

(20)

Note that the order of the arguments of p is the reverse of that
required in section 2. The reason is that p wil be found to
satisfy, approximately, a diffusion equation for which it is na-
tural to take the larger of t and s as the time variable. The

required order of arguments wil be obtained subsequently.
For incompressible flow, p satisfies the Liouvile equation

ap ap-+u.-=o
at 'ax¡

where Ui = Ui(X, t). Hence the "macro" pdf

(26)

(21) P(x, t 1 X, s) == (¿¡(x - A(X, si tH) (27)

satisfies

(22)

ap + / u. ap) = 0
at \' aXi

The initial condition is

(28)

P(x, siX, s) = ¿¡(x - X) (29)
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The problem is the estimation of the flux term in (28). To this
end, equations are derived for P and p' = p - P:òP òP Ò

- + (u) - = - - (u¡'p')òt ÒXi òX¡
Òp' òp'
- + U¡ - = Ti(x, t) + T2(x, t)òt òX¡

where u¡'(x, t) = Ui(X, t) - (Ui(X, t)), and

Ti = lu., ÒP')

\ J ÒXj

ap
T2= -u.'-J aXj

The solution of (31) is

2 ri
p' = krt J. ~(A(x, tl V), V) dv

which may be used to express the random flux (u¡'p') in (30).
So far, this analysis is exact. Two approximations wil now be
made:

1. ln the contribution to the random flux arising from TI'

the arguments (A(x, t 1 v), v) are replaced by (x, t). Conse-
quently, this contribution is proportional to (u¡'(x, t)), which
vanishes. ln other words, we neglect the correlation between

u¡(x, t) and Ti (A(x, t 1 v), v).
2. ln the contribution to the random flux arising from 7~,

the arguments (A(x, t 1 v), v) of ap/ax¡ are replaced by (x, t),
whi)e u¡'(x, t 1 v) is replaced by u¡(x, t 1 v)'. These approximations
amount to neglecting triple Lagrangian correlations and yield

i' òP(u¡'p¡') = - (u¡'(x, t)uix, t 1 v)' dv - (x, t 1 x, s). a~
and so

ap òp a ( apJ
- + (u¡(x, t)) - = - Di)(x, x, tls)-at aXi ax¡ aXj

where the Lagrangian diffusivity Di) is the integral in (34).
This diffusion equation has an attractive property. For

stationary turbulence, (u) is independent of time while Di)(x,

x, t 1 s) = Di)(x, x, t - s)-- Di)(x, x, 00) as t - S-- 00. That is,
(35) has the asymptotic form

apiat ~!?P

where !? is a differential operator with respect to x, indepen-
dent of time t. The asymptotic solution for P is

P ~ e(I-.)!!¿;(x - X)

The exponentiated operator should be interpreted as a power
series. It readily follows that asymptotically, P satisfies the
Markov property (van Kampen, 1981):

P(x, tlX, s) ~ f P(x, tlY, v)P(Y, viX, s) dY

as v - sand t - V-- 00. Equation (38) yie1ds an estImate for

the Lagrangian mean velocity:

f ap
(u(X, slt)) = x - (x, tlX, s) dxat

Substituting (38) yields

(D(X, si t)) ~ f (D(Y, vi t))P(Y, v 1 X, s) dY

n.

(30)

which relates Lagrangian mean velocities. There are analo-
gous expressions relating Lagrangian covariances. These are
ex amples 'Or weak forms of Corrsin's hypotheses (Corrsin,
1959). ln the strong form, (40) is assumed to hold for v = t
rather than as t - V-- 00. Then (D(Y, vit)) = (D(Y, t 1 t)) =
(D(Y, t)), the Eulerian mean velocity field. The strong form of
(40) can be derived directJy from (35) and (39), provided

aDi)/axj is negligible in comparison with (UI(X, t)); that is, the
turbulence is only weakly inhomogeneous. On the other hand,
approximations 1 and 2 which led to (35) could only be ex-
pected 10 hold for such turbulence. Finally, consider incom-
pressible, stationary homogeneous turbulence. Then Di) is in-
dependent of x, and P is multivariate normal, with mean (t
- s)(u) and covariance S: Diiv) dv, in accordance with the

c1assical theory of Taylor (1921).
It is appropriate to discuss alternatives to approximation 2

used in the derivation of (35).
2*. Suppose instead in the contribution to the random flux

term arising from T2, the arguments (A(x, t 1 v), v) are replaced
by (x, t) everywhere. The resulting Eulerian diffusivity is

Di/ = (t - s)(u¡'(x, t)/(x, t))

(31)

(32)

(33)

(34)

and the resu1ting pdf cannot possess the Markov property as
t-S--OO.

2**. Alternatively, suppose in the contribution to the

random flux term arising from T2, the arguments (A(x, t 1 v), vJ
of ap/axi are replaced with (x, t) while those of Ui are replaced
with (x, v). The resu1ting Eulerian diffusivity is

Di)** = f(u¡,(X, t)u/(x, v)) dv

The resulting pdf wil possess the Markov property asymp-
totically for stationary turbulence and wil be normal for

(35) stationary homogeneous turbulence, but the mean and covari-
ance wil not be in accordance with the classical Taylor

theory.
Higher-order approximations to (35) may be found in the

waves by Kraichnan (1977) and Jiang (1985). The slightly
novel derivation of (35) given here must be about as simple as
can be.

(36)
3.2. Joint Displacement of a Pair of Particles

Consider a pair of particles which pass through X and Y at
time s. The macro pdf for passage through x and y, respec-
tively, at time t is

(37) P(x, y, t 1 X, Y, s) = (¿;(x - A(X, si t))¿;(y - A(Y, si t)J

(41)

Proceeding as in the above subsection yields

ap ap ap
(38) -- + (u¡(x, t)) _a + (u¡(y, t)) _at Xi Yi

a f ap apr
= -- Dij(x, x, tls) - + Di)(x, y, tls)-Xi aXj aYj
a f ap apr

+ _a Dij(Y, x, t 1 s) _a + Dury, y, t 1 s) _a (42)Yi ~ ~(39)

where

(40) Dij(x, y, t 1 s) = f (u¡'(x, t)Uj(Y, t 1 v)' dv (43)

~.-- - .. . .-- . ..-.-_. - - ., ,. ,...-.-.", -
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Equation (42) was deduced by Lundgren (1981) in a super-
ficially different manner. However, (42) is unacceptable, be-
cause the marginal equation obtained by integrating (42) over
y is not the same as (35), the equation for the marginal pdf

P(x, t 1 X, s). For ex ample, if (42) is used to obtain the La-
grangian drift of one particle, the result depends upon the
presence of the second particle. It is also readily shown that
(42) predicts a nonzero mean (vector) separation rate for parti-
cle pairs in homogeneous turbulence, which is clearly false.

The shortcomings of (42) may be remedied. For if we return
the second prime in (43) to its original position, it follows that

Ò

- (u¡'(x, t)u/(y, t 1 v))
òYj

( (òu .f) (ÒAk) )
= u¡'(x, t) -- (y, t 1 v) _. (y, t 1 v)ÒXk òYj
~ ( u¡'(x, t)G;)y, t 1 v))( (~;; )y, t 1 V))

provided we neglect two-point triple correlations, which is
consistent with the approximate derivation of (42). Moreover,
if the turbulence is nearly homogeneous, th en the right-hand
si de of (44) is approximately

(u¡,(X, t)G;)y, t 1 v) )bkj

= ( u¡'(x, t)G;)y, t 1 V)) = 0

for incompressible fiow. Consequently, the mixed terms in (42)
may be replaced with more satisfactory forms:

òP Ò
Dij(x, y, tls) ---- tDij(x, y, tls)P;

òYj òYj

òP Ò
Dij(Y, x, tls) -..- tDij(Y, x, tls)P;

ÒXj ÒXj

Then the single-particle marginal equation is the same as (35).
For weakly inhomogeneous turbulence, all of the derivatives
in (42) may be moved to the left of the diffusivities. The re-
sulting equation is then the same as that of Kraichnan (1965J
except that in the latter, only the solenoidal parts of the La-
grangian veloccties appear in the diffusivities. For example,
u¡'(x, t 1 v) is replaced by u¡'S(x, t 1 v) where

Ò

- tu¡'S(x, tl v)) = 0òX¡
Such a replacement permits moving the derivatives in the de-
sired manner.

Our approximation (equation (45)) is invalid for strongly
inhomogeneous turbulence. Such a fiow may be characterized
by a mean strain rate A greatly in excess of the root-mean-
square strain rate. Hence the dis placement of a particle by the
mean fio"" through the eddy field, grows as exp (A(t - sn

Therefore pairs of particles wil be. moving independently as
soon as t - s = O(A -1), almost irrespective of theIr initial sep-
aration, and so

P(x, y, t 1 X, Y, s) - P(x, t 1 X, s)P(y, t 1 Y, s)

which obviates the need for an evolution equation for the
two-particle pd£.

805

3.3. Separation of a Pair of Particles

For isotropie turbulence the diffusivity tensors are solen-
oidal in both indices, and so (42) and its variants discussed

above are identicaI. Let centroid and separation coordinates
be defined by

c = t(x + y)

C = t(X + Y)

r=x-y
R=X-Y

Then the pair pdf becomes P(r, c, tiR, C, s), and the marginal
pdf ror vector separation

P(r, tl R, s) = f P(r, c, tiR, C, s) dc

is independent of C by homogeneity. It is straightforward to
derive, from (42), the following evolution equation for the
marginal pdf:

(44) òP Ò2---(..P)Ò - Ò Ò 'Iijt ri rj
where

Ij¡ir, t 1 s) = D¡)x, x, t 1 s) - D¡)x, y, t 1 s)

The initial condition for (49) is

P(r, siR, s) = b(r - R)

(48)

(49)

(50)

Next, we may average the marginal pdf over the direction of R
to obtain a pdf which, since the turbulence is isotropie, de-
pends only on the magnitude r = Irl:

P(r, tiR, s) = a(R)-1 f P(r, tiR, s) da (R)

(45)

which obeys

(46) òP 1 Ò L ÒPJ
- = a(r)- - a(r)lj-òt òr òr

subject to

P(r, sIR,s) = a(R)-ib(r - R)

(51)

(52)

(53)

where Ij(r, t 1 s) is the longitudinal component of the incom-
pressible isotropie tensor Ijij (Batchelor, 1960, section 3.4).
Richardson (1926) virtually guessed (52); he did not consider
time dependence for ij. Kraichnan (1965, 1966, Equation (3.6))
derived (52) using his Lagrangian history direct interaction
approximation. Lundgren (1981) derived (52) by only as-
suming a velocity field delta correlated in time. This assump-
tion is equivalent to making approximations (1) ¡ind (2) in
subsection 3.1 above. By using the arguments of Batchelor

(1960), the longitudinal diffusivity component ij is expressible
as

Ir dIj(r, tls) = a(r)-i C(p, tls) -, a(p) dp'0 . dp
where the relative diffusivity C is defined by

(47)
D i'

C(r, t 1 s) = - (r2) = 2 dv r (u(x, t) . u(x, t 1 v))Dt s
- (u(x, t) . u(x + r, t 1 v));

(54)

"

(55)
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Fig. 2. Theoretical and observed separation pdfs: relative dilfusi-
vit Y independent of R (Batchelor, 1952) (solid line); relative diffusivity
proportional to R4/3 (Richardson, 1926) (dashed line); relative diffusi-
vit y inferred from observations of dye concentration in Lake Buron
(after Sullvan, 1971) (dotted line).

Finally, note that (52) and (53) ensure the normalization

1'" a(r)P(r, tiR, s) dr == 1

provided

ap
a(r)'1 --t 0

ar
r-t 0 r-t 00

3.4. Reversibility

Our expression (equation (23)) for the i¡calar concentration
spectrum F(k, t) requires a knowledge of the scalar separation
pdf P(R, sir, t) for values of the "running" time s less than the
conditioning or initial time t. However, the diffusioII equation
(equation (52)) should only be integrated for running times
greater than the conditioning time. Lundgren (1981) obtained
an important result which resolves this problem. It is well
known that for incompressible fiow the Jacobian determinant
of the transformation X -- x = A(X, s 1 t) has unit magnitude.
Hence

¿¡(X - A(x, t 1 s)) = ¿¡(x - A(X, si t)) (57)

and so

PO', six, t) = P(x, tlX, s) (58)

Similarly,

P(X, Y, six, y, t) = P(x, y, tlX, Y, s) (59)

and so

P(R, C, sir, c, t) = P(r, c, tiR, C, s) (60)

P(R, sir, t) = P(r, tiR, s) (61)

and finally,

P(R, sir, t) = P(r, tiR, s) (62)

It follows that for s ~ t, P(R, sir, t) satisfies

ap a r apJ
as = - a(R) - 1 aR L a(R)'1(R, si t) aR

(63)

subject to

P(R, tir, t) = a(r)-i¿¡(R - r) (64)

Note that (63) is a "backward" diffusion equation. Once again,
this resuit is a consequence of incompressibility al one. Neither
stationarity nor homogeneity is necessary.

3.5. Uniformity of the Approximate Theory

Consider the approximate evolution equation (equation
(35)) for the single particle displacement pdf. If the turbulence
is inhomogeneous, then the Eulerian mean velocity (u¡(x, t))
and the diffusivity Dij(x, x, t 1 s) are fiiictions of x, and in
general, the pdf is not normal even as (t - s)-- 00. This is in
confiict with Cocke (1972), who proved a central limit tlleo-
rem for integrals such as

A(x, t 1 s) = x + fU(X, t 1 v) dv (65)

(56)

under general conditions which appear to include inhomoge-
neity and nonstationarity. The derivation of (35) began with

the definition (equation (25)) of the micro pdf, which, for in-
compressible turbulence, satisfies a Liouvile equation with
Eulerian velocjty u¡(x, t). However, the micro pdf also satisfies
a Liouville equation with Lagrangian velo city u¡(X, si t). The
difference is superficial until an approximation is made for the
random fiux term in the equation for the averaged or macro
pd£. The approximations which led to (35) would in the latter
case lead to

ap ap a2p
- + (ulX, slt)) - = KilX, X, slt)-at ax¡ aXiaXj (66)

where

Kij(X, X, slt) = l'(UlX, slt)'ulX, si v)' dv (67)

The solution of (66) is exactly multivariate normal for all
(t - s), with mean and covariance in agreement with the classi-
cal Taylor theory, even for inhomogeneous nonstationary tur-
bulence. There is an analogous equation for the pdf of joint
displacements of particle pairs, also with exactly normal solu-
tions. However, the utiity of the Richardson-Kraichnan equa-
tion (equation (52)) lends same credence to (42), for homoge-
neous turbulencéand (t ~ s) not large. Thus neither of the two
choices of velocity labeling iu: the Liouvile equationi¡ leadi¡ to

uniformly validapproximations. There must be a generalized
coordinate (Z(x, t 1 X, s), v(x, tl X, s)) which behaves like (x, t)
for (t - s) less ti-an a velocity decorrelation time and like (A(x,
t 1 s), s) for (t - s)-- 00.

3.6. Stochastic Models

There is a model for (49). That ii¡, (49) is the forward
Fokker-Planck equatioTl (van Kampen, 1981) for the Ito sto-- ~.

chastic differential eqùation

dr = E, 1/2 dro(t) (68)

~.
~mm"i111.lninIHll'nllfinlnflil'lflHfHfiffffllf1i!l.I.!ll1lf1illj.fjlj.llfiI1llllllljjl1~il!lijijllll.lll~'H-
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Fig. 3. Sam pIe pdfs for (a) zonaI and (b) meridional components
of separations of high-aJtìtude balloons, 5 days after release in the
southern hemisphere subtropics. The nonnal pdfs are included for
reference. The kurtoses are 7.54 and 7.02, respectively Cafter Er-El and
Peskin, 1981J.

where Ç,ij = r¡ij + r¡ji and the components of mU) are indepen-
dent Wiener processes. The tensor 1; is symmetric so (68) is
meaningful if 1; is nonnegative. ln the Ito interpretation,
1; = 1;(r, t 1 s), and so the nonlinear equation (68) is explicit.
There are analogous Ho models for (42) and its variants. Nu-
merical integration of the models may be a useful tecbnique
for determining the pdfs, or at least some of their moments, in
anisotropic or inhomogeneous turbulence.

3.7. o bservatiol1s

There have been few attempts to observe the separation pdf
P(R, sir, t). Dye measurements (Figure 2) in Lake Huron
(Sullvan, 1971) did not support Richardson's solution of (63),
which is based on the assumption that r¡ ex R4/3 (see section
4.4). The measurements were more consistent with a normal
distribution for R, which may be derived from (49) by as-
suming r¡ij is independent of R. This would be the case if the
two particles were moving independently, with normally dis-
tributed displacements, that is, for an elapsed time greatly

exceeding the turbulent decorrelation time. -
The pdfs for the zonaI and meridional components of sepa-

ration of hjgh-altitude balloons were estImated by Er-El and
Peskin (1981), on the basis of 178 observations 5 days after
launch. Significantly nonnormal pdfs were found, with kurt-
oses of 7.54 and 7.02, respectively (see Figure 3), For normal
distributions the kurtosis has the value 3.

Surface arifters deployed off the California coast by Davis
(1985) were used to estimate separation pdfs (see Figure 4).
Pairs with initial separations in the range 16 km -c r -c 30 km
had separations R after 4 days, closely consistent with a
normal distribution for R. Those with initial separations in the
range 4 km -c r -c 16 km were more likely after 4days to have
small separ¡¡tions R than in the case of normally distributed R.

Davis (1985) attributes this result to trapping in small-scale
velocity convergence or el se to exponentially growing separa-
tions in a large-scale shear as discussed in section 32. Davis
also presents data purporting to show that r¡ does not depend
on R alone but rather on Rand t - s. However, it should be
noted that what is shown is a dependence upon (R2)1/2 rather
th an the conditional or deterministic value R. This point is
also discussed in section 4.4.

CONVECTIVE SUDRANGES OF TI-I SCALAR

VARIANCE SPECTRUM

The particle pair separation statistics described in the pre-
vious sectioll wil be used in this section to construct the
convective subranges of the variance spectrum, that is, the
subranges in which K is so small that scalar diffusion may be
neglected. Conditons under which this approximation fails
(suffciently high wave number) will be given in the next sec-
tion, which concerns diffus ive subranges.

ln order to define the scalar subranges, it is first necessary
to describe the subranges of the kinetic energy spectrum.

4.

4.1. Kinetic Energy Subranges

The wave number spectrum for isotropie, stationary turbu-
lence is

E(k) = a(k) f' dD a(D)gD(kD)(u(x + D, t) . u(x, t)) (69)

H is assumed that this equilibrium spectrum is maintained by
a statistically stationary source, at or around some low wave
number m; the average source strength must match the
average energy dissipation rate B. The latter is dominated by
viscous dissipation at high wave numbers. By assumption
there are no sources or sinks at intermediate wave numbers,
so the energy spectrum in such an "inertial" subrange can only
depend on B and the wave number k. By diIIensional analysis,

E(k) = KyB2/3k-s/3 (70)

a

a

b
40.

20. 60.40.

R,km

Fig. 4. Histograms of separations of ocean surface drifters, 4 days
after release off the California coast: (a) initial separations 4

km .. r .. 16 km and (b) initial separations 16 km .. r .. 30 km. The
histograms are based on bins 2 km wide. Tbe smooth curves corre-
spond to a normal distribution for R. Cafter Davis, 1985).
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Fig. 5. Wave number spectrum of kinetic energy E(k) in a British
Columbia tidal channeL. The Kolmogorov wave number ky = (¡;/y3)1/4
has the value 0.21 m, given ¡; = 0.61 X 10-4 m2 s-I and y = 1.48
X 10-6 m2 s-I (seawater at 8°C). The striiight line has a si ope of -~

(after Grant et al. 1962).

where Kv is the dimensionless Kolomogorov constant. For a
comprehensive discussion, see Monin and Yaglom (1975). The
inertial time scale ¡; -1/3 k - 213 exceeds the viscous time scale
y-Ik-2 (where v is the kinematic viscosity) if k:; kv ==
¡;1/1-y- 314. Thus (70) can hold only for m .;.; k .;.; kv' If kv .;.; k,

then E must depend upon 6 and v, and dimensional analysis
wil not suffce. Observations (Grant et al., 1962) (Figure 5
here) indicate very rapid roll-off of E(k) for k ~~ kv' At least

one turbulence closure theory, the abridged Lagrangian his-
tory direct interaction approximation (Kraichnan, 1966), is in
impressive agreement with the observations' of the "dissipation
range." It suffces, however, for our purposes to note only the
very rapid decay for k ~~ kv, which wil be modeled by a trun-
cated form:

E(k) = Kv6-2/3k-S/3 k :: f kv

k:; fkvE(k) = 0

where f is some fraction. The observations indicate f ~ 0.1.
As is indicated by the observations of Grant et al. (1962),

the above description of isotropie turbulence is well substan-
tiated in three space dimensions, but Kraichnan (1967) has
proposed an alternative inertial subrange in two space dimen-
sions. It is characterized by a statistically steady transfer of
vorticity variance (lê3 . V X n12) or enstrophy, from low to
high wave numbers at a rate À, which has the same dimensions
as i-3. By dimensional analysis the energy spectrum must be

E(k) = KrÀ2/3k- 3

where Kr is a dimensionless constant, which it seems appropri-
ate to name after 1craichnan. There is evidence of (72) in large-
scale atmospheric circulation (Boer and Shepherd, 1983) (see

Figure 6). As might be expected, that data does not survive the
stringent tests for isotropy passed by smaller-scale data sup-
porting (70) (Gargett et al., 1984; Gargett, 1985). The en-
strophy inertial subrange should extend to wave numbers
beyond which the flow cannot be described as two dimension-
aL. Young et al. (1982) suggest that the upper lImit may be
k ~ 10-3 m-1.

4.2. Convective Subraiiges

ln convective subranges the scalar variance spectrum F(k, t)
may be calculated using (23), which requires knowledge of the
separation pdf P(R, sir, t). The latter wil be determined using
the backward Richardson-Kraichnan equation (equation (63)),
subject to the initial or, more correctly, "final" condition
(equation (64)). The longitudinal diffusivity r¡(R, si t) is given
by (54) and (55), with the obvious change in notation; th us it
is determined by the strlJcture of the velocity field. It is possi-
ble to relate r¡ to the energy spectrum and hence the energy
subranges, since (54) and (55) may be expressed in the form
(Kraichnan, 1966)

r¡(R, si t) = 4 l'dW l'X) dk E(k).(kR).f(k, w - s) (73)

where

$'(8) = a(8)-lfdif a(if)(1 - ,q(if)) (74)

is a high-pass filter arising from the geometry of isotropie
turbulence,

§(8) ex 82

$'(8)-- N-I

8 -- 0

8--00
(75)

and Sf is a dimensionless Lagrangian spectrum defined by

Sf(k, w) = tf(k, w)t(k, 0)-1 (76)

where

tf(k, w) = !a(k) 1'" dD a(D),q(kD)

. (n(X, s). n(X + D, slw)) (77)

Note that g(k, Q) = E(k). See Figure 7 for a graph of $'(8),
when N = 3.

(71)

4.3. (Enstrophy) Inertia-Convective Subrange

ln the enstrophy-cascading inertial subrange of two-

dimensional turbulence, characterized by the tiine scale À - 1/3
and the energy spectrum (72), the dimensionless function Sf(k,
w) must be independent of k:

Sf= Sf(wÀl/3) (78)
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Fig. 6. Slopes of straight line fits to observations of log E(n)

versus log n in the atmosphere, for the zonaI wave immber range
14 S; n S; 25, from Baer (1972) (dotted line), Chen and Wiin-Nielsen
(1978) (dashed line), and Boer and Shepherd (1983) (solid line) (after
Boer and Shepherd, 1983). .
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Fig. 7. High-pass filter ff(8) relating kinetic energy at wave number k to relative diffusivity at separation R, where
8 = kR, in three-dimensional isotropie turbulence. See equation (74).

Combining (72), (7~), and (78) yields

1) = 4 f ..((w - s)). 1/3) dw l' K,).2/3k- 3 ff(kR) dk (79)

However, the limiting forms of ff given in (75) imply that the
integral over k, while convergent as k-- 00, is divergent as
k-' O. Since the enstrophy spectrum k2E(k) must be integrable,
it follows that E(k) must be overestimated by (72) at the very
low wave numbers where enstrophy is being injected. Thus

l' E(k)ff(kR) dk ex R2 LX. k2E(k) dk ex R2).2/3

leading to

1) ~ bR2).2/3(t - s)

l)~bR2).1/3

). 1/3(t - s)-- 0

À 1/3(t - s) -' 00
(81a)

(81b)

ln (81), b stands for different dimensionless constants. This

convention wil be used hereinafter. It is easily seen that (81)
holds for any subrange in which thc encrgy spectrum is pro-
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Fig. 8. Relative diffusivity '1 as a function of separation R, in-

ferred from observations of high-altitude balJoon pairs in the south-
em hemisphere. The straight line has a si ope of +2. (after Morel and
Larcheveque, 1974).

(80)

portional to k-n when n ~ 3. (Bennett, 1984; Babiano et al.,
1985). Thus atmospheric observations (Morel and Larche-

veque, 1974) and oceanic observations (J. F. Priee as cited by
McWi/iams et a/. (1983)) (see Figures 8 and 9 here), which
support (81), are not necessarily indicative of an enstrophy
cascade. (Note that if 1) ex Ra for some power q, then the rela-
tive diffusivity , in (54) is also proportional to Ra.)

According to (81), dispersion is very slow at first, so it is
reasonable to solve the initial value problem of (63) and (64)

for N = 2, using the large-time estimatc (equation (81b)) for 1),
especially as it is the equilibrium variance spectrum

F(k) = limF(k, t) (82)
'-00

which is of interest. The solution is a lognormal distribution
for R (Lundgren, 1981):

2nRP(R, sir, t) = (4nO'R2)-1/2 cxp (-(L - 20')2/(40')) (83)

700m

,
ln

N
E¡:

103

1300m

103

102
10 1O?

R,km

Hg. 9. Relative dífusivity '1 as a function of separation R, ín-

ferred from observations of subsurface ocean drifters at depths of 100
m and 1300 m, at the southem edge of the Gulf Stream recireulation
gyre. The straight lines have slopes of + 2 and + 1 (after J. F. Price,
cited by McWiliams et a/. (1983)).
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Fig. 10. Separation variance (R2) as a function of time from

launch, for high-altitude balloons in southern hemisphere subtropics.
The straight line indicates exponential growth (after Er-El and Peskin,
1981).

where L = ln (R/r) and () = (t - S)..1/3. It follows immediately
that

(Rn) = rnen(n + 2)a -oo-Cn-Coo

There is large-scale atmospheric evidence in support of (84) for
n = 2, (Er-El and Peskin, 1981) (see Figure 10). Again, while

these observations are consistent with a relative diffusivity
, oc R2i; -1 where i; is some time scale such as ..-1/3 (Lin,
1972), they only imply that E(k) oc k-q, for some q ~ 3.

ln order to calculate the equilibrium variance spectrum F(k)
using (23), (82), and (83), it is convenient to interchange orders
of integration and then use the result that for P given by (83),

lim f'P(R, sir, t) ds = .. -1/3(4nr2)-1

t-tc( Jo
R:$r (85a)

lim f'P(R, sir, t) ds = r 1/3(4nR2)-1

(-tc( Jo
R'?r (85b)

. The time-integrated distribution (equation (85)) is not normal-
ized; thhs is to be expected since P is normalized for each s (see
(22)). However, given (85), the Fourier integrals in (23) are
convergent, so the interchange of orders of integration is justi-
fied. Using the identity(equation (17)) then yields (Bennett and
Denman,1985)

F(k) = bXr1/3kl-2

F(k) = bXrl/3k-l

(86a)

(86b)

k -C 1

k'? 1

This spectral shape, O(k-l), is neither red nor blue; every

wave number decade makes the same contribution to the total
variance. The total is infinite as might be expected as t-- 00,
given that there is a stationary source of scalar variance and
that scalar diffusion has been ignored. It must be conceded
that the result (equation (86b)) could have been deduced using
dimension al analysis alone, without having to determine the
separation pdf (equation (83)) or having to evaluate the inte-
gral (equation (23)). We shall return to this important point
later.

f:

4.4. (Energy) Inertia-Convective Subrange

Consider the three-dimensional energy-cascading subrange

characterized by energy dissipation rate e and Eulerian energy
spectrum (70). On dimensional grounds the dimensionless La-
grangian spectrum .!(k, w) must be of the form (Kraichnan,

1966)

.!(k, w) = .!(wk2/3el/3)

Combining (70), (73), and (87) yields

(87)

r¡ = 4 fX)dk Kye2/3k-s/3g;(kR) fdW .!((w - s)k2/3eI/3)

By definition, .!(0) = 1, and it wil be assumed that .! is
integrable from 0 to 00. Then the limiting forms of ff given in
(75) impJy that the integral over k in (88) is convergent as

k-- 0 and as k-- 00. Consequently (Kraichnan, 1966),

(88)

r¡ ~ b(t - s)e2/3 R2/3

r¡ ~ bel/3 R4/3

(t - s)e1/3 R - 2/3 -- 0

(t - s)eI/3R-2/3-- 00

(89a)

(89b)

(84)

The asymptotic form (equation (89b)) was inferred by Rich-
ardson (1926) from observations. Seemingly substantial sup-
port has been obtained subsequently (e.g., Okubo, 1971) (see
Figure 11 here) over a very wide range of scales: 10 m -c R -c
109 m( !). However, fiow on the larger sc ales could hardly be
described as three-dimensional isotropie turbulence charac-

terized by a well-defined e. As Okubo (1971) points out, dia-
grams like Figure 11 here are misleading; they are not plots of
D(R2)/Dt against R; rather, they are plots against (R2)1/2.
Thus all the "1" curve substantiates is the cubic time depen-
dence: (R2) oc t3. The latter is also characteristic of particle
pairs taking independent random walks in a shear fiow (see

5

4

3

2

'",

E 1¡:
o

-1

10-1 103 10410° 102101

(R2)1/2, km

Fig. 11. Relative difiisivity i¡ as a function of rms separation

(R2)1/2, inferred from observations at the ocean surface obtained in
various experìents. The straight lines have the slope +!; this

merely indicates (R2) a: t3 (after Okubo, 1971).
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Fig. 12. Temperature variance dissipation spectrum

(k/kv)2F(k/kv) as a function of k/kv, in an atmospheric boundary layer
in Minnesota. The straighiline has a slope of + t (afler Champagne et
al., 1977J,

Bowden (1965) or Appendix 1 here). ln conclusion, it is doubt-
fuI that there is any proper, direct observational evidence for
(89b), although recent laboratory measurements by Mory and
Hopfinger (1986) are suggestive. Nevertheless, we shall pursue
its consequences here.

Again, it is argued that (89a) indicates very slow dispersion

at first, so it is reasonable to solve the initial value problem
(equations (63) and (64)) for N = 3, using the large-time esti-
mate (equation (89b)) for 17. The solution is

P(R, sir, t) = (81tBR7/6r7/6)-1

. exp ( - 9(r2/3 + R2/3)(4B)-1)I 7/2(9r1/3 R1/3(2B)-1) (90)

where B = b81/3(t - s) :: 0, and 17/2 is a modified Bessel func-
tion of the first kind. It is readily shown using (90) that

(R2) = b82/3(t - S)3. ln the limit R-2/3B- 0 but R;,;, r, (90)
has the asymptotic form

P(R, sir, t) ~ (81t(Wr1(!)7/2B-9/2 exp (-9R2/3(4B)-1)

which is the self-similar solution of Richardson (1926), inde-
pendent of initial separation r. As such, it is not useful for the
evaluation of F using (23). However, ail that is required of (90)
IS

lim r'p(R, sir, t) ds = b8-1/3r-7/3

t-+co Jo

R.: r

lim r'p(R, sir, t) ds = b8-1/3R-7/3

t-+oo Jo

R:; r

Evaluation of the Fourier integrals in (23) is not as tidy as for
(85), and it is clearest to proceed in stages. First, we calculate
the scalar field covariance at equilbrium:

V(r) = lim(C(x + r, t)C(x, t))
,~",

F(k) = a(k) r' dr a(r)~(kr)V(r) (94)

That is, we defer the Fourier integral over r in (23). The ap-
proximate result

V(r) ~ bX8 - i /3(1- 2/3 - b'r2/3) (95)

holds for r ~~ 1-1. Note that the total scalar variance is found
to have a fini te equilibrium value:

V(O) ~ bX8-1/31-2/3 (96)

even though scalar dissipation has been neglected. On the
other hand, it will be seen that the total scalar dissipation rate
has an infinite value rather than the correct value X. Note also
the scalar structure function:

Iim((C(x + r, t) - C(x, t)J2)
1~'"

= 2V(0) - 2V(r) ~ bX8-1/3r2/3 (97)

Monin and Yaglom (1975J review substantial evidence in sup-
port of (97), over a wide range of scales. The scalar spectrum
F(k) may be determined from (97) using the inverse integral
transform (Batchelor, 1960, p. 123)

2V(0) - 2V(r) = 2(21t)-N l"'F(k)(1 - ~(kr)J dk (98)

It may be seen by inspection that the solution of (98); given
(97), is

F(k) ~ bX8-1/3k-s/3 (99)

(91)

In particular, the integral in (98) is convergent both at k = 0
and k = 00. There is a wealth of atmospheric and oceanIc data
in support of (99). Gargett (1985) reviews the literature and

presents some new high-quality data (see Figures 12 and 13
here).

The result (equation (99) was originally obtained using di-
mensionless arguments alone, by Obhukov (1949), Corrsin
(1951), and Batchelor (1959). Detailed calculations as above
would seem un justifie d, especially as dimensional arguments
were used to infer the shape of E(k) and hence 17. The justi-
fication is that the success of the detailed calculations provides
support for (89b), Richardson's t law. Batchelor (1952) argued,
to the contrary, that 17 should be independent of R; on dimen-
sional grounds this implies

17 = be(t - S)2 (100)

(92a)

It follows that the diffusivity tensor 17ij must be just 17(jij' Then

(49) for the vector separation pdf is readily solved, yielding an
uncorrelated multivariate noi:al distribution for R, with zero
mean and variance

(R2) = b81/3(t - S)3 (101)

(92b)
which is weil supported by data, as already mentioned. Com-
bining this result with (19) leads to the equilbrium scalar
variance spectrum

F(k) = bX8-1/31-2/3(j(k-l) (102)

(93)
indicating no cascade of scalar variance. Note that (j(k -l) has -

the same dimensions as k-1.which is related to F(k) by
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Fig. 13. Class-average, i-moment ternperature spectra (kjky)5/3 F(kjkv) in a British Columbia fjord, as functions of
kjky. Class A data pass stringent tests for statistical isotropy and have high signal-to-noise ratios. Class B data depart
frorn isotropy and have lower signaJ-to-noise ratios. The envelopes indicate the variance within the classes. The approxi-
mately level segments between the brackets indicate F(k) cc k-5/3 Cafter Gargett, 1985J.

4.5. Viscous-Convective Subrange

The inertia-convective subrange discussed in the previous
subsection involves wave numbers much less than the Kolmo-
gorov value ky. ln order to compute the variance spectrum at
wave numbers much greater than ky, it is necessary to deter-
mine P(R, sir, t) for values of R -:-: ky -1. ln particular, the
diffusivity I1(R, si t) is needed for R -:( ky - 1. The inertial sub-
range formula (equation (88)) may stil be used, provided the
upper limit of integration over k is set at the cutoff fky (see
(71)), and ff(kR) may be replaced by bk2 R2. It follows that

11 ~ bn2(t - s)R2 net - s)-- 0 (103a)

11 ~ bnR2 n(t - s)-- 00 (103b)

where n = Sl/3ky 2/3 = (S/V)1/2 is, to within a dimensionless
constant, the rms vorticity.

The approximate diffusivity (equation (103)) is of the same
form as that in the enstrophy inertia-convective subrange

(equation (81)). We may immediately infer from (86) that the
scalarvariance spectrum is

F(k) = bXn-1kl-2

F(k) = bXn-Ik-1

k -cl (104a)

(104b)k'? 1

This result was originaIly obtained by Batchelor (1959), again
by Kraichnan (1974), and also by Lesieur et al. (1981). There
is no clear supporting evidence for (104) atmospheric or

oceanic data. Convective subranges exist only where the scalar
diffusion rate Ick2 is much smaller than the strain rate (S/V)1/2,

that. is, k -:( kB where kB = ky Prl/2 is the Batchelor wave
number and Pr = V/IC is the Prandtl number. Thus vis cous-
convective subranges require ky -:-: k (-: ky Pr1/2, or 1 -:(
Prl/2. For air, Prl/2 = 0.85, while for water, Prl/2 = 2.6.

However, several of the scalar spectra reported by Gargett
(1985) show" -1" inertia-convective ranges which flatten out
before rolling off above kB.

4.6. Transiton

The energy spectrum E(k) bas a well-defined transition from
the (energy) inertial to the vis cous subrange at k ~ ky/IO (see

Figure 5). All that can be inferred th us far for the scalar spec-

trum is a transition from the -1 inertial-convective subrange

to the "-1" viscous-convective subrange, also at k ~ ky/lO.

Thus it is a Ettle surprising that observations (e.g., Gargett,
1985) show well-defined scalar transitions at k ~ ky/lOO. It is
argued here that no other physics need be involved in order to
explain this misalignment; such a large numerical factor is to
be expected. A detailed solution of (63), using a coeffcient 11

which interpolates between the t law (equation (89b)) and the

"2" law (equation (103b)), might reveal such a factor, but at
considerable computational effort. The interpolation formula
would be arbitrary; that is, it could introduce arbitrary nu-
merical factors. lnstead, an examination of the dependence of
11 on E and se wil itself reveal an appropriate numerical
factor.

It is suffcient to examine 11 in the Emit (t - s) -- 00. Let
se(k, t) have the inertial range form (equation (87)). As was
stated in the preceding section, the range of integration for k
in (88) is effectively Emited to k ::fky; in any case, this choice
can only prejudice the result in favor of the inertia-convective
subrange form for 11 (i.e., possibly pushing the scalar transition
above ky). Then we have

11 = bSI/3 IfkY R - 7/3 ff(kR) dk

The integral over k in (105) may be evaluated numerically.

The results are shawn in Figure 14. They indicate a well-
defined transition for 11 at a separation R almost a decade
greater than the cutoff length (fky) -1. This is indicative of a
scalar transition in wave number space almost a decade below
fky. The source of this numerical factor of ~ 6 is the slow rise
of the high-pass filter ff(a) from a2/30 for a (-: 1 to t as a --

(105)

fmmm"nnm"l!nlH"'lm,liiHIl1n'ni'Hii'HHil1"mnnmm'nm'n~



BENNETT: A LAGRANGIAN ANALYSIS OF TURBULENT DIFFUSION 813

4

3

2

¡; 1
í :.
.c
-- 0

ci
o
-, -1

,,/"
..""

..""...
..""

..""..
-2

-4
-1 o 1

109,O(RkvJ
2 3

Fig. 14. Large-time relative diffl.sivjty r¡ as a function of separation, according to the truncated model (equation (71))
for the energy spectrum:f = l, and the transition from the R2 range to the R4/3 ran~e is at R ~ 6ky -1 (solid line);! = 0.1,
and the transition is at R ~ 60ky -1 (c!ashed hne). That is, the tr¡¡nsition occurs at a separation close to an order of

magnitude larger than the length scale of maximum dissipation.

00 (see Figure 7). Note that the first maximum of!F occurs at
a ~ 6. The shape of !F is purely a consequence of the geome-
try of isotropie turbulence. .

If the Prandtl niimber Pr = vlk is not large, then the

viscous-convective subrange sbould not be well defined. The

inertia-convective subrange should have a smooth transition
to the rapidly decaying viscpu~-diffusive subrange describe¡i in
the next sectior-. ßowever, a clear "bump" in the scala. spec"
trum is com~only observed for k = O(k~) (Champilgne et aL.,
1977; Wiliams and PÇlillson, . 1977J It is suggested here that
the bump is a latent viscous-convective subrange, whiph exists
because of the tendency of Il to conveft to the 2 law for

k .co( kv' Similar conclusions were reached by Hil (1978), y.ho
calculated speptra corresponding to several models of the
spectral transfer rate. Those models incluCCe two or three qis"
posable pa.rameters. The analysis llereha.s none. ' .

5. DIFFUSlVE SUBRANGES

So far, scalar diffusion h;;s been neglected; specifically, the
diffusion factor g(k, t, s) appearing in the representation (18)
has been replaced by unity. This assumes that the initial diffu~
sion rate Kk2 is much smaller than the tl!rbulent strain rates.
The assumption will IIoW be relaxed; approxiinate forms for g
wil pe devised; and diffusiye ¡mbrange spectra wil bé c¡¡lcp-~~ .' . .
5.1. (Enstrophy) lnertia-Difusive Subrange

Consi¡ier the enstrophy-cascading inertial subrapge of two-
dimensional turQùlence. It wil be see~ in section 5.3 that the

rate of infiniteshnalline stretching is characterized by the rms

stfain rate apd so is O(À 1/3) here, where À is the. enstrophy

cascade rate. The logarithmic separation rate for particle
pairs, defined by R - 2r¡, is also O(À1ï~) according to (81b).

These rates are greatly exceeded by the scalar diffusion rate
Ick2 if (ÀIc-3jl/6 ~o( ~. 911 th~ other hapd, kmust be less than
the upper limit qf tlle enstropby-cascading inertial subrange Ofthe turbulence. .

ln this subrange, infinitesimalline stretching is negligible, so
the diffusion factor g(k, t, s) may be approximated by exp
( - Kk2(t - sn ln particular, tpe fundamental assumption of
spatially unifprm stretching factors is vindicated here; these
factors ¡lo not depart signiffcantly from unit y during the diffu-
sion process. Only the marginal statistics of sep¡¡ration are
reqllired, and the short-time relative diffusivity (equation
(89a)) should be appropriate. Indeed, as a first approxiInation
it would seem suffcient to approximate the separation pdf
P(R, sir, t)by its initial fOrff a(R) -ló(R - r). However, such
an approximation leads immediately to the scalar variance
spectrum

P(k) = bXa(k)ó(k - l)(lCk2)-1 .( 106)

where a(k) = 2nk for two dimensions. That is, there is no cas-
cade from the injection wave number 1, ils a consequence of
having entirely ignored rel~tive diffusion. qearly, it is' neces-
sary to recognize that P has a smal1 but finite sprea.d about
R = r. For example, the variahc~ ie O(À2/3(t - s)2r2). ~ cor-
rection t9 (106) may be calculated this way, but the result
depe11ds ùpon the illjeqtion \yave pumber 1. That is, there is ll0
universal form 'for the inerti¡¡-ciiffusivé subra.nge here. .

The model llsed above (and in an 'of this article so far)
assumes that the scalar field' js sustained bY an isotropic
source. This is an idèa.liz¡¡Iion. A more' realistic ppodel (and
one wl1ich is far more easily realized in practice)has nq exter-
rial spurce of scalar variance out insteadhàe a mean scalar
concentration with a gradient. ln particular, it will be assiimeq
that the graCCient is uniform ill space ann time. Without Ip~s of
generality it will be assuqqed that the gradient is para)1el to
one of the space axes:. . .

V(C) = (r, 0, 0) (107)

ln this model the turbulent velocity field is stll assumed to be
stationary, iSQtropic, and. with zero mean.Fluctuations in C
wilbe iiid¡¡ced bY turbulent advection of the meiin scalar

gradient ?r possiblY by randorn initiaa values for Ç,but this
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latter possibility wil be ignored by assuming C == a at t = O.
The prime denotes a fluctuation In C.

It is easily seen that C satisfies the advection-diffusion

equation (equation (1)) with the random source S replaced by
-ui(x, t)ï, which is the advection down the mean scalar

gradient. Hence the solution is, according to the repre-

sentation (5),

C(x, t) = -r l'dS f dy G(x - y, t, s)ui(y, tls)

It is now straightforward to derive an expression for the equi-
librium scalar variance spectrum P(k). Again, the inertia-
diffusive subrange form wil be assumed for the diffusion
factor: g(k, t, s) ~ exp ( -2Kk2(t - sn The expression for P(k)
inc1udes the Lagrangian velocity correlation (u(Yi, tlsi)' U(Y2'
t 1 S2)) where a :: si and S2 :: t. However, we need only
con si der (t - si 2) = O(Kk2)-i, which is much less than the

decorrelation ti~e scales of the turbulence (here O(À -1/3)). As
a result, the Lagrangian velocity correlation may be approxi-
mated by the Eulerian covariance (u(Yi' tlt). u(y¡, tlt)) =

(u(Yi' t). U(Y2' t)) = V..(Yi - Y2) for stationary homogeneous
turbulence. The latter is related to the kinetic energy spectrum
by the Fourier transform (equation (69)). With these approxi-
mations the expression for P(k) may be evaluated analytically
to yield

P(k) = br2 E(k)(Kk2) - 2 (109)

ln the enstrophy subrange, E(k) = bÀ2/3k-3, SO

P(k) = br2À2/3K-2k-7 (110)

5.2. (Energy) Inertia-Difusive Subrange

In the energy-cascading inertial subrange, infinitesimal line
stretching proceeds at the rms strain rate il = (e/v)I/2, while
partic1e pairs separate at the rate ei/3k2/3 (if we consider sepa-
rations r ~ k-i). Let kD = ei/4K-3/4 = ky Pr3/4. If Pr.(.( 1, then
there is an inertia-diffusive subrange, kD .(.( k .(.( ky, between the
inertial-convective and vis cous-diffus ive subranges. In this in-
termediate range, (e/vY/2 .(.( ei/3k2/3 .(.( Ke. That is, the molec-
ular diffusion rate greatly exceeds the local separation rate,
which in turn exceeds the infinitesimal stretching rate. In par-
ticular, the diffusion factor g(k, t, s) has the simple form given
previously, and only marginal statistics of separation are
needed to compute P(k).

The isotropie source modelleads to a scalar variance spec-
trum dependent upon the injection wave number l; that is, a
universal form is not found. The uniform gradient modellead-
ing to (109), combined with the energy subrange (equation
(70)), yields

P(k) = br2e2/3K2k-i7/3
(11 1)

This result is originally owing to Batchelor et al. (1959). It
was also derived by Kraichnan (1968) using the Lagrangian
history direct interaction approximation. More recently Les-
ieur et al. (1981) and Lesieur and Herring (1985) have derived
(110) and (111) using eddy-damped quasi-normal c10sure
theory.

It may be noted that aU these other derivations assume an
isotropie source model but in effect ar,gue that a low wave

-

(108)

number component of the scalar field is in practice indis-
tinguishabJe from a mean gradient in the field. They effectively
identify the (squared) mean gradient r2 with the (scaled)
source strength X1C - 1. What is omitted in these other derivati-

vations is the variance production term (CS). 1t is claimed
here that this term is a source of nonuniversaIity. The observa-
tions of Clay (1973) in a laboratory channeJ using mercury

(PI' = 0.02) c1earJy support (111), but the ex periment is best
described by the mean gradient mode!. It seems improbable

that an isotropie source can be devised, so this c1aim wil be
diffcult to test.

5.3. Viscous-Difusive Subrange

As was discussed in section 4.5, there is a viscous-convective
subrange. ky .(.( k .(.( kB = ky PrJ/2, provided the Prandtl
number Pr is very large. Beyond this range, ihat is, for k )) kB,
scalar diffusion cannot be neglected. There wil be fluctuations
in the diffusion factor g(k, t, s) owing to infinItesimal line
stretching; this proceeds al the local or rms strain rate il =

(e/I')J/2, LIS does (logarithmic) partic1e pair separation (see
(103b)). Thus joint statistics of stretching and separation are
required in order to estimate F(k) using (18). SpecificLlllY, what
are required are the joint statistics of finite separation Rand
the infinitesimal displacement 8A appearing in (6).

To this end it is convenient to introduce the vector h where

aA.
hi = kj -- (A(x, t 1 s), si tJ

ax¡ (112)

Then k . Q . k = h . h = h2. It is shown in Appendix II that

ah/as = - WTh (113)

subject to h = k at s = t, where

au.
VVj = -- (x, t 1 s)

aXj (114)

Meanwhile, R satisfies

aR/as = u(X + R, s) - u(X, s) (115)

subject to R = r at s = t. For R .(.( ky - i. separation is con-
trolled in the rms sense by eddies of scale k -1 = ky - 1 )) R,

so R obeys, essentially,

aR/as ~ WR (116)

It may be noted that Rand h are dual vectors in the sense that
h . R == k . r, for ail s. However, there is no obvious statistical
relationship between the separation R and the vector L ap-
pearing in (6). We shaU simply neglect that "drift" term; as a
result, we have

ag/as = Kh2g (11 7)

subject to 9 = 1 as s = t. This system of random differential
equations (equations (113), (116), and (117)) wil provide the
required joint statistics of separation and stretching.

It is shown in Appendix II that the calculation of the scalar
variance spectrum reduces to

P(k, t) = X f da (k) f da (1) fdS f dg P(g, k, t Il, 1, S)g2
(11 8)

'luJUwimUmll im mmH' i! 111 mm, i!! i!! Il! i 1 11 i 1 i n i i! i i i i!! l! I! i i I!! ii', n' n HI inn iinmminin, u
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where P is the joint pdf for the system

òg/òt = - Kk2g

'òk/òt = - WTk

with g = 1 and k = 1 at t = s. Kraichnan (1974J arrived at this
point by an analogous construction. He proposed a one-

dimensional model for k = Ikl:

òk/òl = ak (120)
with k = l at t = s. The statistically stationary, random strain
rate a(i) has a positive mean and a white noise variance v2.
That is, (120) should be written as

dk = (a;k dt + 21/2Vk dw

where w(t) is the Wiener process of unit variance (van

Kampen, 1981). Both (a; and V2 are Oeil). Kraichnan argued
that (a) = Nv2 where N is the number of space dimensions in

(119b). Once the joint pdf P(g, k, t Il, l, s) for the system (119a)
and (121) has been found, the equilibrium spectrum is given by

P(k) = X l' di r dg P(g, k, 1 Il, l, 0)g2

The joint pdf in (122) satisfies the Fokker-Planck equation

Pr = - (a;(kP)k + Kk2(gP)g + v2k(kPk)k

in the Stratonovitch interpretation, for which a is regarded as
a process with a vanishingly small decorrelation time (van
Kampen, 1981). The initial condition is

P(g, k, 0/1, l, 0) = (j(g - 1)(j(k -l)

Steady state and time-dependent solutions have been obtained
by Kraichnan (1974) and Bennett (1986), respectively. The
solution is particularly simple in the case v = 0, which corre-
sponds to Batchelor's (1959) uniform strain mode!. The spec-
trum is

P(k) = x(a)-1k-1 exp (-K(a)-I(k2 - ¡Z)J

as given by Batchelor. If v ? 0, then the spectrum is of the
form

P(k) oc kW exp (-(2IW-1)1/2k)

as k-- 00 and 1-- 0 (Kraichnan, 1974), where w = l((a;v-1

- 3). However, if the range of integration over g in (122) is
restricted to go ~ 9 ~ 1 where 0 ... go' then, stil for the case
v ? 0, the spectrum is asymptotically of the form

P(k) oc pWfo w-1/2 exp ( -K(a) -1(4vfo)-1k2) (127)

where fo = ln go' This is essentially of the same form as the
Batchelor spectrum (equation (125)) even though the strain
rate a Is now random. The cutoff go may represent the thresh-
old sensitivity of a measuring instrument.

The adoption of a white noise model for the strain rate art)
as in (121) is extreme. Consider instead the model

dk/dt = kilM(O) (128)

where 0 is a standard normal random variable and M is some
positive-valued functional form. Tt is assumed that 0 is inde-
pendent of time or else is a stationary process with a very long
decorrelation time. The spectrum P(k, 0) for a particular reali-
zation of 0 is given by the Batchelor form (equation (125)),

( 119a)

(119b)

(122)

(123)

(124)

(125)

(126)
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with (a; replaced by ilM(O). The spectrum F(k) is obtained by

averaging over O. Asymptotic forms for P(k) may be obtained
using the inethod of steepest descent, as k -- 00. There are
several interesting examples:

M(O) = eO

This lognormal strain rate is a natural choice. The spectrum
is

F(k) oc Xil - 1 k - 2 ln (k/kB) exp ( - t ln 2 (k/kh)) (129)

Note that kB2 = ilK-I. Thus intermittency of the strain rate
leads to a very broad spectrum.

(121) M(O) = 0(1)

M'(O) = 0(1)

101-- 00

101-- 00

The spectrum is, asymptotically as k-- 00,

P(k) oc Xil-Ik-l exp (-b1(kkB)2 - b2(kkB)4)
( 130)

where bi and b2 are positive, bounded dimensionless functions
of k/kB. This resembles the Batchelor form (equation (125)).

It is instructive to compare this array of results (equations
(125), (126), (127), (129), and (130)) with observations. Gargett
(1985) provides a review and presents high-quality data from
a turbulent coastal channel (see Figure lS). These recent ob-

servations support the Batchelor spectrum (equation (125)),
but no universal value is found for q = il(a; -1. (ln terms of q
the exponential in (125) becomes exp ( -q(k2 - ¡2)kB -2)). For
large signal-to-noise ratios (small go), Gargett finds large

values for q; this contradicts (127). The most plausible model
is (130); if the spectTum were of this form, th en fitting the
Batchelor form to the data (i.e., assuming b2 == 0) would lead

to an overestimate for bi' The safest conclusion is that while
theoretical models of the viscous-diffusive subrange are highly
sensitive to model details, Batchelorlike spectral forms are
ubiquitous, but universality is not likely.

6. TOTAL SCALAR VARIANCE

So far, the wave number spectrum of the scalar field has
been examined, given a random isotropie Source of scalar vari-
ance. ln this section the total scalar variance is estimated for a

variety of sources.

6.1. Random Isotropie Source

Consider the source S introduced in section 2. Tt has white
noise time dependence (equation (16)) and a simple space cor-
relation (equation (16)) corresponding to injection of scalar
variance only at wave numbers with magnitudes Ikl = 1. The
total scalar variance may be esti¡:ated by integrating the sev-
eral subranges of the variance spectra.

For the enstrophy inertia-convective range (equation (86)),
the result is

V¡c = bxr 1/3 a + ln (kc Il) J (131)

where kc is the upper limit of the subrange. If this convective
subrange is eut off by scalar diffusion with diffusivity K, then
kc=(UmK-1)1/2 where U=(em-1)1/3 is an rms velocity for
the turbulence which has the characteristic length scale m - l
described in section 4.1. Assuming 1"" m, that is, scalar vari-
ance and kinetic energy are injected at the saine wave number,
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Fig. 15. Variance-preserving plot of temperature variance dissipation spectta in a British Columbia fjord; after Gargett
(1985): Batchelor spectrum (equation (125)) witll q := 0(0:) -1 = 12 (heavy solid curve) and Batchelor spectrum with q = 4
(heavy dashed curve).

yields kcll ~ (UK-im~I)I/2 = Pei/2 where Pe is the Peclet
nl1mber. Thus

V¡c ~ bX)" -i/3 ln Pe (132)
Håwever, the detailedphysics of the ranges beyond the en-
strophy inertia cOI1vective are not well defiried, so no attempt
wil be made to estimaÜ: their contribution to the total scalar
vari~nce. The important point is the dependence, if onIy loga-
,rithmic, of the total variance upon the sriall-scale parametee~. : .

For theenergy inertia-convectivè subrangè the total scalar
variance has already been obtained (equation (96)) as the value
of the structure function at small separation:

V¡c ~ bXe-i/31-2/3 (133)

If Pr ;.; 1, there is à viscol1s-convective subrange ky " k "
k~ Pri/2 = kB. By virtue of (104b), this cOI1trihutes

VYC ~ bxü.-i ln Pr (134)

The ratio of die two contributions (equations (133) and (134))

is

V¡c/Vyc = b Ré/2(mll)2/3(ln Pr)-1 (135j

wh~n: tQ.e Reynolds number Re = Um-iv-i. Thus the inertia-
conveêtivt; contribiition should dominate in the geophysieai
coliteXt. The cOI1tribution of the viscous-diffusive subrangè is
iiegligibie.

6.2. Mean Scalar Gradient

This state llas already been considered in the analysis of thé
inertia-diffusive subrange (see sectioI1 5.1). Agaiii, the mean
scalar gradient is

V(C) = (r, 0, 0) (136)

and scalar fluCtuations C' satisfy the advection-diffusioII equá-
don (equatiori (1)) with source -ui(x, t)r. Helice C' is given
by (108), while the total variance is

'"

V=(C'2)=tr2 l'dSIl'dS2 rdYirdY2(G(X-Yl't,SI)

. G(x - y 2' t, S2)U(Y l' t 1 S i) . u(y 2' t 1 S2)) (137)

The physical space diffusion functioris an: significant only if
lx - Yi,21 are small; theyare normalized distribution fuhc-
tions, soin á first approximation,

v ~ tr2 l' dSil' dSi (u(x, tlsi). u(x + z, tIS2))

where z = Izi is ver y small, O(KU-iin-i)i/2 = in-I Pe-i/2.

For isotropie statioIlary turbulence we have

(138)

(u(x, tlsi). u(x + z, tIS2)) = v,¡,(z, t - 1-si + S2)' si - S2)

(139)

which is a Lagrangian velocity covariance with one spaee lag
and two timè lags. ln the limit as t-4 00, (138) becomes

V ~ tr2 l'X) dtifX) dt2 v"u(z, tl' t2) (140)

wherè ti = t - .l(si + 82) and t2 = (Si"' si); that is,

v ~ tr2T 1'" dti v".Jz, ti)

where . T ~ (mU) -i is an integral tirie scale for the argument
t2 iii v"u' and v"u represents the mean of v"u over t2:

. (141)

v"uCz, ti) = 1'-i1'" dt2 v"u(z, ti' t2) (142)

Since z " 11 - i, wliich is of the order of the space decorreladon
scale for u, it wil be suffciently accurate to set z = 0 in (142).
This do es not imply that molecular diffusion has been entirely
neglected, sirice v"u(O, ti) represent a decòrrelation of the Ve-
locities of two partides which were once very close together
(at Si = S2 = t; ti = 0). For a given value of ti ;G T, their
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separation should be of the order of D = (U2 Ttl)l/2 since the
particles wil be making independent random walks (absolute
diffusion), and an estimate of the right order magnitude for V
should be given by

v ~ br2T(U2T)-lfodD v.u(D)D

where v.u(D) is the Eulerian velocity covariance at space lag
D:

v.u(D) = (u(x + D, t) . u(x, 1))

That is, sin ce v.u has the length scale m-I = UT,

V ~ br2m-2

provided the integral in (143) is convergent. If it is not conver-
gent, then the velocity field would have such long range corre-
lations that the uniform mean scalar gradient model would
not be useful A possible exception might be gradients on the

scale of an oceanic gyre, advected by mesoscale turbulence.

However, the question of integrability of a correlation func-
tion is not answerable in practice, and the estimate (equation
(145)) must bear this stigma. It is bounded but is explicitly
independent of the molecular or small-scale diffusivity K.
Nevertheless, it is implicitly dependent upon the existence of a
nonzero diffusivity since it is the result of a two-particle ca1cu-
lation (ti is the time for which the two particles have been
separating after being very close). To explain (145) further,
consider the two particles involved in (138). Initially very
small, the separation of the two particles will grow as (Bti 3)I/Z
as it crosses the energy inertial subrange. The separation wil
be of the order of m-l when ti ~ (m-ZB-l)l/3 = m-IU-I.
Each particle wil then have been displaced by about Uti ~
m -1; these displacements will be correlated, but subsequent
displacements wil not; thus (138) yields (145). If the early
stage of separation is controlled by an enstrophy inertial sub-
range for which À ~ (Um)3, then separation grows as zeÀl¡'tl,
and so displacements wil be correlated until ti ~ m-IU-i/ln
(mz)l, by which time they are ~ Uti' That is, (145) becomes

V ~ brzm-z ln Pe

Durbin (1980) also argued for (138). That is, total scalar
variance, even in the presence of molecular diffusion, could be
ca1culated with diffusion neglected, by taking the limit of

scalar covariance at small space lag. He ca1culated the dis-
placement correlation (equation (138)) by developing a sto-
chas tic model for joint motions of particle pairs. However, he
found an unbounded V, growing as tl/2 as t-. rY. The reason
is that his stochastic model was based on an Eulerian velocity
correlation v.u(D) decaying as D-2/3 as D-. rY. With this
choice the integral in (143) would be divergent. While this
decay rate may be appropriate in the energy inertial range, it
is probably unrealistically slow for D;;;; m-i.

6.3. Random Source of Pinite Extent

It would be attractive to be able to modellong-range trans-
port of scalars from localized sources, by tracking particles
leaving a point source. For example, let the source strength be
given by

S(x, t) dt = xi/z(2ncrz)-N/4e-x2/(4u2) dw (t) (147)

Hl7

where cr is the radius of the source which is centered at x = 0,
N is the dimension of the space, and w(t) is the Wiener pro-
cess. The latter has uncorrelated increments:

(dw (11) dw (lz)) = 0(11 - lz) dti dtz (148)

(143) Note that the total variance of the total source contribution

S S dt is a linear function of time but is independent of the
source radius cr:

(144)
f (l'S(X, Si) ds¡ l'S(X, S2) dSz) dx = xt

(149)

(145)
With diffusion neglected (K = 0) the solution for the scalar
concentration is simp1y

C(x, t) = l'dS S(x, tl s) (150)

An elementary calculation then yields

(C2(x, t)) = X l'dS f2n(crz + 2(1 - s)K)) -N/Z

. exp t -tlx + (t - s)(uW/(crz + 2(t - s)K)) (151)

(146)

ln the derivation of (151) it has been assumed that the partic1e
displacement A(x, t 1 s) is a multivariate normal random
variable, with mean (t - s)(o) and variance 2(t - s)K =

4(t - sKlo'12)T where T is the Lagrangian integral time scale
of the velocity field. It is also assumed that components of A
are uncorrelated. These assumptions are correct asymp-

totically as (t - s) -- rY for isotropie turbulence, as discussed
in section 3. If the integral (151) is divergent as t-. rY, then
the neglect of scalar molecular diffusion (implied by the use of
(150)) is unjustified. Now (151) is convergent, provided that
(0) * O. Otherwise, it is convergent only for N ~ 3. ln gener-

al, any long-range transport model wil involve a mean fiow,
so convergence is the rule. The next issue is the behavior of
the scalar variance as the source radius cr-- O. A closed form
for (151) is not available, but inferences may be made by
examining the integrand at cr = O. If x * 0, the integral is
convergent as s = O. If x = 0, the integral is convergent only
for N = 1. However, for small values of (t - s) the variance of
A is in fact ~(t - s)Z(lu'/Z) rather than 2(t - s)K, in which

case the integral diverges even if N = 1. It is concluded that
the use of single partic1e statistics to modellong-range scalar
transport from an isolated source is justified in the sense that
except at the source, the scalar variance is bounded even
though K = 0 and even if the source radius is vanishingly
sm ail.

The above calculation was simplified by the adoption of a
normal profile for the source S. as in (147), but the results are
not dependent upon the choice. The diffculty at x = 0 was
noticed by Durbin (1980), but the satisfactory behavior else-
where was not described. Chatwin and Sullvan (1979) demon-
strated the existence of "core structures" in clouds of passive

containments using general scaling arguments and also re-
marked on the adequacy of point source models in analyses of
dispersion.

EFFECTIVE TOTAL DIFFUSIVITY FOR THE

MEAN FIELD

ln previous sections, second-order statistics of C have been
examined: the variance spectrum F(k, t) and the total variance

7.
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(C2). ln this section the mean concentration (C) is con-
sidered. ln particular, the asymptotic response for large time
due to a nonrandom source S(x, t) wil be estimated, and the
results wil be interpreted in terms of an effective total diffusi-
vity.

Evolution equations for the mean concentration (C) have
been derived by Phythian and Curtis (1978) and by Drummond

(1982) using renormalized series expansions and Feynman
path integral representations of (1), respectively. Both analyses
led to equations of diffusion type. The effective total diffusiv-
ities were in both analyses less than the sum of the Lagrangian
turbulent diffusivity K = N-ltrace(DI)), where DI) is the inte-
gral in (34), plus the molecular diffusivity K. This destructive
interference between turbulent and molecular diffusion is evi-
dent in series solutions of (1) and (2) in powers of s derived by
Saffman (1960J and Okubo (1967)

An estimate of (C) may be obtained directly, using the
representation (5):

(C(x, t)) = l'dS f dy (G(x - y, t, s)S(A(y, tls), s))

where the average is over the turbulence only, since S is non-
random. Let us assume that the infinitesimalline stretching in
G and the single particle displacement A in S are statistically
independent, since the former is due to integrated shear, while
the latter is due to integrated velocity; this yields

(C(x, t)) = l'dS f dy (G(x - y, t, s)) f dz S(z, s)P(z, si y, t)

(153)

where P(z, si y, t) is the single particle displacement pdf de-
fined by (27). For homogeneous turbulence, P = P(z - y, si t),
and so (153) is a convolution product whjch has a simple

representation in wave number space:

(e(k, t))= l'dS (G(k, t, s))S(k, s)P(k, slt)

where overbars denote Fourier transforms. (Previously, 9 was
used in place of G, but the latter symbol is introduced here for
consistency.) Suppose further that P(z - y, si t) is normal, with
variance 2(t - s)K, as is asymptotically the case for isotropie

turbulence for t~ co. Then P = e-Kk2(i-s). If molecular diffu-
sion is neglected, then G == 1, and

(e(k, co)) = (Kk2)-IS(k)

for a steady source S(x). If molecular diffusion is retained, but
stretching is ignored, th en G = e-"k2(i-S), and (155) holds with
K replaced by the effective total diffusivity Ke = K + K. That
is, there is no interference between molecular and turbulent
diffusion.

Let us now retain stretching, using the simple model of
Batchelor (1959) in which there is a nonrandom uniform
shear field with a strain rate n (see section 5.2). Then the

stretching factors grow exponentially in time, and

- r K~ JG(k, t, s) = exp L - 2n (eU1(-s)-I) (156)

Substitution of (156) into (154) with a steady source yields

(155) with an effective total diffusivity

Ke = K + K(1 + ~) + 0(K2K-I)
K- 1

(157)

nn

which implies constructive interference between turbulent and
molecular diffusion. Recall the assumption of independence of
stretching and displacement and the use of the nonrandom
uniform strain mode!.

Finally, assume that stretching is governed by a white noise
strain rate, as in section 5.2. Then the results of Bennett (1986)
may be used to show that

(G(k, t, s)) ~ b(v(( - s)J - 3/2 exp ( - (1x)2(t - s)j(4v)J

. (VI/2KI/2k)" KO(VI/2icl/2k) (158)

(152)

where z = 1 - t(Ix)V-1 and Ko is a modified Bessel function.
For large x, Ko(x) ~ bx-l/2e-x. Note that the time and wave
number dependence of G have separated asymptotically. Evi-
dently, there is no longer an effective total diffusivity, accord-
ing to the white noise strain model, and (C(x, co)) does not
satisfy anything like a steady state diffusion equation. It is
concluded that calculations of corrections to the turbulent
diffusivity K, whieh are after aIl only O(KjK) = O(Pe- 1), are
highly sensitive to model details. It should also be noted that
the expansions used by Phythian and Curtis (1978J and also
Drummond (1982) ensured that (C) satisfied a diffusion equa-
tion.

(154)

8. SUMMAR y

An approximate analytical solution to the advection-
diffusion equation has been used to estimate scalar variance
spectra, total scalar variances, and mean scalar fields. The
analysis is fundamentally Lagrangian in character.

The" -1" inertia-convective subrange, in isotropie station-
ary turbulence with an enstrophy-cascading inertial subrange,
is deduced using Lundgren's (1981) solution of the

Richardson-Kraichnan equation with a separation-dependent
relative diffusivity: the "2" law. The "-t" inertia-convective
subrange, for an energy-cascading inertial subrange, is de-
duced from a new solution of the Richardson-Kraichnan

equation with another separation-dependent relative diffusi-
vit y: the "1" law. The success of this calculation is shown to
support the 1law over separation-independent alternatives.
The - 1 viscous-convective subrange, whieh exists for large
Prandtl numbers, is derived by analogy with the (enstrophy)

inertia-convective subrange. These spectral forms and relative
diffusivities are found in oceanic and atmospheric data. An
examination of the spectral representation of the relative dif-
fusivity indicates that the transition from the -t law to the
- 1 law should occur at wave numbers a decade smaller than
the vis cous cutoff kv. This spectral misalignment is regularly
observed. For low Prandtl number, nonuniversal inertia-
diffusive subranges are found for enstrophy- and energy-
cascading turbulence and isotropie scalar sources. However,
the" - 7" and" - lt' forms are derived if the isotropie scalar

sources are replaced with mean scalar gradients. The latter
form has been observed in the laboratory. Joint statistics of
separation and stretching are needed to describe viscous-

diffusive subranges. These statistics are modeled using uniform
strain fields which are deterministic, or have white noise time
dependence, or have very long decorrelation times. There is a
tendency toward essentially Gaussian spectral shapes at high
wave numbers. However, the shapes are not universal, in
agreement with recent oceanic observations.

Total scalar variances are estimated for several source con-

figurations. The first is the isotropie source used in the analy-
sis of spectral subranges. ln the enstrophy inertia-convective

(155)
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subrange there are equal contributions to the total variance
from each decade; thus the total has a logarithmic dependence
on the iU-defined upper and lower bounds in wave number
space. The dynamics' of the adjacent viscous-convective sub-
range are not weIl defined. ln energy-cascading turbulence the
total scalar variance is dominated by the contribution from
the injection range. The total scalar variance in the presence of
a mean scalar gradient, but no source, is found to have a finite
value approximately independent of the molecular diffusivity
for the scalar. Nevertheless, the analysis is crucially dependent
upon the existence of a nonzero diffusivity, which causes the
variance to depend on relative turbulent diffusion. The result
just quoted holds for energy-cascading turbulence; for

enstrophy-cascading turbulence the total variance has a mild
dependence upon the molecular diffusivity, via the logarithm
of the Peclet number. The total variance due to emission from
a localized source is shown to be bounded for large time and
independent of the source radius and molecular diffusivity,
except at the source.

FinaIly, the total effective diffusivity for the mean scalar
field is considered. The interaction between turbulent and mo-
lecular fields can, according to models presented here, be inde-
pendently additive, or else constructive, or else such as to
vitiate the concept of a total effective diffusivity altogether.
Nevertheless, for large Pe the concept of a turbulent diffusivity
must be essentially correct. That is, molecular diffusivity leads
to an evolution equation for the mean scalar field which is not
of diffusion type but must in some sense be close to that type.

The results surveyed here hold for isotropie turbulence.
However, it should be noted that the approximate solution of
the advection-diffusion equation and the pair dis placement
equation (equation (42)) (or its varients) are equally valid for
inhomogeneous turbulence. Specialization was only necessary
in sections 4-6, in order to make explicit estimates for relative
and absolu te (single particle) diffusivities. The problem of esti-
mating the absolute diffusivity tensor for homogeneous but
anisotropic turbulence was tackled directly by Holloway and
Kristmannsson (1985). They devised a second-order turbu-
lence closure simultaneously for the ß plane momentum equa-
tions and scalar diffusion equation. The closure was effected

for the Eulerian forms of the equations; consequently, the

scalar diffusivity tensor was expressed in terms of Eulerian
velocity statistIcs rather than Lagrangian statistics. It was
argued that the diffusivity tensor must be diagonal in east-
west and north-south coordinates, while an approximate

analysis showed that the north-south diffusivity decreased sig-
nificantly with increasing values for the ß parameter. It is no
great oversimplification of this result to say that random
Rossby waves are less effective in meridional diffusion than
isotropie turbulence. The reduced meridional diffusivity is an
expression of a decreased correlation between meridional ve-
locity and the scalar field. A Lagrangian closure may lead to a
different decorrelation.

Estimation of diffusivities for inhomogeneous turbulence is
reaiiY beyond the scope of analytical theory. A recent one-
dimensional analysis (van Dop et al., 1985) considers absolute
dispersion. As remarked in section 3, relative dispersion of
particle pairs last only briefty in strongly inhomogeneous tur-
bulence.

ApPENDIX 1: PARTICLE DISPERSION lN A SHEAR FLOW

Suppose there is a mean shear in the velocity fields, (u) =
(YX3' 0, 0), and suppose that only a transverse velocity compo-
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nent ftuctuates, (ul2) = (U/2) = 0 and (U3'2) ¥= O. Consider

two partic)es with an initial separation R = (1'1' 0, 0) suf-
ficientJy large in magnitude so that their motions are indepen-
dent. Their motions may be regarded as independent random
walks, so the evolution of the components of their separation
may be modeled by

dRI = yR3 dt

dR2 = 0

dR3 = 2K1/2 dw (t)

(AI)

(A2)

(A3)

where w(t) is the Wiener process, while K is a constant diffusi-
vit y (for stationary homogeneous turbulence). It follows easily
that (R/) = 4Kt, and (RiR3) = 2Kyt2, so

(R/) = ri2 + tKy2t3 (A4)
This t3 law for particle separation is widely observed (Okubo,
1971), but (A4) is not a consequence of energy-cascading iner-
tia) range scaling.

ApPENDIX II: INFINITESIMAL STRETCHING

By definition of X = A(x, t 1 s), there is the identity

Hence
x = A(A(x, t 1 s), si t) (A5)

~ aA,o¡j = (X, si t) - (x, t 1 s)ax, ax¡ (A6)

which yields

aA,k¡ = h,- (x, tls)
ax¡ (A7)

where

aAjh, = kj - (X, si t)
ax,

is the stretching vector introduced in section 5.2. From (A 7)

and (3) it follows that

(AB)

ah, aA, (a )
- - (x, t 1 s) + hi - u¡(x, t 1 s) = 0as ax¡ ax¡

which becomes

(A9)

ah, aAI (au,) aArn
- _a (x, t 1 s) + hi - (x, t 1 s) - (x, t 1 s) = 0as X¡ aXnn ax¡ (A 10)

Analogous to (A6), there is the identity

aA. aA
o¡j = _a J (x, t 1 s) -- (X, si t)Xp ax¡

so multiplying (A 10) by (aAJaXn) yields

(AU)

ahn au¡-= -h,-as aXn (AI2)

or

a
- h = - WTh
as (113)

where

au.
J¥j = ~ (x, t 1 s)

aXj (114)
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r
V u.(r)

me an scalar gradient (see equation (107)).
EuleriaIi velocity covariance at separation
r.

kD == kv Pr3/4

(see after equation (108)).
lower limit of inertia-diffusive subrange
(Pr ~~ 1).

velocity shear tensor (see equation (114)).
random strain rate, with mean (0:)
and variance V2.

constant in universal form of Batchelor

(1959) spectrum (see equation (125) and
after equation (130)).

TTj
0:

q = .0(0:)-1

Section 6

U = (Em-I)1/3
Pe == UK-Im-1
Re == Uv-Im-1

root-mean square turbulent velocity.
Pec1et number.
Reynolds number.
Lagrangian velocity covariance (see
equation (139)).

v"u

Note that other symbols not listed have also been used only
locally or as dummy variables; band b' always signify dimen-
sionless constants.
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The expression (equation (18)) for the variance spectrum
may be written as

P(k, t) = X f da (k)a(l)-1 f da (1) J;dS f dr (ei(k'r-I'k,y_¡

(AB)

where Rand gare random variables satisfying (116) and (117),
respectively. It follows from (116) that R is given by

R = E(t 1 s)r (AI4)

where

aE = WE
as

and E(t 1 t) = L, the identity matrix. Substituting (AI4) into
(AB) and integrating over r yields

(AI5)

P(k, t) = X f da (k)a(l) -1 f da (1) J;dS (i5(k - F(t 1 s)l)g2)

(AI6)

Now g is given by

9 = exp L -IC fh2(t 1 s') dS'J (AI7)

where by (113),

b(t 1 s') = F(s' 1 t)k (AI8)

The expectation in (AI6) is the variance of g, conditional upon

k = ET(t 1 s)1

Using (AI7)-(AI9) and the identity

(AI9)

E(s' 1 s) = E(s' 1 t)E(t 1 s) (A20)

shows that the expectation in (A16) may be written as (g2)
where

gi = -ick2g ki = WTk (119)

subject to 9 = 1 and k = 1 at s = t.

NOTATION

This is a list of frequently occurring symbols, in

introduction.
or der of

Section 2

x, X N-dimensional space coordinates.

t, s time variables.

u =u(x, t) N-dimensional fluid velocity field.
IC scalar molecular diffusivity.

C = C(x, t) scalar concentration field.

S = S(x, t) scalar source field.

A = A(x, t 1 s) position at time s of a particle known to
pass through position x at time t
(see equation (3)).

G(x - y, t, s) fundamental solution of advection-diffusion

equation in Lagrangian form (equation 4)),
assuming spatially uniform transformation
factors.

k, L, m N-dimensional wave number vectors. Scalar

variance is injected at 1 = III; kinetic
energy is injected at m = Iml.

g(k, t, s) Fourier transform of G(x, t, s) (see equation
(6)).

Q, L transformation or stretching factors
(see equation (6)).
N-dimensional separation vectors.
ensemble average and fluctuation.
total scalar variance, averaged over turb-
ulence and sources.

da (k) in k space; area element on an N sphere of

radius k = Ikl.
P(k, t) variance spectrum of scalar concentration

(see equation (10)).
a(k) are a of N sphere of radius k (see equation

(11)).
!J(kD) spherical average of eik'D (see equation

(12)).
PC", .. ., si, . " "', t) pdf of values at time s, conditiona1

on their taking values at time t.
X intensity of scalar source S (see equations

(15) and (16).

D, r, R
( ),'

V = (C(x, t)2\,S

Section 3

p(' . ., . . . , si, . " . . ., t) "micro" distribution function for a
given realization: (p ì = P (see equations

(25) and (27)).
Dij(x, y, t 1 s) Lagrangian diffusivity tensor (equation

(43)).

IJij Lagrangian relative diffusivity tensor
(see equation (49)).

IJ longitudinal component of IJij'
, Richardson's relative diffusivity

(see equation (55)).
Kij(X, X, si t) Taylor's diffusivity tensor (see equation

(67)).
w(t) N-dimensional Wiener process, with

uncorrelated components and uncorrelated
increments.

Section 4

E(k) kinetic energy spectrum (see equation

(69)).
s mean dissipation rate of turbulent kinetic

energy.
kinematic viscosity.
Kolmogorov wave number.
Kolmogorov constant (see equation (70)).
high-pass fiter due to geometry of
isotropie turbulence (see equations (74) and
(75)).

.2 = .2(k, w) dimensionless Lagrangian spectrum

of kinetic energy (see equations (76) and
(77).

À mean dissipation rate of turbulent vertical
vorticity variance (enstrophy).

V(r) equilbrium scalar covariance at
separation r = Irl.

P(k) equilbrium scalar variance spectrum.
o == (slv)1/2 root-mean-square velocity shear.

Pr = vlic Prandtl number.

kB == ky Pr1/2 = (Oic-1)1/2 Batchelor's (1959) cutoff wave

number.

v

ky == S1/4V - 3/4

Ky
ff = ff(8)
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