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[1] The turbulence (the random vortex motions) of the upper ocean is nourished by the
energy and momentum of the surface waves (the potential motion). The statistical
characteristics of the turbulence (turbulent kinetic energy, dissipation rate, and Reynolds
stresses) depend on the state of the ocean surface waves. This paper discusses the
possibilities of generating this turbulence using the vortex instability of the potential
surface waves. The vortex component of fluctuations of velocity field and possibly the
interaction between both the vortex and potential motions cause the vertical transport of
the momentum. The Reynolds tensor is a linear function of the correlation tensor of
vortex field. The initial small vortex perturbations always exist in the upper ocean
because of the molecular viscosity influences, especially near the free surface, and the
fluctuations of the seawater density. The horizontal inhomogeneities of the seawater density
produce the vortex field even if the initial vorticity was zero and the initial flow was the
potential flow. The evolution of the small initial vortex disturbances in the velocity field of
potential linear surface waves is reduced to a coupled set of linear ordinary differential
equations of the first order with periodic coefficients. The solution of this problem shows
that the small initial vortex perturbations of potential linear surface waves always grow. The
initial small vortex perturbations interacting with the potential surface wave produce the
small-scale turbulence (Novikov’s turbulence) that finally causes the viscous dissipation of
the potential surface wave. The wave-induced turbulence can be considered as developed
turbulence with a well distinguishable range of the turbulent wave numbers k where
turbulence obeys the Kolmogorov’s self-similarity law.
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1. Introduction

[2] The turbulent motion in the upper ocean is a highly
specific example of turbulence in a liquid whose free surface
is subject to wind friction. The ultimate result of this action
is the formation of waves, pure drift currents, and turbu-
lence, leading to strong vertical mixing of the upper ocean
layer. In contrast to boundary layers at a solid wall, where
mean velocity shear is the main source of turbulent energy,
the turbulence in the upper ocean is governed in many
respects by the wave motions. The energy transferred per
unit time from the wind to the oscillations of water surface
h(r, t) is an order of pure drift currents [Kitaygorodskiy and
Miropolskiy, 1968; Kitaygorodskiy, 1970; Benilov and Ly,
2002], and it follows that the turbulence of the upper ocean
is nourished by the energy accumulated in the waves. Con-
sequently the turbulence characteristics should be depended
on the state of the ocean surface.

[3] The first attempt to take into account the wave influ-
ence on the turbulence was done in 1947 [Dobroklonskiy,
1947], there was obtained an equation for the eddy viscosity
in a trochoidal wave. In 1950 [Bowden, 1950] it was pro-
posed that the turbulence in a large- amplitude wave could be
described by averaged fluid mechanics equations in which
the mean velocity is taken to be the wave velocity field.
[4] In 1962, Stewart and Grant [1962] measured the tur-

bulent kinetic energy spectra in the presence of waves were
measured and estimated the turbulent kinetic energy dissipa-
tion rate, which had close connection to the wave state. Field
measurements done in 1964–1966 [Shonting, 1966] showed
considerable dawnward turbulent momentum fluxes, which
depended on the wave motions. The more detailed measure-
ments performed later by Efimov and Hristoforov [1971],
Kitaygorodskiy et al. [1983], and Datla and Benilov [1997]
confirmed conclusions by Shonting [1966]. Quantitative
characteristics of the wave effects on the turbulence were
described in early surveys [Benilov, 1969a; Kitaygorodskiy,
1970; Gargett, 1989; Geernaert and Plant, 1990] and in
recent monographs by Soloviev and Lukas [2006] and
Babanin [2011].
[5] In 1968 the turbulent kinetic energy equation was

applied to study the wave turbulence [Kitaygorodskiy and
Miropolskiy, 1968]. They took into account the effect of
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the wave spectrum and calculated the vertical profile of the
turbulent energy dissipation, explaining the field measure-
ment in the upper ocean given in Phillips [1977]. By gen-
eralizing the results of Stewart and Grant [1962],
Kitaygorodskiy and Miropolskiy [1968], Phillips [1977],
and Benilov [1973a] proposed the equation of the turbulent
energy balance, which takes into account the energy influx
from the wave motions to the turbulence [see also Benilov
and Lozovatskiy, 1977; Kitaygorodskiy and Lumley, 1983;
Benilov and Ly, 2002].
[6] In 1970, Benilov and Filyushkin [1970] proposed a

procedure of linear filtration to separate the turbulent and
wave fluctuations in real recordings, obtained from mea-
surements. Later, Benilov [1973b] developed a procedure
based on the nonlinear analysis. The linear approach was
used by Matushevskiy [1975], Hristoforov and Zapevalov
[1979], Kitaygorodskiy et al. [1983], and Cheung and
Street [1988] to study separately the turbulence and wave
fluctuations. The measurements of the small-scale turbu-
lence [Jones, 1985; Solov’ev, 1986; Matusov et al., 1989;
Jiang et al., 1990] demonstrated a strong dependence of the
turbulence intensity on the wave state.
[7] Hence, surface waves, considered as potential waves,

have a strong influence on the turbulent motion, which is
a vortex motion. Therefore, we shall discuss, following
Benilov [1969b] and Benilov et al. [1993], the vortex insta-
bility of linear potential surface wave or, in other words, the
possibility of generating turbulence by the vortex instability
of linear surface waves.

2. Vortex Instability of Linear Surface Wave

2.1. Hydrodynamic Consequences

[8] This section considers three questions which can be
answered from the hydrodynamic equations.
[9] 1. What is the contribution of potential surface waves

into the spectra of the Reynolds stresses which are respon-
sible for the vertical transport of the momentum? They play
significant role on formation of the ocean upper layer verti-
cal dynamic structure. It is well known that the wave Rey-
nolds stresses induced by the potential surface waves do not
contribute into the vertical transport of the momentum
because the corresponding stresses equal to zero. To dem-
onstrate this, first, we assume the field of surface waves as a
random statistically homogeneous field. The field of the
surface gravity wind waves satisfies well the conditions of
statistical horizontal homogeneity in the range of the spatial
scales at least up to tens of kilometers. The definitions and
the mathematical technique of the homogeneous random
fields can be found in Batchelor [1953], Kinsman [1965],
and Monin and Yaglom [1987]. This theoretical approach is
employed to study the ocean wind waves throughout of
about 5 decades [Kinsman, 1965]. Let us put for the random
wavefield of velocity the ordinary classic form of the
potential approximation [Kinsman, 1965; Phillips, 1977;
Batchelor, 1967; Landau and Lifshitz, 1987]

v ¼ r8; r � r8 ¼ 0; v r; x3; tð Þ ¼ va r; x3; tð Þ; v3 r; x3; tð Þ½ �;
a ¼ 1; 2; ð1Þ

8 r; x3; tð Þ ¼
Z

exp iprþ px3ð ÞdZ8 p; 0; tð Þ; r ¼ x1; x2ð Þ;
p ¼ p1; p2ð Þ; p ¼ pj j; ð2Þ

va r; x3; tð Þ ¼ i
Z

pa exp iprþ px3ð ÞdZ8 p; 0; tð Þ;

v3 r; x3; tð Þ ¼ �
Z

p exp iprþ px3ð ÞdZ8 p; 0; tð Þ; ð3Þ

where 8 is the potential of the wave velocity field, r ¼
x1; x2ð Þ is the Cartesian coordinate horizontal position vec-
tor, x3 (≤0) is a vertical coordinate in upward direction, p is a
wave vector, dZ8 p; 0; tð Þ is Fourier-Stieltjes measure of
potential 8 r; x3; tð Þ at x3 = 0. Computing the wave Reynolds
stresses vav3 (a = 1, 2, and the bar at the top is the averag-
ing) using (1)–(3) and taking into account that the wave
Reynolds stresses are the real quantities, we find

vav3 ¼ Reel �i

Z
pap exp 2px3ð ÞE8 p; 0; tð Þ

� �
dp ¼ 0;

dZ8dZ8* ¼ E8 p; 0; tð Þdp;
ð4Þ

where dZ8 p; 0; tð Þ� is a complex conjugative quantity of the
Fourier-Stieltjes measure of potential 8 r; x3; tð Þ at x3 = 0,
E8 p; 0; tð Þ≥0 is the spectral density of the wave potential
8 r; 0; tð Þ and it is a real quantity. Therefore, the expression
under the integral sign also is a real quantity, and then the
wave Reynolds stresses vav3 vanish and do not contribute
into the vertical transport of the momentum. It means that
the vortex component of fluctuations of velocity field and
possibly the interaction between both the vortex and poten-
tial motions cause the vertical transport of the momentum.
[10] 2. What follows from the hydrodynamics equations

about vortex disturbances in the potential flow? Let the
velocity field u be the sum of the potential component v and
the vortex component w that is

u ¼ vþ w ; v ¼ r8 ; w ¼ curlA ; divA ¼ 0 ;
r � rð Þ8 ¼ 0 ; r � rð ÞA ¼ �w ; w ¼ curlw ;

ð5Þ

where 8 is the scalar potential of the velocity field v, and A is
the vector potential of the velocity field w. From equation set
(5) the vortex velocity w can be expressed in terms of the
vorticity either in the following differential form

Dw ¼ �curlw ð6Þ

or the integral form

w x; tð Þ ¼
Z
VS

curlw x′; tð Þ½ �G x′; xð Þdx′�
I
S

w xS ;tð Þ rG � dSð Þ;

ð7Þ

where G(x′, x) is Green’s function of the Laplace’s operator
(D = (r � r)) for lower half-space (�∞ < x1, x2 < ∞;
�∞ < x3 ≤ h(r, t)) bounded by the random wave surface
h(r, t), the integration (dx′ ¼ dx′1dx′2dx′3) in the first integral
of (7) is extended over the volume VS of the entire region
while the integration in the second integral is extended over
the surface S of the region. The vector dS = n dS represents
the element dS of the surface S, the random wave surface
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h(rs, t), at x = xs = {x1s, x2s, h(rs, t)}with the outward normal
n at this point. The first integral in (7) represents the con-
tribution into the vortex velocity w(x, t) vortices distributed
over the entire volume VS. The second integral in (7) repre-
sents the contribution into the vortex velocity w(x, t) vortices
distributed at the entire surface S or, in the case under
examination, at the surface x3 = h(r, t). Far from the
boundary the Green’s function is

G x′; xð Þ ¼ 1

4p x′� xj j ð8Þ

so an approximation for w(x, t) is

w x; tð Þ ¼ 1

4p

Z
VS

curlw x′; tð Þ
x′� xj j dx′: ð9Þ

[11] The equations (7) and (9) determine the vorticity
induced by the velocity component w(x, t) of the velocity
field u(x, t) if the vorticity w x; tð Þ is known. In the ocean,
vorticity disturbances arise because there are always some
velocity shear, viscosity influences (especially near the air-
sea interface) and some density disturbances.
[12] When the density approximation r = r0 + r′ ≈ r0 =

const is sufficient, the inviscid hydrodynamics equations
reduce to the Boussinesq approximation [Phillips, 1977;
Batchelor, 1967; Landau and Lifshitz, 1987; Saffman, 1992]
and yield the vorticity equation

∂w
∂t

þ u � rð Þw ¼ w � rð Þuþ rr′� g½ �
r0

; ð10Þ

where g ¼ 0; 0;�gð Þ is the gravity acceleration vector.
Equation (10) shows that the density horizontal inhomoge-
neities produce the vorticity even if the initial vorticity was
zero and the initial flow was the potential flow. At the next
stage the small vorticity disturbances interact with the
wavefield of velocity v.
[13] 3. What is a connection between the Reynolds stres-

ses and the vorticity? To answer this question we shall
present the fields w(x, t) and w x; tð Þ as random homoge-
neous fields. The numerous measurements of turbulence in
the upper ocean [Monin and Ozmidov, 1981; Soloviev and
Lukas, 2006] show that the ocean upper layer turbulence
well satisfies the conditions of the random homogeneous
fields in the range of spatial scales up to the wind waves
variability. Assuming the random velocity and vorticity
fields statistically homogeneous, let us consider the corre-
lation tensors of the vortex velocity field

Rmnðððl;tÞÞÞ ¼ wm x0 þ l; tð Þwn x0; tð Þ ¼
Z∞

�∞

exp ik � lð ÞFmn k; tð Þdk

ð11Þ

and the vorticity field

Xmnðððl;tÞÞÞ ¼ wm x0 þ l; tð Þwn x0; tð Þ ¼
Z∞

�∞

exp ik � lð ÞWmn k; tð Þdk;

ð12Þ

where m, n = 1, 2, 3, k ¼ k1; k2; k3ð Þ is the 3-D wave vector
of spectral components of the fields of the vortex velocity
w x; tð Þ and vorticity w x; tð Þ, Fmn k; tð Þ is a spectral tensor of
the Reynolds stress tensor of the vortex velocity field, and
Wmn k; tð Þ is a spectral tensor of the vorticity field. From the
equation (6) the spectrum Fmn k; tð Þ takes connection with
the spectrum Wmn k; tð Þ in the form

Fmn k; tð Þ ¼ kqkg
k4

Werɛqemɛgrn ¼ 1

k2
dmn � kmkn

k2

� �
W� Wmn

� �
;

ð13Þ

where W = Waa and ɛabg is the antisymmetrical unit third-
order tensor. Last equations can be easy converted to find
Wmn k; tð Þ in respect on Fmn k; tð Þ, and, in result, we find the
following expressions:

Wmn k; tð Þ ¼ k2 dmn � kmkn
k2

� �
E � Fmn

� �
; W ¼ k2E ; E ¼ Faa ;

ð14Þ

which are well known from the theory of homogeneous
turbulence [Batchelor, 1953]. Transforming (14) from the k
space to l space, yields constraint equations for correlation
tensors Rmn l;tÞð and Xmn l;tÞð [Batchelor, 1953]

DRmn þ ∂2R
∂lm∂ln

¼ Xmn � dmnX ; DR ¼ �X ; R ¼ Raa ; X ¼ Xaa:

ð15Þ

[14] This determines the Reynolds tensor versus the cor-
relation tensor of vorticity field as a solution of equation (15)
at l = 0.
[15] Hence, the initial small vortex perturbations always

exist in the upper ocean, and might be enhanced by the wave
motions. Then the Reynolds stresses, which provide the
vertical transport of the momentum, are expected in accor-
dance with the equations (13)–(15).

2.2. Vortex Instability

[16] We consider the simplest case of basic motion, the
linear potential surface wave on the deep water [Landau and
Lifshitz, 1987]

8 x1; x3; tð Þ ¼ �80 exp px3ð ÞCosJ; p ¼ p1; 0; 0ð Þ; p ¼ p1;

v1 x1; x3; tð Þ ¼ p80 exp px3ð ÞSinJ;
v3 x1; x3; tð Þ ¼ �p80 exp px3ð ÞCosJ;
h x1; tð Þ ¼ a SinJ; J ¼ p1x1 � st; a ¼ s80

g
; ð16Þ

where 8(x1, x3, t) is the wave potential, p = (p1, 0, 0) is
a wave number, h is a vertical displacement of the water
surface, s is frequency, a is the amplitude of the wave,
v1(x1, x3, t) and v3(x1, x3, t) are correspondingly the
horizontal and vertical components of the wavefield. We
superimpose on (16) a small perturbation w, which must
be so small that the vorticity w = curlu = curlw and the
resulting velocity u = v + w do not violate equation (16).
Using the equation (10) for r′ = 0 and assumptions
vj j≫ wj j; ∂xmvn þ ∂xnvmj j≫ ∂xmwn þ ∂xnwmj j, the last inequal-
ity is used here because the first term in the right hand side of
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(10) is wm ∂ xmun = 2�1wm(∂ xmun + ∂ xnum)), the equation forw
takes the following form [Batchelor, 1967; Landau and
Lifshitz, 1987; Saffman, 1992]:

dw
dt

¼ w � rð Þv ; w x0; t ¼ 0ð Þ ¼ w0; ð17Þ

where w0 is the initial vorticity of the liquid particle that has
the Lagrangian coordinate x0 t ¼ 0ð Þ. The vorticity w in (17)
is associated with the fluid particle which moves with the
wave velocity v (because uj j≈ vj j≫ wj j) and therefore w is a
function of the time t and the initial position x0 . The right
hand side of the equation (17) is also associated with the
same fluid particle and therefore is a function of the time t
and the initial position x0. Thus w is the vorticity of fluid
particle moving on the trajectory of the potential motion.
Under this assumption the equation (17) is the Lagrangian
form and describes the evolution of small vortex dis-
turbances in the coordinate system moving with the wave
velocity v. Expressions in (16), as it is well known, conform
to that the fluid particles describe circles about the equilib-
rium point (x01, x03), and their motion can be written in the
form [Landau and Lifshitz, 1987]

‘1 ¼ x1 � x01 ¼ ‘0 CosQ; ‘3 ¼ x3 � x03 ¼ ‘0 SinQ;
‘0 ¼ a exp px03ð Þ ; Q ¼ px01 � st : ð18Þ

[17] From (16) the Euler’s derivatives ∂ xmvn are

k ∂xmvn k¼ sap exp px3ð Þ½ �k Cosq Sinq
Sinq �Cosq k: ð19Þ

[18] After substituting (18) in (19) the quantities ∂ xmvn can
be written in the form

∂xmvn ¼ sap exp px03 þ p‘3ð Þ½ �kCos Qþ p‘1ð Þ Sin Qþ p‘1ð Þ
Sin Qþ p‘1ð Þ �Cos Qþ p‘1ð Þk:

ð20Þ

[19] The displacements p‘1 and p‘3 are small, (p‘1, p‘3)≪ 1.
Expanding the functions exp p‘3ð Þ , Cos p‘1ð Þ and Sin p‘1ð Þ
into power series and substituting into (17), (20), and keeping
terms to second order in k‘0 reduces the equation (17) to the
form

dw1

dt
¼ p‘0s w1 CosQþ w3 p‘0 þ SinQð Þ½ �;

dw2

dt
¼ 0;

dw3

dt
¼ p‘0s w1 p‘0 þ SinQð Þ � w3 CosQ½ �:

ð21Þ

[20] The equation set (21) is the basis for studying the
vortex instability of the basic state (16). There is the trivial
consequence: the simple harmonic plane surface wave does
not interact with the vortex component that is perpendicular

to the wave plane. In the wave case (21) it is the vortex
component w2. It can be seen from (21) that the wave action
on the vortex field vanishes in the large depth (�x03 ≫ k�1).
Introduce a generalization of equation set (21), that is,

dw1

dt
¼ ɛ1s w1 CosQþ w3 ɛ2 þ SinQð Þ½ �;

dw3

dt
¼ ɛ1s w1 ɛ2 þ SinQð Þ � w3 CosQ½ �;

ð22Þ

where ɛ1 and ɛ2 are the dimensionless parameters. The
condition ɛ1 = ɛ2 = ɛ0 = ap exp(px03) reduces equation (22)
to equation (21). Now the problem of vortex instability of
the surface wave has been reduced to the problem of finding
the stability region of the equation (22) with respect to the
parameters ɛ1 and ɛ2. If a stable region exists and the line
ɛ1 = ɛ2 intersects it, then the values of the parameter ɛ0,
which belong to the stable region in the (ɛ1, ɛ2) plane, give
stable solutions of equation (21). In the opposite case, if the
line ɛ1 = ɛ2 does never intersect the stable region, then
solutions of equation (21) with any values of the parameter
ɛ0 are unstable.
[21] Introduce the complex vortex W and dimensionless

time t

W ¼ w1 þ iw3 ; W� ¼ w1 � iw3 ; t ¼ st : ð23Þ

[22] After substituting (23) into equation set (22) we get

dW
dt

¼ ɛ1 iɛ2 þ exp iQð Þ½ �W�;

dW�

dt
¼ ɛ1 �iɛ2 þ exp �iQð Þ½ �W;

ð24Þ

for which initial conditions are W(0) = w1(0) + iw3(0) and W*
(0) = w1(0) � iw3(0). Eliminating W* from (30) gives the
second-order equation for W

d2W
dt2

þ i exp iQð Þ
iɛ2 þ exp iQð Þ

dW
dt

� ɛ21 1þ 2ɛ2 SinQþ ɛ22
� 	

W ¼ 0; ð25Þ

with initial conditions

W 0ð Þ ¼ W0 ;
dW 0ð Þ
dt

¼ ɛ1 iɛ2 þ exp iQ0ð Þ½ �W� 0ð Þ ; Q 0ð Þ ¼ Q0 ¼ px01 :

ð26Þ

[23] If the parameter ɛ2 is zero, then equation (25) and the
initial conditions in (26) yield to

d2W
dt2

þ i
dW
dt

� ɛ21W ¼ 0;

W 0ð Þ ¼ W0 ;
dW 0ð Þ
dt

¼ ɛ1 exp iQ0ð ÞW� 0ð Þ ; Q0 ¼ px01 :
ð27Þ
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[24] This equation is the first-order approximation with
respect to the parameter ɛ0 = ap exp(px03) of the basic
problem (17). The solution of the problem (27) is

W ¼ W1 exp �in1tð Þ þ W2 exp in1tð Þ;
n1 ¼ 2�1 1þ 1� 4ɛ21

� 	1=2h i
; n2 ¼ 2�1 1� 1� 4ɛ21

� 	1=2h i
;

W1 ¼ �n2W0 þ iɛ1 exp iQ0ð ÞW�
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4ɛ21
p ;

W2 ¼ n1W0 � iɛ1 exp iQ0ð ÞW�
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4ɛ21
p ;

W�
1 ¼ �i exp �iQ0ð Þn2W2=ɛ1 ; W�

2 ¼ �i exp �iQ0ð Þn1W1=ɛ1 :

ð28Þ

[25] Thus from this first approximate solution there are
stable oscillations with two natural frequencies n1s and n2s
if the parameter ɛ1 is in the range 0 < ɛ1 < 1/2.
[26] For the limiting waves, ɛ1 = 1/2 and n1 = n2 = 1/2, the

initial vortex disturbance is linearly unstable. In this case the
solution of equation (27) is

W ¼ W0 þ 0:5 iW0 þ exp iQ0ð ÞW�
0

� �
t

 �
exp �it=2ð Þ: ð29Þ

[27] The frequency of the vorticity oscillation is half of the
wave frequency, and the amplitude of the oscillations is a
linear function of the time t . The solutions of equation (27)
will be exponentially unstable for ɛ1 > 1/2. Thus the first
approximation already shows the wave effects on the vor-
ticity field.

[28] Now we shall study the stability of the solutions of the
system equation set (22). The analytical solution apparently
cannot be found for arbitrary parameters ɛ1 and ɛ2. So, to
solve this problem we have used a numerical calculation. The
stability region has been calculated by two methods. The
first one is a calculation of the functions w1(t) and w3(t) from
(22) by the Runge-Kutta method using different values of the
phase Q0(Q0 = np/6, n = 0, 1, …, 6),different values of the
parameters ɛ1 and ɛ2 of the domain [0 < ɛ1 ≤ 1,0 < ɛ2 ≤ 1],
and for the initial conditions: w1(0) = w3(0) = w0; w1(0) =
w0, w3(0) = 0; w1(0) = 0, w3(0) = w0.
[29] The following quantities were taken into account:

�f ¼ ɛ1
2n

Zn=ɛ1

�n=ɛ1

f t þ t′
� 	

dt′ ; fm ¼ maxf t þ t′ð Þ; t′
�� �� ≤n=ɛ1; f

¼ w1j j; w3j j; wj j2 ¼ w2
1 þ w2

3

n o
:

ð30Þ

[30] The quantities �f and fm were calculated at the time
tk = (1 + 2k)n/ɛ1, for integer n and k. The solution was
considered as stable if all the quantities �f and fm were such
that the differences �f tð Þ � �f tkð Þ�� �� and ∣fm(tk + 1) � fm(tk)∣
were less than D while k increases. The quantities
ɛ1, ɛ2, n, k, D have been taken as follows: (ɛ1, ɛ2) = iDɛ,
Dɛ = 0.1, i = 1, …, 10, k ≥ 50, D = 10�3 ÷ 10�4. The
domain of the small values ɛ1 and ɛ2 (ɛ1, ɛ2 ≤ 0.1) was
calculated with variable step Dɛ and such that min(ɛ1, ɛ2)
was ≈ 10�4. From this calculation the stability region is

ɛ1 ¼ 0; 0≤ɛ2≤1;
0 ≤ ɛ1 ≤ 1=2; 0 ≤ ɛ2 ≤ ɛ1 � 0:3ɛ31 þ 0:03ɛ41;

1=2 ≤ ɛ1 ≤ 1; 0:9 ɛ1 � 1=2ð Þ0:3 ≤ ɛ2 ≤ ɛ1 � 0:3ɛ31 þ 0:03ɛ41:
ð31Þ

[31] The stability domain is shown in Figure 1 by the
shaded region bounded by Line F21 (F21 = ɛ2 = ɛ1 – 0.3 ɛ1

3 +
0.03 ɛ1

4, 0 ≤ ɛ1 ≤ 1) and Line F22 (F22 = ɛ2 = 0.9(ɛ1 �1/2)0.3,
1/2 ≤ ɛ1 ≤ 1). The function F1 = ɛ2 = ɛ1 = ɛ0, Line F1, does
not intersect the upper border of the stability region (31),
Line F21.
[32] The other method of calculations the stability region

bases on the numerical calculation of stability indexes using
Floquet theory [Hale, 1969]. The Floquet theory is the the-
ory of linear ordinary differential equations with periodic
coefficients which allows presenting the solution of such
linear ordinary differential equations in the form that char-
acterizes stability its solutions by the characteristic expo-
nent, called as stability indexes in some sources. The
evolution equations for the vorticity field, (22), are a coupled
set of linear ordinary differential equations with a periodic
coefficients matrix. Using Floquet theory the stability of
solutions as function of the embedded parameters has been
determined efficiently from numerical solutions. The stabil-
ity results are shown in Figure 1 by the dashed curve Line
F3. The function F1 = ɛ2 = ɛ1 = ɛ0, Line F1, does not
intersect the stability region bounded by the dashed curve
Line F3.
[33] Because the evolution of small vortical disturbances

obeys the equation set (21) that corresponds F1 = ɛ2 = ɛ1 =

Figure 1. Diagram of stability of solutions of equation set
(22) on the (ɛ1, ɛ2) plane. Here ɛ1 is the horizontal axis
and ɛ2 is the vertical axis. F1 corresponds to ɛ2 = ɛ1; F21
corresponds to ɛ2 = ɛ1 – 0.3 ɛ1

3 + 0.03 ɛ1
4, 0 ≤ ɛ1 ≤ 1; F22 cor-

responds to ɛ2 = 0.9(ɛ1 �1/2)0.3, 1/2 ≤ ɛ1 ≤ 1; and F3, the
dashed curve, corresponds to the numerical calculations
using the Floquet theory [Hale, 1969].
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ɛ0 and both methods of calculation the stability region of the
solutions of the equation (22) agree very well, we conclude
that the initial small disturbances of the vorticity field grows
in time for all values of parameter ɛ0 of the range 0 < ɛ0 ≤ 1.
[34] Considering our case of the system of two linear

differential equation set (22), its phase portrait represents a
set of its solutions, plotted as parametric curves (with t as the
parameter) on the Cartesian plane tracing the path of each
particular solution (w1(t), w3(t), 0 ≤ t < ∞). A phase portrait is
a graphical tool to visualize how the solutions of a given
system of differential equations would behave in the long
run. Figure 2 shows the examples of phase portraits for
different values of parameters ɛ1, ɛ2 (ɛ1 = 0.16, 0.34, 0.5;
ɛ2 = 0, 0.08, 0.16, 0.17, 0.25, 0.34, 0.5) and initial condi-
tions (w1(0) / w0 = 1, w3(0) = 0; w1(0) = 0, w3(0) / w0 = 1).
The transition from the stable oscillations (28) to the linear
instability (29) is shown by the portraits (ɛ1 = 0.16, 0.34,
0.5; ɛ2 = 0). The portraits with (ɛ1 = 0.16, 0.34, 0.5; ɛ2 =
0.08, 0.17, 0.25) show the behavior of solutions of the sys-
tem equation set (22) for the stable values of parameters ɛ1,
ɛ2 of (31). The portraits (ɛ1 = ɛ2 = ɛ0 = 0.16, 0.34, 0.5) show
the evolution of the unstable solutions along the Line F1in
Figure 1. Note that in the case of the system equation set
(21), (ɛ1 = ɛ2 = ɛ0), the vortex disturbances are analogous to
Langmuir circulation, have the mean growth in the direction
of wave propagation.

3. Turbulence of a Potential Surface Wave

3.1. Novikov’s Turbulence by the Potential Wave

[35] Novikov’s turbulence is the random vortex motions at
very small spatial scales where the molecular viscosity
strongly affects the motion and causes viscous dissipation
[Monin and Yaglom, 1987]. If wj j≪ vj j in (5) then the equa-
tion for the potential is solved independently of the vorticity
equation because in this case the influence of the vortex
component on the potential can be ignored. Then the velocity
field u in (5) becomes ∣u∣ ≈ ∣v∣ and the vorticity field obeys
equation (17) with the viscous term [Saffman, 1992]

dw
dt

¼ wrð Þvþ nDw; ð32Þ

where v is the kinematic molecular viscosity.
[36] Let us now consider a potential velocity field in which

we are given vorticity perturbations, whose scales ‘ are small
in comparison with the Kolmogorov scaleh = (n3/ɛ)1/4, where
ɛ is the dissipation rate of the turbulent kinetic energy.
Within a spatial region of diameter ‘ the field v x; tð Þ can be
expanded into a Taylor series with respect to the coordinates
and approximated by a linear vector functions corresponding
to the sum of the terms of the zero and first order in that
expansion. The coefficients of the linear vector function
obtained derivatives ∂vi/∂xj, will vary in time and space. At
distances ‘≪h , however, the instantaneous values of these
derivatives will be practically constant, and the velocity field
within the volume of linear dimensions ‘ < h can at first
approximation be regarded as linear: that is, v0i x0 þ r; tð Þ ¼
v0i þ aikrk, where v0i ¼ v0i x0; tð Þ, aik ¼ ∂vi x0; tð Þ=∂x0k, while
x0 is a fixed point within the isolated volume of liquid. Since
the field v is potential, the quantities aik form a symmetrical
tensor characterizing the deformation of the isolated liquid

particle in the directions of the main axes of deformation.
Converting to a system of coordinates connected with the
main axes of deformation reduces equation (32) to the fol-
lowing form:

∂
∂t

� nD
� �

wj þ
X3
‘¼1

a‘x‘
∂wj

∂x‘
� ajwj ¼ 0; ð33Þ

where a‘ are the principal values of the tensor ak‘ . This
equation is like the one analyzed inMonin and Yaglom [1987,
p. 425] for weak eddy perturbations of regular sinusoidal form
and for arbitrary tensor ak‘. In our case the components of the
tensor can be found from the solution of the equation for
potential. For gravitational waves of small amplitude the ten-
sor ak‘will take form [Landau and Lifshitz, 1987]

�pv3 0 pv1
0 0 0
pv1 0 pv3

0
@

1
A; ð34Þ

where p is the wave number of the potential component and
‘≪p�1. Reducing (34) to diagonal form, we obtain the matrix

kp ffiffiffiffi
T

p
0 0

0 0 0
0 0 �p

ffiffiffiffi
T

p k ; ð35Þ

where T = v1
2 + v3

2.
[37] Substituting (35) in Novikov’s formula [see Monin

and Yaglom, 1987, p. 431] for the three-dimensional turbu-
lent kinetic energy spectrumE(k), (p ≪ h ≪ k), which is the
consequence of the solution of equation (33)

E kð Þ ¼ C
ɛ2=3

k5=3
khð Þ2s�4=3 exp �a khð Þ2

n o
; ð36Þ

where s ¼ � a1
a3
; a ¼ �

ffiffiffiffiffiffi
ɛ=n

p
a3

, we obtain s = 1, a ¼
� 1

p

ffiffiffiffi
ɛ
nT

p
, and for dissipation due to the interaction of the

vortex and potential components of the velocity field we
shall have

ɛ ¼ C2np2T ;
Z∞

0

k2E kð Þdk ¼ ɛ
2n

0
@

1
A: ð37Þ

[38] Formulas (36) and (37) show that, first, short surface
waves are better supporting eddy perturbations, since when
p → 0, a → ∞, and consequently the energy of eddy motion
E(k) will tend to zero; and, second, the small vortex pertur-
bation causes the viscous dissipation of the potential wave.

3.2. Kolmogorov’s Turbulence of the Potential Wave

[39] It is thus clear that the wave motion of a liquid can be
a source of turbulence. As it has been discussed here, the
wave-induced turbulence can be considered as developed
turbulence with well distinguishable range of the turbulent
wave numbers k where turbulence well follows to the Kolmo-
gorov’s self-similarity law which includes the Kolmogorov’s
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Figure 2. The examples of phase portraits of solutions of equation set (22) on the (w1, w2) plane for dif-
ferent values of the parameters ɛ1 and ɛ2: (a) ɛ1 = 0.16, ɛ2 = 0; (b) ɛ1 = 0.34, ɛ2 = 0; (c) ɛ1 = 0.5, ɛ2 = 0;
(d) ɛ1 = 0.16, ɛ2 = 0.08; (e) ɛ1 = 0.34, ɛ2 = 0.17; (f) ɛ1 = 0.5, ɛ2 = 0.25; (g) ɛ1 = 0.16, ɛ2 = 0.16; (h) ɛ1 = 0.34,
ɛ2 = 0.34; and (i) ɛ1 = 0.5, ɛ2 = 0.5. Here w1 is the horizontal axis and w2 is the vertical axis. The solid curve
corresponds to w1(0) = 1, w3(0) = 0 and dashed curve corresponds to w1(0) = 0, w3(0) = 1.
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Figure 2. (continued)
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law “–5/3.” The experiments provide evidence of this. The
presence of a locally isotropic region of turbulence
(k ≥ 0.1 cm�1) allows certain conclusions relative to the dissi-
pation of energy in waves [Benilov, 1969b;Haskind, 1973]. On

the assumption of local isotropy of turbulence we can have the
following estimate of the dissipation ɛ:

ɛ � Du3

‘
; ð38Þ

Figure 2. (continued)
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where Du is the characteristic scale of the velocity u variation
throughout a distance equaled to the external scale of turbu-
lence ‘ . Whereas the wave motion dominates in the ocean
upper layer the velocity u has the same order of magnitude as

the wave velocity v, ∣u∣�∣v ∣. That leads to the scaling Du �
vj j � ffiffiffiffi

T
p

, where T = vivi, and to the scaling of the external
scale of turbulence ‘which can be taken the order of magnitude

Figure 2. (continued)
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of the wavelength l = 2p/p.The dissipation rate (38) reduces to
the following expression:

ɛ � T 3=2

l
: ð39Þ

[40] Also, the wave motion can be characterized by the
wavelength l = 2p/p, the wave height h and the group
velocity U of the wavefield. Then the hypothesis of local
self-similarity can be written in the form

ɛ ¼ ɛ z; h; l;Uð Þ ¼ U3

l
˜ɛ

z

l
;
h

l

� �
; ð40Þ

where ˜ɛ is some dimensionless function of the arguments z/
l and h/l. Let us expand ˜ɛ in the power series in h/l

ɛ ¼ U3

l

Xi¼∞

i¼0

˜ɛi z=lð Þ h

l

� �qþi

: ð41Þ

[41] When h/l ≪ 1 we can limit ourselves to the first term
of the expansion (41) that corresponds to gravitational sur-
face waves of small amplitude

ɛ ¼ U3

l
h

l

� �q

˜ɛ0 z=lð Þ: ð42Þ

[42] We can easily find the parameter q and the function
˜ɛ0 z=lð Þ by using the known solution for such waves

vx ¼ �hw sin px� wtð Þepz; vy ¼ 0; vx ¼ hw cos px� wtð Þepz; z≤0;
w ¼ ffiffiffiffiffi

gp
p ¼

ffiffiffiffiffiffiffiffi
2pg
l

r
;U ¼ 1

2

ffiffiffi
g

p

r
¼ 1

2

ffiffiffiffiffiffi
gl
2p

r
; p ¼ 2p

l
:

ð43Þ

[43] Substituting (43) in (39) and taking (39) as equality,
we obtain

ɛ ¼ g1
1

l
gl
2p

� �3=2 h

l

� �3

exp
6pz
l

� �

¼ g
U3

l
h

l

� �3

exp
6pz
l

� �
: ð44Þ

[44] Hence q = 3 and ˜ɛ0 ¼ g exp 6pz=lð Þ. The constant g
can be determined from measurements of the dissipation
profile. The estimate in Benilov [1969b] gives g ≈ 1.
[45] The obtained formula, equation (44), indicates a

dependence of ɛ on the parameters of wave motion and
explains the rapid diminution of ɛwith depth (faster than 1/z).
Since the wave spectrum is fairly narrow, formula (44) can be
applied for rough evaluation of ɛ using mean values of wave
height and wavelength l.

4. Conclusions

[46] 1. The turbulence (the vortex motion) of the upper
ocean is nourished by the energy and momentum of the

Figure 2. (continued)
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surface waves (the potential motion). The statistical char-
acteristics of the turbulence (turbulent kinetic energy, dissi-
pation rate, Reynolds stresses) depend on the state of the
ocean surface waves.
[47] 2. The vertical transport of momentum is induced by

the vortex component of the fluctuations of the velocity
field, and, possibly, by the interaction between both vortex
and potential motions. The Reynolds tensor is a linear
function of the correlation tensor of vortex field. The initial
small vortex perturbations always exist in the upper ocean
because the molecular viscosity influences, especially near
the free surface, and the fluctuations of the seawater density.
The horizontal inhomogeneities of the seawater density
produce the vortex field even if the initial vorticity was zero
and the initial flow was the potential flow. The linear prob-
lem of the stability of vortex disturbances in the velocity
field of potential linear surface waves is reduced to a coupled
set of linear ordinary differential equations of the first order
with periodic coefficients. The analysis shows that the initial
small disturbances of the vorticity field grow in time under
the influences of the wave motions. The vortex disturbances
are analogous to Langmuir circulation, and they have the
growing in time the mean component in the direction of
wave propagation.
[48] 3. The potential surface wave produces the small-

scale turbulence, Novikov’s turbulence, from the initial
small vortex perturbations that finally causes the viscous
dissipation of the potential wave. The wave-induced turbu-
lence can be considered as developed turbulence with well
distinguishable range of the turbulent wave numbers k where
the turbulence obeys to the law of the Kolmogorov’s self-
similarity.

[49] Acknowledgments. I would like to express my deep gratitude to
A. Babanin who convinced me to write this article. I am also grateful to my
two reviewers for their very useful comments.
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