
A state-space model for ocean drifter motions

dominated by inertial oscillations

Thomas Bengtsson,1 Ralph Milliff,2 Richard Jones,3 Doug Nychka,4

and Pearn P. Niiler5

Received 17 December 2004; revised 17 April 2005; accepted 9 June 2005; published 14 October 2005.

[1] Coincident ocean drifter position and surface wind time series observed on hourly
timescales are used to estimate upper ocean dissipation and atmosphere-ocean coupling
coefficients in the Labrador Sea. A discrete-process model based on finite differences
is used to regress ocean accelerations on ocean velocity estimates but fails because errors
in the discrete approximations for the ocean velocities are biased and accumulate over
time. Model identification is achieved by fitting a stochastic differential equation model
based on classical upper ocean physics to the drifter data via the Kalman filter. Ocean
parameters are shown to be nonidentifiable in a direct application to the Labrador Sea data
when the known Coriolis parameter is not identified by the model. To address this, the
ocean parameters are estimated in an empirical sequence. Data from the Ocean Storms
experiment are used to estimate ocean dissipation in isolation from complexities
introduced by strong and variable winds. Given a realistic estimate of the ocean
dissipation, a second application in the Labrador Sea successfully estimates atmosphere-
ocean coupling coefficients and reproduces the Coriolis parameter. Model assessments
demonstrate the robustness of the parameter estimates. The model parameter estimates are
discussed in comparison with Ekman theory and results from analyses of the global ocean
surface drifter data set.
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1. Introduction

[2] Data from modern upper ocean drifters provide un-
precedented volumes of high-quality information that is
well suited for analyses using advanced statistical method-
ology. This work exploits drifter observations of position
(leading to upper ocean velocity) and surface vector winds
on hourly timescales in the Labrador Sea to deduce classical
parameters of upper ocean physical balances extending back
to the work of Ekman [1906]. To reduce uncertainties in
estimates for atmosphere-ocean coupling and upper ocean
dissipation effects from momentum convergence, a state-
space model is identified in an empirical sequence, adding
physical and statistical sophistication only as necessary to fit
the drifter data. Our work is primarily methodological and
demonstrates application of well-developed statistical meth-

ods to a newly abundant data set in an ocean setting that is
realistically complex due in part to vigorous and highly
variable wind forcing. An important oceanographic aspect
of our work derives from the simultaneous observations of
ocean currents and surface vector winds by the ocean
drifters. With a precision not accessible in the absence of
these upper ocean drifter data, the estimated parameters
validate a classical, wind-driven upper ocean model.
[3] Starting with the Ocean Storms experiment in 1987,

oceanographers have deployed large arrays of satellite
located surface drifters to measure the circulation of the
global upper ocean. These modern drifters are carefully
constructed to be ‘‘Lagrangian’’; that is, to follow horizontal
water motion at some preselected shallow depth. A drifter
typically consists of a small surface float that contains
electronics, power and a satellite transmitter. The surface
floatation is tethered to a large subsurface drogue, typically
at 15 m depth [Niiler, 2001]. A variety of environmental
sensors have been attached to upper ocean drifters, includ-
ing instruments from which surface wind speed and wind
direction can be determined. In the fall and winter of 1996–
1997, time series of upper ocean drift and surface vector
winds were obtained in the Labrador Sea [Milliff et al.,
2003] from a deployment of 21 upper ocean drifters with a
variety of sensor systems. Here we use a subset of six
buoys, requiring that each buoy provides simultaneous
position and wind measurements. These unique data present
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an opportunity to study, in a detail previously not attainable,
the processes by which local winds drive near surface ocean
currents in a wintry and wave-tossed sea.
[4] In his theory of local wind-driven ocean currents,

Ekman [1906] postulates that, under steady winds, the
principal horizontal momentum balance in the open ocean
is between the Coriolis acceleration and the force due to the
vertical convergence of the horizontal turbulent stresses
caused by the action of the wind and waves. Ekman’s
theory implies that in the Northern Hemisphere, the surface
ocean current vector orients 45� to the right of the surface
wind stress vector; and deeper currents spiral further to the
right with increasing depth. Ekman interpreted several
observations of his time within the context of his theory
to show that the strength of the current was proportional to
the wind speed and inversely proportional to the square root
of the Coriolis parameter. Recently, Ekman’s theory of the
wind-driven ocean has been validated by velocity observa-
tions from moored buoys [Weller, 1981; Price et al., 1987]
and his theory of upper ocean current dependence on wind
speed and the Coriolis parameter has been validated from
drifter observations [Ralph and Niiler, 1999].
[5] In this paper, we incorporate the upper ocean hori-

zontal momentum balance from Ekman dynamics in a state-
space model for drifter position given time-varying surface
winds. From this model we deduce upper ocean parameters
of the Ekman balance and provide confidence intervals for
the parameters of interest. Following Pollard and Millard
[1970] and Ralph and Niiler [1999], we begin formulation
of the physical model by considering the momentum
balance in complex form:

dU

dt
þ FU ¼ �Pþ AW: ð1Þ

In (1), d/dt is the material time derivative following the
drifter motion, U = u + iv is the complex velocity vector for
eastward component u and northward component v,
measured at 15 m depth, and F = g + if combines a
dissipation term g, here modeled as a Rayleigh friction, and
the effects of Earth rotation through the Coriolis term f = 2W
sin(f), defined for the angular rotation rate W and local
latitude f. P is a measure of the horizontal pressure gradient
that is not correlated with the local surface winds. This term
is negligibly small in the Labrador Sea case of our interest.
In general, one can separate pressure gradient driven flows
(i.e., geostrophic dynamics) from the wind-driven ocean
response (i.e., Ekman dynamics) which is the dominant
component in the regimes of interest here. The surface wind
effect, which we show to be crucially important in the
Labrador Sea, is modeled after the scaling and rotation
effects described by Ralph and Niiler [1999] (see also
Appendix C) as

AW ¼ a11 a12
a21 a22

� �
uw

vw

� �
: ð2Þ

Here, W = [uw, vw]0 is the surface wind vector, and A = (aij)
represents the air-sea coupling coefficients.
[6] The underlying physics of the model are appropriate

for upper ocean regimes dominated by inertial currents [e.g.,
Pollard and Millard, 1970] (or see the pedagogic description
by Gill [1982]). The classical notion of an inertial current

arises in considering the response of a uniformly mixed
upper ocean to an impulse forcing from, e.g., the sudden
onset of a strong and uniform (in direction and magnitude)
surface wind. In an inertial current response, parcels of upper
ocean fluid traverse circular trajectories with dimensions
proportional to wind strength, the local Coriolis parameter,
and a local decay rate [e.g., see Gill, 1982, pp. 322–326]. In
component form, our physical model equations are

du

dt
� fvþ gu ¼ a11u

w þ a12v
w ð3Þ

dv

dt
þ fuþ gv ¼ a21u

w þ a22v
w: ð4Þ

[7] Formally, the undetermined model parameters are: f, g
and aij. These are to be determined by fitting drifter position
and wind vector data to the model equations. Since the
Coriolis parameter is also knowable outside the model (i.e.,
it is a fixed function of the local latitude and Earth rotation
rate), it provides a means of validating model approxima-
tions a posteriori. When the correct Coriolis term cannot be
reproduced with sufficient certainty from the Labrador Sea
data, such a posteriori validation is used to reject a model
based on ocean-only variables (i.e., excluding terms in
AW). Apparently, the ever-present and abruptly changing
wind forcing obscures and confounds the information
contained in the drifter data about f and g.
[8] To address the confounding effects of the vigorous

and variable wind forcing we take two steps. First, the
ocean-only model is adapted to the well-known Ocean
Storms experiment data [D’Asaro et al., 1995] when inertial
currents were measured by ocean drifters in response to a
single, strong surface-forcing event followed by calm
winds. For this setting, a robust estimate for g is obtained
in a regime dominated by inertial currents. Second, given an
appropriate estimate for g, we return to the Labrador Sea
drifter data and include explicit terms to couple the mo-
mentum forcing due to the vigorous and changeable surface
winds in (3) and (4). Constraining f and g, we now obtain
robust estimates for aij, while accounting for measurement
error and model uncertainty (noise terms). A final model
verification is achieved when we compare the average
rotational offset of the estimated surface currents with
respect to the surface wind with similar estimates obtained
in separate analyzes from the global ocean drifter data set
[e.g., Ralph and Niiler, 1999].
[9] We note that there exists a rich recent literature on the

assimilation of Lagrangian drifter data [e.g., Özgökmen et
al., 2000; Castellari et al., 2001; Molcard et al., 2003].
Using statistical interpolation techniques, this literature is
generally concerned with deriving information about Euler-
ian model variables from Lagrangian observations, as well
as with providing statistical information regarding the
predictability of such flows [Griffa et al., 2004; Paldor et
al., 2004; Özgökmen et al., 2001]. To complement this
work, we demonstrate statistical procedures for identifica-
tion of the parameters of Lagrangian models that are
observed at irregular times, and further provide uncertainty
measures of the estimated parameters. Our modeling ap-
proach is similar to that of Özgökmen et al. [2001, 2003]
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who propose a Kalman filter for the assimilation of La-
grangian data. Here however, the time-dependent solutions
for the transition and covariance matrices are used in the
Kalman updating step. Further, we employ the method of
maximum likelihood [e.g., Bickel and Doksum, 2001] to
estimate model parameters.
[10] In the next section, we introduce ocean drifter data

by means of descriptive statistics for a typical drifter from
the Ocean Storms experiment. The ocean-only model is
stated in section 3, and the model parameters f and g are
estimated for the special case of inertial currents responding
to an isolated surface wind event in the Ocean Storms
experiment. Ocean-only statistical models are developed,
first in a discrete-process model (not satisfactory), and then
in a continuous-process model using maximum likelihood
methods. The Labrador Sea case is addressed in section 4.
Drifter wind data are reviewed and an explicit account of
surface wind forcing is implemented in an air-sea model.
Section 5 provides a discussion of the statistical model
caveats and useful future extensions. A summary is provided
in section 6. Three appendices elaborate details of: the
Kalman filter recursions (Appendix A); the calculation
of time-dependent transition and covariance matrices
(Appendix B); and the derivation of the form of the air-sea
coupling terms (Appendix C).

2. Data Description

2.1. Data Collection

[11] The upper ocean drifter position time series are
irregularly spaced in time for both the Ocean Storms

Experiment in the North Pacific Ocean, and the Labrador
Sea Minimet deployments. In both cases, position data are
telemetered from the in situ observing systems to space-
borne platforms of the System ARGOS satellite remote
communications resources. Irregular temporal sampling is
due to System ARGOS coverage and to data drop outs that
are inevitable for sophisticated in situ ocean observing
systems. The Ocean Storms temporal coverage is reviewed
by Large and Crawford [1995]. The Labrador Sea coverage
is described by Milliff et al. [2003], where hourly position
data were obtained, on average, for 14 hours of every
24 hour period in the data record. On the same hourly
timescale, the analyzed Labrador Sea Minimet drifters also
telemetered surface vector wind information in addition to
drifter position data.

2.2. Ocean Storms Experiment: Descriptive Statistics

[12] Drifter latitude and longitude positions {xobs(ti),
yobs(ti)} for a typical drifter trajectory from the Ocean
Storms Experiment are plotted in Figure 1. For this drifter,
velocity estimates of the eastward and northward current
components are calculated by taking first differences of the
location time series. Since our focus is on inertial currents,
which can exist in isolation or embedded in a variety of
background flows, the location measurements are first
adjusted by subtraction of the southward and eastward
background current flows (see Figure 1). Here, the eastward
background flow is estimated by regressing longitude
measurements on time using a cubic polynomial, xobs(ti) �
b0,x + b1,xti + b2,xti

2 + b3,xti
3. All subsequent analyses are

based on the residual observations ~xobs(ti) = {xobs(ti) �

Figure 1. Interpolated buoy path (degrees latitude/longitude). Location measurements {xobs(ti), yobs(ti)},
i = 1,. . ., 147, are denoted by asterisks.
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x̂obs(ti)}, where x̂obs(ti) is the predicted value of xobs(ti)
obtained by the estimated regression. It should be noted
that the specified regression model is employed only for
convenience and that the bi,x coefficients are defined em-
pirically. The latitude measurements yobs(ti) are similarly
adjusted using a separate cubic regression. Subtraction of
the estimated background flow results in an inward spiraling
path for the adjusted locations {~xobs(ti), ~yobs(ti)}, reflecting a
damped exponential.
[13] Velocity estimates {û(t*i ), v̂(t*i )} are obtained by

taking first differences of the adjusted locations: û(t*i ) =
{~xobs(ti+1) � ~xobs(ti)}/(ti+1 � ti) and v̂(t*i ) = {~yobs(ti+1) �
~yobs(ti)}/(ti+1 � ti), where ti

? = ti + 0.5(ti+1 + ti). Thus û(t*i )
and v̂(t*i ) represent the average drifter velocities over the
time period (ti, ti+1), and ti

? is the midpoint between ti and
ti+1. Figure 2 shows a time series of the estimated eastward
velocity component û(t*i ), along with histograms of û(t*i )
and v̂(t*i ). As can be seen, the eastward velocity component
essentially dissipates over the 16 day measurement period.
The northward velocity component (not shown here)
behaves similarly. The estimated velocities û(t*i ) and
v̂(t*i ) are approximately normally distributed with standard
deviations of 0.302 ms�1 and 0.296 ms�1, respectively.
The mean speed of the drifter over the time period is
0.371 ms�1.
[14] An intuitive first modeling approach involves first

differences of irregular position time series data. We dem-
onstrate in section 3 that this approach, the so-called
discrete-process model, fails due to systematic errors that
will accumulate for any velocity field approximated by first

differences of surface drifter positions in a flow that
includes a significant inertial oscillation component.

3. Ocean Model Parameter Estimation

[15] Using discrete- and continuous-process models, we
present two methods to estimate the unknown parameters f
and g of the ocean process. The discrete-process method is
based on regressing acceleration estimates on velocity
estimates, while the continuous-process method is based
on fitting a stochastic differential equation model to the data
using the Kalman filter. Because differencing is a common
and intuitive approach for obtaining flow information from
Lagrangian trajectories [Hernandez et al., 1995; Ishikawa et
al., 1996], we review this method in the context of param-
eter estimation. As will be highlighted by our discussion,
the difference-based method is inadequate for sparsely
sampled data dominated by inertial motion and contaminated
by measurement error.

3.1. Discrete-Process Parameter Estimation

[16] Parameters in systems of linear differential equations
can be estimated by considering discrete versions of con-
tinuous-process data models. Here we use first and second
differences of the flow-adjusted location measurements and
the method of least squares to estimate parameters. Using
previously defined estimates û(ti

?) and v̂(ti
?), we approximate

acceleration as: b_u(t0i) = {û(t?i+1) � û(ti
?)}/(t?i+1 � ti

?) and b_v(t0i) =
{v̂(t?i+1) � v̂(ti

?)}/(t?i+1 � ti
?), where t0i is the midpoint

between ti
? and t?i+1, i.e., t

0
i = ti

? + 0.5(t?i+1 + ti
?). Note that,

Figure 2. (top) Time series of estimated eastward velocity component, û(t*i ). (bottom) Histograms of
û(t*i ) and v̂(t*i ).
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because of irregular temporal sampling, in general, t0i 6¼ ti
?.

As can be seen in Figure 3, the scatter plots of b_u(t0i) versus
v̂(ti

?) and b_u(t0i) versus û(ti
?) both indicate linear relation-

ships. The regression lines in Figure 3 correspond to the
estimates f̂ and ĝ. To obtain the regression slopes, we
separately fit the two regression modelsb_u t0i

� �
¼ f v̂ t?i

� �
� gû t?i

� �
þ hu t?i

� �
b_v t0i
� �

¼ �f û t?i
� �

� gv̂ t?i
� �

þ hv t?i
� �

using least squares. Here, hu(ti
?) and hu(ti

?) are noise terms
representing discretization errors and errors due to small-
scale variability.
[17] Parameter estimates for the first equation are f̂ =

7.97 	 10�5 s�1 and ĝ = 5.98 	 10�5 s�1, with approx-
imate 95% confidence intervals (CI) of (6.64	 10�5, 9.31	
10�5) and (4.76 	 10�5, 7.20 	 10�5), respectively. The
second equation produced estimates of f̂ = 7.82 	 10�5 s�1

and ĝ = 6.00 	 10�5 s�1, with respective CIs of (6.69 	
10�5, 8.96 	 10�5) and (4.76 	 10�5, 7.25 	 10�5). Note
that neither CI for f̂ contains the Coriolis parameter for
the centroid of the Ocean Storms drifter data at 47.4�N,
where f = 1.07 	 10�4. Further, the estimated damping
parameter ĝ of approximately 6 	 10�5 s�1 corresponds to
an e-folding time of approximately 5 hours, implying that
the upper ocean damping is unrealistically strong.
[18] There are two reasons why the difference-based least

squares approach taken here produces poor estimates of f
and g. First, the location measurements are corrupted by
observation noise, affecting the accuracy of velocity and
acceleration estimates used as ‘‘data’’ to obtain ĝ and f̂ .
Secondly, as the residual drifter track traverses a decaying

spiral (Figure 1), all velocity estimates are consistently
underestimated. Unbiased estimates of u(ti) and v(ti) can
only be obtained through integration along the true drifter
path connecting {~xobs(ti), ~yobs(ti)} and {~xobs(ti+1), ~yobs(ti+1)}.
However, correctly tracing this path is difficult absent a
physical model for the data.
[19] To illustrate the effects of the measurement noise

on the accuracy of û(t*i) and b_u(t*i) consider the simple
measurement model ~xobs(ti) = ~x(ti) + ex(ti), where the x
observation is the sum of a ‘‘true’’ location ~x(ti) and a
white noise term ex(ti). With di = (ti+1 � ti), we get
û(t*i ) = {~x(ti+1) � ~x(ti)}/di + {ex(ti+1) + ex(ti)}/di, and
with sx

2 = var{ex(ti)}, we obtain var{û(t*i )} = 2sx
2/di

2.
Thus the estimate û(t*i ) becomes highly unreliable with a
decreasing sampling interval. The acceleration estimateb_u(t0i) is even more adversely affected by the observation
noise with a variance of

var b_u t0i
� �n o

¼ 8s2x
diþ1 þ dið Þ2

	 1

d2iþ1

þ 1

diþ1di
þ 1

d2i

" #
:

Moreover, along with inducing a strong correlation between
the velocity and acceleration estimates, the difference-based
estimation also produces unwanted lag-one autocorrelations
for û(t*i ) and b_u(t0i).
[20] Since the error terms hu(ti

?) and hv(ti
?) are neither

identically distributed (the sampling intervals are irregular),
nor independent (both velocity and acceleration estimates
are estimated serially from the data), any inferential
statistics (e.g., CIs) for g and f are likely to be inaccurate.
By fitting a weighted least squares (LS) regression, it may
be possible to adjust the LS estimates for inefficiencies.

Figure 3. Scatterplot of (top) b_u(t0i) versus v̂(ti?) and (bottom) b_u(t0i) versus û(ti?).
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However, since damping and rotation terms (resulting in the
decaying spiral) have to be considered simultaneously,
specifying a bias-corrected model will probably prove too
complicated for most realistic settings.
[21] An alternative approach to improving estimation of

the ocean velocity vector is to control the sampling interval
di. We again assume the previously defined location mea-
surement model. Then, taking into account both drifter
acceleration and measurement error, an approximately op-
timal sampling interval for estimation of the velocity vector
{u(t), v(t)} can be obtained by minimizing the mean squared
error of {û(t), v̂(t)}, denoted MSEû;v̂(d). With sx

2 and sy
2

representing the variance of the location errors, an approx-
imate expression for the mean squared error is given by

MSEû;v̂ dð Þ � d2

4
�gu tð Þ þ fv tð Þð Þ2

h
þ �fu tð Þ � gv tð Þð Þ2

i
þ 4

d2
s2x þ s2y

� 

;

and this term is minimized for

d ¼ 2
s2x þ s2y

g2 þ f 2ð Þ u2 tð Þ þ v2 tð Þð Þ

" #1=4

:

[22] As indicated, the optimal sampling interval is in-
versely proportional to the drifter speed. Although informa-
tive, the result is not helpful since the actual sampling
interval is not influenced by the drifter velocities. In fact,
based on the velocity estimates û(ti

?) and v̂(ti
?), along with

parameter estimates obtained in section 4.2, the sample
correlation between the optimal and actual sampling interval
is a low 0.17.
[23] For the inertial ocean model, the difference-based

velocity and acceleration estimates have poor covariance
and MSE properties, and cannot be expected to produce
accurate estimates of g and f. The adverse effects of the
location errors in this problem are similar to those delineated
by Kuznetsov et al. [2003], who study assimilation of
simulated tracer paths in a point-vortex system, and our
results are in agreement with findings demonstrating that
difference-based assimilation methods generally produce
inferior flow estimates [Griffa et al., 2004].
[24] Next we describe a statistical method that models

continuous processes from discrete data with nonnegligible
measurement noise.

3.2. Continuous-Process Parameter Estimation

[25] The state of a drifter s(ti) at time ti is defined by its
position {x(ti), y(ti)} and its velocity {u(ti), v(ti)}. The state
equation in continuous time is

d

x tð Þ
y tð Þ
u tð Þ
v tð Þ

26664
37775 ¼

0 0 1 0

0 0 0 1

0 0 �g f

0 0 �f �g

26664
37775

x tð Þ
y tð Þ
u tð Þ
v tð Þ

26664
37775dt

þ

0 0

0 0

g31 0

g41 g42

26664
37775 dxu tð Þ

dxv tð Þ

� �
: ð5Þ

Here, dxu(t) and dxv(t) denote independent Wiener processes
(i.e., random processes) with unit variance per unit time and
representing unresolved small-scale variability. With s(t) =
[x(t)y(t)u(t)v(t)]0 and dZ(t) = [dxu(t)dxv(t)]

0, the state
equation expressed in matrix notation is

ds tð Þ ¼ Ms tð Þdt þGdZ tð Þ; ð6Þ

where M represents the continuous-time state transition
matrix defined in (5). Premultiplying dZ(t) by the matrix
G = (gij), also defined in (5), allows the random input to the
velocity to have a general covariance matrix

Q ¼ GG0 ¼ g231 g31g41
g31g41 g241 þ g242

� �
:

The covariance matrix Q = (qij) represents the instantaneous
random input considered to be the ocean velocity component
variances and covariance per unit time.
[26] The observation equation is

~xobs tið Þ
~yobs tið Þ

� �
¼ 1 0 0 0

0 1 0 0

� � x tið Þ
y tið Þ
u tið Þ
v tið Þ

2664
3775þ ex tið Þ

ey tið Þ

� �
; ð7Þ

where the observational noise terms ex(ti) and ey(ti) are
assumed zero-mean normally distributed, with general
2 	 2 covariance matrix R = (rij). The observation
equation in matrix notation is y(ti) = Hs(ti) + ���(ti), where
y(ti) = [~xobs(ti), ~yobs(ti)]

0, ���(ti) = [ex(ti), ey(ti)]
0, and the

observation operator H is defined by (7). It should be
noted that the parameters describing the background flow
(i.e., b0,x, b1,x,. . ., b3,y) could be incorporated in the
stochastic model (5) by augmenting the state vector,
allowing for simultaneous parameter estimation within
the Kalman filter framework. However, to simplify here,
we fit the data using the residual location observations
[~xobs(t), ~yobs(t)]

0.
3.2.1. Maximum Likelihood Calculations
[27] For the Ocean Storms Experiment, our primary

interest is estimating the parameters pertaining to the
acceleration of, the damping of, and the subgrid-scale inputs
to the velocity components, i.e., in {f, g, g11, g21, g22} from
(5). To estimate parameters we use the method of maximum
likelihood (ML), where the likelihood is evaluated using the
innovations [see Schweppe, 1965]. For completeness, the
ML procedure is outlined here in the context of the upper
ocean drifter application.
[28] Let Yn = {y(t1),. . ., y(tn)} represent all data up to and

including time tn. With 8 denoting a vector of unknown
parameters, the likelihood is defined through the probability
density function p(Ynj8), which is conveniently decom-
posed by the identity p(Ynj8) =

Qn
i¼1p(y(ti)jY

i�1; 8).
Evaluation of this decomposition is nontrivial for general
distributions, but our model assumptions allow for recursive
tracking of the data forecast density p(y(ti)jYi�1; 8) using
the Kalman filter [Kalman, 1960; Jones, 1993].
[29] Let s f(ti) = E{s(ti)jYi�1; 8} represent the

conditional mean of s(ti) given Yi�1, and Pf(ti) =
E{[s(ti) � sf(ti)][s(ti) � sf(ti)]

0jYi�1; 8} the forecast error
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covariance matrix. Note that the matrix Pf(ti) represents the
average squared error of the predictor sf(ti). With pN(m, 2)
denoting the normal probability density function with
mean m and covariance 2, it can shown that p(y(ti)jYi�1;
8) follows the normal distribution with mean Hsf(ti)
and covariance HPf(ti)H

0 + R, here denoted N(Hsf(ti), HP
f(ti)H

0 + R). Consequently, we have

p Ynj8ð Þ ¼
Yn
i¼1

pN Hsf tið Þ;HPf tið ÞH0 þ R
� �

: ð8Þ

For given data Yn, the ML estimate 8̂ is obtained by
maximizing (8) over 8.
[30] ML estimation in continuous-time Kalman Filter

applications requires calculation of the time-dependent
transition matrix %(dt) along with the covariance matrix
for the state input noise Q(dt). For an arbitrary time step dt,
the transition matrix provides the solution to the system of
linear first-order differential equations given by ds(t) =
Ms(t)dt. With M defined as in (5), %(dt) is given by

[31] Even for fairly simple systems, the entries of the
covariance matrix Q(dt) are typically lengthy algebraic
expressions in terms of the parameters. As an illustration,
we give the solution for the upper left entry of Q(dt) for the
case g31 = g42 = g and g41 = 0:

var x t þ dtð Þjs tð Þf g ¼ e�gdt g2

g f 2 þ g2ð Þ2
	 g 2g cos f dtð Þf½

þ f 2 þ g2
� �

dt � 2g
� �

cosh gdtð Þ

� 2f sin f dtð Þg þ g2 gdt � 1ð Þ
�

þ f 2 gdt þ 1ð Þg sinh gdtð Þ�:

This expression is obtained through symbolic manipulation
using Mathematica.
[32] Although the discrete time solution to the system of

stochastic differential equations specified by (5) is compli-
cated in terms of the parameters, calculation of %(dt) and
Q(dt) depends only on the eigenvalues and eigenvectors of
M [Jones, 1993]. Efficient (and exact) computational solu-
tion procedures for finding sf(ti) and Pf(ti) and for calculat-
ing %(dt) and Q(dt) are given in Appendices A and B,
respectively.
3.2.2. Parameter Estimates for the Ocean Storms
Experiment
[33] On the basis of the descriptive statistics of section

2.2, the prior distribution for the state was taken to be

Gaussian with mean M0 = [~xo(1), ~yo(1), 0, 0.25]0 and
diagonal covariance matrix P0 with entries [106, 106,
1, 1]0, specifying an initial location uncertainty of
approximately 2 km radius of the first observation
and initial velocities in the range �2 to 2 ms�1.
Thus s(0) � N(M0, P0). The Matlab function ‘‘fmin-
search’’ was used to obtain ML estimates of 8 = {r11,
r21, r22, g31, g41, g42, g, f}, where rij and gij are
components of R and G, respectively, and where the
Coriolis parameter f was included to validate the inertial
model specified in (5).
[34] The method of profile-logliklihood produced an

approximate 95% CI for f of (1.064 	 10�4 s�1, 1.111 	
10�4 s�1). This method is based on the asymptotic proba-
bility distribution of the log likelihood-ratio between two
competing models, which follows a Chi-squared distribu-
tion under the null hypothesis of no model differences [e.g.,
Pawitan, 2001]. Since the CI includes the range of the
Coriolis parameter between the northernmost and southern-
most observed drifter locations of 47.14�N (f = 1.066 	

10�4 s�1) and 47.59�N (f = 1.074 	 10�4 s�1), we conclude
that the model adequately identifies the effects of earth
rotation. In the subsequent estimation of parameters in this
section, f will be fixed at 1.069 	 10�4 s�1, the Coriolis
parameter of the mean observed latitude at 47.39�N. Max-
imizing (8) over the set C = {r11, r21, r22, g31, g41, g42, g},
produced the ML estimates presented in Table 1.
[35] To find a more parsimonious model we test the

hypothesis of uncorrelated noise processes. Maximizing
the likelihood over the restricted set of parameters speci-
fied by setting r12 = g41 = 0 produced a nonsignificant
change (p < 0.78) in the log likelihood compared to the
unconstrained model (Table 1). We also fail to reject a test of
equal noise variances r11 = r22 � r and g31 = g42 � g (p <
0.12). Estimates for the final fitted model are given in
Table 2.
[36] The estimated standard deviation of the measure-

ment errors suggest a location accuracy of roughly 0.8 km
radius (±2

ffiffî
r

p
), and the estimated damping parameter

corresponds to an e-folding time of approximately 7 days.
Using the method of profile log likelihood an approximate

Table 1. ML Parameter Estimates for the Inertial Model Specified in Equation (5)a

r̂11 r̂22 ĝ31 ĝ41 ĝ42 ĝ

1.876 	 105 1.298 	 105 3.088 	 10�4 �.110 	 10�4 5.200 	 10�4 1.876 	 10�6

aHere, r̂ij represents the estimated elements of R (m2) (r̂21 � 0), and ĝij (s
�1) represents those of G. Value of f is fixed at

1.069 	 10�4 s�1.

Table 2. Final ML Estimates for the Inertial Model Fitted to the

Ocean Storms Data

r̂, m2 ĝ, s�1
ĝ, s�1

1.6410 	 105 4.151 	 10�4 1.678 	 10�6

QðdiÞ ¼

1 0 1
g2þf 2

gþ e�gdt �g cos f dtð Þ þ f sin f dtð Þ½ �
� �

1
g2þf 2

f þ e�gdt �g sin f dtð Þ � f cos f dtð Þ½ �
� �

0 1 1
g2þf 2

�f þ e�gdt g sin f dtð Þ þ f cos f dtð Þ½ �
� �

1
g2þf 2

gþ e�gdt �g cos f dtð Þ þ f sin f dtð Þ½ �
� �

0 0 e�gdt cos f dtð Þ e�gdt sin f dtð Þ
0 0 �e�gdt sin f dtð Þ e�gdt cos f dtð Þ

26664
37775: ð9Þ
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95% CI for g was estimated as (.116 	 10�6 s�1, 3.558 	
10�6 s�1).

4. Wind Model Identification

4.1. Labrador Sea Experiment: Descriptive Statistics

[37] Location measurements and concurrent surface vec-
tor wind observations for Labrador Sea drifter 16891 are
shown in Figure 4. The observed wind vector, wobs(ti) =
{uobs

w (ti), vobs
w (ti)}, is superimposed on the measured loca-

tions {xobs(ti), yobs(ti)}. Inertial oscillations can be seen in the
beginning of the drifter path (see magnified inset, Figure 4),
but note that no persistent background current exists. With
velocity estimates calculated as in section 2.2, Figure 5
shows a time series of the estimated eastward ocean velocity
component for drifter 16891. As can be seen, the eastward
velocity component is dominated by inertial oscillations
over approximately the first 10 days, and is continuously
affected by the wind over the entire time period. The
estimated northward ocean velocity component (not shown)
behaves similarly. Figure 5 also shows histograms of û(t*i )
and v̂(t*i ), which like the velocity components for the Ocean
Storms example (see Figure 2), are approximately normally
distributed. The mean estimated velocities of û(t*i ) and v̂(t*i )
were calculated as 0.019 ms�1 and 0.026 ms�1. The ocean
velocity component standard deviations are 0.169 ms�1

(zonal) and 0.148 ms�1, respectively. The mean speed of
the drifter over the time period is 0.190 ms�1.
[38] Time series of the eastward and northward surface

wind components for drifter 16891 are shown in Figure 6.
Although the wind component processes are dominated by
slowly varying modes (e.g., synoptic scales of several days),
the presence of small-scale variability is evident [see also
Milliff et al., 2003]. The mean eastward and northward
winds for drifter 16891 over the time period were 1.39 ms�1

and �1.17 ms�1, respectively. The wind component stan-
dard deviations were, 7.68 ms�1 and 6.86 ms�1, respec-
tively. The sample correlation between uobs

w (ti) and vobs
w (ti)

was 0.147. Descriptive statistics for all six drifters to be
analyzed here are provided in Table 3.

4.2. Wind Model

[39] To estimate the wind-ocean coupling we require a
model describing the wind process. Because the available
wind data is not amenable to a Lagrangian interpretation,
a statistical model is fit to the time evolution of wobs(ti).
On the basis of the findings of Milliff et al. [2003], who
emphasize mesoscale spatial and temporal variability of
the wind forcing in the Labrador Sea regions, we repre-
sent the true wind innovations, i.e., uw(ti) � uw(ti�1) and
vw(ti) � vw(ti�1), by a continuous time vector autoregres-
sive process of order one:

d
uw tð Þ
vw tð Þ

� �
¼ �jw

u 0

0 �jw
v

� �
uw tð Þ
vw tð Þ

� �
dt þ gw 0

0 gw

� �
dxwu tð Þ
dxwv tð Þ

� �
:

ð10Þ

In (10), ju
w and jv

w represent damping coefficients for the
eastward and northward wind components, and dxu

w(t) and
dxv

w(t) are independent Wiener processes with unit variance
per unit time.

[40] The measurement equations for uobs
w (ti) and vobs

w (ti)
are

uwobs tið Þ ¼ uw tið Þ þ ewu tið Þ vwobs tið Þ ¼ vw tið Þ þ ewv tið Þ; ð11Þ

where the observation noise terms eu
w(ti) and ev

w(ti) are
taken as independent Gaussians, with common standard
deviation rw.
[41] Since the sample correlation coefficients between

uobs
w (t) and vobs

w (t) for the six drifters are negligible (see
Table 3), we treat the wind components as uncorrelated in
the estimation of parameters. To further simplify, we have
constrained the standard deviation of the wind state input
noise, represented by gw in (10), to have the same value.
ML parameter estimates for the wind data are given in
Table 4.
[42] The mean damping coefficients of ĵu

w = 6.745 	
10�6 s�1 and ĵv

w = 7.751 	 10�6 s�1 represent day-to-day
wind correlations of approximately 0.56 and 0.52, and are
roughly consistent with timescales associated with polar-
low propagation across the Labrador Sea region in winter
[Milliff et al., 2003; Renfrew and Moore, 1999; Renfrew et
al., 1999].

4.3. Wind-Forced Ocean Model

[43] To estimate the wind-ocean coupling coefficients
described by the matrix A defined in (2) we extend the
definition of the state s(t) of a drifter at time t to include
surface wind terms in addition to position and velocity. With
s(t) = [x(t), y(t), u(t), v(t), uw(t), vw(t)]0, the state equation in
continuous time is

d

x tð Þ
y tð Þ
u tð Þ
v tð Þ
uw tð Þ
vw tð Þ

2666666664

3777777775
¼

0 0 1 0 0 0

0 0 0 1 0 0

0 0 �g f a11 a12

0 0 �f �g a21 a22

0 0 0 0 �jw
u 0

0 0 0 0 0 �jw
v

2666666664

3777777775

x tð Þ
y tð Þ
u tð Þ
v tð Þ
uw tð Þ
vw tð Þ

2666666664

3777777775
dt

þ

0 0 0 0

0 0 0 0

g31 0 0 0

g41 g42 0 0

0 0 gw 0

0 0 0 gw

2666666664

3777777775
dxu tð Þ
dxv tð Þ
dxwu tð Þ
dxwv tð Þ

26664
37775:

ð12Þ

[44] In (12), f represents the Coriolis parameter, g Ray-
leigh friction, and {a11, a12, a21, a22} denote the air-sea
coupling coefficients. Further, {g31, g41, g42} weight the
Wiener process terms {dxu(t), dxv(t)} used to model, as
random inputs, the effects of the physical processes that are
not resolved by the air-sea model. As before, the Weiner
processes are taken as independent with unit variances per
unit time. The parameters modeling the wind processes are
as described in section 4.2. The random input has general
covariance matrix Q = GG0, but note that Q has many
structural zeros.
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Figure 4. Path of buoy 16891 for the period 22 October 1996 to 11 December 1996. Superimposed on
each of the plotted buoy locations {xobs(ti), yobs(ti): i = 1,. . .,740} are the measured wind vectors wobs(ti).
To facilitate visualization, the first 50 observations are magnified.

Figure 5. (top) Time series of estimated eastward velocity component û(t*i ) for drifter 16891. (bottom)
Histograms of û(t*i ) and v̂(t*i ).
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[45] The observation equation is given by

xobs tið Þ

yobs tið Þ

uwobs tið Þ

vwobs tið Þ

2666666664

3777777775
¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

266666666664

377777777775

x tð Þ

y tð Þ

u tð Þ

v tð Þ

uw tð Þ

vw tð Þ

266666666666666664

377777777777777775
þ

ex tið Þ

ey tið Þ

ewu tið Þ

ewv tið Þ

2666666664

3777777775
:

ð13Þ

The observational error terms are taken as zero-mean
Gaussian, and the location noise terms {ex(ti), ey(ti)} are
assumed independent of the wind noise terms {eu

w(ti),
ev
w(ti)}. The observational noise covariance matrix is thus a
block-diagonal matrix with blocks corresponding to the 2 	
2 matrices cov[ex(ti), ey(ti)]

0 and cov[eu
w(ti), ev

w(ti)]
0.

4.4. Parameter Estimates and Model Assessment

[46] We first fit the model specified in (12) and (13) to
each of the 6 Labrador Sea drifters (Table 3), and in a
second estimation step, all available data (n = 6116) are
used to simultaneously estimate parameters. To obtain
stable estimates for the wind-ocean coupling coefficients
and the random input terms, the parameters related to the
wind process are fixed at the values attained in section 4.2;
specifically, for each drifter, we use the corresponding

Figure 6. Time series of eastward and northward wind components for drifter 16891, (top) uobs
w (ti) and

(middle) vobs
w (ti). (bottom) Histograms of uobs

w (ti) and vobs
w (ti).

Table 3. Descriptive Statistics for Labrador Sea Dataa

ID Observation Period n S �uw �vw su
w sv

w cu,v
w

16887 25 Oct–2 Dec 1996 601 0.158 1.96 –1.45 7.11 5.86 0.141
16891 22 Oct–11 Dec 1996 740 0.190 1.39 –1.17 7.67 6.86 0.147
16892 30 Oct 1996–13 Feb 1997 1421 0.185 3.24 –0.72 9.02 7.64 0.228
16896 25 Oct 1996–29 Jan 1997 1399 0.192 1.81 0.09 8.77 8.34 0.068
16899 24 Oct 1996–3 Feb 1997 1302 0.162 2.54 –0.43 8.08 8.86 0.119
16905 23 Oct–8 Dec 1996 653 0.183 4.00 –1.06 5.71 6.98 0.103
Mean 1019 0.180 2.50 –0.635 8.06 7.72 0.137

aThe dates represent the first and last days of measurements, n represents the number of observations, S denotes mean drifter speed (ms�1), �uw and �vw

denote mean observed eastward and northward winds, respectively (ms�1), su
w and sv

w sample standard deviations of the observed winds (ms�1), and cu,v
w

denotes the correlation between uobs
w and vobs

w .
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estimates from Table 4. As previously discussed, the upper
ocean dissipation g is similarly fixed at the estimate
obtained in section 3.2.2, i.e., ĝ = 1.678 	 10�6 s�1, and
the Coriolis parameter f = 1.188 	 10�4 s�1 is set at its
known middomain value. ML estimates for the parameter
vector � = {g31, g41, g42, a11, a12, a21, a22, r11, r12, r22} are
provided in Table 5.
[47] To assess the model fit, standardized residuals are

calculated for each drifter using the parameter estimates of
Table 5. Figure 7 depicts histograms and normal prob-
ability plots for the standardized longitude (xobs(ti) �
E{xobs(ti)jYt�1}) and latitude (yobs(ti) � E{yobs(ti)jYt�1})
innovations. The observation innovations are standardized
using the error standard deviations obtained through the first
two diagonal elements of Pf(ti). The residuals for the other
drifters exhibit the same patterns shown for drifter 16891,
with an overall mean skewness and kurtosis for the longi-
tude observations of 0.07 and 5.51, respectively (�0.04 and
5.49 for latitude). Although the calculated kurtoses indicate
slightly peaked residuals, the histograms and normal prob-
ability plots demonstrate that deviations from normality are
not severe.
[48] To obtain a simplified wind-ocean model, two nested

sets of hypotheses tests based on the likelihood ratio test are
performed for each of the six drifters. By restricting a11 =
a22 and a12 = �a21, the first test evaluates the evidence for a
wind model reflective of Ekman dynamics only. The Ekman
model can be expressed using an amplitude coefficient ~A,
and the Ekman rotation angle, q (see Appendix C). This
simplification is rejected for drifters 16891 (p < 0.003) and
16896 (p < 0.008), but the remaining drifters produce p
values greater than 0.1, supporting the model. A second
hypothesis test evaluates the homogeneity of the ocean-state
error process by setting g31 = g42 and g41 = 0. With an

overall Type I error rate of 0.05, the second hypothesis test
is rejected for drifters 16896 (p < 0.002), and 16895 (p <
0.001). However, as indicated by the estimates ĝ31, ĝ41, ĝ42
in Table 5, the evidence against a model with simplified
ocean-state noise structure is weak.
[49] The air-sea model defined in (12) and (13) can

conveniently be extended for simultaneous parameter esti-
mation using the data from all six drifters. Let si(t) represent
the state of drifter i at time t, and define S(t) = [s1(t), s2(t),
s3(t), s4(t), s5(t), s6(t)]

0. (Here, drifter 1 is synonymous with
drifter 16887, drifter 2 with 16891, etc.; see column 1 of
Table 5.) With I6 representing the 6 	 6 identity matrix and
� the Kronecker matrix product, we define the time-
dependent transition matrix 6(dt) = I6 � F(dt). Similarly
define the covariance matrix 2(dt) = I6 � Q(dt), and the
observation operator B = I6 � H, where H is the observa-
tion matrix from (13). Further let yi(t) = [xobs(t), yobs(t),
uobs
w (t), vobs

w (t)]0 be the observation for drifter i at time t.
Then, employing the transition and covariance matrices
along with an observation operator given by rows (i * 4)
through (3 + i * 4) of B, we update the state vector S(t)
using the data yi(t) via recursions specified by (A3),
Appendix A. At each measurement time this model affects
only the part of the state vector for which data is available.
[50] ML parameter estimates based on all n = 6116

observation vectors are presented in Table 6. Only the
estimates for the air-sea coupling coefficients are provided
since the estimates of the model and observation noise
parameters are not meaningfully different from the mean
values presented in Table 5. A 95% CI for the Ekman
rotation angle q̂ is given by (44.10�, 54.25�).

5. Discussion

5.1. Statistical Issues

[51] The analyses presented here motivate the need for
advances in statistical research in a number of areas. First,
the noisy and rapidly changing wind process is particularly
challenging to model. It should be noted that data with
similar properties are often encountered in financial time
series, and are generally treated by specifying models with
time-dependent covariance structures [e.g., Tsay, 2001].
However, such models have highly nonlinear transition
structures and solution procedures, and are not practical in
our setting which requires instantaneous wind forcing. One
possibility for obtaining more accurate wind predictions is
to fit a fixed-lag smoother by augmenting the state and
observation vector with wind observations from one time
step ahead. This method would produce a filtered, rather

Table 5. ML Estimates for the Coupled Air-Sea Modela

ID ĝ31 ĝ43 ĝ42 â11 â12 â21 â22 r̂11 r̂22 r̂21

16887 0.1657 0.1837 0.0317 0.1583 0.0042 –0.0281 0.0375 1.757 1.414 0.8698
16891 0.1401 0.1468 –0.0168 0.2041 –0.1519 0.4039 0.4410 3.233 1.345 0.5164
16892 0.2416 0.2338 0.0056 0.2983 –0.4456 0.4265 0.5882 2.181 0.8473 0.0787
16896 0.2012 0.1794 0.0093 0.3054 –0.6258 0.8132 0.5368 2.604 1.539 0.2175
16899 0.1683 0.1585 0.0010 0.5301 –0.5100 0.4582 0.4745 2.625 1.251 0.7397
16895 0.1867 0.1802 0.0229 0.0128 0.2281 0.3148 0.5741 2.744 1.719 –1.066
mean 0.1911 0.1841 0.0072 0.2936 –0.3488 0.4623 0.4788 2.518 1.301 0.2596

aVariables ĝij 	 10�2 s�1 are the entries of the random input term amplitude matrix, G, âij 	 10�6 s�1 are the air-sea coupling coefficients, and r̂ij 	 102

m are the elements of the observation noise matrix R. Means are obtained by weighting according to sample size.

Table 4. ML Estimates for the Wind Model in Equation (10)a

ID ĵu
w 	 10�6 ĵv

w 	 10�6 ĝw r̂w

16887 5.193 8.284 0.0227 2.534
16891 4.346 5.465 0.0231 1.804
16892 5.594 8.305 0.0313 2.350
16896 7.478 7.990 0.0343 2.175
16899 8.943 7.732 0.0347 2.366
16905 7.765 8.103 0.0279 1.729
mean 6.745 7.751 0.0304 2.196

aHere, ĵu
w and ĵv

w denote estimated damping coefficients (s�1), ĝ the
standard deviation of the state input noise (s�1), and r̂ is the observation
noise standard deviation (ms�1). Means are obtained by weighting
according to sample size.
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than predicted, wind vector as ocean forcing, allowing for
more accurate modeling of rapid wind shifts, especially
during periods of high variability. Another approach to
modeling the abrupt level and variance shifts of the wind
process is to represent the forecast density at each measure-
ment time by a finite mixture distribution. For Gaussian
mixture components the Kalman filter described in this
paper can be applied to each component [e.g., Chen and
Liu, 2000]. Note that such mixtures can be applied both at
the level of the state, to address abrupt shifts, and at the
level of the observations, to address heavy-tailed observa-
tion distributions. A non-Gaussian real-time Kalman filter
specification is possible using the skewed-normal distribu-
tion of Naveau et al. [2004].
[52] Original attempts at estimating the inertial parame-

ters using the Labrador Sea data failed, suggesting that the
likelihood surface is extremely flat in the neighborhood of
its maximum. We speculate that disproportionate variance
in the wind process renders the simultaneous estimation of g
even more difficult. We therefore turned to data from the
Ocean Storms Experiment to gain a physically realistic

estimate of g, and in subsequent estimation procedures the
dissipation was treated as fixed at ĝ = 1.678 	 10�6 s�1 (see
Table 2). Since the covariance properties of ĝ are O(n�1/2),
the asymptotic effects of treating ĝ as fixed on other
parameter estimates are negligible. Yet, for moderate or
small samples, the impact of replacing g by ĝ is to increase
uncertainty in the state and parameter estimates. To explic-
itly account for this uncertainty we could assign a prior
distribution for g based on the results of the Ocean Storms
Experiment, and fit the Labrador Sea data using fully
Bayesian techniques, e.g., the Dynamical Linear Model
[West and Harrison, 1989], or Bayesian Hierarchical Mod-
eling [Berliner et al., 2003; Royle et al., 1998]. However,
due to the strongly nonlinear dependence of the transition
and covariance matrices on all involved parameters, no
closed form expressions exist with which to produce pos-
terior state and parameter estimates. In particular, neither the
state nor the parameters would be Gaussian. Thus compu-
tational integration techniques would have to be employed
to obtain posterior distributions, but chain-linked sample-
based integration methods (e.g., Gibbs sampling) require the

Table 6. ML Estimates of the Air-Sea Coupling Coefficients âij 	 10�6 s�1, Wind Model Amplitude Coefficient Â 	 10�6 s�1, and

Ekman Rotation Angle q̂

â11 â12 â21 â22 Â q̂ Null Hypothesis

0.3170 –0.4230 0.4985 0.5086 NA NA gij, aij free
0.4062 –0.4738 0.4738 0.4062 0.6241 49.39 gij free; a11 = a22, a12 = a21
0.4047 –0.4687 0.4687 0.4047 0.6193 49.19 g31 = g42, g32 = 0; a11 = a22, a12 = a21

Figure 7. Histograms and normal probability plots for the standardized (top) longitude and (bottom)
latitude residuals for drifter 16891. The plots indicate symmetric but slightly peaked residuals.
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chain to be restarted at each of the n = 6116 observation
points and would clearly prove inefficient. Moreover, our
initial attempts at estimating the inertial parameters from the
Labrador Sea data suggest a complicated likelihood surface,
and such a likelihood function would further compound
computational inefficiencies. One approach may be to use a
hybrid filter which treats the unknown parameters using
sequential importance sampling methods [Doucet et al.,
2001], while the state is propagated using Kalman filter
techniques.
[53] The possibility of using Kalman filter techniques

for assimilation of Lagrangian data and Eulerian model
variables is successfully demonstrated by various simula-
tion studies [Kuznetsov et al., 2003; Molcard et al., 2003;
Griffa et al., 2004] as well as by studies based on real data
sets [Castellari et al., 2001; Özgökmen et al., 2001]. As
demonstrated in section 4.4, the specified wind model
scales easily to include a large number of drifting and
moored buoys. It is straightforward to extend the model to
include correlated wind and ocean state noise processes.
Further, the possibility of assimilating data from different
measurement platforms (e.g., satellite measurements) and
across various spatial scales exists. To address the com-
putational requirements of on-line assimilation in high-
dimensional systems we would explore the use of
Monte Carlo based Kalman filter variants [Evensen,
1994; Anderson, 2001], or their deterministic counterparts
[Tippett et al., 2003; Whitaker and Hamill, 2002]. Exact
evaluation of time-dependent covariance structures may
not be feasible in such systems. However, as demonstrated
by our work, model identification and parameter estima-
tion are attainable goals.

5.2. Oceanographic Validation

[54] While a central purpose of this paper has been to
demonstrate statistical estimation methods for ocean veloc-
ity and surface wind data sets obtained from ocean drifters
in a harsh environment, the success of the model in its
present form yields parameter estimates that can be validated
with prior work. Recall that the Labrador Sea data is
unique in that ocean current and surface wind are observed
simultaneously by the drifters at fine spatial and temporal
scales. For these data there are no published studies with
which direct comparisons can be made. In particular, the
high-frequency, high–wave number [e.g., see Milliff et al.,
2003] properties of the wind data, and its precise colloca-
tion with the current observations, are unique to the
Labrador Sea drifter data set. However, the estimates of
air-sea coupling aij, and Ekman rotation angle q, from the
aggregated Labrador Sea drifter data (Table 6) can be
compared with similar parameters deduced by Ralph and
Niiler [1999]. Their study assumes a steady Ekman balance
over large spatial scales and for long timescales in the
tropical Pacific.
[55] In one of the models evaluated by Ralph and Niiler

[1999], they derive an amplitude coefficient relative to the
friction velocity u* = [jtj/ra]1/2, for surface wind stress t
and atmospheric density ra. The model is u = bu*f

�1/2,
where the estimate b̂ = 0.065 is obtained by a least squares
fit [see Ralph and Niiler, 1999, Table 1]. An estimate of
their coupling coefficient relative to u*, using f for the
Labrador Sea, is 5.96. To compare with Â from Table 6

here, we divide by f and relate to u* instead of uw, to yield
4.18. The air-sea coupling coefficient derived here com-
pares well with the average value estimated over a data set
from 1503 drifters in the tropical Pacific [Ralph and Niiler,
1999].
[56] Similarly, our estimate of the Ekman rotation angle

q = 49.2� (Table 6) is consistent with the Ekman rotation
angle (48.7�) for the depth bin nearest the surface of Ralph
and Niiler [1999]. Because their estimates are based on
wind and ocean current data taken over a vast region and
many years of drifter records, the ocean velocity estimates
at the drifter drogue depth (15 m) occur over a wide range
of depths relative to the time- (wind-) dependent Ekman
depth H*. The agreement here with the near-surface
rotation angle is consistent with an H* for the Labrador
Sea in winter that is much deeper than 15 m.
[57] The results here indicate that g � f. The magnitude

of g relative to f simplifies the form of the wind-ocean
coupling derivations in Appendix C; that is, we have
neglected g dependence in A. By inclusion of nonlinear
terms, this approximation can be explored more carefully
within the context of a modified state-space model.
[58] Further ocean effects to be explored include the

unmodeled influence of the ocean mesoscale [e.g., van
Muers, 1998] on the inertial current damping time, and
time-dependent models for g and aij. These issues have not
posed serious difficulties in our work because (1) the ocean
mesoscale eddy amplitudes in the fraction of the Ocean
Storms data we analyzed (and in the middle of the Labrador
Sea basin) are relatively small and (2) the drifter time series
for surface vector winds and ocean currents used here span
only a part of a single winter season.

6. Summary

[59] A stochastic model for wind-driven upper ocean
currents, treated as a continuous process, is evaluated in
light of an upper ocean drifter data set in the Labrador Sea.
Estimates are obtained for upper ocean dissipation due to
momentum convergences, g, and air-sea coupling coeffi-
cients, aij, as well as the Coriolis parameter, f. Second-order
properties of model error terms are also given.
[60] The drifter data consist of coincident observations

of drifter position and surface vector wind, reported on
hourly timescales from 6 in situ platforms (Minimet
drifters) for periods of about a month. The stochastic
model framework also includes terms to quantify uncer-
tainties in both the observations and the a priori assump-
tions regarding the important physical balances. Drifter
observations impact the stochastic model via the Kalman
filter, and parameter estimates are obtained using ML
procedures.
[61] A simple (perhaps intuitive) model treats the ocean

process as discrete, where the discretization is dictated by
temporal increments in the drifter position time series. In the
discrete-process model the ocean velocities and accelera-
tions are computed using first and second difference
approximations, but this model fails to reproduce the correct
Coriolis parameter for the data set, which is knowable
outside the model framework. The failure is attributed to
error accumulations in the approximations for velocity and
acceleration in flows characterized by significant contribu-
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tions from ocean inertial oscillations, and the model frame-
work yields biased and unreliable parameter estimates.
[62] The first application of the stochastic, continuous-

process model to the Labrador Sea data fails in a similar
sense; that is, the known Coriolis parameter cannot be
reproduced. The initial failure of the continuous-process
model is attributed to the disproportionate variance contri-
bution of the vigorous wind process, versus the contribution
due to the ocean parameters. To address this, the estimation
of g is separated from the wind process by resorting to the
drifter data from the Ocean Storms experiment. The Ocean
Storms data are unique in that ocean inertial oscillations
occurred for several days in the absence of significant wind,
following the impulse forcing of a single initial storm event.
A physically realistic and robust estimate for g is obtained.
[63] The estimate for g from the Ocean Storms setting is

then held fixed in a second application to the Labrador Sea
data. Robust estimates for ai,j and the observational and
model error terms are obtained. Model simplifications are
evaluated and quantified by likelihood methods. Model and
observational error terms are small compared to the model
parameter estimates. The average 15 m current rotation
angle q with respect to the surface vector wind is consistent
with the upper ocean model based on Ekman dynamics.

Appendix A: Kalman Filter Recursions

[64] Let st represent the unobserved state vector of the
system at time t and let yt denote a new vector of
observations. The data and the state are related by the
observation equation

yt ¼ Htst þ et ; ðA1Þ

where Ht represents a linear observation operator and et �
N(0, R).
[65] We wish to update our knowledge of the unobserved

state st in light of the new data yt. Assuming initial
knowledge of the system is given by the conditional
forecast distribution p(stjYt�1), where Yt�1 denotes all past
data up to and including time t � 1, the update step
combines the forecast distribution and the new vector of
observations, yielding the posterior distribution p(stjYt).
The standard Kalman filter assumes that p(stjYt�1) �
N(st

f, Pt
f), and a straightforward application of Bayes theo-

rem yields

p stjYtð Þ ¼ N sut ;P
u
t

� �
; ðA2Þ

where

sut ¼ s
f
t þKt yt �Hts

f
t

� 

Pu
t ¼ I�KtHtð ÞPf

t :

ðA3Þ

In (A3), Kt denotes the Kalman gain matrix and is given by

Kt ¼ P
f
tH

0
t HtP

f
tH

0
t þ R

� 
�1

;

where a prime superscript represents matrix transpose. To
obtain the forecast distribution p(st+1jYt) the update

distribution (A2) is propagated using the system dynamics
represented in the state equation

stþ1 ¼ % dtð Þst þ vt; ðA4Þ

where vt � N(0, Qt). Since the system dynamics are linear,
the forecast distribution will again be multivariate normal
with closed forms for the mean and covariance:

s
f
tþ1 ¼ % dtð Þsut

P
f
tþ1 ¼ % dtð ÞPa

t % dtð Þ0 þ Q dtð Þ;
ðA5Þ

where %(dt) and Q(dt) are as described in section 3.2 and
Appendix B.
[66] The form of the Kalman filter recursions (A3) and

(A5) are the same for data sampled at regular and irregular
time intervals. In the case of irregularly sampled data, both
the transition matrix and state noise covariance matrix
depend on dt, the time step between observations.

Appendix B

B1. Calculating %(Dt)

[67] Without the white noise in (5), the system of first-
order linear differential equations can be written as

d

dt
s tð Þ ¼ Ms tð Þ: ðB1Þ

The solution to this system of equations is

s tð Þ ¼ eMts 0ð Þ;

where eMt is defined as

eMt ¼ IþMt þ Mtð Þ2

2!
þ Mtð Þ3

3!
þ . . . : ðB2Þ

There can be numerical instabilities when evaluating matrix
exponentials [Moler and van Loan, 1978], but one method
that usually works is based on a diagonal representation of
the matrix M using eigenvalues and eigenvectors. The right
eigenvectors satisfy the right eigenvector equation

Me
rð Þ
i ¼ lie

rð Þ
i ;

where ei
(r) is the ith nonzero right eigenvector corresponding

to the eigenvalue li. If there are n linearly independent
eigenvectors, they can be arranged as the columns of the
matrix E, and we have

MEr ¼ Er+;

where + is a diagonal matrix with eigenvalues on the
diagonal. M can then be written in diagonal form as

M ¼ Er+E�1
r ;

where the rows of Er
�1 are the left eigenvectors of M. Since

Er
�1Er = I, we have Mk = Er+

kEr
�1 and the solution in (B2)

can be written as

eMt ¼ Er Iþ+t þ +tð Þ2

2!
þ +tð Þ3

3!
þ . . .

( )
E�1
r ¼ Ere

+tE�1
r ;

ðB3Þ

where e+t is a diagonal matrix with entries elit.
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[68] To find the transition matrix in our problem we note
that M in (5) has two zero eigenvalues and a complex
conjugate pair: l1 = 0, l2 = 0,l3 � g + if, and l4 =
�g � if, where i =

ffiffiffiffiffiffiffi
�1

p
. The four right eigenvectors ei

(r)

corresponding to the eigenvalues li are given column-wise
in the matrix Er:

Er ¼

1 0 1 i

0 1 i 1

0 0 �gþ ifð Þ i �g� ifð Þ

0 0 i �gþ ifð Þ �g� ifð Þ

266666666664

377777777775
; ðB4Þ

and the four left eigenvectors ei
(l) are given row-wise in the

matrix Er
�1:

E�1
r ¼

1 0
g

g2 þ f 2
f

g2 þ f 2

0 1
�f

g2 þ f 2
g

g2 þ f 2

0 0
1

2 �gþ ifð Þ
�i

2 �gþ ifð Þ
0 0

�i

2 �g� ifð Þ
1

2 �g� ifð Þ

266666666664

377777777775
: ðB5Þ

With + a diagonal matrix defined by the eigenvalues of M,
the discrete time transition matrix %(dt) in (9) is then
obtained by (B3) with Er and Er

�1 as defined in (B4) and
(B5), respectively.
[69] The following matrices containing the right and left

eigenvectors are used for the model in (12):

Er;LS ¼

�

1 0 1 i � a11 g�j1ð Þþa21f

j1 f 2þg2�2gj1þj2
1ð Þ � a22fþa12 g�j2ð Þ

j2 f 2þg2�2gj2þj2
2ð Þ

0 1 i 1
a11f�a21 g�j1ð Þ

j1 f 2þg2�2gj1þj2
1ð Þ

a12f�a22 g�j2ð Þ
j2 f 2þg2�2gj2þj2

2ð Þ
0 0 �gþ ifð Þ i �g� ifð Þ a21fþa11 g�j1ð Þ

f 2þg2�2gj1þj2
1

a22fþa12 g�j2ð Þ
f 2þg2�2gj2þj2

2

0 0 i �gþ ifð Þ �g� ifð Þ � a11f�a21 g�j1ð Þ
f 2þg2�2gj1þj2

2

� a12f�a22 g�j2ð Þ
f 2þg2�2gj2þj2

2

0 0 0 0 1 0

0 0 0 0 0 1

26666666666664

37777777777775
E�1
r;LS ¼

�

1 0 g

g2þf 2
f

g2þf 2
a21 fþa11g
j1 f 2þg2ð Þ

a22fþa12g
j2 f 2þg2ð Þ

0 1 �f
g2þf 2

g

g2þf 2
�a11fþa21g
j1 f 2þg2ð Þ

�a12 fþa22g
j2 f 2þg2ð Þ

0 0 1
2 �gþifð Þ

�i
2 �gþifð Þ

�a11þia21
2 fþigð Þ fþi g�j1ð Þð Þ

�a12þia22
2 fþigð Þ fþi g�j2ð Þð Þ

0 0 �i
2 �g�ifð Þ

1
2 �g�ifð Þ

a11þia21
2 f�igð Þ �if�gþj1ð Þ

a12þia22
2 f�igð Þ �if�gþj2ð Þ

0 0 0 0 1 0

0 0 0 0 0 1

266666666664

377777777775
:

[70] Another approach to finding %(dt) is to perform a
rotation of the state vector based on the eigenvectors of M.
Note that (6) can be written as

ds tð Þ ¼ Er+E�1
r s tð Þdt þGdw tð Þ:

Premultiplying this equation by Er
�1 yields a complex

rotated state equation

dsr tð Þ ¼ +sr tð Þdt þGrdw tð Þ; ðB6Þ

where Gr = Er
�1G. The rotation uncouples the state vector,

and each element can be integrated separately. To get back
to the unrotated state, premultiply by Er. This approach
requires complex arithmetic, but is readily implemented
computationally [see also Jones, 1993].

B2. Calculating Q(Dt)

[71] The random input to the state equation is integrated
over the time interval dt as

H dtð Þ ¼
Z dt

0

% dt � tð ÞGw tð Þdt; ðB7Þ

and the covariance matrix of this integrated random noise is

Q dtð Þ ¼
Z dt

0

% dt � tð ÞGG0%0 dt � tð Þdt: ðB8Þ

The covariance matrix of the input noise to the rotated state
equation is

Qr dtð Þ ¼ E�1
r Q dtð ÞEr ¼

Z dt

0

e+ Dt�tð ÞE�1
r GG0 E?

r

� ��1
e+

? Dt�tð Þdt

� �
;

ðB9Þ

where ? denotes the complex conjugate transpose matrix.
This matrix integration can be evaluated element-wise in
terms of the elements of K = ErGG0(E?

r )
�1, giving for the

elements of Qr(dt)

Q
rð Þ
jk dtð Þ ¼ Kjk

e ljþ�lkð Þ � 1

lj þ �lk

;lj þ �lk 6¼ 0 ðB10Þ

Q
rð Þ
jk dtð Þ ¼ Kjkdt;lj þ �lk ¼ 0 ðB11Þ

where �lk denotes complex conjugate. To obtain the
covariance matrix for the integrated random noise H(dt),
Qr(dt) is rotated back using Er and its complex conjugate,
i.e.,

Q dtð Þ ¼ ErQr dtð ÞE?
r : ðB12Þ

Note that the method outlined to calculate %(dt) and Q(dt)
only depends on the eigenvalues and eigenvectors of M.

Appendix C: Wind-Ocean Coupling

[72] Ekman [1906] derived a model for the response of
upper ocean currents (uE, vE) to surface wind forcing. In
complex variable notation we have

if uE þ ivEð Þ ¼ 1

ro

@

@z
tx þ ityð Þ; ðC1Þ
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where f is the Coriolis term,~t = tx + ity is the stress vector,
ro is the upper ocean density, and i =

ffiffiffiffiffiffiffi
�1

p
.

[73] Analytic solutions to the Ekman equations (C1) are
obtainable given assumptions and parameterizations of ~t
[e.g., see Pond and Pickard, 1983; Pedlosky, 1987]. Ralph
and Niiler [1999] fit ocean drifter data to these equations to
determine coefficients in the theoretical solutions and eval-
uate parameterizations of @~t/@z at z = 15 m. A salient
feature of the theory and the data analyses is the rotation (to
the right in the Northern Hemisphere) of the Ekman surface
current vector with respect to the surface wind vector. From
this, the form of the surface wind coupling terms used in
this paper can be derived [e.g., see also Pollard and Millard,
1970]: we have

uE þ ivE ¼ ~Aeiq uw þ ivwð Þ; ðC2Þ

where ~A is an amplitude coefficient that depends on upper
ocean stratification, a vertical length scale, and the wind
stress. The angle q is the rotation angle of the current vector
(uE, vE) with respect to the surface wind vector (uw, vw). We
determine q from the Labrador Sea drifter data in section 4.2
of the paper, and compare it with the results of Ralph and
Niiler [1999].
[74] Matching real and imaginary coefficients in (C2), we

have

uE ¼ ~Auwcos qð Þ � ~Avwsin qð Þ; ðC3Þ

¼ a11u
w � a12v

w; ðC4Þ

vE ¼ ~Auwsin qð Þ þ ~Avwcos qð Þ; ðC5Þ

¼ a21u
w þ a22v

w; ðC6Þ

where the equations (C4) and (C6) lead to (2).
[75] We determine the aij from the Labrador Sea drifter

data as well and note that these coefficients, determined
independently, yield approximately the physically correct
relations; a11 = a22, and a12 = �a21 (section 4.2).
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(2004), A practical, hybrid model for predicting the trajectories of
near-surface ocean drifters, J. Atmos. Oceanic Technol., 21, 1646–
1658.

Pawitan, Y. (2001), In All Likelihood: Modelling and Inference Using the
Likelihood, Oxford Univ. Press, New York.

Pedlosky, J. (1987), Geophysical Fluid Dynamics, Springer, New York.
Pollard, R., and R. Millard (1970), Comparison between observed and
simulated wind-generated inertial oscillations, Deep Sea Res., 17, 813–
821.

Pond, S., and G. Pickard (1983), Introductory Dynamical Oceanography,
Elsevier, New York.

Price, J. F., R. A. Weller, and R. R. Schudlich (1987), Wind-driven ocean
currents and Ekman transport, Science, 238, 1534–1538.

Ralph, E., and P. Niiler (1999), Wind-driven currents in the tropical Pacific,
J. Phys. Oceanogr., 29, 2121–2129.

C10015 BENGTSSON ET AL.: A STATE-SPACE MODEL FOR OCEAN MOTION

16 of 17

C10015



Renfrew, I., and G. Moore (1999), An extreme cold air outbreak over the
Labrador Sea: Roll vortices and air-sea interaction, Mon. Weather Rev.,
127, 2349–2379.

Renfrew, I., G. Moore, T. Holt, S. Chang, and P. Guest (1999), Mesoscale
forecasting during a field program: Meteorological support of the Labra-
dor Sea Deep Convection Experiment, Bull. Am. Meteorol. Soc., 80,
605–620.

Royle, A., M. Berliner, C. Wikle, and R. Milliff (1998), A hierarchical
spatial model for constructing wind fields from scatterometer data in
the Labrador Sea, in Case Studies in Bayesian Statistics IV, pp. 367–
382, Springer, New York.

Schweppe, F. (1965), Evaluation of likelihood functions for Gaussian sig-
nals, IEEE Trans. Inf. Theory, 11, 61–70.

Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S.
Whitaker (2003), Ensemble square-root filters, Mon. Weather Rev., 131,
1485–1490.

Tsay, R. (2001), Analysis of Financial Time Series, John Wiley, Hoboken,
N. J.

van Muers, P. (1998), Interactions between near-inertial mixed layer cur-
rents and the mesoscale: The importance of spatial variabilities in the
vorticity field, J. Phys. Oceanogr., 28, 1363–1388.

Weller, R. A. (1981), Observations of the velocity response to wind forcing
in the upper ocean, J. Geophys. Res., 86, 1969–1977.

West, M., and J. Harrison (1989), Bayesian Forecasting and Dynamic
Models, Springer, New York.

Whitaker, J. S., and T. M. Hamill (2002), Ensemble data assimilation with-
out perturbed observations, Mon. Weather Rev., 130, 1913–1924.

�����������������������
T. Bengtsson, Department of Statistics, University of California,

Berkeley, Berkeley, CA 94709, USA. (tocke@stat.berkeley.edu)
R. Jones, University of Colorado Health Sciences Center, 4200 E. Ninth

Avenue, Denver CO 80262, USA. (richard.jones@uchsc.edu)
R. Milliff, Colorado Research Associates Division, NorthWest Research

Associates, 3381 Mitchell Lane, Boulder, CO 80301-5410, USA.
(milliff@cora.nwra.com)
P. P. Niiler, Scripps Institution of Oceanography, 9500 Gilman Drive,

0230, La Jolla, CA 92093, USA. (pniiler@ucsd.edu)
D. Nychka, Climate and Global Dynamics Division, National Center for

Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA.
(nychka@ucar.edu)

C10015 BENGTSSON ET AL.: A STATE-SPACE MODEL FOR OCEAN MOTION

17 of 17

C10015


