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Abstract

This paper looks at an alternative approach for the treatment of open boundaries in linear wave field simulations by means of

fully elliptic mild-slope equation (MSE) finite elements models. In these kinds of models, the domain of investigation is

traditionally contoured both by reflecting–absorbing boundaries, which simulate the coastline or the structures that emerge

from the sea, and by an ‘open’ or ‘artificial’ boundary, which separates the sea region included in the domain from the semi-

infinite region that extends outward to infinity. The approach presented here assumes the domain to be completely contoured by

reflecting–absorbing boundaries. A total absorbing boundary is, in particular, assumed to separate the inner (finite) from the

outer (semi-infinite) sea region. Sources of energy, which generate waves of specified height and period, are located within the

domain along a line in the proximity of the inner–outer sea region boundary. Reflected and scattered waves can propagate over

the generation line and are absorbed at the open boundary. Numerical tests have been carried out to simulate progressive and

stationary waves in a channel and long waves around a fully reflecting circular island on a parabolic shoal, and to evaluate the

amplification factors of a long and narrow bay. All these validation tests show a very good agreement with the available

analytical solutions. A discussion is finally carried out on the advantages and disadvantages of the presented approach with

respect to traditional ones.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Linear wave field simulation by means of mild-

slope equation (MSE) models still plays an important

role in resolving coastal engineering problems. Taking
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into account the combined effects of reflection, re-

fraction, and diffraction actually makes the models,

based on the equation derived by Berkhoff (1972,

1976), an excellent means to model linear water wave

propagation towards harbors and coastal regions.

Furthermore, the inclusion of a dissipation factor

(Booij, 1981) has made it possible to improve the

performance of these models by taking into account

the effects of phenomena such as bottom friction

(Dalrymple et al., 1984; Chen, 1986; Kostense et
d.
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al., 1986) and wave breaking (Battjes and Janssen,

1978; Dally et al., 1985; De Girolamo et al., 1989;

Zhao et al., 2001; Beltrami et al., 2001).

This paper looks at an alternative approach for the

treatment of the ‘open’ boundaries in fully elliptic

MSE finite element models (FEMs) such as the

widely known HARBD (Chen and Houston, 1987;

Chen and Mei, 1974; Mei, 1983; Thompson and

Hadley, 1995; Thompson et al., 1996), PHAROS

(Delft Hydraulic Laboratory, 1985a,b; Dingemans,

1997), and CGWAVE (Xu et al., 1996; Demirbilek

and Panchang, 1998).

In these kind of models, the domain of investiga-

tion is traditionally contoured both by reflecting–

absorbing boundaries, which simulate the coastlines

or the structures that emerge from the sea, and by an

‘open’ or ‘artificial’ boundary, which separates the sea

region included in the domain from the semi-infinite

region that extends outward to infinity. As it is known,

at the ‘open’ boundary, both incoming reflected and

scattered waves coexist. In order to ensure the conti-

nuity of the free surface elevation at this boundary, as

well as of the velocity component normal to it, the

potential of these waves is usually given in terms of

an a priori chosen mathematical expression, which

holds under specific assumptions.

Along the ‘open’ boundary, for example, the in-

coming wave velocity potential can be expressed as

that of a progressive wave only in the case that the

boundary itself falls within a sea region of constant

depth. In the case of a sloping beach, both height and

direction of the incoming wave vary from point to

point along the lateral side of this boundary. The

potential should be therefore calculated at each of

these points. For simplicity, only the problem of

treating ‘open’ boundaries on constant depth is con-

sidered in the present paper, with the extension to the

variable depth case left to further developments.

Assuming that the velocity potential of the incom-

ing wave is equal to that of a progressive wave, which

propagates on a constant depth sea region, leaves

unchanged the problem of expressing the scattered

and reflected wave velocity potential. The amount of

the reflected wave energy, which propagates back

towards the ‘open’ boundary and then outward to

infinity, is in fact not known a priori, depending on the

solution of the problem itself. In order to solve this

major problem, the traditional approach has been that
of representing the reflected and scattered wave ve-

locity potential by means of some a priori chosen

mathematical expression.

Several authors (Xu et al., 1996; Kostense et al.,

1986; Chen, 1986) have described the reflected waves

as plane waves. Nevertheless, this representation

actually holds under the following assumptions: (a)

constant depth of the outer sea region, (b) collinear

coastlines, (c) coastlines characterized by a single

reflection coefficient, and (d) nonbreaking wave field.

The most used mathematical representations of the

scattered wave velocity potentials us are based on line

integral of the appropriate Green function (Berkhoff,

1972, 1976) or Hankel function series (Chen and

Houston, 1987; Chen and Mei, 1974; Mei, 1983).

Recently, Xu et al. (1996) have proposed an expression

of us that relaxes some of the hypothesis on which are

based the previous representation. Although the cited

representations can be extremely effective, they do not

have general validity. Care should therefore be used in

applying this approach for simulating complex wave

fields characterized by not well-known scattering and

reflection sources, as well as by wave breaking.

A way to bypass these problems can be that of

generating the incoming waves inside the computa-

tional domain and absorbing the outgoing waves at

the boundary that separates the inner finite from the

outer semi-infinite sea region. Internal wave genera-

tion was originally proposed by Larsen and Dancy

(1983) in the framework of the Boussinesq-type

equations. These authors showed that including a

source function in the mass conservation equation

and modulating it in time makes it possible to generate

periodic waves inside the computational domain.

Furthermore, Larsen and Dancy showed that it is

possible to absorb all the outgoing wave energy by

means of a so-called ‘sponge layer’ (i.e., a numerical

tool able gradually to damp wave energy before it is

reflected at the ‘open’ boundaries).

To the present authors’ knowledge, this approach,

which is commonly used in time-marching numerical

models based on the hyperbolic MSE (Copeland,

1985; Madsen and Larsen, 1987; Lee and Doug

Suh, 1998) and on the Boussinesq-type equations

(Wei et al., 1999), has never been used in fully elliptic

wave models.

The approach presented in the present paper as-

sumes the domain to be completely contoured by
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reflecting–absorbing boundaries. A totally absorbing

boundary is, in particular, assumed to separate the

inner (finite) from the outer (semi-infinite) sea region.

Sources of energy, which generate waves of specified

height and period, are located—within the domain—

along a line in the proximity of the inner–outer sea

region boundary. Reflected and scattered waves can

propagate over the generation line and are absorbed at

the open boundary. Using this kind of approach in

fully elliptic MSE–FEM models shifts their main

problem from that of correctly representing the wave

velocity potential at the ‘open’ boundary to that of

perfectly absorbing the outgoing wave energy. As

recently shown by Steward and Panchang (2000)

and Beltrami et al. (2001), total absorption at bound-

aries can be effectively achieved by means of iterative

techniques.

The present paper provides the derivation of the

source term, which can be included in the MSE to

generate waves inside the computational domain,

together with the results of the numerical tests carried

out in order to validate the proposed approach by

means of the GEMMA FEM model (De Girolamo and

Sammarco, 1993, Beltrami et al., 1998, 2001). In

particular, the validation tests are concerned with the

simulation of progressive and stationary waves in a

channel and long waves around a fully reflecting

circular island on a parabolic shoal, and the evaluation

of the amplification factors of a long and narrow bay.

Being very demanding with respect to the treatment of

the ‘open’ boundary makes the circular island and the

harbor resonance tests particularly suitable to show

the actual efficiency of the presented approach.

A discussion is finally carried out on the advan-

tages and disadvantages of the presented approach

with respect to traditional ones.
2. Model formulation

2.1. The MSE with a source term

The fully elliptic form of the MSE with the

inclusion of the internal wave generation term (w)
can be expressed as:

j � ðccgjuÞ þ x2 cg

c
u ¼ w ð1Þ
where c and cg are the phase and group celerity,

respectively; u is the complex wave velocity poten-

tial; x is the angular frequency; and k is the wave

number, once a Cartesian reference frame is consid-

ered. In order to discuss the role of w and to introduce

a convenient expression for this term, the MSE (1) is

usefully derived from the modified form suggested by

Copeland (1985), that is,

Bg
Bt

þ c

cg
j �Q ¼ 0 ð2Þ

BQ

Bt
þ ccgjg ¼ 0 ð3Þ

where g is the real surface elevation and Q is a

pseudoflux, which, in the case of deep or constant

water depth, coincides with cgg (for more details, refer

also to Madsen and Larsen, 1987).

Internal wave generation is traditionally achieved

by periodically adding and subtracting mass to the

system (i.e., modifying the mass equation (Eq. (2)) as

follows:

Bg
Bt

þ c

cg
j �Q ¼ Se�ixt: ð4Þ

In Eq. (4) i ¼
ffiffiffiffiffiffiffi
�1

p
, and only the real part of the

equation is taken into account. The term S is equal to

zero everywhere except along the wave generation

line, while its magnitude, which is constant in time, is

to be chosen in order to obtain the specified wave

height.

In a hyperbolic wave model, the absorption of the

outgoing waves at the ‘open’ boundary is obtained by

introducing a dissipative effect in the momentum

equation, i.e., by expressing Eq. (3) as:

BQ

Bt
þ ccgjg ¼ �eQ: ð5Þ

It should be noticed that e = 0 except in the regions

close to the open boundaries (sponge layers). It is

shown in Section 2.2 that, in fully elliptic models,

such an absorption can be effectively achieved by

means of the imposition along the ‘open’ boundary of

a total absorption condition.
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Assuming that e does not vary in space, and

eliminating Q from both the mass (Eq. (4)) and

momentum (Eq. (5)) equations gives:

B
2g
Bt2

¼ c

cg
j � ðccgjgÞ � e

Bg
Bt

� ixSe�ixt ð6Þ

which is the equation of a harmonically excited

wave propagating with given phase and group ce-

lerity c and cg, and in which damping is represented

by the term eBg/Bt. For simplicity’s sake, it is

convenient to assume uniformity along the y-axis

(i.e., independence of y) as well as constant water

depth. This simplifies Eq. (6), which can be ex-

pressed as:

1

c2
B
2g
Bt2

¼ B
2g

Bx2
� e

c2
Bg
Bt

� ixS

c2
e�ixt ð7Þ

where the amplitude S of the source term is equal to

zero everywhere except along a line parallel to the y-

axis. Assuming, without loss of generality, that the

generation line is x = 0 makes it possible to represent

the amplitude S of the source term by means of a

delta function d(x) (Mei, 1995, p. 105) and therefore

to express Eq. (7) as:

1

c2
B
2g
Bt2

¼ B
2g

Bx2
� e

c2
Bg
Bt

� dðxÞ ixS

c2
e�ixt: ð8Þ

For very small e, it is possible to realize a weak

damping of the generatedwaves and therefore to satisfy

the radiation condition (Mei, 1983, pp. 113–116).

An analytical solution of Eq. (8) can be obtained

by means of a Fourier transform technique (Mei,

1995, pp. 247–250). This solution consists of two

progressive waves of amplitude A=S/(2c), which em-

anate from the generation line. These waves, for

e! 0, can be expressed as:

gðx; tÞ ¼ S

2c
eiðkAxA�xtÞ: ð9Þ

Going back to Eq. (6) with e = 0 and assuming that the

generation line coincides with the y-axis make it

possible to express the wave equation as:

B
2g
Bt2

¼ c

cg
j � ðccgjgÞ � ix2cAdðxÞe�ixt: ð10Þ
Assuming a harmonic variation of g and using the

complex wave velocity potential u (i.e., g(x,y,t)=
[(� ix)/( g)]u(x,y)e� ixt) make it possible—by multi-

plying Eq. (10) for (cg/c)e
ixt—to obtain the elliptic

form of the MSE, that is,

j � ðccgjuÞ þ x2 cg

c
u ¼ 2cgixũdðxÞ ð11Þ

where ũ is the complex velocity potential of the

generated wave that can be expressed as

ũ ¼ � g

ix
a ð12Þ

where a is the real wave amplitude.

Direct comparison with Eq. (1) shows that a simple

expression for the source function w = 2cgixũd(x) has
been found. This ensures that the amount of mass

added to the system along the (straight) generation

line is such that on an horizontal bottom, two pro-

gressive waves with real amplitude a are generated. It

is clear that if the generation line is placed on a

sloping bottom, the generated wave amplitude

changes due to shoaling, refraction, and reflection

effects.

It is easy to show that in the case of constant water

depth, Eq. (11) reduces to the well-known Helmhotz

equation with a source function, which reads:

j2u þ k2u ¼ 2ikũdðxÞ: ð13Þ

2.2. Boundary conditions

The formulation of the model proposed in the

present paper assumes that the domain of investiga-

tion is totally contoured by reflecting–absorbing

boundaries. Along these boundaries, a reflection con-

dition must be therefore imposed. This condition is

expressed as:

Bu
Bn

þ bu ¼ 0 ð14Þ

where n is taken along the normal to the boundary and

b = b1 + ib2 is the complex reflection coefficient,

which, assuming no phase shift between the reflected

and the incoming wave, can be expressed as:

b1 ¼ 0; b2 ¼ �kcosðbÞ 1� R

1þ R
ð15Þ



Fig. 1. Long and narrow channel definition sketch.
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where R is the real reflection coefficient, and b is

the angle between the normal to the wave crest and

the normal to the boundary (Beltrami et al., 2001).

The partial reflection condition is therefore a func-

tion of b, and its efficiency depends on the ac-

curacy of the given value of the incidence angle.

Actually, it has been demonstrated (Behrendt, 1985)

that the farther b is from its true value, the greater

the extent to which undesired reflections affect the

domain. Behrendt (1985) has also shown that of all

the absorption–reflection conditions (0VRV 1), the

total absorption condition (R = 0) is the one that is

most affected by inaccuracies of the estimated

value of b. In a topographically complex domain,

b is not known a priori; therefore, it is an un-

known function of the wave parameters and of the

geometry of the domain. Nevertheless, it has been

shown that an iterative procedure can be efficiently

applied in order to deal with the indeterminacy of

b both in the general partial reflection case (Isaac-

son and Qu, 1990; Steward and Panchang, 2000)

and in the specific total absorption case (Beltrami

et al., 2001).

2.3. FEM representation

The weak formulation on which the GEMMA

FEM model is based can be expressed as:

0 ¼
Z Z

X

�
ccgjvju � x2 cg

c
vu

þ2vcgixũdðxÞ
�
dX þ

Z
BXR

ccgbvudðBXRÞ ð16Þ

where v(x,y) is a test function that can be viewed as a

variation in u that satisfies the essential boundary

condition. The first integral extends over the compu-

tational domain X and the second one over its

boundary (BXR).Since:

Z l

�l

Z l

�l
f ðx; yÞdðxÞdxdy ¼

Z
CG

f ðx; yÞdCG ð17Þ

the third term in the first integral reduces to a line

integral to be evaluated on the internal wave genera-

tion line CG, which is parallel to the y-axis. The final
weak formulation on which the model is based is

therefore given by:

0 ¼
Z Z

X

�
ccgjvju � x2 cg

c
vu

�
dX

þ
Z

CG

2vcgixũdCG þ
Z
BXR

ccgbvudðBXRÞ: ð18Þ

Usual techniques of FEM with triangular elements are

used to represent the MSE as a system of linear

algebraic equations, which, in particular, has a com-

plex banded coefficient matrix.
3. Validation tests

As already stated, the validation tests have been

run to simulate progressive and stationary waves in a

channel (Section 3.1) and long waves around a fully

reflecting circular island on a parabolic shoal (Section

3.2), and to evaluate the amplification coefficients of a

long and narrow bay (Section 3.3). Being very de-

manding with respect to the treatment of the ‘open’

boundary makes the circular island and the harbor

resonance tests particularly suitable to show the actual

efficiency of the presented approach.

3.1. Progressive and stationary waves in a channel

A long and narrow channel was used to simulate

progressive and stationary waves (Fig. 1). The 20-m

long and 0.2-m wide channel is discretized by a mesh

of 603 nodes and 800 equal triangular right-angled

elements with sides of 0.1 m. A constant depth of

0.701 m has been used.

A monochromatic wave of height H = 0.1 m and

period T= 1.5 s is generated at a line located in the

middle of the channel, and propagates towards both the

left and the right ends of the channel. A total absorp-



Fig. 2. The 1D progressive wave.
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tion condition (R = 0) has been imposed at both ends of

the channel in the progressive wave simulation test,

whilst a total reflection (R = 1) and a total absorption

condition (R = 0) have been, respectively, imposed at

the left and right ends for the stationary wave case. A

total reflection condition (R = 1) is imposed at the

lateral side of the channel in both simulations.

Figs. 2 and 3 show the result of the progressive

wave simulation test and of the stationary wave sim-

ulation, respectively. The results are presented in terms

of wave height normalized with respect to the desired

one (upper panels in the figures) and phase (lower

panels). As expected, Fig. 2 shows two progressive

waves of the desired height emanating from the middle

of the channel at which the generation line is located.

Fig. 3 shows that a stationary wave is established

in the left side of the channel, whilst a progressive

wave propagates in its right side. Furthermore, the

figure clearly shows that the wave energy reflected

back at the left end of the channel propagates over the

generation line and superposes to the progressive

wave. For what concerns the height of waves at the

right of the generation line, it depends on the phase of
Fig. 3. Left side of the domain: 1D stationary wave;
the two wave systems; for the specific case at hand,

the resulting wave height is about 0.6 times the height

of the generated wave. It is worth mentioning that

changing the geometrical dimensions of the channel

(i.e., its length, width, and depth), as well as the

characteristics of the simulated monochromatic wave

(i.e., its height and period), does not change the

validity of the results, which are always those ex-

pected. In the test with progressive wave, the wave

height is equal to the expected one up to five decimal

figures. This small discrepancy can be imputed to

numerical integration errors.

3.2. Circular island

The definition sketch of the circular island test is

shown in Fig. 4. A fully reflecting circular island

with radius r1 = 10,000 m is placed on a parabolic

shoal, which extends up to a distance of r2 = 30,000

m from the center of the island. A sea region of

constant water depth h2 = 4000 m, which extends

outwards to infinity, is assumed to surround both

the island and the shoal. The shoal water depth is a
right side of the domain: 1D progressive wave.



Fig. 4. Definition sketch of circular island on a paraboloidal shoal.
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function of the distance from the center of the island,

and is expressed as h(r)=(h2/r2
2)r2. The water depth at

the island coastline is therefore approximately equal

to 444 m.

A square domain with sides of 130,000 m has been

used to carry out this test (Fig. 5). In particular, the

calculation domain (the island being placed exactly in

the middle) is discretized by 3568 nodes and 6848
Fig. 5. Calculation domain for the circular island test.
elements. A wave of height H = 1 m and period

T= 240 s is generated at a line located—within the

domain—500 m from the right boundary. A total

absorption condition (R = 0) is imposed on the four-

side ‘open’ boundary, which separates the sea region

included in the domain from the infinite region that

extends outward to infinity. The waves reflected by

the island or those refracted by the shoal are initially

assumed to propagate normally to the ‘open’ bound-

ary, and the iterative procedure proposed by Beltrami

et al. (2001) is used to deal with the angle b indeter-

minacy of the total absorption condition (Section 2.2).

A total reflection condition (R = 1) is then imposed

along the island coastline.

The numerical test result is compared with the

analytical solution derived by Homma (1950) and

Jonsson et al. (1976), which can be expressed as:

f
Ai

¼
Xl
n¼0

2

p
eni

nþ1q
r

r1

� ��1þan

þ an � 1

an þ 1

r

r1

� ��1�an
" #

cosðnnÞ

qan ½ð1� anÞHn þ sHV
n 
 þ q�an

an � 1

an þ 1
½sHV

n þ ð1þ anÞHn


ð19Þ

where Ai is the incident wave amplitude, en is the

Jacobi symbol (i.e., en = 1 for n = 0 and en = 2 for n p
Fig. 6. Wave height contours; comparison between analytical

(above) and numerical (below) solution.



Fig. 7. Wave height along island wall; comparison between

analytical (solid line) and numerical (dots) solution.
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0, q = r2/r1, an =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2 � s2

p
, s = r2k2), Hn is the

Hankel function of the nth order and first kind with

(dropped) argument s, primes indicate derivatives

with respect to the argument, and n is defined in

Fig. 4.

Focusing on a circular region of radius 35,000 m

makes it possible to compare (Fig. 6) the wave

height contours resulting from the analytical (above)

and the numerical (below) solution. The numerical

solution is clearly in good agreement with the

analytical one. Please note that these results have

been obtained by means of only one iteration, with

the values of the angle b calculated at iteration zero

being good enough to eliminate spurious reflections

at the open boundaries.
Fig. 8. Computational domain f
Further insight on the quality of the results can be

obtained by comparing the analytical and numerical

wave height along the island coastline (Fig. 7). The

numerical result appears closely to match the analyt-

ical solution over almost all the n range. Only a small

difference is actually visible in the range 0jV
nV 20j.

3.3. Harbor resonance

The ‘Harbor resonance test’ has become a stan-

dard for assessing numerical wave model perform-

ances. This consists in calculating the amplification

factor at the backwall of the considered bay for

several periods of the incoming wave. The amplifi-

cation factor is defined as half the ratio of the wave

height measured at the center of the backwall and the

incoming wave height. This factor is, therefore,

equal to one in the case of simple stationary waves,

whilst it can assume larger values if the wave period

is close to a resonating one.

The computational domain used in this test is

shown in Fig. 8 and is very similar to that used by

Madsen and Larsen (1987). It consists of an outer area

1.00 m wide, which extends 0.13 m from the fully

reflecting straight coastline. The investigated bay is

0.30 m long, 0.06 m wide, and 0.26 m deep, and is

discretized by a mesh of 1624 nodes and 2960

elements. Waves are generated at a line placed 0.01

m from the upper ‘open’ boundary. A total absorption

condition (R = 0) is imposed on the three-side ‘open’

boundary, which separates the sea region included in

the domain from the semi-infinite region that extends
or harbor resonance tests.
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outward to infinity. Similarly to the circular island

test, the iterative procedure proposed by Beltrami et

al. (2001) is used to deal with the angle b indetermi-

nacy of the total absorption condition (Section 2.2),

with b = 0 as initial estimate. On the other hand, a total

reflection condition (R = 1) is imposed along the

coastline and the backwall of the bay, and along the

lateral walls.

An analytical solution for this test was presented

by Mei (1983, pp. 202–206). According to this

solution, which has been derived in the framework

of the linear theory, the amplification factor Ca is

expressed as:

CaðxÞ ¼ 1

AZA
ð20Þ

where Z is the bay impedance given by:

Z ¼ cosðkLÞ þ ð2ka=pÞsinðkLÞlnð2cka=peÞ

� ikasinðkLÞ; ð21Þ

where k is the wave number, L is the bay length, a is

equal to half the bay width, and c = 1.78107248.
The amplification factors obtained by the numeri-

cal model are compared with the analytical ones (Fig.

9). The figure shows two sets of numerical results.

The first set was obtained without using the iterative

technique for the treatment of the angle b indetermi-
Fig. 9. Amplification factor at the center of the backwall of a long

and narrow bay.
nacy. The outgoing waves are therefore assumed to

propagate normally to the ‘open’ boundaries. The

second set was obtained by iterating. As in the circular

island test, it has been found that only one iteration is

necessary to achieve convergence of the results.
4. Discussion and conclusions

The main point of strength of the presented ap-

proach is its simplicity. The domain is assumed to be

totally contoured by reflecting–absorbing boundaries,

a total absorbing condition in particular imposed

along the boundary that separates the inner finite from

the outer semi-infinite sea region. Sources of energy,

which generate waves of the desired height and

period, are located within the domain along a line in

proximity of the inner–outer sea region boundary.

Reflected and scattered waves can propagate over the

generation line and are absorbed at the ‘open’ bound-

ary. In some ways, therefore, the numerical model

aims at reproducing the wave paddles and an absorb-

ing device behavior in a physical model. No reflected

and scattered wave velocity potential has to be spec-

ified along the ‘open’ boundary, making it possible to

elude the difficulties of its mathematical representa-

tion (Xu et al., 1996; Zhao et al., 2001) when dealing

with sloping bathymetry and when a breaking wave

field is to be simulated within the domain.

Minor disadvantages characterize the method. In

particular, a larger domain must be used in comparison

with that needed by traditional techniques. Providing a

suitable mathematical representation of the exterior

sea makes it possible with the traditional approach

(Berkhoff, 1972, 1976; Chen and Mei, 1974; Mei,

1983, pp. 168–182; Chen and Houston, 1987; Xu et

al., 1996) to place the ‘open’ boundary very close to

the scattering objects. In the circular island test, for

example, Xu et al. (1996) used a circular domain of

radius equal to 35,000 m, whilst a square region of

sides equal to 130,000 m has been used in the present

case. Furthermore, in the harbor resonance test, the

traditional approach makes it possible to discretize a

small sea region out of the long and narrow bay,

obtaining an almost perfect matching with the analy-

tical solution. As pointed out by Madsen and Larsen

(1987), a large exterior domain is necessary to obtain

good results when internal wave generation is used in
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the ‘harbor resonance test’. The reduction of the

external area leads to a reduction of the amplification

factors.

It is the authors’ belief that the traditional ap-

proach, which is actually almost perfect when applied

for simulating simple geometry cases, should be used

with special care when applied to simulate complex

wave fields characterized by not well-known scatter-

ing and reflection sources as well as by wave break-

ing. In these latter situations, the proposed approach

can represent an attractive alternative solution.
Acknowledgements

This work was partially funded by the MURST

(Italian Ministry for Scientific and Technological

Research) under the contract ‘‘PRIN–Idrodinamica e

Morfodinamica di Spiagge Protette da Opere Traci-

mabili’’ and by the EU under contract no. EVK-2000-

22038 (Delos). We wish to thank Dr. Maurizio

Brocchini for carefully reading the manuscript and

for useful suggestions.
References

Battjes, J.A., Janssen, J.P.F.M., 1978. Energy loss and set-up due

to breaking of random waves. Proceedings of the 16th

International Conference on Coastal Engineering. ASCE,

New York, USA.

Behrendt, L., 1985. A finite element model for water wave diffrac-

tion including boundary absorption and bottom friction. PhD

Thesis, ISVA No. 37. Technical University of Denmark, Lyng-

by, Denmark.

Beltrami, G.M., De Girolamo, P., Bellotti, G., Sammarco, P., 1998.

Un modello agli elementi finiti per la risoluzione della ‘mild-

slope equation’ con l’inclusione di un termine dissipativo.

XXVI Convegno di Idraulica e Costruzioni Idrauliche, vol.

III. CUECM, Cantania, Italy, pp. 193–206. Catania; Settembre

9–12, 1998 (in Italian).

Beltrami, G.M., Bellotti, G., De Girolamo, P., Sammarco, P., 2001.

Treatment of wave-breaking and total absorption in a mild-slope

equation FEM model. ASCE J. Waterw., Port, Coast. Ocean

Eng. 127 (5), 263–271.

Berkhoff, J.C.W., 1972. Computation of combined refraction–dif-

fraction. Proceedings of the 13th International Conference on

Coastal Engineering. ASCE, Vancouver, Canada.

Berkhoff, J.C.W., 1976. Mathematical models for simple harmonic

linear water waves. Wave Refraction and Diffraction (Publ.

163). Delft Hydraulics Laboratory, Delft, The Netherlands.

Booij, N., 1981. Gravity waves on water with non-uniform depth
and current. PhD Thesis. Technical University of Delft, Delft,

The Netherlands.

Chen, H.S., 1986. Effects of bottom friction and boundary ab-

sorption on water wave scattering. Appl. Ocean Res. 8 (2),

99–104.

Chen, H.S., Houston, J.R., 1987. Calculation of Water Oscillation

in Coastal Harbors; HARBS and HARBD User’s Manual. In-

struction Rep. CERC-87-2. U.S. Army Engineering, Waterway

Experiment Station, Vicksburg, MS.

Chen, H.S., Mei, C.C., 1974. Oscillations and Wave Forces in an

Offshore Harbour, Rep. No. 190. Department of Civil Engineer-

ing, Massachusetts, Institute of Technology, Cambridge, MA.

Copeland, G.J.M., 1985. A practical alternative to the mild-slope

wave equation. Coast. Eng. 9, 125–149.

Dally, W.R., Dean, R.G., Dalrymple, R.A., 1985. Wave height var-

iation across beaches of arbitrary profile. J. Geophys. Res. 90

(C6), 11917–11927.

Dalrymple, R.A., Kirby, J.T., Hwang, P.A., 1984. Wave diffraction

due to areas of high energy dissipation. ASCE J. Waterw., Port,

Coast. Ocean Eng. 110 (1), 67–79.

De Girolamo, P., Sammarco, P., 1993. Analisi teorica di un modello

ad elementi finiti per la risoluzione della ‘mild-slope equation’

con l’inclusione di un termine dissipativo. Atti di Costruzioni

Marittime no. 2, DITS, Università di Roma ‘‘La Sapienza’’,
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