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ABSTRACT: A coupled-mode model is presented for wave-current-seabed interaction, with application to the 
problem of wave scattering by steady shearing currents in variable bathymetry regions. We consider obliquely 
incident waves on a horizontally non-homogeneous current in a variable-depth strip, which is characterized 
by straight and parallel bottom contours. The flow associated with the current is assumed to be parallel to the 
bottom contours and it is considered to be known. In a finite subregion containing the bottom irregularity, we 
assume an arbitrary horizontal current structure. Outside this region, the current is assumed to be uniform (or 
zero).  Based on a variational principle, in conjunction with a rapidly-convergent local-mode series expansion 
of the wave pressure field in a finite subregion containing the current variation and the bottom irregularity, a 
coupled-mode system is obtained. The present model can be considered as an extension of the works by 
Smith (1983, 1987) and McKee (1987,1996), and it can be  further elaborated to treat more general  current 
profiles with vertical structure and cross-jet component, and to include the effects of weak nonlinearity. 

1 INTRODUCTION 
It is well known that, except of depth variations, 

the presence of currents significantly affects the 
propagation of waves, especially in the nearshore 
and coastal environment, Mei (1983), Peregrine 
(1976). In particular, non-homogeneous, shearing 
currents following or opposing water wavetrains 
produce significant changes on their characteristics, 
which can be further modified by the effects of 
depth inhomogeneities in variable bathymetry re-
gions. For example, large amplitude waves can be 
produced when obliquely propagating waves interact 
with adverse currents, see, e.g., Mei (1983), Smith 
(1983, 1987). This situation could be further en-
hanced by inshore effects due to sloping seabeds, 
and has been reported to be connected with the ap-
pearance of “giant waves” in coastal waters; see, 
e.g., Faukner (2000), Dysthe (2000). The detailed 
knowledge of the wave-current system characteris-
tics is important for various applications, as, for ex-
ample, the design and evaluation of performance of 
special-type ship and structures operating in near-
shore and coastal waters and the study of oil slicks 
dispersion  and pollutant transport. 

In this work, a coupled-mode technique is pre-
sented for the propagation/diffraction of water 
waves through shearing currents in general bathym-
etry, with application to the problem of wave scat-
tering by shearing currents in variable bathymetry 
regions and current variations on various scales. We 
consider obliquely incident harmonic waves on a 
horizontally non-homogeneous current in a variable-
depth strip, which is characterized by straight and 

parallel bottom contours; see Fig.1. The flow associ-
ated with the current is assumed to be parallel to the 
bottom contours and it is considered to be known. In 
a finite subregion containing the bottom irregularity 
we assume an arbitrary horizontal current structure. 
Outside this region, the current is assumed to be uni-
form (or zero).  

The present coupled-mode system is based on an 
appropriate variational principle, in conjunction with 
a rapidly-convergent local-mode series expansion of 
the wave pressure field in a finite subregion contain-
ing the current variation and the bottom irregularity. 
In contrast with an earlier potential flow approach 
(Belibassakis & Athanassoulis, 2004), here the wave 
flow is assumed to be rotational, governed by the 
Laplace equation on the wave pressure, containing 
additional terms carrying out the effects of the cur-
rent gradients (Mei 1983, Eq. 6.17), and subjected to 
the free-surface boundary condition formulated with 
respect to the intrinsic frequency, the bottom bound-
ary condition and the  conditions at infinity. 

Numerical results are presented, including com-
parisons with other  models based on the representa-
tion of the searing current by a series of vertical vor-
tex sheets separating regions of constant velocity, 
McKee (2003), and simplified mild-slope type mod-
els, like the Mild-Shear Equation (McKee, 1987) 
and the Extended Mild-Shear Equation (McKee, 
1996). With the aid of systematic comparisons, the 
effects of current variations, in conjunction with the 
bottom slope and curvature variation, on the hydro-
dynamic characteristics of the wave-current system 
are presented and discussed. 
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Figure 1.  Geometrical configuration and basic notation 
 

2 DIFFERENTIAL FORMULATION  

The studied marine environment consists of a 
water layer  bounded above by the free surface  
and below by a rigid bottom. It is assumed that the 
bottom surface exhibits an arbitrary 1D variation in 
a subdomain of finite length, i.e. the bathymetry is 
characterised by straight and parallel bottom 
contours lying between two regions of constant but 
possibly different depth, h (region of 
incidence) and  (region of transmission); see 
Fig. 1. A Cartesian coordinate system is 
introduced, with its origin at some point on the 
mean water level (in the variable bathymetry 
region), the z-axis pointing upwards and the y-axis 
being parallel to the bottom contours. The function 

 represents the local depth, measured from 
the mean water level. It is considered to be a 
smooth function, such that , for 
all

1h=

( )h x h

3h h=

( )h x

( ) 1a h= =

x a≤ , and ,   for all( )h x ( ) 3h b h= = x b≥

( ) , 1iD i =

. The 
fluid domain is , and the vertical strip D 
is decomposed in three subdomains 
where 

D IR= ×D
,2,3  ,

(1)D  and (3)D  are constant-depth 
subdomains corresponding to x a<  and x b> , 
respectively, and (2)D  is the variable bathymetry 
subdomain lying between (1)D  and (3)D . Without 
loss of generality, we assume . The same 
decomposition is also applied to the free-surface 
and the bottom boundaries. Finally, we define the 
vertical interfaces 

1h h> 3

(12)
ID∂  and (23)

ID∂  separating the 
three subdomains. The latter are vertical segments 

(between the bottom and the mean water level) at 
x a=  and x b= , respectively. 

x >

( )U x 1 0=

( ); Rtp x

In this work we consider the scattering problem 
of monochromatic, obliquely incident plane waves, 
propagating with direction 1θ  with respect to the 
bottom contours in the region of incidence, under 
the combined effects of variable bathymetry and a 
horizontally non-homogeneous shear current ( )xU , 
existing in a ; see Fig.1. The flow associated 
with the shear current is considered to be steady 
and directed parallel to the bottom contours (i.e. 
along the y-axis). Moreover, the steady free-
surface displacement associated with this current 
flow is assumed to be negligible. The current 
velocity is described by the (given) continuous 
function U(x), which can be general in the 
intermediate region, , as, e.g., a monotonic 
one or a periodic one with characteristic width L. 
Outside this region, the current is assumed to be 
uniform (or simply zero), 

a x≤ ≤ b

U= ,  ,x a≤ ( ) 3U x U= ,  x b≥ .         (2.1) 

Restricting ourselves to linear, monochromatic 
(harmonic) waves of absolute frequency ω, 
periodic in the y-direction, the wave pressure can 
be expressed in the form ,  Smith (1983, 1987),    

( ) ( )( ){ }, , e , exp ,y z p x z i qy tω=          (2.2)     −

where  is the periodicity constant along the y-
direction, and 

q
1i = − . Under the previous 

assumptions ,    the wave flow is governed by the 
following equations (see Mei 1983, Ch. 3.6, Eqs. 

x=a x=b 

1θ
3θ

y

z Transmitted
wave 

Nonhomogeneous 
current  U(x) λ 
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6.17, 6.19 and 6.23) with respect to the (complex) 
pressure ( ),p x z , 

2 2
2

2 2

p p q p
x z
+ −

( ) 0,x p+ =

0,h p
x x

∂ ∂
+ =

∂ ∂

( )xσ σ

( )xµ

Re

(3D

( ), ez A

( ) ( )1 1

1
n nC Z

∞

=
∑

( ), eTz A

( ) ( )3 3
n nC Z

( exA

( )exp ik

( )( )0 0
i ik q= −

2 0,q U p
x xσ

∂ ∂ ∂ ∂
+ =

∂ ∂ ∂ ∂
                  (2.3a) 

0,p z
z

µ∂
∂

=                                     (2.3b) 

( ) ,p d z h x
z d

= −                                (2.3c) 

where ( )qU xω= = −  is the local intrinsic 
frequency, 2 / gσ=  the corresponding 
frequency parameter, and g  is the acceleration 
due to gravity. From the solution of the above 
problem, the free-surface elevation is obtained as 

( ) ( ) ( )( ),
, ; exp ,

p x z
x y t i qy t

g
η

ρ


= −


 ω


− 


where ρ is the liquid density. Other quantities of 
interest, as, e.g., the wave velocities, can be 
obtain-ed in terms of p  and its spatial derivatives 
(Mei 1983). 

The problem of water-wave scattering by 
shearing current, with the effects of variable 
bathymetry, can be formulated as a transmission 
problem in the bounded subdomain ( )2D , with the 
aid of the following general representations of the 
complex pressure ( , )p x z  in the semi-infinite strips 

( )1D  and )  (see, e.g., Smith 1983, 1987): 
 

( ) ( )( ) ( )( )( ) ( ) ( )1 1 1
0 0 0 0xp expRp x ik x A ik x Z z= + −

( ) ( ) ( )( )1exp n
n

z k x a+ − ( )1in  D ,   (2.4a) 

1 +

( ) ( )( ) ( ) ( )3 3
0 0xpp x ik x Z z= +

( ) ( ) ( )( 3

1

exp ,n
n

z k b x
∞

=

+ −∑

 

) ( )3in D . (2.4b) 

( )( ) ( )( ))1 1

3

The terms ( ) ( )0 0 0 0p expRik x A ik x Z z+ −  1

and ( ) ( ) ( )3 3
0 0TA x Z z  in the series (2.4) are the  

propagating modes, associated with incident wave 
(which is considered to be known), and the 
reflected and the transmitted wave, respectively, 
while the remaining ones ( )1,2,n = …  are the 
evanescent modes.  In the above expansions,  

( ) ( ) ( )( )2 22 2, ,i i
n nk qκ κ= + , (2.5a) 

are the wavenumbers, where { }( ) ( )
0 , , 1,2,i i

ni nκ κ = … , 
1,3i = , are obtained  as the roots of the following 

dispersion relations 

( )( ) ( )tan ,i i
i i ih h hµ κ κ= − .                           (2.5b) 

where . The 
functions  

2 / , , 1,3ig pV iµ σ σ ω= = − =

( ){ }( ) , 0,1,2,i
nZ z n = …  appearing in Eqs. 

(2.4) are given by 

( )
( )( )

( )
( )
0( )

0 ( )
0

cosh

cosh

i
ii

i
i

z h
Z z

h

κ

κ

+
= ,                             (2.6a) 

( )
( )( )

( )
( )

( )
( )

cos

cos

i
n ii

n i
n i

z h
Z z

h

κ

κ

+
= ,                (2.6b) 1,2, ,n = …

1,3i = . Since the current is zero in (1)D , σ ω=  
there,  and thus, the periodicity constant is 
obtained from the wavenumber of the incident 
wave, ( )1

0 sinq 1κ θ= . Then, the direction of the 
transmitted wave in ( )3D  is  

( ) ( )( )11
3 0 1sin sin /θ κ θ κ−= 3

0 .                                  (2.7) 

Given the representations (2.4), the problem 
can be reformulated as a transmission boundary 
value problem for the pressure ( ) ( )2 ,p x z  in the 
bounded subdomain (2)D , consisting of the 
following equations, boundary and matching 
conditions: 

( ) ( )
( )

( )

( ) ( )
2 2 22 2

2 22
2 2

2 0, ,p p q U pq p x z D
x z x xσ

∂ ∂ ∂ ∂
+ − + = ∈

∂ ∂ ∂ ∂
,  

 (2.8a) 

( )
(2)

(2) 0p x p
z

∂ µ
∂

− = ,      ,                       (2.8b) 0z =

( ) ( )2 2

0p dh dp
z dx dx

∂
+ =

∂
,         ,                (2.8c) ( )z h x= −

(2) (1)
(2) (1) , p pp p

x x
∂ ∂
∂ ∂

= = ,   , 1, 0x a h z= − < <

   (2.8d,e) 
(2) (3)

(2) (3) , p pp p
x x

∂ ∂
∂ ∂

= = ,  . 3, 0x b h z= − < <

  (2.8f,g) 
3   VARIATIONAL FORMULATION 

1n ≥

The problem (2.8) admits an equivalent 
variational formulation, which will serve as the 
basis for the derivation of an equivalent coupled-
mode system of horizontal equations. Consider the 
functional: 

( ) ( ){ } ( ){ }( )2 1 3, , , ,R n T nn N n N
A C A Cϕ

∈ ∈
=F       
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( )

( )

( )

2

2 22 2
2

2

1 1
2

D

p q d
x

σ
σ σ σ

     ∂    ∇ + +           ∂        
∫

2p xdz  

( )( )
( )

( )( )
( )2 2

22
2

1 1 1
2 2

FD D

22p dS p dS
n

∂ ∂

µ σ
σ σ

Π

 ∂  − −   ∂   
∫ ∫

( ) ( )
( )

( )
(12)

1
2 1

2 1

1 1
2

ID

pp p dS
x∂

∂
σ ∂

 + − ⋅ + 
 ∫

( ) ( )
( )

( )

(23)

3
2 3 1

02

1 1
2

I

R
D

pp p dS A A J
x∂

∂
σ ∂

 − − ⋅ − 
 ∫ ,      (3.1) 

where  ( ) ( ) ( ( ) ( ) )
1

0
21 1 1

0 02
z

z h

J k Z z
=

=−

= ∫

( )i

dz  and ∂ ∂  deno-

tes the outward normal derivative on the boundary. 
The functions 

/ n

p  and their derivatives 
 appearing in the Eq. (3.1), are 

considered to be represented by means of their 
series expansions, Eqs. (2.4), and their horizontal 
derivatives, respectively. 

( )i∂ ∂/ , 1,3,p x i =

The function ( ) ( ) ( ) ( )2 2, , ,p x z x z D∈
( ){

 and the 

coefficients  }1,R n n N
A C

∈
 and  ( ){ }3,T n n N

A C
∈

 

constitute a solution of the problem, if they render 
the functional F  stationary, i.e. 

{ } { }( )(2) (1) (3), , , , =R n T nA C A Cδ ϕF 0 .                      (3.2) 

To see this we calculate the first variation Fδ  of 
the above functional (see also, Athanassoulis & 
Belibassakis, 1999). Making use of the Green’s 
theorem and the properties of the modal 
representations (2.4) in the two constant-depth 
strips, the variational equation (3.2) takes the 
form: 

( ) ( )
( )

( )

( )

( )
( )

( )

( )

( )
( )

( )

( )

2

2

2

2
2 22

2

2

2

2

2

1 2

1

1
F

2

D

2 2

D

2 2

D

q U pp q p p
x x

p p p dS
z

p dh p p dS
z d x

∂

∂

δ
σ σ

∂ µ δ
σ ∂

∂ δ
σ ∂

Π

 ∂ ∂
− ∆ − + ∂ ∂

 
+ − +  

 

 
− +  

 

∫

∫

∫


+



 

( )
( ) ( )

( )

( )

12

2 1

2

1 2

D

p p p dS
a x x

∂

∂ ∂ δ
σ ∂ ∂

Ι

 
− −  

 
∫ +  

( )
( ) ( )

( )

( )

23

2 3

2

1 2

D

p p p dS
b x x

∂

∂ ∂ δ
σ ∂ ∂

Ι

 
+ −  

 
∫ +  

( )
( ) ( )( )

( )

(12)

1
2 1

2

1

ID

pp p d
a x∂

∂δ
σ ∂

 
+ −   

 
∫ S  

( )
( ) ( )( )

( )

( 23)

3
2 3

2

1 0
ID

pp p dS
b x∂

∂δ
σ ∂

 
− −   

 
∫ = ,          (3.3) 

where  ( )
( ) ( )2 22 2

2
2 2

p pp
x z

∂ ∂
∆ = +

∂ ∂
. The proof of the 

equivalence of the variational equation (3.3) and 
the transmission problem (2.8) is finally obtained 
by using standard arguments of the Calculus of 
Variations (see, e.g., Rectorys 1977, ch.22).  

 
4   THE COUPLED-MODE SYSTEM  

In this section we shall present a new coupled-
mode model for treating the problem (2.3), which 
is derived from the variational principle (3.3) on 
the basis of the following enhanced local-mode 
representation of the wave pressure field in the 
variable bathymetry region ( )2D  (where also the 
current velocity U(x) presents variation): 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
1 1 0 0

1

, ;

;n n
n

;p x z P x Z z x P x Z z x

P x Z z x

− −

∞

=

= + +

+ ∑
      (4.1) 

In Eq. (4.1) the term ( ) ( )0 0 ;P x Z z x  is the 
propagating mode of the wave field and the 
remaining terms ( ) (n nP x Z ); , 1,2,z x n = …  are the 
evanescent modes. The additional term 

( ) ( )1 1 ;P x Z z x− −  is  a correction term called the 
sloping-bottom mode, which properly accounts for 
the bottom boundary condition on the sloping parts 
of the bottom, and vanishes identically on the 
horizontal  parts of the bottom. The 
function ( );nZ z x

n
 represents the vertical structure of 

the -th mode. The function  describes the 
horizontal pattern of the -th mode and is called 
the complex amplitude of the -th mode. The 
functions

( )nP x

n
n

( );nZ z x , , appearing in Eq. 
(4.1) are obtained as the eigenfunctions of local 
vertical Sturm-Liouville problems, and are given 
by 

0,1,2...n =

( )
( ) ( )( )

( ) ( )( )
0

0
0

cosh
; ,

cosh

x z h x
Z z x

x h x

κ

κ

 +=               (4.2a) 

( )
( ) ( )( )

( ) ( )( )
cos

; ,
cos

n
n

n

x z h x
Z z x n

x h x

κ

κ

 + = = …1,2, ,  (4.2b) 

where the eigenvalues ( ) ( ){ }0 , ni x xκ κ  are 
obtained  as the roots of the local dispersion 
relation 

( ) ( ) ( ) ( ) ( ) ( )tanx h x x h x x h xµ κ κ= −   ,         (4.2c)      

in a x b≤ ≤ . A specific convenient form of the 
function  ( )1 ;Z z x−  is given by  

( ) ( ) ( )( ) ( )( )3
1 ; / /Z z x h x z h x z h x−

2
  = +

 
,     (4.2d) 
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and all numerical results presented in this work are 
based on this choice for (1 ; )Z z x− . However, other 
choices are also possible. Using Eqs. (4.1) and 
(4.2), we obtain that the additional sloping-bottom 
mode satisfies: 

                     ( )
( ) ( )

( )

2

1

;

z h x

p z x
P x

z−

=−

∂
=

∂
 ,           (4.3) 

and thus, it is needed only in subareas where the 
bottom surface is not flat, making the series (4.1) 
compatible with the Neumann bottom boundary 
condition (2.8c) there, while, at the same time, it 
significantly accelerates the convergence of the 
local-mode series. For more details about the role 
and significance of this term we  refer to 
Athanassoulis & Belibassakis (1999, Sec. 4), 
Belibassakis et al (2001), where this idea is first 
introduced and discussed for wave 
propagation/diffraction problems in variable 
bathymetry regions. 

By using the local-mode series representation 
(4.1) in the variational principle (3.3), and by 
following exactly the same procedure as in 
Athanassoulis & Belibassakis (1999), the 
following coupled-mode system (CMS) with 
respect to the pressure mode amplitudes is 
obtained:   

( ) ( ) ( ) ( )

( )( ) ( )
1

2 0,

mn n mn n
n

mn mn n

a x P x b x P x

c x a q P x

∞

=−

′′ ′+ +

+ − =

∑
     (4.4) 

in , where a prime denotes 
differentiation with respect to x. The coefficients 

 of the system (4.3) are given by 

, 1,0,1,....a x b m< < = −

, ,mn mna b cmn

( ) ( )
( )

0

, ;
z

mn n m n m
z h x

a Z Z Z z x Z z x
=

=−

= = ∫ ; dz ,             (4.5a) 

[ ]22 , ,n
mn m n m n m z h

Z q dU dhb Z Z Z Z Z
x dx dxσ =−

∂
= + +

∂
,   

            (4.5b) 

2, ,n n n
mn n m m m

z h

Z Z Zq dU dhc Z Z Z Z
dx x dx x zσ =−

 ∂ ∂ ∂ = ∆ + + +  ∂ ∂ ∂  
             

(4.4c) 

c Z           
2

2 0 0
00 0 0 0 02

2, ,Z Zq dUZ
x dx x

κ
σ

∂ ∂
= + +

∂ ∂
,        (4.8c) 

4.1 Boundary conditions for  the CMS 
The CMS (4.3) is  supplemented by the following 
decoupled end-conditions (also obtained from the 
variational equation 3.3) 

( ) ( )1 1 0P a P a− −′= = , ,    (4.6a,b) ( ) ( )1 1 0P b P b− −′= =

( ) ( ) ( ) ( ) ( )( )1 1
0 0 0 0 0 02 expP a ik P a i k Α i k a′ + = 1 ,          (4.6c) 

( ) ( )(1) 0, 1,2,..n n n nP a k P a nϕ′ − = = ,              (4.6d)        

( ) ( )(3)
0 0 0 0 0P b ik P bϕ′ − = ,                                  (4.6e) 

( ) ( )(3) 0, 1,2,3,n n nP b k P b n′ + = = … ,              (4.6f) 

where  the coefficients ,   n=0,1,2,...  are 
defined  by Eqs. (2.5a). Furthermore, the series 
expansion coefficients defining reflection and 
transmission coefficients 
(

( ) ( )1 ,n nk k

0A

3

0/ , /R R T TK A A K A= = ) are obtained from the 
solution of the coupled-mode system as follows: 

( ) ( )( ) ((1) (1)
0 0 0 0exp expRA P a A i k a i k a= − ) ,         (4.7a) 

( ) ( )(3)
0 expTA P b i k b= − 0 .                                   (4.7b) 

An important feature of the solution of the 
present scattering problem by means of the 
representation (4.1), is that it exhibits an improved 
rate of decay of the modal amplitudes ( )nP x  of 

the order ( )4−O n . Thus, a small number of modes 

suffices to obtain a convergent solution to ( )z,P x , 
even for large bottom slopes. 
 
4.2 Simplified forms of the CMS 
In the case of horizontal bottom ( )/dh dx 0= , the 
sloping bottom mode is zero, . In addition, if 
we assume a mild shear current, the evanescent 
modes 

1P− = 0

, 1,2,3,...nP n = , producing localised second-
order effects, can be approximately disregarded. In 
this case, the CMS (4.3) is simplified to the one-
equation model 

( ) ( ) ( ) ( ) ( )( ) ( )2
00 0 00 0 00 00 0 0a x P x b x P x c x a q P x′′ ′+ + − =  

(4.8) 
where 

00 0 0,a Z Z= ,                                                                   (4.8a) 
 

0
00 0 0 0

22 , ,Z q dUb Z Z
x dxσ

∂
= +

∂
Z ,                   (4.8b)            

Z

which has been first derived and studied by 
McKee (1996), and is known as the Enhanced 
Mild-Shear Equation (EMSE). On the basis of 
very slow current variations, /dU dx 1<< , the 
above coefficient  can be further  simplified by 
disregarding the last term in the right-hand side of 
Eq. (4.8c). In that case, Eq. (4.6) is reduced to  

00c

( ) ( )( ) ( ) ( )( ) ( )2 2
0 0 0 0x P x x x q P xκ

′′Γ + Γ − = ,         (4.9) 

where ( ) ( ) ( )-2
00/x a xσ ωΓ = . The latter, known as 
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the Mild-Shear Equation (MSE), has been also 
first derived and studied by McKee (1987). 

5  NUMERICAL RESULTS AND DISCUSSION 
In this section we shall present numerical 

results obtained by the present discrete CMS and 
comparisons with other models. The discrete 
system is obtained by truncating the local-mode 
series (4.1) to a finite number of terms (modes), 
retaining a number of evanescent modes, and by 
using central, second-order finite differences to 
approximate the derivatives in Eqs. (4.3). Discrete 
boundary conditions are obtained by using second-
order forward and backward differences to 
approximate derivatives at the ends. Thus, the 
discrete scheme is uniformly of 2-order in the
 

 
Figure 2.  Oblique incident wave in deep water conditions, 
scattered by opposing and following currents. Comparison of 
the modulus of the reflection coefficient, as obtained by the 
present CMS (solid line), EMSE (dashed line) and MSE 
(dotted line), for various current velocities. 

 
Figure 3.  Oblique incident wave in shallow water, scattered 
by opposing shear current. Comparison of the modulus of 
the reflection coefficient, as obtained by the present CMS 
(solid line), EMSE (dashed line) and MSE (dotted line), for 
various frequencies. 

horizontal direction. The forcing appears only in 
one equation, at the left endpoint x a=  (Eq. 4.6c). 

5.1  The case of shear current in constant depth 
In the first example, taken from McKee 

(2003), we present in Figs. 2 and 3  results 
concerning the reflection coefficient, as obtained 
by the present CMS with 5 modes vs. the EMSE 
model (4.8) and the MSE model (4.9), in constant 
depth. In this case, the shear current profile is of 
the form: ( ) ( )( )2

0 exp /U x L= −

2 /L

U x , and the 

important  parameters involved (except of the 
incidence angle) are: gε ω= , 0 /U gβ ω= , 

2 /H h gω= , McKee  (2003). The present CMS 
results (shown by solid lines) are in perfect 
agreement with the ones obtained by the 
multidomain approximation method by McKee 
(2003, Figs. 5,7). In addition, in these figures, we 
are able to observe the enhanced performance of 
the EMSE vs. the MSE model. This finding is in 
perfect analogy with the corresponding 
performance of the modified mild-slope equation 
(Massel, 1993) vs. the classic Berkhoff’s mild-
slope equation (Berkhoff, 1972). 

1 45degθ =
2L gε ω= =

 
/ 1
2 / 1H h gω= =

 
 

5.2 The case of a smooth underwater shoaling 
 In order to illustrate the combined effects of 

variable bathymetry and shearing current on the 
calculated wave field, we examine the case of a 
smooth but steep underwater shoal, characterised 
by the following depth function 

( ) 1 3 1 3 1tanh 3 ,
2 2  

h h h h x ah x
b a

π
+ −  − = − −  −  

   

                                                                         (5.1) 
in 0 2a x b 0 ,m= < < = with  and 1 15h = m 3 5h m= . 
This bottom profile has mean slope means 0.5=  and 
maximum slope . (A sketch of the 
bottom topography is shown in Fig. 4). The 
angular frequency of the incident wave is selected 
to be 

maxs =

1.62

2.40

ω = rad/sec ( ), implying almost 
deep   water   wave   conditions   in  

1 1hκ 4=
( )1D ,  and its 

direction is taken                  . The phase speed 
of the waves in 

1θ
( )1

45o= −

D  is . The 
refracted/diffracted wave field (real part) above 
the variable bathymetry domain (Eq. 5.1), without 
any current effects, is shown in Fig. 4 by using 
equipotential lines. Extension of these lines below 
the bottom surface is maintained in the figure in 
order to better visualise the fulfillment of the 
Neumann boundary condition on 

1 =6.06c /m s

( )xz h= − , which 
is equivalent to the fact that these lines intersect 
the  bottom  profile normally.  At  the top of 
 

1 45degθ =
U L g

 
0 / 1β = =

2 / 0H h gω= =
−

1
 

.  
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Figure 4. Refraction/diffraction of waves over a smooth and 
steep shoal, without current. .  0.025, 0.884R TK K= =

 

 
Figure 5. Refraction/diffraction of waves over a smooth and 
steep shoal, with the effect of a following transitional 
current. .  0.176, 0.852R TK K= =

the  figure, the wave  pressure  on  the free surface, 
which is proportional with the free surface 
elevation, is also plotted. In Figs. 5 and 6, we 
present the corresponding result with the additional 
effect of following (Fig. 5)  and opposing (Fig. 6) 
shear currents with (transitional) horizontal profile: 

( ) 3 3 1tanh 3 ,
2 2 2

U U x aU x
b a

π − = + −  −  
       (5.2) 

in 0 2a x b 0 ,m= < < = where U U . In 
the region of transmission 

3 1max 0.25= =
( )3

c
D  the wave directions 

become 3 57.5οθ = −  and 3 29.3θ = − ° , respectively. 
The effects of the shear current on the wave are 
comparatively shown in Figs. 5 and 6 on both the 
horizontal and vertical planes by using 
equipotential lines. (Again, only the real part of the 
wave pressure field is plotted). A small number of 
modes (totally 5 terms) have been retained in the 
modal series expansions, which has been proved 
enough for numerical convergence, even for such 
large gradients of the bathymetry and  the shear 
current. In all cases we observe that the 
equipotential lines intersect the bottom surface 
perpendicularly, which is evidence of  satisfaction 
of the bottom boundary condition, both on the 
horizontal and on the sloping parts of the bottom. 

1 45oθ = −

3 39.6oθ = −

 

 

1 45oθ = −

1

Figure 6. Refraction/diffraction of waves over a smooth and 
steep shoal, with the effect of opposing transitional current. 

0.053, 1.0R TK K= = .  

45oθ = −

3θ 57.5o= − 3 29.3oθ = −

curren

curren
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5.3  The case of a sinusoidal current 
  As a final example, we consider the case of 

waves of angular frequency 1.62ω = rad/sec 
propagating with direction 1 45θ = − °  in a constant 
depth strip h=15m, under the effects of an 
sinusoidal shear current with horizontal profile of 
the form: 

( ) 1 1 cos 2 ,
4 2
c x a bV x L

L
π − − = − =  

  

a ,     (5.3) 

In this case, the shear current exists only in the 
region from x=a=0m to x=b=20m, it has a 
periodic structure with characteristic width 
L=10m, and its maximum is equal to the half of 
the phase speed of waves in ( )1D  and ( )3D , which is 

. The real part of the calculated 
wave field, as well as the values of the pressure on 
the free surface (which is proportional to the free-
surface elevation), are shown in Fig. 7, as obtained 
by the present method using only 5 modes in the 
series (4.1).  

1 3 6.06 /c c m= = s

6   CONCLUSIONS 
A continuous coupled-mode technique for wave-
current-seabed interaction in variable bathymetry 
regions is presented, with application  to the  prob- 

 

 

45o

Figure 7. Refraction/diffraction of waves by an opposing 
sinusoidal current. .  0.329, 0.944R TK K= =

lem of wave scattering by steady shearing 
currents, characterised by current variations on 
various scales. The present method doesnot 
introduce any simplifying assumptions or other 
restrictions concerning the bottom slope and 
curvature, or the  structure of the current. The 
analytical structure of the present model facilitates 
its extension to various directions as, e.g., to three-
dimensional problems and to more complex wave-
current systems, including more general vertical 
current profiles with cross-jet component, and the 
effects of weak nonlinearity.  
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