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a b s t r a c t

A new model is presented for harmonic wave propagation and scattering problems in
non-uniform, stratified waveguides, governed by the Helmholtz equation. The method is
based on a modal expansion, obtained by utilizing cross-section basis defined through
the solution of vertical eigenvalue problems along the waveguide. The latter local basis
is enhanced by including additional modes accounting for the effects of inhomogeneous
boundaries and/or interfaces. The additional modes provide implicit summation of the
slowly convergent part of the local-mode series, rendering the remaining part to be fast
convergent, increasing the efficiency of the method, especially in long-range propagation
applications. Using the enhanced representation, in conjunction with an energy-type
variational principle, a coupled-mode system of equations is derived for the determination
of the unknown modal-amplitude functions. In the case of multilayered environments,
h- and p-FEM have been applied for the solution of both the local vertical eigenvalue
problems and the resulting coupled mode system, exhibiting robustness and good rates of
convergence. Numerical examples are presented in simple acoustic propagation problems,
illustrating the role and significance of the additional mode(s) and the efficiency of the
presentmodel, that can be naturally extended to treat propagation and scattering problems
in more complex 3D waveguides.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Acoustic propagation in inhomogeneous, layered waveguides is an interesting problem finding important applications,
as, e.g., underwater acoustic propagation and scattering in shallow water and seismoacoustics [1–3], atmospheric acoustics
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[4] and other. Similar problems governed by the Helmholtz equation are also encountered in variable cross-section electro-
magnetic waveguides; see e.g., Ref. [5]. Several methods for treating this, generally non-separable, boundary value problem
have beendeveloped, ranging from fully numerical, finite element and finite differencemethods, to semi-analytical ones, like
wavenumber integration, boundary integral equation and coupled-mode techniques, as well as various asymptotic models,
like ray theory and the adiabatic and parabolic approximations; see [3,6]. Also, meshlessmethods have been developed; see,
e.g., [7,8] and the references cited therein. Fully numerical methods, are computationally intense and thus, their use is more
appropriate for short-range/low-frequency propagation and local scattering problems. These methods have been proved
very useful, in the case of general ocean-acoustic propagation problems, for providing benchmark solutions. The problem
becomes more demanding in (partially) infinite waveguides excited by high-frequency requiring special treatment (e.g.,
[9,10]). Boundary element methods are more suitable in the case of a homogeneous medium (e.g., [11]), but they become
less practical in the presence of inhomogeneities of the acoustic parameters, due to the difficulties associated with the cal-
culation of Green’s function.

In environments with steep interface boundaries, large bottom slopes and/or media with variable index of refraction the
method of coupled modes [12,13] has been developed to treat the problem, by subdividing the waveguide into a finite
number of adjacent columns of different depth where the speed of sound exhibits vertical variation. The wave field is
represented as a normal-mode series based on vertical eigenfunctions within each one of the elements, and the coefficients
are obtained by matching the expansions on the inter-element vertical interfaces. The main feature of this model is the full
coupling between themodes and the representation of the backscattering effect. However, the approximation of continuous
distributions of acoustic parameters by horizontally piecewise constant functions may require a large number of steps, in
order that the horizontal stair-step size to be small enough for avoid strong numerical backscattering, [14,15]. Besides,
the stepwise approximation of the bottom renders the numerical solution procedure cumbersome in the vicinity of a
continuously varying bottom boundary. Another approach for treating the non-homogeneous waveguide in the context
of coupled-mode theory is based on local mode expansions; see, e.g., [1,16]. Thus, the problem is reformulated equivalently
a coupled system of differential equation on the horizontal plane offering reduction of dimensionality at the cost of increase
of unknowns which are now the horizontal mode amplitudes. However, in the case of non-homogeneous waveguides the
local-mode series may exhibit slow convergence, as discussed in Ref. [17].

In this work, a fast-convergent model based on modal expansions and FEM is presented for treating harmonic wave
propagation and scattering problems in stratified, non uniform waveguides, governed by the Helmholtz equation. The
method is based on a local mode series expansion, obtained by utilizing local eigenfunction systems defined through the
solution of corresponding eigenvalue problems, formulated along the cross section of the waveguide. In the works by
Athanassoulis & Belibassakis [18] and Athanassoulis et al. [19] the local mode series is enhanced by including additional
modes accounting for the effects of inhomogeneous waveguide boundaries and/or interfaces. The additional modes provide
an implicit summation of the slowly convergent part of the local-mode series, rendering the remaining part to be fast
convergent, and substantially increasing the efficiency of the method, especially in long-range applications; see also
Athanassoulis & Belibassakis [20], Hazard & Lunéville [21] and Mercier & Maurel [22]. Using the enhanced local mode
expansion, in conjunction with an energy-type variational principle, a coupled-mode system of equations is derived for
the determination of the unknown modal-amplitude functions.

The enhanced local-mode series includes an additional mode for each interface in the layered waveguide enabling the
consistent satisfaction of the corresponding condition on the non-horizontal parts of the interface and providing rapidmode
convergence and ensuring energy conservation in the case of a lossless acoustic waveguide. The improved coupled-mode
system is derived by means of an appropriate variational principle and is fully equivalent to the boundary value problem.
We note here that the concept of the additional mode has been first introduced and studied by the authors in the context of
small-amplitude water waves propagating over variable bathymetry regions [18,23,24]. This approach has been extended
to non-linear water waves [25,26] and hydrodynamic interaction problems with floating rigid and elastic bodies [27,28].

In all previous works the resulting coupled mode system of differential equations on the horizontal plane (propagation
space) is numerically treated by a second-order finite difference scheme based on uniform grid. Although the present
reformulation has been proved quite more efficient in comparison with direct numerical solvers of the problem applied in
the initial multidimensional domain, still the present approach remains very demanding especially for long range and high
frequency applications, where the computational requirements increase substantially. An option of further improvement
from the point of viewof computational cost and efficiency is offered by implementing h- and p-Finite ElementMethods (see,
e.g., Hughes [29]) for the numerical solution of both the local vertical eigenvalue problems (VEP), as well as for the solution
of the resulting coupled-mode system. On the basis of the former solution of the VEP, the coefficients of the coupled-mode
system are efficiently calculated in the general case of multilayered waveguide by numerical integration. Subsequently, the
solution of the present coupled-mode system is obtained by repetitive application of h- and p-FEM, based on general mesh,
offering good rates of convergence and adaptivity option for mesh refinement.

The present work is structured as follows: In Section 2 the mathematical formulation of the problem is presented. The
waveguide is treated by applying domain decomposition separating the physical domain into a bounded, inhomogeneous
middle part connecting two homogeneous semi-infinite subdomains. Using appropriate normal-mode expansions for the
representation of the wave field in the two semi-infinite regions of incidence and transmission, respectively, the problem
is equivalently reformulated in the form of a variational principle in the bounded subdomain containing the irregularity.
Next, in Section 3 the local mode series expansion for the representation of the wave field in the inhomogeneous subregion
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Fig. 1. Multilayered two-dimensional acoustic waveguide.

is presented. This expansion contains, except of the standard local vertical modes generated by the VEP, also additional
terms associated with each variable interface. The latter terms enable the consistent satisfaction of the corresponding
conditions and increase the rate of convergence of the series, permitting its truncation keeping only its first terms.
Substituting the above representations in the variational principle the coupled-mode system is derived on the horizontal
plane. Subsequently, in Section 4, the application of h- and p-Finite Element Methods is presented and discussed for
the numerical solution of the local VEP, at each horizontal position. The behavior of the numerical solution is examined
in comparison with known analytical solutions showing that it converges rapidly, and verifying the theoretical results
concerning error estimation. Then, in Section 5 the h- and p-FEM is presented and discussed for the numerical solution
of the resulting coupled mode system, in the case of general, multilayered waveguides, including detailed investigation of
the error and showing the achieved rate of convergence in conformity with theoretical predictions. Finally, in Section 5,
specific numerical examples are presented illustrating the applicability of the present numerical model in cases of higher
frequency and multilayered environments, and furthermore demonstrating the overall efficiency of the present method,
that can be naturally extended to treat similar propagation and scattering problems in more complicated 3D waveguides.

2. Formulation of the problem

We consider themultilayered waveguide of Fig. 1 with general interfaces separating the layers. For simplicity we restrict
ourselves to a 2D problem in an ocean acoustic environment, governed by the Helmholtz equation. However, the present
method and analysis can be naturally extended to treat more general 3D acoustic waveguides and similar wave propagation
problems.

The domain D = D(1)
∪ D(2)

∪ D(3) is decomposed into three parts D(m), m = 1, 2, 3 (see Fig. 1), as follows: D(1) is the
subdomain characterized by x < a where the cross (vertical) dimension is constant and equal to H(1) = H + η1, and D(3) is
the subdomain characterized by x > b (b > a), where the cross dimension is constant and equal toH(3) = H +η3. Thus, D(2)

is the variable cross section subdomain lying between D(1) and D(3). A similar decomposition is also applied to the (upper
and lower) boundaries, as well as to the internal interfaces.

The acoustic medium inside the domain is stratified. The sound speed (c) and density (ρ) in the layers vary with respect
to the both (x, z) coordinates in the middle range-dependent subdomain D(2), and present only vertical variability in the
two semi-infinite subdomains D(1) and D(3). Assuming that the whole domain consists ofM layers, a total number ofM − 1
interfaces at z = −hj(x), j = 1, 2, . . . ,M−1, are considered, where hj(x) denotes the local depth of each interfacemeasured
from the upper (still water) level; see Fig. 1. Thus, D(ℓ) =


j=1,M D(ℓ)

j , ℓ = 1, 2, 3.
The waveguide is terminated below by a perfectly rigid (acoustically hard) horizontal boundary, located at z = −hM =

−H . On the other hand, the waveguide is terminated above by an acoustically soft boundary, located at z = η (x) = −h0 (x).
For ocean acoustic applications, the latter boundary models the free surface which may deviate from the horizontal calm-
water position, if we consider effects by tidal and large-scale flows that present very slow variability in space and in time
(with respect to the wave propagation speed). Thus, similarly as the internal interfaces, the above boundary can be treated
as fixed, stationary surface, which is justified for time intervals corresponding to many cycles of the acoustic wave motion.

The density ρj, j = 1, 2, . . . ,M , is assumed to be constant within each layer, presenting possibly sharp discontinuities
at the interfaces. Moreover, the sound speed cj (x, z), j = 1, 2, . . . ,M , presents both vertical and horizontal variability in
the middle subdomain D(2), and could also exhibit strong discontinuity at the interfaces. The sound speed becomes function
only of z in the two semi-infinite subdomains D(1) and D(3), which are then range independent subdomains with respect to
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both geometry and physical parameters. This assumption permits us to obtain complete normal-mode expansions of the
wave field in the above semi-infinite regions by means of separation of variables, and consistently formulate the conditions
of wave incidence and reflection at the entrance of the variable part of the waveguide (x = a) and wave transmission at the
exit (x = b), respectively.

2.1. Governing equation, boundary and interface conditions

Restricting ourselves to monochromatic waves of angular frequency ω = 2π f , the acoustic harmonic wave propagation
problem inside the multi-layered waveguide is governed by the Helmholtz equation.

The boundary value problem (see [1–3]) consists of finding the continuous function p(x, z) representing the complex
amplitude of the acoustic pressure (p(x, z; t) = Re{p(x, z)e−iωt

}) such that

∇ ·


1
ρ

∇p


+
k2

ρ
p = 0, in D, (1)

where the wavenumber k(x, z) = ω/c(x, z) is a piecewise smooth function of the spatial coordinates, presenting
discontinuities z = −hj(x), j = 1, 2, . . . ,M − 1. Moreover, Eq. (1) is supplemented by the following boundary conditions

p = 0, on z = η(x), (2a)
∂p/∂n = 0, on z = −H, (2b)

and the interface conditions

1
ρj

∂p
∂n

=
1

ρj+1

∂p
∂n

on z = −hj(x), j = 1, 2, . . . ,M − 1. (3)

In the above equations ∂p/∂n = n∇p denotes the normal derivative, where n is the unit normal vector on each boundary
and interface. We consider a transmission problem forced by waves propagating in the positive x direction. The waves are
incident fromD(1), and then they are refracted and scattered in the range dependent subdomainD(2), and finally transmitted
in D(3).

Except of the effects and the treatment of various inhomogeneities, a significant difficulty in the numerical solution of
the above problem is encountered in long-range and high-frequency applications, where the non-dimensional wavenumber
κ = max {k∗ (b − a) , k∗H } increases (κ ≫ 1), with k∗ denoting a characteristic (e.g. mean or max) value of k(x, z) in the
domain.

In the present work it is assumed that the boundaries and interfaces of the acoustic waveguide are non intersecting.
Denoting by h0(x) = −η(x) and by hM(x) = H , the above restriction is satisfied by requiring hj(x) > hj+1(x), for all
j = 0, 1, 2, . . . ,M − 1. In the special case of intersecting interfaces the calculation of the acoustic field presents difficulties
that could be treated by considering the part between local intersection points as an inclusion; see, e.g., the recent work by
Maurel et al. [30]. Furthermore, in order to treat the present problem in the infinite domain, complete normal-mode type
representations of thewave field in the regions of incidenceD(1) and transmissionD(3) are derived by separation of variables.
In particular, the expansion of the wavefield in D(1) consists of incident and reflected (scattered) waves is as follows,

p(1) (x, z) =

∞
n=1


A(1)
n exp


ik(1)

n x

+ B(1)

n exp

−ik(1)

n x


Z (1)
n (z), (4)

where the functions Z (1)
n (z) and the numbers k(1)

n , n = 1, 2, 3, . . . , satisfy the following vertical eigenvalue problem in D(1)

d2Z (1)
n

dz2
+


k(1) (z)

2
− (k(1)

n )2

Z (1)
n = 0, (5)

Z (1)
n (z = η1) = 0, (6a)

dZ (1)
n (z = −H)

dz
= 0, (6b)

Z (1)
n (−h(1)

j + 0) = Z (1)
n (−h(1)

j − 0), j = 1, 2,M − 1, (6c)

and

1
ρj

∂Z (1)
n (−h(1)

j + 0)

∂z
=

1
ρj+1

Z (1)
n (−h(1)

j − 0)

∂z
, j = 1, 2,M − 1, (6d)
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where k(1)(z) = ω/c(1)(z); see also [2,3]. Similarly, the expansion of the acoustic wavefield in the region of transmission
D(3), consists only of outgoing transmitted waves, and is given by

p(3) (x, z) =

∞
n=1

A(3)
n exp


ik(3)

n x

Z (3)
n (z), (7)

where the eigenfunctions Z (3)
n (z) and the corresponding eigenvalues k(3)

n , n = 1, 2, 3, . . ., are obtained by similar ver-
tical eigenvalue problems formulated in D(3). From the properties of Sturm–Liouville problems [31,32], the eigenvalues
{(k(m)

n )2, n = 1, 2, . . .}, m = 1, 3, are discrete, infinite, with continuously decreasing moduli, and thus, the corresponding
parameters {k(m)

n , n = 1, 2, 3, . . .}, are subdivided into a finite real subset {k(m)
n , n = 1, 2, 3, . . . ,N (m)

p } and an infinite imag-
inary one {i|k(m)

n |, n = N (m)
p + 1, . . .}, where N (m)

p , denotes the number of propagating modes in D(m), m = 1, 3, which is
dependent on the physical parameters in these subregions and increases with frequency. Clearly, in order for the wave field
to remain bounded at infinity, the coefficients of the expansion A(1)

n = 0, n > N (1)
p , and thus, Eq. (4) takes the form

p(1) (x, z) =

N(1)
p

n=1

A(1)
n exp


ik(1)

n x

Z (1)
n (z) +

∞
n=1

B(1)
n exp


−ik(1)

n x

Z (1)
n (z). (8)

Moreover, the terms exp(−ik(1)
n x)Z (1)

n (z), n > N (1)
p , and exp(ik(3)

n x)Z (3)
n (z), n > N (3)

p , are the evanescent modes in D(m),
m = 1, 3, respectively. Thesemodes decay exponentially at large distances from the inhomogeneity in the two semi-infinite
strips.

2.2. Mode excitation of the waveguide

The complex coefficients A(1)
n of the modes A(1)

n exp(ik(1)
n x)Z (1)

n (z) , n ≤ N (1)
p , constitute the given data associated the

specification of the incident wave field in D(1). Due to the linearity of the problem each one of the above modes could be
separately considered as forcing of the present acoustic waveguide and the general solution is obtained by superposition of
the corresponding responses. Thus, if we denote thewaveguide response to unit modal forcing by p(n) (x, z) = p(x, z; A(1)

n =

1), the general solution of the examined problem is expressed by

p (x, z) =

N(1)
p

n=1

A(1)
n p(n)(x, z). (9)

The above formulation can also be exploited to treat scattering of acoustic waves emitted by a line source (see, e.g., [3,33,
34]), located in the region of incidence at (xS, zS) ∈ D(1) far from the inhomogeneity (xS ≪ a). In fact, by using the modal
expansion of the 2D Green’s function in the homogeneous subdomain D(1) (see, e.g., Jensen et al. [3], Sec.5.2.2)

G (x, z; xS, zS) =
i

2ρ (zS)

N(1)
p

n=1

Z(1)
n (zS)

k(1)
n

exp

ik(1)

n x

, a > x ≫ xS, (10a)

we obtain the following expression in the general solution of the acoustic field emitted by the line source in the inhomoge-
neous waveguide in terms of the mode responses p(n)(x, z)

pG (x, z; xS, zS) =
i

2ρ (zS)

N(1)
p

n=1

Z(1)
n (zS)

k(1)
n

p(n) (x, z) . (10b)

On the basis of the above considerations and for simplicity in the presentation we shall use the same notation p (x, z) for the
solution of the problemcorresponding to eachmode response of the inhomogeneouswaveguide or any combination of them.

2.3. Variational formulation

By exploiting the representations (7) and (8), the problem can be formulated as a transmission boundary value problem
in the bounded subdomain D(2), satisfying Eqs. (1)–(3) and the following matching conditions:

p(2) (x, z) = p(1) (x, z) ,
∂p(2)

∂x
=

∂p(1)

∂x
, x = a, − H < z < η1, (11a)

p(2) (x, z) = p(3) (x, z) ,
∂p(2)

∂x
=

∂p(3)

∂x
, x = b, − H < z < η3. (11b)
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We proceed to formulate a functional F allowing us to state a variational formulation of the transmission problem.
The admissible function space for the wave field in the inhomogeneous subregion p(2) (x, z) ∈ D(2) (that is also simply
denoted from now on as p), consists of globally continuous and piecewise smooth functions, possessing continuous second
derivatives in the interior of each layer, such that

p (x, z = η (x)) = 0 and
∂p (x, z = −H)

∂n
=

∂p (x, z = −H)

∂z
= 0. (12)

For this purpose, we consider the following energy-type functional on the acoustic field in the bounded subdomain and on
the unknown coefficients of the expansions in the regions of incidence and transmission,

F

p,

B(1)
n


,

A(3)
n


=

1
2

M
j=1

 1
ρj


D(2)
j


(∇p)2 − k2 (p)2


dxdz

+

 z=−hj(a)

z=−hj+1(a)


p −

1
2
p(1) B(1)

n

 ∂p(1)


B(1)
n


∂x

dz

−

 z=−hj(b)

z=−hj+1(b)


p −

1
2
p(3) A(3)

n

 ∂p(3)


A(3)
n


∂x

dz

 . (13)

The present problem admits of an equivalent variational formulation which is expressed by the stationarity of the above
functional

δF

p;

B(1)
n


,

A(3)
n


= 0. (14)

Using Green’s theorem in conjunction with Eq. (12), the above variational equation takes the form
M
j=1

1
ρj


−


D(2)
j


∇

2p + k2j p

δp dxdz −

M−1
j=1

 x=b

x=a


1
ρj

∂p
∂N

−
1

ρj+1

∂p
∂N


z=−hj(x)

δp dx

+
1
ρ1

 x=b

x=a


∂p
∂z

+
dη
dx

∂p
∂x


z=η

δp dx −

 z=−hj(a)

z=−hj+1(a)


∂p
∂x

−
∂p(1)

∂x


x=a

δp dz

−

 z=−hj(b)

z=−hj+1(b)


∂p
∂x

−
∂p(3)

∂x


x=b

δp dz −

 z=−hj(b)

z=−hj+1(b)


p − p(3)

x=b δ
∂p(3)

∂x
dz

+

 z=−hj(a)

z=−hj+1(a)


p − p(1)

x=a δ
∂p(1)

∂x
dz


= 0, (15)

where ∂p
∂N


z=−hj(x)

=
∂p
∂z +

dhj
dx

∂p
∂x =

∂p
∂n


1 +


dhj/dx

21/2.
The usefulness of the above variational principle hinges on the fact that it leaves us the freedom to choose any particular

representation for the unknown field p(x, z) ∈ D(2). In this way, a variety of possible algorithms for the numerical solution
of the present wave problem can be constructed.

3. Derivation of the coupled mode system

One possible choice, facilitating the treatment of studied wave problems in general waveguides, without restrictions
as regards the slope and/or curvature of the interfaces and the variation of physical parameters, will be presented in the
following section.

3.1. Enhanced local-mode representation of the acoustic field in the inhomogeneous subdomain

Inside the bounded domain D(2), a spectral-type representation of the acoustic field p(x, z) is used in the present work,
which based on the following local-mode series,

p(x, z) =

∞
n=1

Un(x)Zn(z; x), (16)

where Un(x) are complex coefficients depending on the horizontal position. The family of real functions Zn(z; x) appearing
in the above spectral-type expansion, is parametrically dependent on x and is obtained by formulating and solving local,
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vertical Sturm–Liouville problems, of the form of Eqs. (5), (6), formulated in the z-intervals [−H, η(x)], for each horizontal
position a < x < b, as follows

d2Zn
dz2

+


k(1) (z; x)

2
− (k(1)

n )2

Z (1)
n = 0, (17)

Zn(z = η (x)) = 0, (18a)

dZn(z = −H)

dz
= 0, (18b)

Zn(−hj (x) + 0) = Zn(−hj (x) − 0), j = 1, 2, M − 1, (18c)

1
ρj

∂Zn(−hj (x) + 0)
∂z

=
1

ρj+1

Zn(−hj (x) − 0)
∂z

, j = 1, 2, M − 1. (18d)

Based on the properties of the local vertical eigenfunctions, the above representation (16) becomes a basis in the admissible
function space. However, any finite truncation of the series (16) is incompatible with the sloping interface conditions,
Eqs. (3), whenever dhj (x) /dx ≠ 0, j = 1, 2, . . . ,M − 1, rendering the above series to converge only in an L2-sense, and
the coefficients Un to present a slow decay of the order O(n−2), where n is the mode number. This fact has been discussed
in detail in the case of similar problems governed by the Laplace equation concerning water waves propagating in variable
bathymetry regions [18], where the concept of additional sloping bottom mode is introduced offering consistency in the
formulation and substantially accelerating the convergence of the local mode series; see also Refs. [19–21].

To remedy the above inconsistency in the present multilayered environment, an additional mode associated with each
interface is introduced, and denoted by Un (x) Zn (z; x), n = −M + 2, . . . ,−1, 0. These additional terms are called the
sloping-interface modes. Thus, we obtain the following enhanced local-mode series

p(x, z) =

0
n=−M+2

Un(x)Zn(z; x) +


n=1

Un(x)Zn(z; x). (19)

For every horizontal position a < x < b, the vertical structure of the sloping-interface modes Zn (z; x) corresponding
to the first sum in the right-hand side of the above equation (with non-positive index), is any globally continuous and
piecewise smooth function defined with support only in the local vertical intervals z ∈ [−hj+1(x), −hj(x)], j = −n,
n = −M + 2, . . . ,−1, 0, respectively, satisfying the following jump condition(s) concerning the vertical derivative at
z = −hj+1(x),

1
ρj+1

∂Zn
∂z


z=−h+

j+1

−
1

ρj+2

∂Zn
∂z


z=−h−

j+1

=
1

ρj+1

∂Zn

z = −hj+1(x) + 0


∂z

= 1, j = −n = 0, 1, 2, . . . ,M − 2. (20a)

Moreover, the function Z0 (z; x) should satisfy the homogeneous Dirichlet condition at z = η (x) = −h0 (x). Using the fact
that non intersecting interfaces/boundaries have been considered for the present acoustic waveguide (i.e., hj(x) > hj+1(x),
j = 0, 1, 2, . . . ,M − 1), a convenient choice based on the low degree polynomial satisfying the above conditions is

Zn (z; x) = −ρj+1

hj+1(x) − hj(x)

  z + hj(x)
hj+1(x) − hj(x)

4

+


z + hj(x)

hj+1(x) − hj(x)

3


, (20b)

in −hj+1(x) ≤ z ≤ −hj(x) and zero elsewhere.
Using Eqs. (18d) and (20) in the enhanced representation, Eq. (19), we find that the amplitude of the additional modes

satisfies

Un(x) =
1

ρj+1

∂p
∂z


z=−h+

j+1

−
1

ρj+2

∂p
∂z


z=−h−

j+1

, j = −n = 0, 1, 2, . . . ,M − 2. (21)

Consequently, the M − 1 terms Un (x) Zn (z; x), n = 0, −1, −2, . . . ,−M + 2, appearing in the first series in the right-hand
term of the enhanced representation given by Eq. (17) are the additional degrees of freedom in the bounded subdomainD(2),
permitting the consistent satisfaction of interface conditions Eq. (3), involving the normal derivative. Also, we immediately
see that in the homogeneous parts of the waveguide, where the interfaces become flat horizontal, the additional sloping
interface modes become zero, Un(x) = 0, n = 0, −1, −2, . . . ,−M + 2, and the enhanced representation Eq. (19)
automatically reduces to Eq. (16). Furthermore, it is clear from Eqs. (18a), (18b) and (21) that the present representation
fulfills the Dirichlet and Neumann boundary conditions Eqs. (2a) and (2b), respectively, all over the inhomogeneous
subdomain, and thus, it becomes a basis of the admissible function space to be used in the variational principle, Eq. (15).

An important effect of the additional sloping-interface modes is to significantly increase the rate of decay of modal
amplitudes. As it will be demonstrated in the next section, the modes associated with the enhanced series exhibit a rapid
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decay rate: |Un(x)| ≤ C(x)n−4, n → ∞, ∀x ∈ [a, b]. The bound C(x) is a continuous function on [a, b] and, thus, the previous
estimate is global: |Un| = O(n−4). If the additional modes are not included, then the rate of decay of the modes in the series
(16) is only |Un| = O(n−2). The additional modes provide an implicit summation of the slowly convergent part of the local-
mode series, rendering the remaining part to be fast convergent, increasing the efficiency of themethod, which is important
especially for long-range and high-frequency propagation problems.

3.2. The coupled mode system on the horizontal plane

Having calculated the eigenfunctions and the extra verticalmodes for all horizontal points in a < x < b, weproceed to the
calculation of the respective modal amplitudes {Un (x) , n = −M + 2, . . . ,−1, 0, 1, 2, . . .}. Following a similar procedure
as the one described in detail in Ref. [18], we substitute the enhanced local mode representation (19), in conjunction with
the normal-mode representations Eqs. (7) and (8), in the variational principle (15), and express the variation of the unknown
field p(x, z) ∈ D(2), through the variations of the modal amplitudes as follows δp(x, z) =


n=−M+2 Zn(z; x) δUn(x).

Theorem 1. By considering only the variations δUn(x), n = −M + 2, . . . , 0, 1, . . . , associated with each mode, for points in
a < x < b, we obtain from the first term in the left hand side of Eq. (15) the following coupled-mode system (CMS) of second-order
ordinary differential equations, with respect to the mode amplitudes Un(x), n = −M + 2, . . . , 0, 1, 2, . . . ,

n=−M+2

amn (x)
d2Un (x)

dx2
+ bmn (x)

dUn (x)
dx

+ cmn (x)Un (x) = 0, (22)

where m = −M + 2, . . . , 0, 1, 2, . . . . The x-dependent coefficients amn, bmn and cmn are defined in terms of the local vertical
functions Zn(z; x) in a < x < b and are given by

amn = ⟨Zn, Zm⟩ , (23a)

bmn = 2

∂Zn
∂x

, Zm


+

M−1
j=1


1
ρj

−
1

ρj+1


dhj

dx
Zn(−hj)Zm(−hj), (23b)

cmn =


∂2Zn
∂x2

+
∂2Zn
∂z2

+ k2Zn, Zm


+

M−1
j=1


[[Zn,z]] +

dhj

dx
[[Zn,x]]


Zm(−hj) (23c)

In the above relations ⟨f , g⟩ :=
 η

−H ρ−1f (z)g(z)dz denotes the weighted inner product in L2(−H, η(x)) function space. Further-
more, the quantities Zn,x for each x in a < x < b are defined by

[[Zn,w]] =


1
ρj

∂Zn
∂w


z=−h+

j

−
1

ρj+1

∂Zn
∂w


z=−h−

j


, j = 1, 2, . . . ,M − 1. (24)

Finally, from the last four terms in the left-hand side of the variational equation (15), defined on the vertical interfaces at x = a
and x = b, respectively, and considering the variations δUn(a), δUn(b), as well as δB(1)

n and δA(3)
n , n = −M + 2, . . . , 0, 1, . . . ,

we obtain the following end-conditions for the mode amplitudes Un,

C (m)
n dUn/dx1 + D(m)

n Un = F (m)
n , n = 0, 1, 2, . . . , m = 1, 3, (25a)

where m = 1 corresponds to the boundary condition at x = a and m = 3 at x = b, respectively. The coefficients in the above
equation supplemented the CMS (22) are defined as follows:

C (m)
n = 1, D(m)

n = (−1)m+1 ik(m)
n , for n = 1, . . . ,N (m)

p , and

C (m)
n = 0, D(m)

n = 1, −M + 2 ≤ n ≤ 0, m = 1, 2,
(25b)

F (1)
n = 2ik(1)

n exp

ik(1)

n a


δℓn and F (2)
n = 0, n = 1, 2, . . . ., (25c)

where δℓn is Kronecker’s delta and ℓ corresponds to the index of the incidence mode considered for exciting the waveguide. �

We note here that the applicability of the present method to similar 3D acoustic problems in cylindrically symmetric
ocean environments, where the field is generated by a point 3D source, has been illustrated in Athanassoulis et al. [19]. In
the latter work the resulting CMS has been numerically treated by using a second-order finite difference scheme based on a
uniform grid on the horizontal plane. Also, detailed comparisons are presented against predictions by the finite element
method and the coupled-modes based on the stairwise approximation, showing perfect agreement and validating the
present approach. In the presentwork the CMS (22), (25) is discretized by applying the hp-FEM,which substantially improves
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Fig. 2. Acoustic pressure in the waveguide as calculated by the present method. Excitation frequency 20 Hz and waveguide forcing by the first incident
mode. Acoustic parameters: ρ1 = 1 g/cm3 , c1 = 1500 m/s, ρ2 = 1.5 g/cm3 , c2 = 1700 m/s. (a) Real part and (b) modulus of the wave field.

the numerical efficiency of the method and extends the domain of applicability to higher values of characteristic non-
dimensional wavenumbers κ ≫ 1. The theoretical background of the method and more details concerning the developed
numerical scheme will be provided in Section 5.

In order to illustrate the numerical performance of the present model, as a first example, we consider here underwater
acoustic propagation in simplified case consisting of two layers simulating a coastal acoustic environment, characterized by
variable bathymetry. The geometry of the latter interface has the form of a smooth shoal, defined by

h1(x) = 50 − 25 tanh

3π


x − 300
400


− 0.5


, a ≤ x ≤ b, (26a)

where a = 280 m and b = 720 m; see Fig. 2. In this case, the max slope of the seabed reaches 60% in the middle of the
variable bathymetry subdomain (x = 500 m) and the mean slope is 12.5%, respectively.

The upper layer (layer 1) corresponds to sea water of constant density and sound speed ρ1 = 1 g/cm3, c1 = 1500 m/s.
The lower layer (layer 2) under the seabed corresponds to sand–silt–clay sediment with properties ρ2 = 1.5 g/cm3,
c2 = 1700 m/s, terminated at the impermeable (rigid) bottom which is located at a depth z = −100 m. Furthermore,
the upper surface η(x) is modeled by a simple sinusoid, as follows

η(x) = −So sin (ks (x − 300)) , in 300 m ≤ x ≤ 700 m, (26b)

and zero otherwise, where the amplitude of the free surface elevation is So = 2 m and the corresponding wavenumber
ks = (4π/400) m−1, modeling effect by quite long ripples of the sea surface (for example due to tidal waves) in the
region.

In the examined two-layer case with constant parameters an analytical solution of VEP is available as described in
Appendix A (see also [2]). This permits a very accurate calculation of all coefficients of the CMS Eq. (22), eliminating possible
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Fig. 3. Vertical distribution of the calculated wave field in the acoustic waveguide of Fig. 2 for the same excitation and frequency. Real part is shown by
using solid lines and imaginary part by dashed lines.

errors entering through the numerical solution of the eigenvalue problem. The general treatment of the VEP by means of
hp-FEM will be described in the next section, where the analytic solution in the two layer case will be used to show that it
converges very rapidly, verifying the theoretical results concerning error estimation.

Numerical results concerning the real part of the calculated wave field, when the waveguide is excited at frequency
f = 20 Hz and is forced by the first incident mode are shown in Fig. 2(a), as calculated by the hp-FEM using 4th
degree polynomials (p = 4). The corresponding acoustic pressure modulus |p(x, z)| is plotted in Fig. 2(b). In this case the
characteristic nondimensional wavenumber is κ ≈ 37. Also, the number of propagating modes is 3 both in the region of
incidence and transmission. The local-mode series is truncated by keeping 15 totally modes, and the coupled-mode system
is discretized using N = 200 elements based on uniform horizontal mesh, the same for all modes Un(x), n = 0, 1, 2, . . . , 14,
which were proved to be enough for numerical convergence. The corresponding vertical distributions of the wave field are
presented in Fig. 3, at three horizontal positions, at the entrance, the middle, and exit of the waveguide. A higher-order
solution of the above example obtained by using p = 6 and N = 300 will be used in Section 5 as a reference solution in
order to demonstrate the convergence aspects of the present method, by illustrating the achieved rates of decay of the error
with respect to mesh size (or number of elements) and polynomial degree.

Furthermore, in Fig. 4, themoduli of themodal-amplitude functions |Un(x)| are plotted vs. mode-number n, as calculated
by the present CMS, with and without the additional sloping-interface mode, which in the examined two-layer case is only
one U0(x). The horizontal axis in Fig. 4 is a multiple replica of the interval [a, b], i.e. a sequence of repeated intervals [a, b],
each one associated with a mode, and named after the mode number. In the nth replica of interval [a, b] the amplitude
|Un(x)| of the nth mode is plotted vs. x ∈ [a, b], as obtained by the present series with and without consideration of the
additional sloping interfacemode.We clearly observe the significance of the propagatingmodes (n = 1, 2, 3), in comparison
to the evanescent modes (n > 3) and the additional mode (n = 0), which is of the same order of magnitude as the first
evanescent modes. In the same figure the curve cn−4 is drawn (where c is a constant), using a thick black line. This curve
bounds themaxima of the amplitudes of themodal functions as obtained bymeans of the enhanced representation Eq. (19),
indicating that the rate of decay of the mode amplitudes is O(n−4). The corresponding result based on the same system and
the representation (16) without the additional interface mode (n = 0) is indicated by using red line, and we clearly observe
that the rate of decay of the modal amplitudes is two-orders lower O(n−2).

Another important conclusion that can be drawn from Fig. 4 deals with the improved efficiency of the present approach.
Assuming that the error due to the truncation of the infinite modal series Eqs. (16) or (19) is of the same order as the last
retained term in the truncated series, we obtain from Fig. 4 that for an error of the order of 0.2%, illustrated in the plot
by using blue dashed lines, we need 9 totally terms (n = 0, 1, 2, . . . , 8) with the enhanced representation, while without



K.A. Belibassakis et al. / Wave Motion 51 (2014) 1021–1043 1031

Fig. 4. Decay of modal amplitudes |Un| in the case of the waveguide of Fig. 2 excited by the first incident mode. The corresponding result without
consideration of the additional sloping-interface mode is indicated by using the red line. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

consideration of the additional mode the number of required terms is 14, and this difference is constantly increasing with
frequency.

4. Finite element solution of the local vertical eigenvalue problem

In this section we will describe the application of the hp-Finite Element Method to the solution of the local VEP. Let
Ω

.
= (−H, η (x)) be the vertical interval at each horizontal position. All functions and parameters hereafter depend

implicitly on x. Assuming that the density and acoustic wavenumber ρ(z; x), k2(z; x) ∈ L∞(Ω), a < x < b, the following
Sobolev spaces of real functions are introduced

W .
=

u : u ∈ H1(Ω) and u(z = η(x)) = 0, x ∈ [a, b]


.

The continuous vertical eigenvalue problem, at each horizontal position, is now stated in variational form as follows:

Find (λ, Z) ∈ R × W such that α(w, Z) = λβ(w, Z), ∀w ∈ W , (27)

where the involved bilinear forms are

α(w, Z) =

 η(x)

−H
ρ−1 dw

dz
dZ
dz

dz −

 η(x)

−H
ρ−1w k2Z dz, and (28a)

β(w, Z) =

 η(x)

−H
ρ−1wZdz. (28b)

Assume also a partition of Ω̄ of the form−H = z1 < z2 < · · · < zN+1 = η(x), with N ∈ N and N > M (M being the number
of layers in the waveguide). The partition is such that for every position along x-axis, the interface positions z = −hj (x),
j = 1, 2, . . . ,M − 1, coincide withM − 1 nodes. We introduce the sequence of finite element sub-spacesW h

⊂ W

W h .
=


uh

∈ H1(Ω) : uh

[zi,zi+1]

≡ Pℓ(z) and uh(z = η(x)) = 0, i = 1, 2, . . . ,N, ℓ ∈ N, x ∈ [a, b]


where Pℓ(z) is a polynomial of degree ℓ. The discrete variational formulation of the VEP takes the following form:

Find (λh, Zh) ∈ R × W h such that α(wh, Zh) = λhβ(wh, Zh), ∀wh
∈ W h. (29)

Remark 1. Adding the term Λ
 η(x)
−H ρ−1wZdz, where Λ ∈ R, in Eq. (28a), simply shifts the eigenvalues by Λ and has no

effect on the eigenvectors. The same is also valid for the discrete eigenvalues and eigenfunctions of the discrete formulation
(29). Let λ̃ ∈ R, Z̃ ∈ W , denote the new eigenpairs. The modified version of the eigenvalue problem is:

Find (λ̃, Z̃) ∈ R × W such that α(w, Z̃) =


λ̃ − Λ


β(w, Z̃), ∀w ∈ W . (30)
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Comparing the above versions it is easy to confirm that Z̃ (x) = Z (x) and λ̃ = Λ + λ. The steps to prove the same result
for the discrete formulation are identical. Thus, we arrive at the following

Theorem 2. Let dk (x) = ess supz∈Ωk2 (z; x), dρ = maxj

ρj

and assume that Λ ≥ dk +ε for some ε ≥ κ2, where κ = 1m−1.

Then, the bilinear form, γ (w, Z)
.
= α(w, Z)+Λβ(w, Z), becomesW-elliptic with ellipticity constant µ = d−1

ρ . That is, ∀Z ∈ W
it is γ (Z, Z) ≥ µ ∥Z∥

2
1,Ω .

Proof. It is

γ (Z, Z) =

 η

−H
ρ−1 dZ

dz
dZ
dz

dz +

 η

−H


Λ − k2


ρ−1Z2dz ≥

1
dρ

 η

−H


dZ
dz

2

dz +
Λ − dk

dρ

 η

−H
Z2dz

and thus,

γ (Z, Z) ≥
κ2

dρ

|Z |
2
1,Ω +

Λ − dk
dρ

∥Z∥
2
0,Ω ≥

κ2

dρ

|Z |
2
1,Ω +

ε

dρ

∥Z∥
2
0,Ω ≥ µ ∥Z∥

2
1,Ω , where µ = min


κ2, ε


/dρ .

The optimal value is derived for ε = κ2, which provides the desired result. �

Based on the above, we may now use the properties of the modified problem (30) in order to derive a priori bounds for

the eigenvalues of our initial eigenvalue problem. To this respect, from λ̃ =
γ (Z̃,Z̃)
β(Z̃,Z̃)

≥
cρµ∥Z̃∥

2
1,Ω

∥Z̃∥
2
1,Ω

we obtain λ̃ ≥
cρ
dρ

, where

cρ = minj

ρj

. Thus, we have for the eigenvalues λ of problem (27), the following estimation

λ ≥
cρ
dρ

− dk − κ2. (31)

4.1. Numerical solution of VEP by hp-FEM

The discrete solution has the form

Zh(z) =

N
j=1

qjNj(z), (32)

where Nj ∈ W h. Introducing the above expansion in Eq. (29), the discrete variational formulation finally becomes an
eigenvalue matrix equation of the form:

AVEP q = λ BVEP q, (33)

where the elements of the N × N matrices AVEP and BVEP are αij = α(Ni,Nj) and βij = β(Ni,Nj), i, j = 1, 2, . . . ,N ,
respectively, and q = qj. From the above results, the optimality of the Galerkin method for standard elliptic eigenvalue
problems is deduced [35] and the following error estimates are valid

λn ≤ λh
n ≤ λn + cλ(ℓ+1)

n h2ℓ, (34a)Zh
n − Zn


H1(Ω)

≤ cλ(ℓ+1)/2
n hℓ (34b)

where c is a positive constant independent of h and λn.
Further, the following L2-estimate for the eigenfunction convergence is valid:Zh

n − Zn

L2(Ω)

≤ cλ(ℓ+1)/2
n hℓ+1. (35)

It is evident from the above results that the quality of the approximation deteriorates as themagnitude of the eigenvalue
approximated increases. This fact will be also confirmed by the results of the convergence diagrams presented and discussed
in the sequel.

As an example,we consider the case of an acoustic environment of total thickness (depth)H = 100m, and flat free surface
η = 0, consisting of two layers of equal thickness, and thus the position of the internal interface is at a depth h1 = 50 m.
The acoustic parameters and the frequency are assumed the same as before (f = 20 Hz, ρ1 = 1 g/cm3, c1 = 1500 m/s,
ρ2 = 1.5 g/cm3, c2 = 1700 m/s). In this case an exact analytical solution of the VEP is available (see also Boyles [2]) and
details are provided in Appendix A.

Fig. 5 shows the first 30 eigenvalues as computed by the present FEM, using p = 1 and p = 2, using N = 40, 80,
160 elements, compared against the exact solution. As expected, the error of the numerical solution is found to increase
with increasing eigenvalue numbers. Fig. 6 is a log–log plot depicting the convergence of the finite element solution for the
5th, 10th and 15th eigenvalue, for p = 1, 2 and 3, with increasing number of elements. The observed order of the rate of
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Fig. 5. Comparison of computed eigenvalues against the exact solution (shown by using the thick line) for different numbers of elements N , and using (a)
p = 1 and (b) p = 2.

Fig. 6. Convergence plot concerning the computed 5th (dotted lines), 10th (dashed lines) and 15th (solid lines) eigenvalues against the number of elements
N , by using p = 1, 2, 3.

convergence is 2, 4 and 6, respectively, and is found to be in full agreement with Eq. (34a). Also from this figure it becomes
clear the substantial improvement of the efficiency of approximation by increasing the degree of the polynomials.

Moreover, the first 4 eigenfunctions, as computed using the present FEM with N = 160 and p = 3, are plotted in
Fig. 7. In this case the present numerical results agree perfectly with the analytical solution and the differences cannot be
distinguished at the scale of the figure. A log–log plot is shown in Fig. 8 concerning the error in comparison to the exact
solutionZh

n − Zn

H1(−H,η)

=

 η

−H


Zh
n − Zn

2
dz +

 η

−H


dZh

n/dz − dZn/dz
2

dz
1/2

, (36)

demonstrating the convergence of the 5th, 10th and 15th eigenfunction in theH1(−H, η) norm. The computations are again
based on N = 40, 80, 160 elements. As expected, the observed rate of convergence for p = 1, 2, 3 is found to be 1, 2 and 3,
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Fig. 7. Vertical plot of the first 5 eigenfunctions, as calculated by the present FEM (p = 3) usingN = 160 elements. The position of the interface is indicated
by using a horizontal dashed line.

Fig. 8. Convergence plot concerning the 5th (dotted lines), 10th (dashed lines) and 15th (solid lines) eigenfunctions Zn (z) calculated by the present FEM
in the H1 (−H, η) norm, against the number of elements N , by using p = 1, 2, 3.

respectively, which is in full conformity with the prediction stated in Eq. (34b). Enhanced rates are obtained by raising the
degree of the piecewise polynomials. We conclude this subsection by remarking that the present VEP-FEM solver provides
highly accurate numerical solutions in complex multilayered waveguides with small computational cost.

On the basis of the above numerical solution, in conjunction with the expressions of the additional sloping-interface
vertical modes, given by Eq. (20b), the CMS matrix coefficients amn, bmn, and cmn, are very efficiently calculated all over the
horizontal plane by vertical integration using Gaussian quadrature.

5. Numerical solution of the CMS using adaptive hp-FEM

For the approximate solution of present CMS Eq. (22), in conjunction with the corresponding boundary conditions
Eqs. (25), the local-mode series Eq. (19) is truncated keeping except of the propagating, a finite number of evanescentmodes
and the additional sloping-interfacemodes. Let n1 be the total number of retained propagating and evanescent modes (with
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index n > 0) and n0 = M −1 the number of sloping-interface terms (with index n ≤ 0). The total number of retained terms
is then Nm = n0 + n1, which equals to the dimension of the truncated system.

Let x ∈ (a, b) and Mn1×n1 , MNm×Nm denote the set of n1 × n1 and Nm × Nm real matrices respectively. Assuming that
matrix [amn] is invertible, the truncated coupled mode system (22) takes the form:

− v ′′
+ B v ′

+ C v = 0, x ∈ (a, b) , (37)

where a prime is used to denote x-differentiation, and B = −[amn]
−1

[bmn], C = −[amn]
−1

[cmn]. In the above
equation v is the column vector of unknown complex modal amplitudes v .

= conj

[v0v1]T


, where v0

.
=

U−M+2(x) U−M+1(x) ... U0(x)

and v1

.
=

U1(x) U2(x) ... Un1(x)


. The system is supplemented by the follow-

ing boundary conditions

v0 = 0, and v ′

1 + S1v1 = T1, at x = a, (38a)

v0 = 0, and v ′

1 + S2v1 = T2, at x = b, (38b)

where S1, S2 ∈ Mn1×n1 are diagonal matrices and T1, T2 ∈ Cn1 ; see Eqs. (25).
In order to proceed with the analysis of the variational form of the above boundary value problem Eqs. (37), (38) it is

convenient to work with homogeneous Robin-type boundary conditions. We have the following result.

Theorem 3. Set D = I − S1

(b − a)I + S−1

2


. Let v = u+ F1x+ F2 be the solution of boundary value problem (37), (38). Then

u = conj

u0 u1

T is obtained as the solution of boundary value problem

− u′′
+ Bu′

+ Cu = − (CF 1x + BF 1 + CF 2) ≡ F , x ∈ (a, b) , (39)

u0 = 0, u′

1 + S1u1 = 0 at x = a, (40a)

u0 = 0, u′

1 + S2u1 = 0, at x = b, (40b)

where the forcing F of the differential system is given by

F1 =


0n0×1

D−1 T1 − S1S−1
2 T2

 and F2 =


0n0×1

S−1
2


T2 − (I + bS2)D−1 T1 − S1S−1

2 T2
 . (41)

Proof. From Eqs. (38), we have

u′

1 + S1u1 + (I + aS1) F1 + S1F2 = T1, at x = a, (42a)

u′

1 + S2u1 + (I + bS2) F1 + S2F2 = T2, at x = b. (42b)

For the above conditions to be homogeneous, it must be
I + aS1 S1
I + bS2 S2

 
F1
F2


=


T1
T2


. (43)

The matrix D = I − S1

(b − a)I + S−1

2


is the Schur complement of S2 with respect to the partitioned matrix in (43). Since

both S2 and D are invertible, the partitioned matrix is invertible and the solution is given by Eq. (41). �

5.1. Notation and preliminaries

We consider the function spaces

H =

L2 (a, b)

Nm .
= L2 (a, b) × L2 (a, b) ×...........×

Nm times
L2 (a, b) and V =


H1

0 (a, b)
n0

×

H1 (a, b)

n1
, (44)

where H1 (a, b), H1
0 (a, b) denotes the Sobolev spacesW 1,2 (a, b) andW 1,2

0 (a, b) .
= {u : u ∈ W 1,2

0 (a, b) and u(a) = u(b) =

0} in the horizontal interval a < x < b, respectively; see, e.g., Ref. [36]. Note that all function spaces are defined over C. The
standard inner products inH, V are denoted as (·, ·)H , (·, ·)V respectively. Moreover, for u .

= conj

u1 u2 ... un2

T
∈ V ,

we denote ∥u∥V =

Nm
k=1 ∥uk∥

2
H1(a,b)

1/2
, the standard Hilbert space norm and |u|V the corresponding semi-norm. Further

it is ∥u∥H =

Nm
k=1 ∥uk∥

2
L2(a,b)

1/2
. From the above definitions we have that V is a dense subspace ofH and thus, there exists

K1 ∈ (0, ∞) such that ∥u∥H ≤ K1 ∥u∥V , ∀u ∈ V . In the following, the value K1 = 1 will be adopted.
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Next, a sesquilinear functional p(u,w), u,w ∈ V is of sectorial form (see Ref. [37]), if there exist c ∈ R, K2 ∈ (0, ∞),
K3 ∈ (0, ∞) such that

|p(u,w)| ≤ K2 ∥u∥V ∥w∥V , ∀u,w ∈ V , and (45)

Re[p(u, u)] ≥ K3 ∥u∥
2
V + c ∥u∥

2
H , ∀u ∈ V , (46)

which is a Gårding type inequality for p(u,w).
Moreover, for any matrix G ∈ Mn2×n2 we denote GS and GA the symmetric and skew-symmetric part of G , respectively.

Consequently, Re[y∗GAy] = 0, ∀y ∈ Cn2 . In the sequel use will be made of following

Lemma 1. Let G ∈ Mn2×n2 , y ∈ V and the elements of matrix G satisfy gij(x) ∈ W 1,∞(a, b). It holds b

a
2Re[u∗GSu′

] dx =

 b

a
Re[(u∗Gu)′] dx −

 b

a
Re[u∗G′

Su] dx. (47)

The result is obtained by simple application of integration by parts, and by using the identities Re[y∗′GAy] = −Re[y∗GAy′
] and

Re[y∗′GSy] = Re[y∗GSy′
].

The main tool for obtaining finite element approximations of the variational form of boundary value problem Eqs. (39),
(40) is the following result for sectorial sesquilinear forms (see also Ref. [37]):

Lemma 2. Let V h be a closed subspace of V , f ∈ H, ϑ ∈ [0,K3), ϕ ∈ C, Re[ϕ] ≤ c + ϑK−2
1 . Also, let u ∈ V be the unique

solution of the following variational problem

p(u, w) = (ϕu + f , w)H , ∀w ∈ V . (48)

Then, there exists unique uh ∈ V h such that p(uh, wh) = (ϕuh + f , wh)H , ∀wh ∈ V h. Moreover it is ∥uh∥H ≤

K3K−2

1 + c −

Re[ϕ]
−1

∥f ∥H , ∥uh∥
2
V ≤ (K3 − ϑ)−1

∥uh∥H ∥f ∥H and

∥uh − u∥V ≤
K2 + |ϕ|K2

1

K3 − ϑ
inf

v∈Vh
∥v − u∥V . (49)

Closing the presentation of preliminary results, we recall the arithmetic–geometric mean inequality for any real numbers r1, r2
and σ > 0

r1r2 ≤
σ

2
r21 +

1
2σ

r22 . (50)

5.2. Variational formulation and finite element approximation of the CMS

The variational formulation of the boundary value problem associated with the present CMS is written as follows.
Find u ∈ V such that b

a
w∗′u′dx +

 b

a
w∗Bu′dx +

 b

a
w∗Cudx + w∗(b)S2u(b) − w∗(a)S1u(a) =

 b

a
w∗Fdx, ∀w ∈ V (51)

wherew∗
= conj


wT

. From Eq. (51), we define, the following sesquilinear form p(·, ·) : V × V → C

p(u,w) ≡

 b

a
w∗′u′dx +

 b

a
w∗Bu′dx +

 b

a
w∗Cudx + w∗(b)S2u(b) − w∗(a)S1u(a), (52)

and the variational formulation (51) is written (see also (39)) as follows:

Find u ∈ V such that p(u,w) = f (w) ≡

 b

a
w∗Fdx, ∀w ∈ V . (53)

In the sequel, existence and uniqueness of weak solutions of the above variational problem will be studied, permitting
implementation of corresponding finite element approximation. To this direction, we introduce the following assumptions:

(A1) For the elements of matrices B, C , it is bij(x) ∈ W 1,∞(a, b), cij(x) ∈ L∞(a, b), i, j = 1, 2, . . . ,Nm.
(A2) There exists a function S: [a, b] → Mn1×n1 , such that S(a) = S1, S(b) = S2 and sij(x) ∈ W 1,∞(a, b), i, j = 1, 2, . . . , n1.

In the above assumptions, all function spaces are defined over C. It is straightforward to prove continuity of the above
functional Eq. (52). We then obtain the result stated in the following
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Theorem 4. Let p(·, ·) : V ×V → C be defined through (52) and assumptions (A1), (A2) hold. Then |p(u,w)| ≤ K2∥u∥V∥w∥V ,
∀u,w ∈ V , with K2 = 1 + |||B|||∞ + |||C |||∞ + 2|||S|||∞ + |||S ′

|||∞, where |||Q |||∞
.
= ess sup

x∈[a,b]
{∥Q ∥2}, for a matrix Q .

The detailed proof is provided in Appendix B. �

Furthermore, from the boundary conditions of the CMS, Eqs. (25), and the distribution of the vertical eigenvalues at the
ends x = a and x = b of the inhomogeneous domain, we see that

bij(a) = bij(b) = 0, i, j = 1, 2, . . . ,Nm, and (54a)

Re[v∗(b)S2v(b) − v∗(a)S1v(a)] =


(ev)

k(3)
n |Un (b)|2 + k(1)

n |Un (a)|2 ≥ 0, (54b)

with the summation considered over the evanescent modes. Taking this into account, we state the following result in order
to establish a Gårding-type inequality for p(u,w):

Theorem 5. Let p(·, ·) : V ×V → C be defined through Eq. (52), and (A1), (A2) hold. Select 2σ > |||BA|||∞, σ ∈ R+ and assume
there exists ξ ∈ R+, such that ∀u ∈ V it holds

Re

u∗


C −

1
2
B′


S
u


≥ ξu∗u. (55)

Then, Re[p(u, u)] ≥ K3 ∥u∥
2
V + c ∥u∥

2
H , with K3 = 1 −

1
2σ |||BA|||∞ and c = ξ − 1 +

1−σ 2

2σ |||BA|||∞.

Proof. From Eq. (52), the definitions of the norm and seminorm in V and assumption (A2),

p(u, u) =

 b

a
u∗′u′dx +

 b

a
u∗Bu′dx +

 b

a
u∗Cudx + u∗(b)S2u(b) − u∗(a)S1u(a)

= |u|
2
V +

 b

a
u∗Bu′dx +

 b

a
u∗Cudx + u∗(b)S2u(b) − u∗(a)S1u(a), and

Re[p(u, u)] = |u|
2
V +

 b

a
Re[u∗Bu′

]dx +

 b

a
Re[u∗Cu]dx + Re[u∗(b)S2u(b) − u∗(a)S1u(a)]. (56)

Then, from Eq. (56), Lemma 1, and Eqs. (54), we obtain

Re[p(u, u)] ≥ |u|
2
V +

 b

a
Re[u∗BAu′

]dx +

 b

a
Re

u∗


C −

1
2
B′


S
u

dx. (57)

For the first integral in the right-hand side of the above relation we have b

a
Re[u∗BAu′

]dx
 ≤

 b

a

Re[u∗BAu′
]
 dx ≤

 b

a
Re[|u∗BAu′

|]dx =

 b

a

u∗BAu′
 dx. (58)

Furthermore, using Cauchy–Schwarz inequality we obtain b

a

u∗BAu′
 dx ≤

 b

a

u∗
2 dx1/2  b

a

BAu′
2 dx1/2

≤

 b

a

u∗
2 dx1/2  b

a
∥BA∥

2
u′
2 dx1/2

, (59)

and finally, b

a
Re[u∗BAu′

]dx
 ≤ |||BA|||∞ ∥u∥H |u|V . (60)

In view of the above result, Eq. (57) becomes

Re[p(u, u)] ≥ |u|
2
V − |||BA|||∞ ∥u∥H |u|V +

 b

a
Re

u∗


C −

1
2
B′


S
u

dx. (61)

Also, from Eq. (55)

Re[p(u, u)] ≥ |u|
2
V − |||BA|||∞ ∥u∥H |u|V + ξ ∥u∥

2
H , (62)
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and by means of the arithmetic–geometric mean inequality (see Eq. (50))

Re[p(u, u)] ≥ |u|
2
V − |||BA|||∞


σ

2
∥u∥

2
H +

1
2σ

|u|
2
V


+ ξ ∥u∥

2
H

=


1 −

1
2σ

|||BA|||∞


|u|

2
V +


ξ − |||BA|||∞

σ

2


∥u∥

2
H . (63)

For 2σ > |||BA|||∞ we get

Re[p(u, u)] ≥


1 −

1
2σ

|||BA|||∞


∥u∥

2
V +


ξ − 1 +

1 − σ 2

2σ
|||BA|||∞


∥u∥

2
H (64)

and the theorem is proved. �

Wenote here that a similar inequalitymay be proved by considering not only the skew-symmetric part of B and avoiding
the use of Lemma 1. In that case, Eq. (55) is replaced by Re[u∗CSu] ≥ ξu∗u and the condition imposed on σ becomes
2σ > |||B|||∞. To proceed and in order to apply Lemma 2, the following result is needed.

Theorem 6. Let ∥T1∥2 , ∥T2∥2 < ∞. Then, F ∈ H, ∀w ∈ V .

Proof. The dual space of H =

L2 (a, b)

M is H ′
≡ H . Since ∥T1∥2 , ∥T2∥2 < ∞ and [a, b] is bounded, it is

∥F∥H
.
=

 b

a
|CF 1x + BF 1 + CF 2|

2 dx
1/2

< ∞, (65)

and the proof is completed. �

We now turn to the finite element approximation of solutions of variational problem (51). Let V h
⊂ V we consider the

discrete variational problem: Find uh ∈ V h such that b

a
w∗′

h u∗′

h dx +

 b

a
w∗

hBu
′

hdx +

 b

a
w∗

hCuhdx + w∗

h (b)S2uh(b) − w∗

h (a)S1uh(a) =

 b

a
w∗

hFdx, ∀wh ∈ V h. (66)

The main result for the solution of problem (66) is stated in the following theorem.

Theorem 7. Assume that for problem Eqs. (39)–(41) it is |||BA|||∞ < 2ξ 1/2. Set ϑ = K3 / 2, K3 = 1 −
1
2σ |||BA|||∞ and select any

value of σ ∈

0.5|||BA|||∞, 0.5|||BA|||

−1
∞

J

with J = 2ξ − 1 +


(2ξ − 1)2 + 2|||BA|||

2
∞

1/2
. Then, the error u − uh of the discrete

approximation in problem (66) satisfies

∥u − uh∥V ≤ C inf
wh∈Vh

∥u − wh∥V , (67)

where C = 2

1 −

1
2σ |||BA|||∞

−1 
1 + |||B|||∞ + |||C |||∞ + 2|||S|||∞ + |||S ′

|||∞


.

Proof. Since σ > 0.5|||BA|||∞ it is K3 > 0. Let ϑ = K3 / 2 and the constant c = ξ − 1 +
1−σ 2

2σ |||BA|||∞, defined by inequality
(64). For Lemma 2 to apply with ϕ = 0, it must hold c + ϑ > 0 and thus, |||BA|||∞σ 2

− (2ξ − 1) σ − |||BA|||∞/2 < 0.
It must therefore be σ ∈


0, 0.5|||BA|||

−1
∞

J

. But since |||BA|||∞ < 2ξ 1/2, it is always 0.5|||BA|||∞ < 0.5|||BA|||

−1
∞

J and thus
σ ∈


0.5|||BA|||∞, 0.5|||BA|||

−1
∞

J

. Now, application of Lemma 2 with ϕ = 0 concludes the proof. �

For the approximation of the problem (66) by the Finite Element Method, we assume a partition of [a, b] of the form
a = x1 < x2 < · · · < xN+1 = b N ∈ N. Let Pℓ(z) be a polynomial of degree ℓ. We now set V h .

= {uh ∈ V : uhj|[xi,xi+1] ≡

Pℓ(x), i = 1, 2, . . . ,N, j = 1, 2, . . . ,Nm}. Obviously V h
⊂ V . Assuming sufficient regularity of the exact solution, the use of

Theorem 7 yields the standard Hilbert space error estimate (see, e.g., [38]), as follows

∥u − uh∥V ≤ Chℓ
∥u∥[Hℓ+1(a,b)]Nm , (68)

for some positive constant C .
In addition, an


L2(a, b)

Nmerror estimate is possible (see also [29]),

∥u − uh∥H ≤ Chℓ+1
∥u∥[Hℓ+1(a,b)]Nm . (69)
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Fig. 9. L2-error of the present CMS solution using Nm = 11 modes against DoF, in the case of the example of Fig. 2.

The above results will be confirmedwith the aid of numerical experiments presented in the next section concerning acoustic
propagation in inhomogeneous waveguides.

6. Numerical results and discussion

In this section calculations demonstrating the overall efficiency of the present method are shown and discussed.
Also, numerical results are presented for the waveguide of Fig. 2 at higher frequency of excitation and for three-layered
environments, illustrating the applicability of the methodology in more complex configurations. In all examined cases
the local vertical basis {Zn (z; x)} and its derivatives, as well as the system coefficients amn, bmn and cmn, are numerically
calculated through the solution of local VEP by application of the hp-FEM, as described in Section 4. Subsequently, the
numerical solution of the CMS Eqs. (22), (25) is obtained by truncating the series (19) keeping a finite number of evanescent
modes and discretizing the horizontal interval a < x < b using the same uniform mesh for all modes. Thus the mesh size
is h = (b − a) /N , where N denotes the number of elements, and the total degrees-of-freedom of the numerical scheme is
given by DoF = (pN + 1)Nm, where Nm denotes the retained terms (modes) in the representation Eq. (19).

To begin with, we consider the underwater acoustic waveguide of Fig. 2 consisted of thewater layer (ρ1 = 1 g/cm3, c1 =

1500m/s) and the sediment layer (ρ2 = 1.5 g/cm3, c2 = 1700m/s), terminated by the rigid bottom at a depthH = 100m.
The geometry of the internal interface z = −h1 (x) and the upper surface z = η(x) are kept the same as before, defined by
Eqs. (26a) and (26b), respectively. Moreover, excitation by the first mode at frequency f = 20 Hz is considered. In this case
a reference (datum) solution has been obtained by the present method using p = 6 and N = 300 elements.

The convergence characteristics of the present method are plotted in Figs. 9 and 10. Fig. 9 is a log–log plot of the
error calculated in the


L2(a, b)

Nm-norm, against the total DoF employed in the approximation. Solid lines correspond to
interpolation polynomials of order p = 1, 2, 3. For all p the circle marks correspond to N = 50, 100, 200 elements, and
for p = 1, 2 error data for N = 300 elements are also included. The estimated rates of the error decay for p = 1, 2, 3 are
calculated to be 1.974, 3.124, 3.995, in compatibility with theoretical prediction by Eq. (68). The dashed lines are used to
illustrate the p-convergence behavior. As expected for p convergence, these dashed curves present negative curvature. Small
discrepancies from the theoretical estimates are attributed to the fact that a numerical result based on p = 6 has been used
as the reference instead of the exact solution.

The corresponding error characteristics in the

H1(a, b)

Nm-norm are shown in Fig. 10. In this case, the observed rates for
p = 2, 3 are calculated to be 2.28, 3.02, respectively, again in conformity with the theoretical prediction by Eq. (69), while an
increased rate is obtained for p = 1, possibly due to pre-asymptotic behavior. As a useful remark, we obtain from the above
figures that in the examined case, characterized by non-dimensional wavenumber κ = 37, quite accurate solutions are
obtained by using approximately 1500DoF. Extensive numerical evidence from the above and cases of similar complexity
has shown that DoF/κ ≈ 50, in this band of nondimensionalwavenumbers, rendering the presentmethod quite competitive
from the point of view of computational efficiency.

A second example is presented in Fig. 11, where numerical results concerning the real part and the modulus of the
calculated acoustic wave field are shown as obtained by present method, when the above waveguide is excited again by the
first incident mode, but at higher frequency f = 50 Hz. In this case the characteristic nondimensional wavenumber is quite
larger κ ≈ 93 and the number of propagating modes is 6 both in the region of incidence and in the region of transmission.
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Fig. 10. H1-error of the present CMS solution using Nm = 11 modes against DoF, in the case of the example of Fig. 2.

Fig. 11. Acoustic pressure in the waveguide of Fig. 2 as calculated by the present method, for excitation frequency 50 Hz and waveguide forcing by the
first incident mode. (a) Real part and (b) modulus of the wave field.

This is a more computationally demanding problem compared to the previous one, since the acoustic pressure field
becomes quite more oscillatory. The present local-mode series has been truncated by keeping 15 totally modes, including
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Fig. 12. Acoustic pressure in a three-layer waveguide as calculated by the present method. Excitation frequency 20 Hz and waveguide forcing by the first
incident mode. Acoustic parameters: ρ1 = 1 g/cm3 , c1 = 1500 m/s, ρ2 = 1.5 g/cm3 , c2 = 1700 m/s, ρ3 = 1.7 g/cm3 , c3 = 2000 m/s. (a) Real part and
(b) modulus of the wave field.

except of the propagating and the sloping-interface modes the first 8 evanescent modes. The coupled-mode system is
discretized by using N = 200 elements based on uniform mesh and p = 4, which was proved to be enough for numerical
accuracy.

As shown in Fig. 11 high-quality numerical solutions are obtained, keeping a small number of modes in the truncated
local-mode series expansions and reducing the overall computational cost. To further illustrate this fact, a final example
is presented in Fig. 12 corresponding to a more complicated environment resembling a three-layered ocean acoustic
waveguide, terminated above by the free surface, z = η(x) (which is again defined by Eq. (26b)), and below by a rigid
flat horizontal bottom located at a depth H = 100 m. In this case the two interfaces separating the layers (z = −h1 (x)
and z = −h2 (x)) have similar shapes and are defined by formulas like Eq. (26a). In the examined case the water layer
(ρ1 = 1 g/cm3, c1 = 1500 m/s) and the first sediment layer (ρ2 = 1.5 g/cm3, c2 = 1700 m/s) are overlying a heavier
medium (ρ3 = 1.7 g/cm3, c3 = 2000 m/s).

Numerical results concerning the real part of the calculated wave field, when the waveguide is excited at frequency
f = 20 Hz and is again forced by the first incident mode are shown in Fig. 12(a), as calculated by the hp-FEM using 4th
degree polynomials (p = 4). The corresponding acoustic pressure modulus |p (x, z)| is plotted in Fig. 12(b). Again, the local-
mode series is truncated by keeping 15 totally modes, and the coupled-mode system is discretized using N = 200 elements
based on uniform horizontal mesh, the same for all modes Un (x) , n = −1, 0, 1, 2, . . . ,whichwere proved to be enough for
numerical convergence. Based on the above examples and extensive numerical evidence in similar cases we conclude that
the present approach and numerical solution ensures the absolute and uniform convergence of the enhanced series and its
derivatives, up to the boundaries, within each layer, providing useful results in the general multilayer case.

Taking into account that the various mode amplitudes Un(x) present different horizontal variability, a further
improvement of the efficiency of the present hp-FEM is possible by using different horizontal meshes for different modes.
Such an elaboration, in conjunctionwith grid adaptation techniques, based on information concerning the spatial variability
of the system coefficients, and essentially the diagonal part of the matrices B and C , will support the numerical treatment of
complicated wave propagation and scattering problems in more demanding applications such as three-dimensional, multi-
layered waveguides, and this is left to be examined in future work.
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7. Conclusions

An improved coupled-mode method is presented for the efficient solution of the problem of time-harmonic wave
propagation and scattering in non uniform stratified waveguides. The problem is governed by the Helmholtz equation
with variable coefficients. Our method is based on an enhanced local-mode series for the representation of the wave
field, including additional modes, which account for the effects of the inhomogeneous interfaces. Using the enhanced
representation, in conjunction with an energy-type variational principle, a coupled-mode system of equations is derived
for the determination of the unknown modal-amplitude functions. In the case of multilayered environments, h- and p-
Finite Element Methods have been applied for the solution of both the local vertical eigenvalue problems and the resulting
coupled mode system, exhibiting robustness and good rates of convergence. Numerical examples are presented in simple
2D acoustic propagation problems, illustrating the role and significance of the additional mode(s) and the overall efficiency
of the present model, that can be naturally extended to treat propagation and scattering problems in more general
waveguides.

Appendix A

In the case of homogeneous two-layerwaveguide, with constant physical properties ρ1, c1 and ρ2, c2, the exact analytical
solution of the vertical eigenvalue problem is given as follows (see also [2])

Zn (z) =


bn1 sin


k21 − λ2

n(z − η)


, η ≥ z ≥ −h1

bn2 cos


k22 − λ2
n(z + H)


, −h1 ≥ z ≥ −H

, (A.1)

where

bn2 = −bn1

sin


k21 − λ2
n(h1 + η)


cos


k22 − λ2

n(H − h1)

 , n = 1, 2, . . . . (A.2)

In this case, the eigenvalues λn are found as the roots of the equation

ρ2

ρ1


k21 − λ2

n
k22 − λ2

n

cos


k21 − λ2
n(η + h1)


cos


k22 − λ2

n(H − h1)



= sin


k21 − λ2
n(η + h1)


sin


k22 − λ2
n(H − h1)


, (A.3)

which expresses the continuity of ρ−1∂Z/∂z across the interface at z = −h1. The remaining constants bn1, n = 1, 2, . . . , of
the above solution are fixed by normalization.

Appendix B

For the detailed proof of Theorem 4 we consider the following inequality concerning the sesquilinear form p(·, ·) :

V × V → C, which is defined by Eq. (52),

|p(w, u)| ≤

 b

a
w∗′u′dx

+  b

a
w∗Bu′dx

+  b

a
w∗Cudx

+ w∗(b)S2u(b) − w∗(a)S1u(a)


≤

 b

a

w∗′u′
 dx +

 b

a

w∗Cu
 dx +

 b

a

w∗Bu′
 dx +

w∗(b)S2u(b) − w∗(a)S1u(a)
 . (B.1)

Using assumption (A2) in the above and applying the Cauchy–Schwarz inequality we obtain

|p(w, u)| ≤

 b

a

w∗′
2 dx 1

2
 b

a

u′
2 dx 1

2

+

 b

a

w∗
2 dx 1

2
 b

a

Bu′
2 dx 1

2

+

 b

a

w∗
2 dx 1

2
 b

a
|Cu|

2 dx
 1

2

+

 b

a

w∗′
2 dx 1

2
 b

a
|Su|

2 dx
 1

2

+

 b

a

w∗
2 dx 1

2
 b

a

S ′u
2 dx 1

2

+

 b

a

w∗
2 dx 1

2
 b

a

Su′
2 dx 1

2

. (B.2)
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For every matrix A ∈ MNm×Nm and vector y ∈ CNm it holds |Ay|2 ≡ y∗A∗Ay ≡ ∥Ay∥2
2 ≤ ∥A∥

2
2 |y|2. Using the latter

inequality in (B.2) and assumptions (A1) and (A2)

|p(w, u)| ≤

 b

a

w∗′
2 dx 1

2
 b

a

u′
2 dx 1

2

+ |||B|||∞

 b

a

w∗
2 dx 1

2
 b

a

u′
2 dx 1

2

+ |||C |||∞

 b

a

w∗
2 dx 1

2
 b

a
|u|

2 dx
 1

2

+ |||S|||∞

 b

a

w∗′
2 dx 1

2
 b

a
|u|

2 dx
 1

2

+ |||S ′
|||∞

 b

a

w∗
2 dx 1

2
 b

a
|u|

2 dx
 1

2

+ |||S|||∞

 b

a

w∗
2 dx 1

2
 b

a

u′
2 dx 1

2

, (B.3)

where the notation |||Q |||∞ = ess supx∈[a,b] {∥Q ∥2} has been used. Since ∥w∗∥V = ∥w∥V we finally have

|p(w, u)| ≤ K2 ∥u∥V ∥w∥V , where K2 = 1 + |||B|||∞ + |||C |||∞ + 2|||S|||∞ + |||S ′
|||∞. (B.4)
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