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Abstract

In the present work the Green’s function of the mild-slope and the modified mild-slope equations is studied. An effective
numerical Fourier inversion scheme has been developed and applied to the construction and study of the source-generated
water-wave potential over an uneven bottom profile with different depths at infinity. In this sense, the present work is a
prerequisite to the study of the diffraction of water waves by localized bed irregularities superimposed over an uneven bottom.
In the case of a monotonic bed profile, the main characteristics of the far-field are: (i) the formation of a shadow zone with an
ever expanding width, which is located along the bottom irregularity, and (ii) in each of the two sectors not including the bottom
irregularity the asymptotic behavior of the wave field approaches the form of an outgoing cylindrical wave, propagating with
an amplitude of order O(R−1/2), whereR is the distance from the source, and wavelength corresponding to the sector-depth
at infinity. Moreover, the weak wave system propagating in the shadow zone is of order O(R−3/2), and along the bottom
irregularity consists of the superposition of two outgoing waves with wavelengths corresponding to the two depths at infinity.
© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Problems of harmonic-wave interaction with two-dimensional (2D) localized scatterers or inclusions embedded
in an infinite non-uniform medium, characterized by a variable index of refraction along one direction, are frequently
encountered in applications related to acoustic, elastic and electromagnetic wave propagation. This class of problems
is complicated by the fact that the physical properties of the medium (the index of refraction or the propagation speed)
are different at infinity as approached from different directions. In this case the far-field wave pattern is not known a
priori, and a standard radiation condition (e.g., the Sommerfeld condition) cannot be applied. Felsen and Marcuvitz
[1] and Brekhovskikh and Godin [2] present an excellent account of solutions of acoustic and electromagnetic
radiation and scattering problems in continuously stratified and layered media.

Similar problems arise in water waves, in the case where a harmonic-wave of angular frequencyω, propagating
in a region of parallel bottom contours, interacts with a localized 2D bed irregularity. In this case, if the bed is mildly
sloping in the region under consideration, one-equation models, such as the classical mild-slope equation [3], or
the modified mild-slope equation [4–6], can be used for the description of wave propagation and diffraction. The
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mild-slope equation, written with respect to the velocity potential on the free surfaceF=F(x, y), where (x, y) are
the horizontal coordinates, reads as follows:

∇2F + ∇(ccg)

(ccg)
∇F +K2(1 + ψ)F = 0. (1.1)

In Eq. (1.1)c andcg are the local phase and group velocities of water waves, respectively,K is the local wavenumber
obtained as the positive root of the dispersion relationω2=Kg tanh(Kh), andh=h(x, y) is the local depth. The
functionψ=ψ(x, y) appearing in Eq. (1.1) is given by

ψ =
{

0, for the classical mild-slope equation,
ψ(k0h; ∇h,∇2h), for the modified mild-slope equation.

(1.2)

See, e.g., [6]. The above models are widely used to predict wave properties in coastal regions, since they have been
proved capable to treat general complex wave fields with satisfactory accuracy, for bottom slopes up to 1:3, or even
higher [7]. Moreover, it can be easily shown that, by the substitutionΦ = √

ccgF , Eq. (1.1) reduces to the 2D
Helmholtz equation [3],

∇2Φ + k2
2DΦ = 0, where k2

2D(x, y) = K2(1 + ψ)− ∇2√ccg√
ccg

. (1.3)

Consider now the environment presented in Fig. 1. Leth2D(x, y) be the 2D depth function, decomposed as follows:

h2D(x, y) = h(x)+ hloc(x, y), (1.4)

wherehloc(x, y) denotes the 2D depth disturbance due to a localized bed irregularity, superimposed over the 1D
bottom shoalingh(x). We denote byk2D(x, y) andk(x) the wavenumbers associated with the depth functionsh2D(x,
y) andh(x), respectively. LetBR be the region enclosed by a circle of radiusRcontaining strictly inside the localized
inhomogeneity, andnnn the outward unit normal on the circle∂BR; see Fig. 1. From the previous definitions, it is
obvious that

k2D(x, y) = k(x), (x, y) ∈ R2\BR. (1.5)

LetΦ i (x, y) be the (transformed) velocity potential on the free surface of a propagating wave over the 1D bottom
shoalingh(x), in the absence of the local irregularityhloc(x, y). This potential can be calculated by solving a 1D (in
thex-direction) mild-slope equation; see, e.g., [4,5], or its extended versions [8,9]. In the case of an oblique-incident

Fig. 1. Bathymetric contours of the examined environment.
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wave (θ 6=0), the transverse (y) dependence can be explicitly factored out [4]. Thus, the wave potentialΦ i=Φ i (x, y)
can be considered known (for any wave directionθ ), and it will serve the purpose of the incident wave field. The
presence of the localized 2D bed irregularityhloc(x, y) gives rise to a diffraction potentialΦd=Φd(x, y), satisfying
the following equation:

∇2Φd + k2
2D(x, y)Φd =

{−(k2
2D(x, y)− k2(x))Φi, (x, y) ∈ BR,

0, (x, y) ∈ R2\BR.
(1.6)

In order to treat the above problem it is important to know the far-field behavior of the diffracted fieldΦd(x, y).
However, since the parameterk2D(x, y) is azimuthally anisotropic at infinity, the only a priori assumption that can
be safely imposed is of qualitative nature, i.e.

Φd(x, y)behaves like outgoing waves asR =
√
x2 + y2 → ∞. (1.7)

The major contribution of the present work is to investigate the asymptotic behavior ofΦd asR→∞, providing
quantitative information on the structure of the far-field and eliminating the vagueness of the radiation condition
(1.7).

It should be mentioned here that there have been developed numerical techniques permitting the solution of
Eq. (1.6), in compatibility with the qualitative radiation condition (1.7). Some of the most common techniques of
this kind are the artificial or non-reflecting boundary conditions (ABCs or NRBCs), the absorbing layers and the
infinite elements. All the above are introduced in conjunction with an artificial exterior boundary in order to eliminate
the infinite domain and to absorb without reflection the wave energy that reaches the artificial boundary; see, e.g.,
the surveys by Givoli [10,11], and Tsynkov [12], and the references cited therein. However, one of the major tasks
in using these techniques is the investigation of the optimum values of the involved numerical parameters (such as
the position of the artificial boundaries, the coefficients of the NRBCs, the properties of the absorbing layers, or the
representation of the wave field at infinity by means of the infinite-element shape functions) in order to minimize
the contamination of the numerical solution by pseudo-reflections. This task is usually the most cumbersome and
costly part of applications anticipated by the above methods.

A more efficient approach to treat the diffraction problem, Eqs. (1.6) and (1.7), is offered by utilizing the Green’s
integral formula for the representation of the diffracted fieldΦd outside the localized inhomogeneity. By assuming
zero contribution from the boundary at infinity (a working hypothesis to be justified a posteriori), the Green’s
representation reads

Φd(x, y) = 1

2π

∫
∂BR

(
Φd
∂G

∂n
− ∂Φd

∂n
G

)
dl, (x, y) ∈ R2\(BR ∪ ∂BR), (1.8)

where the involved Green’s functionG=G(x, y; x0, y0) satisfies

∇2G+ k2(x)G = −2πδ(x − x0, y − y0), (1.9)

and behaves like outgoing waves at infinity. The integral representation (1.8) shows that the determination of the
far-field behavior of the solutionΦd reduces to the far-field behavior of the Green’s functionG. The latter is a
much more tractable problem, since the wavenumberk(x) involved in Eq. (1.9) is 1D and, thus, this equation can be
reduced to a 1D-model equation by applying a Fourier transform. The construction ofG and the study of its far-field
asymptotics is the main contribution of the present work. Moreover, the above Green’s function can be exploited
for the equivalent reformulation and solution of the diffraction problem as amatching-boundary value problemin
the bounded subdomain enclosing the bottom irregularity. See, e.g., [13] for the diffraction of water waves by a
localized bed irregularity in a constant depth region, and [14] for the acoustic scattering by a compact obstacle in
a stratified host medium. For all the above purposes, an accurate and efficient calculation of the Green’s function
(1.9) is necessary. Unfortunately, explicit analytical expressions of Green’s functions for the Helmholtz equation in
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anisotropic media are available only for a restricted class of wavenumber profiles. For a review see, e.g., [1,15–17].
Thus, it is necessary to resort to numerical calculations.

In the present work an effective numerical Fourier inversion scheme will be applied to the construction and study
of the source potential, Eq. (1.9), in a continuously layered medium with different properties at infinity. The contents
of the present work are organized as follows: in Section 2, the differential formulation of the problem is presented,
in the physical and in the Fourier-transformed domain. It is assumed that the depth function and, thus, the index of
refraction are continuously varying only in a finite interval, where also the source is located, and attain constant,
but different, values in the adjacent semi-infinite intervals. By applying domain decomposition, the transformed
problem is reformulated as a transmission problem in the finite interval containing the parameter irregularity, in a
form suitable for numerical calculations. Care is taken for extending the formulation in the complex Fourier domain,
permitting, at a subsequent step, a robust numerical inversion by means of FFT with a simultaneous elimination of
the aliasing effect. Similar treatment has been previously reported for applications involving the Hankel transform
for 3D acoustic wave propagation in plane-stratified media [18], in homogeneous media above an impedance plane
[19], and in waveguides [20,21].

In Section 3, an analytical solution in the physical domain is derived in the characteristic case of a simply-
discontinuous infinite medium [1,2], with the source located at the interface. This solution, except of its own
significance, can serve as a benchmark for the assessment of numerical models developed for treating more general
environments of the same kind. In this connection, it is also exploited in the present work for checking the accuracy
of the numerical Fourier inversion, which is presented in Section 4. The principal far-field asymptotics of the source
field in the case of a simply-discontinuous infinite medium are studied in Section 3, and are further exploited in
Section 5, where the far-field of the source potential in a region characterized by a smooth 1D bottom variation with
different depths at infinity is examined.

The present analysis demonstrates that, in the case of a continuous, monotonic bed profile, the far-field pattern
exhibits common features with the simply-discontinuous wavenumber case. The main characteristics of the far-field,
up to the leading order O(R−1/2) are: (i) the formation of a shadow zone with an ever expanding width, which is
located along the bottom irregularity, and (ii) in each of the two sectors not including the bottom irregularity
the asymptotic behavior of the wave field approaches the form of an outgoing cylindrical wave propagating with
wavelength corresponding to the sector-depth at infinity. Moreover, the weak wave system propagating along the
bottom irregularity is of order O(R−3/2), and consists of the superposition of two outgoing waves with wavelengths
corresponding to the two depths at infinity. Finally, a transverse resonance condition is derived, in the form of an
eigenvalue integral equation, which could be found useful in recognizing the emergence of poles in the case of
non-monotonic profiles leading to duct propagation [1,3]. This could happen, e.g., in the case of diffraction of an
oblique-incident wave by a localized scatterer superimposed over a smooth underwater ridge, where the appearance
of guided modes (or trapped waves) along the bottom irregularity, at specific frequencies, is possible ([3], Chapter
4.6).

2. Differential formulation of the problem

Consider the continuously layered environment which is schematically presented in Fig. 2. The wave field
is excited by a monochromatic point source of angular frequencyω. It is assumed that the index of refraction
n(x)=k(x)/k∗, wherek(x) is given by Eq. (1.3) andk∗=max{k(x), x∈R}is the reference wavenumber of the medium,
exhibits an arbitrary 1D variation in a finite interval [a, b]. Thus, the distributions ofn(x) andk(x) are characterized
by parallel and straight contours lying between two regions of constant, but different, values,k=k1 andk=k3; see
Fig. 2. Without loss of generality it is assumed thatk3>k1.

The wavenumber,k=k(x)>0, is considered to be a smooth function defined over the real axisR. In accordance
with the previous description

k(x) = k(a) = k1 for all x ≤ a, k(x) = k(b) = k3 for all x ≥ b. (2.1)
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Fig. 2. Wavenumber (or index of refraction) variation. The position of the source is denoted by using an asterisk.

Thus, the domainD=R2 is decomposed into three subdomainsD(m),m=1, 2, 3, whereD(1) is the constant-parameter
subdomainx≤a, D(3) the constant-parameter subdomainx≥b, andD(2) the variable parameter subdomain lying
betweenD(1) andD(3). Let us assume the following representation of the source-generated potential:

Φ(rrr, rrr0; t) = Re{Φ(rrr, rrr0; k)exp(−iωt)}, (2.2)

where i= √−1 andrrr=(x, y) denotes the field point. According to Eq. (1.9) the problem is formulated in terms of
the frequency-dependent potentialΦ=Φ(rrr, rrr0; k) as follows:

∂2Φ

∂x2
+ ∂2Φ

∂y2
+ k2(x)Φ = −2πδ(rrr − rrr0), rrr ∈ D, (2.3a)

Φ along with its spatial derivatives is bounded and at any directionθ behaves like outgoing waves as

R = |rrr − rrr0| =
√
(x − x0)2 + (y − y0)2 → ∞, (2.3b)

whererrr0=(x0, y0) is the location of the point source. All derivatives appearing in Eqs. (2.3a) and (2.3b) are with
respect to the field-point variablesrrr=(x, y). Without loss of generality it is assumed thatrrr0∈D(2) andy0=0. The
boundary value problem (2.3a) and (2.3b) will be referred to as theoriginal wave problemP(D, k, rrr0). Since the
geometry of the domain and the forcing of this problem are symmetric with respect toy, the solutionΦ(rrr, rrr0; k)



344 K.A. Belibassakis / Wave Motion 32 (2000) 339–361

exhibits the same symmetry. It is possible to reduce the dimensionality ofP(D, k,rrr0) by taking the Fourier transform
with respect toy. The transformed wave potential will be denoted byϕ(x, x0; ξ ). The following pair of equations
clarifies our conventions regarding the 2π -factors and exponent signs in the Fourier transform:

ϕ(x, x0; ξ) = 1

2π

∫ +∞

−∞
Φ(rrr, rrr0; k)e−iyξ dy, (2.4a)

Φ(rrr, rrr0, k) =
∫ +∞

−∞
ϕ(x, x0; ξ)e+iyξ dξ. (2.4b)

2.1. The Fourier-transformed problem

Applying the Fourier transform to the problemP(D, k, rrr0), we obtain the following family of 1D wave problems:

∂2ϕ

∂x2
+ (k2(x)− ξ2)ϕ = −δ(x − x0), −∞ < x < ∞, (2.5a)

ϕ along with its spatial derivatives is bounded and behaves like outgoing waves as

|x| → ∞ (2.5b)

for all ξ∈R. The family of problems (2.5a) and (2.5b) will be referred to as thetransformed wave problemPξ (k,
x0). The source-point being fixed, the transformed wave potentialϕ(x, x0; ξ ) will be occasionally denoted byϕ(x;
ξ ). Since the source potentialΦ is y-symmetric, the transformed wave potential will also be symmetric with respect
to the Fourier parameterξ . Thus, it is possible to consider the problemPξ (k, x0) only for ξ∈R+, and then extend
the solution toξ∈R− by symmetry, i.e.

ϕ(x, x0; ξ) = ϕ(x, x0; −ξ), ξ ∈ R−. (2.6)

Obviously,ϕ(x, x0; ξ ) is a continuous function of both argumentsx, x0, with a simple discontinuity in its first
derivative atx=x0. The existence and uniqueness of the solution ofPξ (k, x0), for a layered medium, is discussed by
other authors; see, e.g., [14,22]. Furthermore, it is known [1], thatϕ(x; ξ ) exhibits branch-points located atξ=±km,
m=1, 3 (see Eq. (2.8)), and decays exponentially for large values of the Fourier parameter,

ϕ(x, x0; ξ) ≈ exp(−ξ |x − x0|)
2ξ

, ξ → ∞. (2.7)

WKB asymptotic solutions toP(D, k, rrr0) andPξ (k, x0) can be constructed by the direct ray-optical method and by
the asymptotic evaluation of radiation integrals [1]. However, these solutions are valid only in the high-frequency
case or in the case of a slowly varying medium (|dk/dx| � k2). In the present work we are interested in the complete
solution of the problem and the study of its asymptotic behavior in the far-field.

We shall now proceed to an equivalent reformulation of the problemPξ (k, x0) asa transmission problemin the
variable parameter subintervald(2)=(a, b).To this aim, for any value of the Fourier parameterξ∈R+, the following,
general representations of the potentialsϕ(m)(x, x0; ξ ), m=1, 3, in the two semi-infinite intervalsd(1)=(−∞, a]
andd(3)=(b, ∞] will be used:

ϕ(m)(x, x0; ξ) = C(m)(x0; ξ)exp(i|x − x0|K(m)(ξ)), where K(m)(ξ) =
√
k2
m − ξ2, m = 1,3. (2.8)

The coefficientsC(m)(x0; ξ )≡C(m),m=1, 3, will be determined by means of the matching conditions at the interfaces
x=a andx=b, requiringC1 — continuity of the wave potential. Exploiting the representations (2.8) the problem
Pξ (k, x0) can be reformulated as atransmission problemin the bounded intervald(2) as follows:
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Problem (PTξ (k, x0)). Find the potentialϕ(2)(x, x0; ξ ) defined ind(2) satisfying the equations:

∂2ϕ(2)

∂x2
+ (k2(x)− ξ2)ϕ(2) = −δ(x − x0), a < x < b, (2.9a)

∂ϕ(2)

∂x
+ i
√
k2

1 − ξ2ϕ(2) = 0, x = a, (2.9b)

∂ϕ(2)

∂x
− i
√
k2

3 − ξ2ϕ(2) = 0, x = b. (2.9c)

Having obtained the solutionϕ(2)(x, x0; ξ ) ofPT
ξ (k, x0), the coefficientsC(m) of the expansions (2.8) ind(m), m=1,

3, are then given by

C(1) = ϕ(2)(x = a; ξ)exp(−i|a − x0|K(1)(ξ)), C(3) = ϕ(2)(x = b; ξ)exp(−i|b − x0|K(1)(ξ)). (2.10)

2.2. Extension of the formulation to complexξ

For obtaining the numerical solution of the problemP(D, k, rrr0), the Fourier inversion (2.4b) will be evaluated by
an efficient application of the discrete Fourier transform (see Section 4). The latter is based on the truncation of the
infinite interval of integration and on the discretization (sampling) of the integrand in the finite subinterval. However,
it is well known that undersampling in theξ -domain causes aliasing in the physicaly-domain. An effective way to
eliminate the aliasing problem is to move the integration contour in the complex plane. Thus, we need to consider
the transformed wave problem for complexξ=ξ1+iξ2 and, especially, forξ lying in a stripScd={−∞<ξ1<∞,
c<ξ2<d} parallel to the real-ξ axis (see Fig. 3). The condition of symmetry (2.6) is naturally extended in the
complex domain as follows:

ϕ(x, x0; ξ1 + iξ2) = ϕ(x, x0; −ξ1 − iξ2), ξ ∈ Scd . (2.11)

Under specific conventions that will be introduced below for treating the multi-valued functionsK(m)(ξ ), m=1, 3,
in the complex domain, we assume that the representations ind(m) remain valid for lying in the right-half strip

ξ ∈ S+
c0 = {0< ξ1 < ∞, c < ξ2 ≤ 0}, (2.12)

wherec<0 is a small negative number, and its symmetric left-half stripS−
0d with respect to the origin; see Fig. 3.

The branch-points of the functionsK(m)(ξ) = √
k2
m − ξ2, are located symmetrically on the realξ -axis at the

points,ξ=±km, m=1, 3. We define the associated cuts along the realξ -axis, as presented in Fig. 3 by using thick

Fig. 3. Integration path for the Fourier inversion in the complexξ -domain.
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lines, so that the imaginary part ofK(m)(ξ ) takes positive values below the real axis and along the branch cut
emanating fromξ=+km, m=1, 3, and above the real axis along the branch cut emanating fromξ=−km, m=1, 3.
Thus, forξ ∈ S+

c0∪S−
0d , it holds Im{K(m)(ξ )}>0. On the basis of the above considerations, and under the assumption

that the functions{C(m)(ξ ), m=1, 3} remain regular inS+
c0 ∪ S−

0d , and well-behaved at infinity for

ξ ∈ S+
c0 ∪ S−

0d , |ξ1| → ∞, (2.13)

the representations (2.8) satisfy all requirements of the transformed problemPξ (k, x0) in d(m), m=1, 3, including
the radiation condition, Eq. (2.5b). Thus, the formulation is extended to complexξ . On the basis of the theory of
analytic functions, the Fourier inversion can be equivalently calculated by moving the integration contour (C) in the
complex domain withinS+

c0 ∪ S−
0d . Furthermore, by taking the contour to be symmetric with respect to the origin,

see Fig. 3, and using Eq. (2.11), the Fourier inversion formula is written as follows:

Φ(rrr, rrr0;µ) = 2
∫
ξ∈(C+)

ϕ(x, x0; ξ) cos(ξy)dξ, (2.14)

where (C+) is the symmetric part of (C) lying in S+
c0. It is clear from the above discussion that for the solution of

the problem to satisfy the radiation condition (2.3b), the integration path in Eq. (2.4b) must be considered indented
below the positive, and above the negative, realξ -axis [1,2]. By the above choice of the position of the branch cuts,
the following relations are valid on the realξ -axis:

K(m)(ξ) =
√
k2
m − ξ2 =

{
i
√
ξ2 − k2

m, |ξ | > km,√
k2
m − ξ2, |ξ | < km,

m = 1,3, (2.15)

see also [23].

3. The case of a simply-discontinuous medium

The classical problem of the field generated by an acoustic point source located at a finite distance from an interface
between two homogeneous media, and its far-field asymptotics, both in two and in three dimensions, has received
great attention in the literature of acoustic and electromagnetic wave propagation. A thorough presentation including
also an elucidating discussion on the details of the solution of this problem can be found in the monographs by Felsen
and Marcuvitz [1] and Bleinstein [24], in two and three dimensions, and in [2], in three dimensions. In all the above
works the reference integral method (saddle point or steepest decent method) is applied to the determination and
study of the behavior of the field at relatively large observation distances from the source, where the representation
(Fourier) integrals are amenable to asymptotic evaluation.

In the present section we shall review the fundamental aspects of the solution of the 2D source problem, in the
special case where the source is assumed to be located exactly on the interface of a medium characterized by a
simply-discontinuous wavenumber distribution of the form:

k(x) = k1 + (k3 − k1)U(x − x0), (3.1)

whereU(x−x0)=1
2+1

2 sign(x−x0) is theHeavisideunit-step function. For later convenience we shall refer to this as
thek1 k3 case. For this problem, an alternative analytical solution in the physical space, in the form of a double-layer
potential induced by a generalized dipole distribution over the interface, will be first derived. This result will be
exploited in the next section for the assessment of the numerical Fourier inversion scheme, developed for treating
the source problem in a general, continuously layered medium. Moreover, as it will be illustrated in Section 5, the
far-field asymptotics of thek1 k3 problem exhibit common features with the source-generated field in a general
continuously layered medium, characterized by a monotonic wavenumber (or index of refraction) profile in the
middle intervald(2)=[a, b] with the same end-values atx=a andx=b.
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In the k1 k3 cased(2)=∅, and the solution of the Fourier-transformed problemPξ (k, x0) in d(m), m=1, 3, is
obtained from Eqs. (2.5a) and (2.5b) as follows:

ϕ(m)(x, x0; ξ) = i√
k2

1 − ξ2 +
√
k2

3 − ξ2
exp(i|x − x0|K(m)(ξ)), m = 1,3, (3.2a)

whereK(m)(ξ ) are given by Eq. (2.8). Obviously, in this case

C(1)(ξ) = C(3)(ξ) = i√
k2

1 − ξ2 +
√
k2

3 − ξ2
. (3.2b)

The above result is also confirmed by the analysis of Felsen and Marcuvitz [1] and Bleinstein [24]. Then, by
using Eq. (2.15), the inverse Fourier transform (2.4b) of the potential (3.2) atx=x0, providing the fieldΦ(x=x0, y)
along the interface, can be derived in closed form; see ([25], Chapter 9, paragraph 130/134). Restricting ourselves
only to the symmetrical part of the physical domain (y>0), the analytical result is

µ(y) ≡ Φ(x = x0, y) = π i

k2
1 − k2

3

(
k1H

(1)
1 (k1y)

y
− k3H

(1)
1 (k3y)

y

)
, (3.3)

whereH(1)
1 is theHankelfunction of the first kind and first order. Eq. (3.3) is also reported in ([1], p. 625). It is

important to notice here the following facts concerning the distributionµ(y) on thex=x0 axis:
1. The distributionµ(y) presents a logarithmic (weak) singularityµ(y)∼(−i/π )ln(y), as y→0, and a decay

|µ(y)|∼y−3/2, asy→∞.
2. Eq. (3.3) reduces to the Green’s function of the homogeneous Helmholtz equationΦ(x = x0, y) = (iπ/2)
H 1

0 (k∗y), ask1→k3=k∗.
By substituting Eq. (3.3) to the Fourier inversion formula (2.4b) and by applying the convolution theorem for

generalized functions [26,27], we obtain after some algebra the following expression for the source field inD(m),
m=1, 3:

Φ(x ∈ d(m), y) = −π
2

km(x − x0)sign(x − x0)

k2
1 − k2

3

∫ t=∞

t=−∞

(
k1H

(1)
1 (k1|t |)
|t | − k3H

(1)
1 (k3|t |)
|t |

)
H
(1)
1 (kmRt )

Rt
dt,

(3.4)

whereRt =
√
(x − x0)2 + (y − t)2. Clearly, Eq. (3.4) is a representation of the solution as the potential induced

by a double-layer distribution over the interfacex=x0, with intensityµ(y) given by Eq. (3.3). The latter result is
compatible with Eq. (3.3) in the limitx→x0. The above formulae provide us with an analytical expression of the
solution of the source field in the case of a simply-discontinuous layered medium in the whole physical domain.
Numerical demonstrations of these formulae will be given in Section 4.

Apart from its own significance, the above result can serve as a benchmark for the assessment of various numerical
models developed for treating more general environments of the same kind. In this connection, it will be used in
the next section in order to demonstrate the effectiveness of the numerical Fourier inversion scheme developed for
treating the source problemP(D, k, rrr0) in the case of an environment characterized by a general profilek(r). Before
proceeding to that, we shall briefly review the structure and the singularities of the transformed wave potential
ϕ(x, x0; ξ ) in thek1 k3 case. This information will be further exploited in Section 5, where the principal far-field
asymptotics of the wave field, in the generalk(x) case, will be derived.
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3.1. The structure and theξ -singularities of the transformed potential

It is obvious from Eqs. (3.2a) and (3.2b) that, in thek1 k3 case, the transformed wave potentialϕ(x, x0; ξ ) is a
continuous and bounded function all over the realξ -axis, presenting a decay

ϕ ∼ |ξ |−1 exp(−|x − x0|K(m)(ξ)), |ξ | → ∞, m = 1,3, (3.5)

in agreement with Eq. (2.7). As already mentioned, the source potentialϕ(x, x0; ξ ), being a function ofK(m)(ξ ),
exhibits branch-points atξ=±k1 andξ=±k3. At these points, the firstξ -derivative ofϕ(x, x0; ξ ) exhibits weak
(absolutely integrable) singularities of the form∣∣∣∣∂ϕ(x, x0; ξ = ±km)

∂ξ

∣∣∣∣ ∼ |km − ξ |−1/2, m = 1,3. (3.6)

Using Eq. (2.15), we observe from Eqs. (3.2a) and (3.2b) that the intensity of the singularities atξ=±k3 weakens
exponentially as we move away from the source-point in the subintervald(1) (x<x0), where the wavenumber and the
index of refraction is assumed smaller (k1<k3). On the other hand, these singularities persist in the whole subinterval
d(3) (x>x0), where the index of refraction is assumed greater, leading to a more complicated wave pattern on this
side (D(3)) of the physical space.

3.2. The far-field asymptotics of the solution in the k1 k3 case

The far-field asymptotics of the source-generated fieldΦ(rrr, rrr0; k) in thek1 k3 case can be easily derived from
the analysis of Felsen and Marcuvitz [1] and Bleinstein [22], by letting the source to reach the interface. In these
works the method ofsteepest descent[2,28] is applied, including the higher order O(k∗R)−3/2 diffraction effects
from the branch-cut integral contributions associated with the appearance of the lateral wave ind(3).

In the present subsection we are interested in reviewing the principal O(k∗R)−1/2 far-field structure of the potential
Φ(rrr, rrr0; k) given by Eqs. (3.3) and (3.4). This can be easily accomplished by applying the method ofstationary
phase[2,28]. By substituting Eq. (3.2a) into the Fourier inversion formula (2.4b), and restricting ourselves to the
symmetrical party>0 of the physical domainD, we obtain

Φ(m)(rrr, rrr0; k) =
∫ ∞

ξ=−∞
C(m)(ξ)exp(ik∗RS(m)(R, θ; k))dξ, m = 1,3, (3.7)

whereR =
√
(x − x0)2 + y2 is the distance from the source,θ=tan−1(y/(x−x0)) is the azimuthal angle with respect

to the source-point,k∗=max{k}, andS(m)(R, θ ; k) is the phase function

S(m)(R, θ; k) = 1

k∗
[|cosθ |

√
k2
m − ξ2 + sinθ ξ ], m = 1,3. (3.8)

By breaking the integral (3.7) into three parts:ξ∈(−∞,−km)∪[−km, km]∪(km,∞), and by using Eq. (2.15), we
can see that the contributions of the first and third parts diminish exponentially asR→∞. For ξ∈[−km, km] the
phase (3.8) admits only real values, and thus, for this part, the stationary phase method is applicable. The points of
stationarity of the phase functionS(m)(R, θ ) are directly determined by setting its firstξ -derivative equal to zero,

ξ
(m)
st = km sinθ, m = 1,3. (3.9)

By calculating the values of the secondξ -derivative of the phase functionS(m)(R, θ ) at points of stationarity
ξ = ξ

(m)
st , m=1,3, we finally obtain

Φ(m)(rrr, rrr0; k) = iπ

2
exp

(
i
(
kmR − π

4

))√ 2

πkmR
F(θ; k)+ O

(
1

k∗R

)3/2

, m = 1,3, (3.10a)
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Fig. 4. Polar plot of the modulus of the far-field patternF(θ ; k) in thek1 k3 case, for (1)̃k1 = k3/k1 = 1.01, (2) k̃1 = 1.6, (3) k̃1 = 3 and (4)
k̃1 = 10, corresponding to critical angles (1)θc=81.9◦, (2) θc=38.6◦, (3) θc=19.4◦ and (4)θc=5.7◦, respectively.

where

F(θ; k) = 2|cosθ |
|cosθ | +

√
k̃2
m − sin2 θ

, m = 1,3, (3.10b)

is the source far-field pattern.1 The parameters̃km,m=1,3 appearing in the above equation are defined as follows:

k̃1 = k3

k1
> 1, k̃3 = k1

k3
= sinθc < 1, (3.10c)

whereθc is the critical angle.
We can clearly observe in Eqs. (3.10a)–(3.10c) the geometrical spreading law, and that the far-field wave pattern

exhibits a strong azimuthal anisotropy. The main features of this anisotropy are the formation of a shadow zone
centered along the parameter (wavenumber) irregularity (θ=90◦) and that, asx→±∞ in the two sectors not including
the parameter irregularity, the asymptotic behavior of the far-field approaches the standard one, corresponding to

1 The error term predicted by the stationary phase method in Eq. (3.10a) is actually O(k∗R)−1, but in the present case it is known that the next
contribution to the far-field comes from the branch-cut integrals and is of order O(k∗R)−3/2.
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cylindrical outgoing waves, propagating inD(m), m=1, 3, with the wavelengths at infinityλm=2π /km, respectively.
All the above features are also demonstrated in Fig. 4, which is a polar plot of the modulus of the far-field pattern
F(θ ; k) for various characteristic values ofk̃1 = 1.01,1.6,2 and 10, corresponding to critical anglesθc=81.9◦,
38.6◦ 19.4◦ and 5.7◦, respectively. We can observe in this figure the following facts concerning the far-field structure
of the source-generated field in thek1 k3 case:
1. As k̃1 → 1, |F(θ ; k)|→1, and the above results tend to the far-field asymptotics of the source in a uniform

medium.
2. As k̃1 increases, the width of the shadow (centered atθ=90◦) also increases, and fork̃1 → ∞ the shadow

tends to expand to the whole subdomainD(1). At the same time the complementary region (the subdomainD(3)

corresponding to the greater wavenumber) becomes the propagating wave zone.
3. For intermediate values ofk̃1, the azimuthal anisotropy of the far-field is stronger inD(3). This is because, except

the variation from the shadow (centered atθ=90◦) to the wave zone (centered atθ=0◦ and 180◦, respectively),
in D(3) the radical of the denominator of Eq. (3.10b) changes sign (see Eq. (3.10c)) at the valueθ=θc producing
the peaks appearing at the critical angle.
In order to illustrate the closeness between the leading asymptotic approximation and the complete

solution, comparisons between the analytical solution, given by Eqs. (3.3) and (3.4), and the far-field asymp-
totic approximation, Eqs. (3.10a)–(3.10c), are presented in Figs. 5 and 6, in the case of a discontinuous medium
with k1=0.2798 m−1 and k3=0.4463 m−1. In this case the ratiõk1 = 1.6. These wavenumbers correspond to
water waves emitted from a pulsating source at a frequencyω=1.6 rad s−1 and propagating at depthsh1=6 m
and h3=1.5 m, with wavelengthsλ1=22.45 m and λ3=14.08 m, respectively (see also Section 4.3).
The real part of the wave potential in the near field is presented in Fig. 5 by using equipotential lines. We
can observe the similarity between the two patterns outside of a few wavelengths range from the
source.

In Fig. 6 a comparative polar plot of the modulus and the phase of the source-generated field at an intermediate
range (R=150 m) from the source is presented. The small discrepancies between the analytical solution and its
far-field asymptotic approximation in the sectorθ∈bθc=38.6◦, 90◦c and its symmetric with respect to thex-axis
are due to the effect of the lateral wave, which is more profound there. As already mentioned, this is a lower order
O(k∗R)−3/2 diffraction component, that can also be predicted in the far-field by including the branch-cut integral
contributions. See also Refs. [1,24].

Fig. 5. Real part of the source field in thek1 k3 case, fork1=0.2798 m−1 andk3=0.4463 m−1, corresponding to water waves of frequency
ω=1.6 rad s−1 at depthsh1=6 m andh3=1.5 m, respectively. Comparison between (a) the analytical solution Eq. (3.4) and (b) the principal
far-field asymptotic approximation, Eqs. (3.10a)–(3.10c).
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Fig. 6. Polar plots of (a) the modulus and (b) the phase of the source field in thek1 k3 case, withk1=0.2798 m−1 andk3=0.4463 m−1, at an
intermediate rangeR=150 m a few wavelengths from the source. Comparison between the analytical solution (solid lines) and the principal
far-field asymptotic approximation (dashed lines).

4. Numerical Fourier inversion of the transformed wave potential

The numerical solution of the boundary value problemPT
ξ (k, x0), Eqs. (2.9a) and (2.9b), in conjunction with the

representations (2.8) in the two semi-infinite intervalsd(m), m=1,3, enables us to calculate the transformed wave
potentialϕ(x, x0; ξ ) for any wavenumber distributionk(x) of the form (2.1) and throughout the whole real axisx∈R.
The last, but not trivial, step required in order to obtain the solution of the problem in the physical domain is to
carry out the Fourier inversion, by using either the standard formula (2.4b) or its complex counterpart, Eq. (2.14).
The complex Fourier inversion will be applied in the present work, permitting us an efficient and robust calculation
of the source field by means of thefast Fourier transform(FFT), and eliminating the aliasing problem due to the
(numerical) undersampling of the integrand.

4.1. The path of integration in the complexξ -plane

Assuming that, for allx∈R, the transformed wave potentialϕ(x, x0; ξ ) is well-behaved at infinity asξ→∞ in
S+
c0, the contour of integration associated with the inverse Fourier transform (2.14) can be arbitrarily deformed into

a new path (C+), as shown in Fig. 7. This path is composed of the following three parts:(C+
1 ) = {ξ1 = 0,−τ <

ξ2 < 0}, (C+
2 ) = {0 < ξ1 < Ξ, ξ2 = −τ }, and(C+

3 ) = {Ξ < ξ1 < ∞, ξ2 = −τ }, whereτ>0 is a small

Fig. 7. The path of integration for the numerical Fourier inversion. The branch cuts associated withξ=±k1, ±k3 are denoted by thick lines.
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positive number. Thus, the Fourier integral (2.14) can be equivalently put in the form

Φ(rrr, rrr0;µ)= 2
∫
(C1)∪(C2)∪(C3)

ϕ(x, x0; ξ)cos(ξy)dξ

= 2
∫ ξ2=τ

ξ2=−τ
ϕ(x, x0; iξ2)cosh(ξ2y)dξ2 + exp(τy)

∫ Ξ

ξ1=−Ξ
ϕ(x, x0; |ξ1| − iτ)exp(iξ1y)dξ1

−2 sinh(τy)
∫ Ξ

ξ1=0
ϕ(x, x0; ξ1 − iτ)exp(−iξ1y)dξ1 + 2

∫ ∞

ξ1=Ξ
ϕ(x, x0; ξ)cos((ξ1 − iτ)y)dξ1.

(4.1)

The first term in the right-hand side of Eq. (4.1) is the integral along(C+
1 ), the second and the third terms together

are equivalent to the integral along(C+
2 ) and the fourth term is the integral along(C+

3 ). If τ is an appreciably small
number, then, for moderate transverse ranges (y), the first and the third integrals in the right-hand side of Eq. (4.1)
can be disregarded without significant loss in accuracy.

If Ξ>0 is selected to be appropriately large (Ξ � k∗), the contribution of the fourth integral in the right-hand
side of Eq. (4.1) can be efficiently approximated by using the large-ξ asymptotics of the wave potential (2.7b) as
follows:

2
∫ ∞

ξ1=Ξ
ϕ(x, x0; ξ)cos((ξ1 − iτ)y)dξ1 ≈

∫ ∞

ξ=Ξ
exp(−ξ1|x − x0|)

ξ1
dξ1 = Re{E1(Ξ(|x − x0| + iy))}, (4.2)

where the last integral has been analytically calculated, see ([29], paragraph 3.944 (4)) in terms of the exponential
integralE1, as defined by Abramowitz and Stegun [30]. Thus, we have arrived at the following result:

Φ(rrr, rrr0; k) ≈ exp(τy)
∫ Ξ

ξ1=−Ξ
ϕ(x, x0; |ξ1| − iτ)exp(iξ1y)dξ1 + Re{E1(Ξ(|x − x0| + iy))}. (4.3)

It should be noted here that the second part in the right-hand side of Eq. (4.3), which includes the exponential integral,
offer us a good representation of the numerical solution even in the neighborhood of the singularity (x=x0, y=0).

On the basis of the above considerations, and under the assumption that for smallc>τ>0, ϕ(x, x0; ξ ) remains
regular in the stripξ ∈ S+

c0 and well-behaved at infinity, Eq. (4.3), in conjunction with an application of FFT, can
be used for obtaining the numerical solution of the problem in the generalk(x) case.

4.2. Numerical inversion by application of the fast Fourier transform

Noting that, for allx∈R, the Fourier integral in the right-hand side of Eq. (4.3) is required (and thus, has to be
calculated) for many discrete ranges (y), this term can be very efficiently calculated by means of FFT; see, e.g., [31].
Consider the following discretization of the intervalξ∈[0, Ξ ] into a finite number (N) of equal-length segments,
with endpoints

ξl = (l − 1)1ξ, l = 1, . . . , N + 1, where1ξ = Ξ

N
. (4.4)

Let also the intervaly∈[0, Y] in the physical space be subdivided into the same number equal-length segments
1y, as follows:

yj = (j − 1)1y, j = 1, . . . , N + 1, where1y = π

1ξN
and Y = N1y = π

1ξ
. (4.5)

Moreover, consider the following even extension of the array{ϕl=ϕ(ξ l−iτ ), l=1, . . . , N+1}, τ>0 to l=N+2,
. . . , 2N:

ϕl = ϕl, l = 1, . . . , N + 1, ϕ2N−l+2 = ϕl, l = 2,3, . . . , N. (4.6)
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Thus, the total length of the extended array is an even number:M=2N. On the basis of the above considerations, the
integration in the right-hand side of Eq. (4.3) over the finite intervalξ∈[−Ξ ,Ξ ] is written in the following discrete
form:

Φ(yj )

exp(τyj )
= 1ξ

{
2N∑
l=1

ϕl exp

[
i
2π(l − 1)(j − 1)

2N

]}
, j = 1, . . . , N + 1. (4.7)

The summation in Eq. (4.7) can be very efficiently performed, simultaneously for all rangesy=yj , j=1, . . . , N+1
by applying FFT to the array{ϕl , l=1, M}, if N is selected to be a power of 2. The problem with the application of
FFT (and of DFT, in general) is that undersampling in the Fourierξ -domain causes aliasing in the physicaly-domain,
due to the periodicity assumed by the discrete Fourier transform. Actually, the evaluation of the right-hand side of
Eq. (4.7) does not yield the values of the functionΦ(x, yj , rrr0; k)/exp(τyj ), at the pointsy=yj , j=1, . . . , N+1, but
rather

∑∞
n=−∞Φ(x, yj + 2nY, rrr0; k)/exp(τ (yj + 2nY)); see, e.g., Refs. [31,32]. Taking this fact into account, we

obtain from Eq. (4.7) the following result:

Φ(x, yj , rrr0; k)=1ξ exp(τyj )
2N∑
l=1

ϕl exp

[
i
2π(l − 1)(j − 1)

2N

]

−
∑
n6=0

Φ(x, yj + 2nY, rrr0; k)exp(−2τnY), j = 1, . . . , N + 1. (4.8)

The aliasing effect from (physical) ranges |y|>Y is included in the second sum of the right-hand side of Eq. (4.8).
It is clear from the same equation that by moving the integration contour in the complex domain, i.e. forτ>0, the
aliasing effect will be attenuated by at least a factor exp(−2τY). On the other hand,τ cannot be too large because
Eq. (4.3) is derived on the basis that the first and third integrals of Eq. (4.1) can be approximately dropped, which
is possible only for appreciably small values ofτ . Thus, there is a relation between the expected accuracy by the
numerical Fourier inversion and the selection of the parametersτ ,Ξ andN.

Extensive numerical evidence has shown that a value ofΞ≈4–6k∗ is large enough in order to use the asymptotics
(2.7b) and obtain the contribution from the integral along the contour (C+

3 ) analytically. In all examples that will be
presented later on in the this paper, we have used a sampling of the interval [−Ξ , Ξ ] consisting ofM=210=1024
points, and a shifting of the integration contour inS+

c0 by τ≈1ξ . This choice results in an elimination of the aliasing
effect by a factor at least 0.002, and has been proved small enough for disregarding the contributions of the first and
third integrals in the right-hand side of Eq. (4.1) to the numerical solution.

In concluding this subsection, it should be mentioned that for the solution of the transmission problem (2.9a) and
(2.9b) a finite difference scheme is used. For any value of the Fourier parameterξ , the discrete system is constructed
by using central, second-order finite differences to approximate the derivatives in Eq. (2.9a). Discrete boundary
conditions are obtained by combining Eqs. (2.9a) and (2.9b) and then using central differences to approximate
derivatives. Thus, the discrete scheme obtained in this way is uniformly of second order in thex-direction. Moreover,
a number of about 20 points per horizontal wavelength is found to be sufficient to obtain accurate results.

4.3. Numerical examples

As a first demonstration of the numerical Fourier inversion scheme, we shall present calculated results in thek1 k3
case for which an analytical result is available, Eqs. (3.3) and (3.4). Comparisons between the solution obtained by
the numerical Fourier inversion, Eq. (4.8), and the analytical solution, Eqs. (3.3) and (3.4), for the discontinuous
medium with wavenumbersk1=0.2798 m−1 (corresponding to a wavelengthλ1=22.45 m) and (k3=0.4463 m−1)
(λ3=14.08 m), and for various values of the azimuthal angleθ are presented in Figs. 8 and 9. More specifically,
Fig. 8 presents numerical vs. analytical solution forθ=90◦, i.e. along the parameter irregularity, and for the first
100 m range from the source. The corresponding plots forθ=0◦ and 45◦ in d(3), and forθ=135◦ and 180◦ in d(1), are
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Fig. 8. Comparison between the analytical solution (solid line) and the numerical Fourier inversion (indicated by crosses) in thek1 k3 case, with
k1=0.2798 m−1 andk3=0.4463 m−1, atθ=0◦ and in the first 100 m range from the source: (a) real part of the wave potential; (b) imaginary part
of the wave potential.

presented in Fig. 9. In both figures the analytical solution results are plotted by using solid lines and the numerical
results by using crosses. We can observe the remarkable accuracy of the numerical Fourier inversion scheme, even
in the vicinity of the singular point.

As a next example, a monotonic bottom profile, of the form of a smooth underwater step, is considered. In this
case the depth function is selected to be

h(x) =



h1 = 6 m, x < a = 0,
h1 + h3

2
− h1 − h3

2
tanh

(
3π

(
x

b
− 1

2

))
, a < x < b,

h3 = 1.5 m, x > b = 30 m.

(4.9)

The bottom along with the corresponding wavenumber profilek(x), obtained by means of Eq. (1.3) for a source
frequencyω=1.6 rad s−1, is plotted in Fig. 10. As previously, the wavelength ranges fromλl=22.45 m, forx<a=0 m,
to λ3=14.08 m, forx>b=30 m, implying that both ratiosh1/λl=0.26 andh3/λ3=0.1 fall outside the limits of the
deep or the shallow water theory. A second non-monotonic bed profile, which is produced by superposing a small
bump to the former profile, will also be considered for computations. The latter, non-monotonic profile together
with the corresponding wavenumber distribution are also plotted in Fig. 10.

In the case of the monotonic bottom profile the calculated wave field generated by a source located atx0=15 m,
in the middle of the variable-depth interval, is presented in Fig. 11(a) by using equipotential lines. The wave
pattern presents a noticeable similarity with the correspondingk1 k3 case, shown in Fig. 5. Once again we observe
the formation of the shadow zone along the parameter irregularity, with an ever expanding width as the range
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Fig. 9. Comparison between the analytical solution (solid line) and the numerical Fourier inversion (indicated by crosses) in thek1 k3 case, with
k1=0.2798 m−1 andk3=0.4463 m−1, in the first 100 m range from the source. Real part of the wave potential: (a) atθ=0◦; (b) atθ=45◦; (c) at
θ=135◦; (d) atθ=180◦.

R =
√

|x − x0|2 + y2 increases, and that the wave field behaves like outgoing cylindrical waves in the two sectors
not including the parameter irregularity, propagating with wavelengthsλ1 andλ3, respectively. Extensive numerical
evidence has shown that the above behavior is characteristic for the class of monotonic bottom/wavenumber profiles,
justifying thus the study of thek1 k3 case as a prototype. We can also note in Fig. 11(a) the appearance of the lateral
waves in the azimuthal intervalbθc, 90◦c, which is more distinguishable in the present than in the corresponding
k1 k3 case; compare Figs. 11(a) and 5(a).

The above situation can be completely changed in the case of a non-monotonic bottom profile of the form of
a smooth underwater ridge, as the second profile plotted in Fig. 10. If the position of the source is taken to be
at (or near) the top of the ridge, a duct can be formed along the bottom irregularity (atθ=90◦), as it is clearly
illustrated in Fig. 11(b). In this case, the wave energy penetrating in the duct is trapped, and the strength of the
wave field does not attenuate with range inside the duct. The above result clearly demonstrates the significance of
the study of the Green’s function of the mild-slope equation in connection with the rigor of the formulation of the
diffraction problem of water waves by a 2D inhomogeneity in a shoaling environment, and especially as regards
the quantification of the radiation condition (1.7).

5. Far-field structure of the source field in the case of a monotonic bed profile

The numerical Fourier inversion scheme described in the previous section is accurate at small or intermediate
ranges from the source. This is true since, for largey, the contributions of the first and the third integrals in the
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Fig. 10. (1) Bottom profiles and (2) wavenumber profiles, for water waves emitted from a source at a frequencyω=1.6 rad s−1, considered for
computations: (a) monotonic bottom/wavenumber profiles; (b) non-monotonic bottom/wavenumber (of the form of a smooth underwater ridge).
In both cases the position of the source (x0) is indicated by using dashed lines.

right-hand side of Eq. (4.1) may become significant. Thus, in the present section we shall derive the far-field
asymptotic approximation of the Fourier integral (2.14) in the case of a monotonic bed and wavenumber profiles of
the form (2.1).

To start with, we shall introduce some additional notation. Letϕ(x, x0; ξ ), given by Eqs. (3.2a) and (3.2b), and
g(x, x0; ξ ) denote the solutions of the transformed problemPξ (k, x0) in thek1 k3 case, and in the generalk(x) case,

Fig. 11. Real part of the calculated wave field for the two bottom/wavenumber profiles shown in Fig. 10.
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respectively. The difference of the above distributions is defined as

γ (x, x0; ξ) = g(x, x0; ξ)− ϕ(x, x0; ξ). (5.1)

Let alsoΦ(rrr, rrr0; k), G(rrr, rrr0; k) andΓ (rrr, rrr0; k) denote their Fourier counterparts. Obviously, bothϕ(x, x0; ξ )
and g(x, x0; ξ ) are continuous and bounded functions for allx, x0∈R, exhibiting the same discontinuity in their
first derivative at the position of the sourcex=x0. Thus, their differenceγ (x, x0; ξ ) is a bounded and continuously
differentiable function over the whole real axis, satisfying

∂2γ (x, x0; ξ)
∂x2

+ (k2(x)− ξ2)γ (x, x0; ξ) = δk2(x; x0)γ (x, x0; ξ), −∞ < x < ∞, (5.2a)

where

δk2(x, x0) = (k2
1 + (k2

3 − k2
1)U(x − x0))− k2(x), (5.2b)

denotes the difference of the wavenumber distributions in the two cases. Since the point source is assumed to be
located inside the variable parameter subinterval (x0∈d(2)), the support of the above distribution is

supp{δk2(x; x0)} ⊂ d(2). (5.3)

All three solutionsϕ(x, x0; ξ ), g(x, x0; ξ ) andγ (x, x0; ξ ) are represented in the two semi-infinite intervalsd(1)=(−∞,
a] andd(3)=[b, ∞) by means of Eq. (2.8). In the sequel we shall use the notationC

(m)
ϕ (ξ), C

(m)
g (ξ), C

(m)
γ (ξ),m =

1,3, in order to distinguish between the coefficients of their representations there. Note that by Eq. (3.2b) it holds

C(1)ϕ (ξ) = C(3)ϕ (ξ) = Cϕ(ξ) = i/τ(ξ), where τ(ξ) =
√
k2

1 − ξ2 +
√
k2

3 − ξ2. (5.4)

Now, by applying Green’s theorem to Eqs. (5.2a) and (5.2b) we obtain

γ (x, x0; ξ) = g(x, x0; ξ)− ϕ(x, x0; ξ) = −
∫ ∞

t=−∞
δk2(t; x0)ϕ(t, x0; ξ)g(x, t; ξ)dt (5.5)

and by using Eq. (5.3) we arrive at the following integral equation:

g(x, x0; ξ)+
∫ t=b

t=a
δk2(t; x0)ϕ(t, x0; ξ)g(x, t; ξ)dt = ϕ(x, x0; ξ). (5.6)

The kernel of the above equationδk2(t; x0)ϕ(t, x0; ξ ) is bounded and continuous everywhere exceptt=x0, and
thus, Fredholm theory is applicable, providing us existence of the solution of Eq. (5.6) for the given, continuous
ϕ(x, x0; ξ ). Moreover, by using the largeξ — asymptotics of the functionϕ(x, x0; ξ ), which are easily derived from
Eqs. (3.2a) and (3.2b), in conjunction with the ones ofg(x, x0; ξ ), given by Eq. (2.7), we obtain that the difference
γ (x, x0; ξ ) behaves like

|γ (t, x0; ξ)| ∼ 1

ξ2
, as ξ → ∞. (5.7)

The above estimate can be exploited to ensure existence of the solution of the integral equation (5.6), first for large
and realξ , and then in the entire complex domain as a meromorphic function; see, e.g., [33].

5.1. The structure and theξ -singularities of the transformed potential

It is obvious from Eq. (5.6) thatg(x, x0; ξ ) has all theξ -singularities ofϕ(x, x0; ξ ). Moreover, by substituting the
representations (2.8) ofϕ(x, x0; ξ ), g(x, x0; ξ ) andγ (x, x0; ξ ) in the two semi-infinite intervalsd(1)=(−∞, a] and
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d(3)=[b, ∞) in the integral equation (5.6), and using Eq. (5.4), we obtain after some algebra the following result
concerning the coefficients of the representation ofg(x, x0; ξ ) in d(m), m=1, 3:

C(m)g (x0; ξ) = Cϕ(ξ)

1 + Cϕ(ξ)Λ(m)(x0; ξ) , m = 1,3, (5.8a)

where

Λ(m)(x0; ξ) =
∫ b

t=a
δk2(t; x0)E

(m)(t, x0; ξ)
C
(m)
g (t; ξ)

C
(m)
g (x0; ξ)

dt, m = 1,3, (5.8b)

E(1)(t, x0; ξ) = exp(iU(t, x0)|x0 − t |τ(ξ)), E(3)(t, x0; ξ) = exp(iU(x0, t)|x0 − t |τ(ξ)), (5.8c)

andCϕ(ξ ) andτ (ξ ) are defined by Eq. (5.4).
Let us assume that for anyξ∈R the denominator of the right-hand side of Eq. (5.8a) does not vanish. This is

equivalent to the requirement thatCϕ(ξ ), ξ∈R, does not become an eigenvalue of the integral equation

C(m)g (x0; ξ)+ Cϕ(ξ)

∫ b

t=a
[δk2(t; x0)E

(m)(t, x0; ξ)]C(m)g (t; ξ)dt = 0, m = 1,3. (5.9)

Extensive numerical evidence supports this conjecture for the class of the monotonic bottom/wavenumber pro-
files. Under the previous assumption we obtain from Eqs. (5.8a)–(5.8c) that the singularities ofg(x, x0; ξ) =
C
(m)
g (ξ ; x0)exp(i|x − x0|τ(ξ)), in, d(m), m=1, 3, will be of the same kind as the ones ofϕ(x, x0; ξ ); see Section

3.1. These branch-point singularities will be located at the same points (ξ=±k1, ±k3) on the realξ -axis, as in the
k1 k3 case. On the basis of the above observations we can now proceed to calculate the leading term of the source
far-field asymptotics in the case of a general, monotonic bed/wavenumber profile by applying the stationary-phase
method.

5.2. The far-field asymptotic structure of the solution for a monotonic profile

By substituting Eq. (2.8) into the Fourier inversion formula (2.4b), and restricting ourselves to the symmetrical
party>0 of the physical domainD, we obtain

G(m)(rrr, rrr0; k) =
∫ ∞

ξ=−∞
C(m)g (ξ)exp(ik∗RS(m)(R, θ; k))dξ, m = 1,3, (5.10)

where the phase functionS(m)(R, θ ; k) is the same as defined by Eq. (3.8). Note that the functionsC
(m)
g (ξ) do not

involve the large parameterR, and thus, they do not contribute to the stationarity of the phase. Consequently, the
points of stationarity of the phase functionS(m)(R, θ ) are the same as in thek1 k3 case, Eq. (3.9). Thus, we finally
obtain

G(m)(rrr, rrr0; k) = iπ

2
exp

(
i
(
kmR − π

4

))√ 2

πkmR
Fm(θ; k)+ O

(
1

k∗R

)3/2

, m = 1,3, (5.11a)

whereFm(θ ; k) is the far-field pattern in the monotonick(x) case, defined by

Fm(θ; k) = −2ikmC
(m)
g (x0; km sinθ)|cosθ |, m = 1,3. (5.11b)

It must be stressed here that Eqs. (5.11a) and (5.11b) are consistent, in the sense that, whenδk2=0, thenΛm=0
and thus, the above formulae reduce to the corresponding ones obtained in thek1 k3 case, Eqs. (3.10a)–(3.10c).
Moreover, although the asymptotic estimates (5.11) are derived for the field point outside the region of parameter
irregularity, x∈D(m), m=1, 3, at the same time and for large ranges (R→∞), i.e. actually in the far-field, they
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become valid everywhere, exceptθ=90◦ (andθ=270◦). Consequently, the formation of the shadow zone is still
predicted and in the general, monotonick(x) case. As in thek1 k3 case, the next O(k∗R)−3/2 term in the far-field
asymptotics (5.11) is a diffraction component associated with the lateral wave, and can be predicted by including
the branch-cut integral contributions. However, it is more important here to calculate this term forθ=90◦, where,
as indicated by Eqs. (5.11a) and (5.11b), the principal O(k∗R)−1/2 term vanishes. In this case the Fourier integral is

G(m)(x = x0, y, rrr0; k) =
∫ ∞

ξ=−∞
g(x = x0, x0; ξ)exp(iyξ)dξ, (5.12)

and the phase has no point of stationarity. The leading asymptotic term comes exclusively from the branch-point
contributions, and is calculated to be ([1], Chapter 4.8; [2])

G(m)(x = x0, y, rrr0; k) = 2
√
π exp(−iπ/4){A1

√
k1 exp(ik1y)− A3

√
k3 exp(ik3y)}y−3/2, (5.13)

where

Am = − lim
ξ→km

√
ξ − km

km

∂g(x0; ξ)
∂ξ

, m = 1,3. (5.14)

We observe from Eq. (5.13) that the wave field along the bottom irregularity (θ=90◦, 270◦) has an amplitude of
order O(R−3/2) and consists of the superposition of two outgoing waves with wavelengths corresponding to the two
depths at infinity. Moreover, it can be easily verified that the above result is compatible with the analytical solution,
Eq. (3.3), in thek1 k3 case.

For the monotonic bed/wavenumber profile (4.9), shown also in Fig. 10, two images (produced by using equipo-
tential lines) of the real part of the source potential, in the first few wavelengths range from the source, are presented
in Fig. 12. The left image is based on the numerical Fourier inversion scheme and the right image on the far-field
asymptotic approximation, Eqs. (5.11a) and (5.11b), respectively. Moreover, a comparative polar plot of the mod-
ulus and the phase of the source field at an intermediate range of a few wavelengths from the source (R=100 m) is
presented in Fig. 13, as calculated by the present numerical Fourier inversion scheme (solid lines) and as predicted
by the principal asymptotic approximation (dashed lines), respectively. Again, we can clearly observe in these
figures that the effect of the lateral wave in the azimuthal intervalbθc, 90◦c is more evident in the present than in
the correspondingk1 k3 case.

Fig. 12. Real part of the source field for the monotonic bottom/wavenumber profile shown in Fig. 10. Comparison between (a) the numerical
Fourier inversion and (b) the principal far-field asymptotic approximation.
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Fig. 13. Polar plots of (a) the modulus and (b) the phase of the source field for the monotonic bottom/wavenumber profile, shown in Fig. 10, at
an intermediate rangeR=150 m from the source. Comparison between the numerical Fourier inversion (solid lines) and the principal far-field
asymptotic approximation (dashed lines).

6. Conclusions

The present work has been concerned with the construction and study of the Green’s function of the mild-slope
equation, in a region characterized by an uneven bottom profile of arbitrary shape with different depths at infinity. In
this sense, the present work is a prerequisite to the study of diffraction of water waves by localized bed irregularities
over a 1D bottom shoaling, by means of the mild-slope equation and the Green’s theorem. One of our main concerns
in formulating and solving the source problem for the mild-slope equation is to investigate its far-field structure,
which is expected to be strongly dependent on the azimuthal angle. For, the knowledge of the rate of decay of the wave
amplitude and of the direction of propagation at large distances from the source (or the localized inhomogeneity)
is a necessity for the quantification of the radiation condition and the formulation of the diffraction problem, and
a valuable supplementary information for elaborating local ABC’s, absorbing layers and/or infinite elements to
better fit to any particular application. Moreover, an accurate numerical means for computing the Green’s function
is always attractive, not only for use where no other solution is available, but also as a check for existing asymptotic
solutions, as the ones provided by the direct ray-optical (WKB) method and/or by the asymptotic evaluation of
Fourier (or radiation) integrals [1,2].

The present analysis demonstrates that, in the case of a continuous, monotonic bed profile, the far-field pattern
exhibits common features with the simply-discontinuous wavenumber case. The main characteristics of the far-field
are: (i) the formation of a shadow zone with an ever expanding width, which is located along the bottom irregularity,
where the wave amplitude is O(R−3/2), and (ii) in each of the two sectors not including the parameter irregularity the
asymptotic behavior of the wave field approaches the standard one, consisting of an outgoing wave propagating with
an amplitude O(R−1/2) and wavelength corresponding to the sector-depth at infinity. In the case of a non-monotonic
bottom profile more complicated wave patterns can be produced, due to the phenomenon of wave trapping. It
is demonstrated in the present work that wave trapping may arise along the bottom irregularity in the case of
non-monotonic bed profiles, as, e.g., in the case of a smooth underwater ridge. Such an intricacy is associated with
the emergence of additional pole-type singularities in the Fourier integrand. The calculation of trapping modes
could be facilitated by the study of an eigenvalue integral equation, which is derived in the present work. A detailed
analysis of this subject will be presented elsewhere.

Finally, it should be noticed that the present approach can be extended to treat the fully 3D problem of water
waves emitted by a monochromatic point source in a variable-depth domain. First results in this direction have been
presented in [34].
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