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Abstract 

A coupled-mode model is presented for wave-current-seabed interaction, with application 

to the problem of wave scattering by ambient shearing currents in variable bathymetry 

regions. We consider obliquely incident waves on a horizontally non-homogeneous 

current in a variable-depth strip, which is characterized by straight and parallel bottom 

contours. The flow associated with the current is assumed to be directed along the bottom 

contours and it is considered to be steady and known. In a finite subregion containing the 

bottom irregularity, we assume that the current has an arbitrary horizontal structure. 

Outside this region, the current is assumed to be uniform (or zero).  Based on a 

variational principle, in conjunction with a rapidly-convergent local-mode series 

expansion of the wave pressure field in a finite subregion containing the current variation 

and the bottom irregularity, a new coupled-mode system of equations is obtained, 

governing the scattering of waves in the presence of variable bathymetry and longshore 

shearing currents. By keeping only the propagating mode in the local-mode series, a new 

one-equation model is derived, having the property to reduce to modified mild-slope 

equation (Massel 1993, Chamberlain & Porter 1995), when the current is zero, and to the 

enhanced mild-shear equation (McKee 1996), when the bottom is flat. An important 

aspect of the present model is that it can be  further elaborated to treat shearing currents 

with general, depth-dependent vertical structure, and to include the effects of weak 

nonlinearity. 

 
Keywords: Waves/Free-surface flows,  topographic effects, variational methods     
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1.  Introduction 

 

Except of depth variations, the presence of currents significantly influences the 

propagation of waves in the nearshore and coastal environment. The detailed knowledge 

of the wave characteristics in the presence of ambient currents and bottom variations is 

important for various applications, as for example, in coastal and harbour engineering 

problems, in the study of oil slick dispersion and pollutant transport in nearshore and 

coastal waters, as well as for sediment transport and coastal erosion studies. Extensive 

reviews on the subject of wave-current interaction in the sea and in the nearshore region 

have been presented by Peregrine (1976), Jonsson (1990), Thomas & Klopman (1997). 

Non-homogeneous shearing currents, following or opposing wavetrains, produce 

significant changes on the wave characteristics, especially in the region where there is a 

rapid change of current strength. Thus, large amplitude waves may appear as a result of 

interaction of obliquely propagating waves with adverse currents; see, e.g., Mei (1983, 

Chap.3.7), Jonsson (1990, Sec.1B).  Wave amplification could be further enhanced by 

inshore effects due to sloping seabeds, and has sometimes been reported to be connected 

with the appearance of “giant waves” in coastal waters;  see, e.g., Faulkner (2000), 

Dysthe (2000). 

 

Wave-current interaction models over slowly varying bottom topography have been 

developed and studied by various authors.  Under the assumption of irrotational wave 

motion, Kirby (1984) derived a phase-resolving one-equation model, generalizing the 

mild-slope equation (Eckart 1952, Berkhoff 1972)  in regions with slowly varying depth 

and ambient currents, and modifying previous derivations by Booij (1981) and Liu 

(1983); see also Liu (1990).  The latter model in its elliptic time-harmonic form has been 

exploited, in conjunction with numerical (finite-element, finite difference etc) solvers, to 

numerous wave-current-seabed interaction applications; see, e.g., Chen et al (2005) and 

the references cited there. 

 

On the other hand, if the wave flow is assumed to be weakly rotational, as happens to be 

the case when waves are scattered by shearing currents characterised by stronger 

horizontal gradients, McKee (1987) derived another one-equation model, called the mild-

shear equation, based on the linearised Euler equations (see, e.g., Mei 1983, Chap. 3.6). 

Still however, the validity of the mild-shear equation is based on the assumption of slow 
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current and depth variations compared to the typical wavelength. In the case of flat 

bottom, the mild-shear model has been further enhanced by McKee (1996) by including 

an extra term and obtaining the so called enhanced mild-shear equation. The latter model 

is applicable to cases where the shearing current is varying on the scale of the 

wavelength. In the above works by McKee (1987, 1996) the current is considered to be 

flowing along one horizontal direction while the bottom topography varies in the other 

horizontal direction. Thus, the mild-shear model is more appropriate for problems of 

wave scattering by slowly varying depth and longshore-type ambient shearing currents.  

 

In both the above approaches (mild-slope model, mild-shear model) the effects of 

evanescent modes, describing higher-order localised effects due to bottom and current 

variations, have been ignored. Except of the above models based on irrotational and 

weakly rotational assumption concerning the wave motion, another class of wave-current-

seabed interaction models have been developed, applicable to cases where the lateral 

length scale on which the medium (bottom topography and current) is changing is much 

smaller than the typical wavelength. In this case, the problem has been modelled by 

means of step discontinuities and vertical vortex sheets, separating subregions of 

essentially potential flow, in conjunction with appropriate matching conditions ensuring 

continuity of pressure and normal flow following the vortex sheet. In this context, 

generalising the work by Evans (1975) for the transmission of deep-water waves across a 

vortex sheet, Smith (1983, 1987) presented models treating the problem of waves 

crossing uniform current jets in constant finite depth and crossing a step with horizontal 

shear, respectively. Also, Kirby et al (1987) studied the propagation of obliquely incident 

waves over a trench with uniform current flowing along it. In the latter models complete 

representations of the wave potentials in the various subregions have been used, 

containing both the propagating and the evanescent modes, which are necessary in order 

to satisfy the matching/boundary conditions at the vertical interfaces (vortex sheets and 

depth discontinuities). Finally, the approach by Smith (1987) and Kirby et al (1987)  has 

been further exploited by McKee (2003) to study scattering of waves by shearing currents 

of general horizontal structure in water of constant depth. In the latter work the current is 

modelled by a series of vertical vortex sheets separating subregions of constant current 

velocity, and the solution is again obtained by using complete representations of the wave 

potential in each subregion and matching conditions at the vertical interfaces. Also, in 

McKee (2003) systematic comparisons have been presented between the predictions by  
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the mild-shear equation(s) and the piecewise constant current velocity approximation, 

which is considered as more exact, showing that the accuracy of the enhanced mild-shear 

equation is generally better than the original mild-shear equation. Furthermore, it is 

shown in the same work that in cases of waves interacting with strong adverse shearing 

currents, as well as in cases where the current variation length is much smaller than the 

wavelength, the accuracy of the simplified mild-shear models is lost. 

 

In the present work, a continuous coupled-mode model is developed for the scattering of 

water waves by horizontally shearing currents in variable bathymetry regions, without 

any asymptotic assumption or restriction concerning the smallness of the bottom and 

current variation length with respect to the local wavelength. We consider obliquely 

incident harmonic waves on a horizontally non-homogeneous current in a variable-depth 

strip, characterized by straight and parallel bottom contours; see Fig.1. For simplicity, the 

flow associated with the current is assumed to be parallel to the bottom contours and it is 

considered to be uniform in depth and  known. In a finite subregion containing the 

bottom irregularity we assume an arbitrary horizontal current structure. Outside this 

region, the current is assumed to be uniform (or zero). Under the smallness assumption 

concerning the steepness of the waves, the problem is governed by the linearised Euler 

equations, the free-surface and the bottom no-entrance boundary conditions, as described 

in Sec. 2. 

 

The present coupled-mode system of equations on the horizontal plane is obtained by an 

appropriate variational principle, described in Sec. 3 and in the Appendix, in conjunction 

with a rapidly-convergent local-mode series expansion of the wave pressure field in the 

finite subregion containing the current variation and the bottom irregularity, discussed in 

Sec. 4. The local-mode series contains, except of the propagating and evanescent modes, 

an additional term, called the sloping-bottom mode, first introduced by Athanassoulis & 

Belibassakis (1999) for the propagation of water waves in variable bathymetry regions. 

The sloping-bottom mode enables the consistent satisfaction of the Neumann boundary 

condition on the non-horizontal parts of the bottom, and substantially accelerates the rate 

of convergence of the local-mode series. Thus, for all practical applications, a small 

number of modes (of the order of 4 – 5, including the propagating mode, the sloping-

bottom mode and the first few evanescent modes) is found to be enough for an accurate 

numerical solution. Moreover, by keeping only the propagating mode in the local-mode 
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series, a new one-equation model has been derived and discussed in Sec 4.2, called the 

mild slope and shear equation. This new model approximately describes the combined 

scattering effects due to shearing current and bottom irregularities, and consistently 

generalises both the modified mild-slope equation (Massel 1993, Chamberlain & Porter 

1995) and  the enhanced mild-shear equation (McKee 1996), having the property to 

exactly reduce to the former when the current is zero  and to the latter when the bottom is 

flat. 

 

Numerical results are presented in Sec. 5.1 for the scattering of waves by jet-like shearing 

currents in constant depth, including comparisons with the multidomain approximation 

method by McKee (2003), and the simplified mild-shear model(s), McKee (1987, 1996). 

It is shown that the present coupled-mode model with a small number of modes provides 

results fully compatible with the exact multidomain approximation method. Furthermore, 

with the aid of systematic comparisons in cases of smooth but steep shoals, in Sec. 5.2 we 

present and discuss the effects of transitional-type following and opposing currents on the 

hydrodynamic characteristics of the wave-current system.  

 

As another interesting example, we examine in Sec. 5.3 the case of waves scattered by  

sinusoidal current in constant depth, and show that there are cases where strong 

enhancement of the wave amplitude could be obtained within downwave-directed current 

jets.  This is in agreement with previous observations which suggested that wind-waves 

amplitudes might be enhanced within the downwind-directed current maxima associated 

with alternating ‘wind streaks’ or ‘Langmuir circulation’ (Smith 1983, 2001), leading to 

preferential breaking of waves along such current jets.  

 

In Sec. 5.4 we examine the case of the wave reflection by an idealised smooth but steep 

underwater trench with current flowing along it. It is shown that the results obtained by 

the present method compare well with corresponding results by Kirby et al (1987) in the 

limiting case of an abrupt trench (with vertical walls). Finally, in Sec. 5.5, we investigate 

the influence of  longshore-type currents over sinusoidal bottom topography on the Bragg 

scattering of obliquely incident water waves and discuss their effects on the shifting of 

the first-order resonant frequencies and the enhancement/reduction of reflection.  
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2. Differential formulation of the problem 

The present work is based on the following differential equation on the wave pressure p , 

which models the combined effects of steady shearing current  and variable bathymetry 

on small-amplitude waves, Mei (1983, Ch. 3.6, Eq. 6.17), 

2 2

2 2 ji

i i j i

Uup p w W
x x z x x z z

ρ
⎛ ⎞∂∂∂ ∂ ∂ ∂

+ = − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
,                                                                     (2.1) 

where ( )1 2, ,u u w  denotes the wave flow, ( )1 2, ,U U W  denotes the steady current,  

( ) ( )1 2, ,x x x y=  are the horizontal coordinates and z  is the vertical coordinate (positive 

upwards). The above equation has been obtained from the continuity equation and the 

Euler equations, after appropriate linearisation; see Mei (1983, Ch. 3.6, Eqs. 6.14-16). 

Furthermore, Eq. (2.1) is subjected to the following linearized free-surface boundary 

condition, Mei (1983, Eq.6.23), 
2

2 0, onj j
j j j j

p P H p pU p W U g g z H
t x t x x x z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + − + = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

,                  (2.2) 

where the repeated index (j=1,2) denotes summation with respect to this index. In 

Eq.(2.2), P and H denote the pressure and the free surface elevation associated with the 

(underlying) steady  current flow,  and g  is the acceleration due to gravity. Furthermore, 

on the mean free-surface (z=H)  the kinematic boundary condition (Mei 1983, Eq.6.21) 

applies: 

0, oni i
i i

H WU u w z H
t x x z
η η η∂ ∂ ∂ ∂
+ + − − = =

∂ ∂ ∂ ∂
,                                                         (2.3) 

where η detotes the free-surface elevation associated with the wave. Finally, the wave 

pressure p must satisfy the bottom  boundary condition (Mei 1983, Eq.6.19), which reads 

0
j j

p h p
z x x
∂ ∂ ∂

+ =
∂ ∂ ∂

,    on    z h= − .                                                                                   (2.4) 

In the present work, we consider a simplified model problem corresponding to obliquely 

incident harmonic waves on a horizontally non-homogeneous current in a variable-depth 

strip, characterized by straight and parallel bottom contours; see Fig.1. The liquid is 

assumed to be homogeneous, and the flow associated with the current is parallel to the 

bottom contours and it is considered to be steady and known. More specifically, the 

bottom surface exhibits an arbitrary 1D variation in a subdomain of finite length (i.e. the 
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bathymetry is characterised by straight and parallel bottom contours) lying between two 

regions of constant but possibly different depth, 1h h= (region of incidence) and 3h h=  

(region of transmission).  A Cartesian coordinate system is introduced, with its origin at 

some point on the mean water level (in the variable bathymetry region), the z-axis 

pointing upwards and the y-axis being parallel to the bottom contours. The function ( )h x  

represents the local depth, measured from the mean water level. It is considered to be a 

smooth function, such that ( ) ( ) 1h x h a h= = , for x a≤ , and ( ) ( ) 3h x h b h= = ,  for x b≥ .  

The vertical strip D is decomposed to three subdomains ( ) , 1, 2,3,iD i =  where (1)D  and 

(3)D  are half-strips, corresponding to x a<  and x b> , respectively, and (2)D  is the 

variable bathymetry subdomain lying between (1)D  and (3)D . Without loss of generality, 

we assume 1 3h h> . The same decomposition is also applied to the free-surface FD∂  and 

the bottom BD∂  boundaries. Finally, we define the vertical interfaces (12)
ID∂  and (23)

ID∂  

separating the three subdomains. The latter are vertical segments (between the bottom 

and the mean water level) at x a=  and x b= , respectively. 

We consider the scattering problem of obliquely incident plane waves, under the 

combined effects of variable bathymetry and the horizontally non-homogeneous shear 

current, ( )1 20, ,U W U U x= = =  existing only in x a> ; see Fig.1. The steady current 

set-down is assumed to be negligible (H=0), and thus, also P=0. The current velocity is 

described by the  continuous function U(x), which can be general in the intermediate 

region, a x b≤ ≤ , as, e.g., a monotonic one or a periodic one with characteristic length  L. 

Outside this region, the current is assumed to be uniform (or simply zero), 

( ) 1 0U x U= = ,  ,x a≤ ( ) 3U x U= ,  x b≥ .                                                                 (2.5) 

Thus, both ( )U x  and ( )h x  are assumed to be smooth functions, attaining constant (but 

possibly different) values at the ends x=a and x=b of the variable bathymetry region. 

Restricting ourselves to monochromatic (harmonic) waves of absolute frequency ω, 

propagating with direction 1θ  with respect to the bottom contours in the region of 

incidence, the wave pressure is expressed in the form,  Smith (1983, 1987),    

( ) ( ) ( )( ){ }, , ; Re , exp ,p x y z t p x z i qy tω= −                                                                  (2.6)     
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Figure 1.  Geometrical configuration and basic notation 

 

where q  is the periodicity constant along the y-direction and 1i = − . Under the 

previous assumptions, from Eqs. (2.1), (2.2), (2.4) we obtain that the wave flow is 

governed by the following equation with respect to the (complex) pressure ( ),p x z  in D,  

2 2
2

2 2

2 0,p p q U pq p
x z x xσ

∂ ∂ ∂ ∂
+ − + =

∂ ∂ ∂ ∂
                                                                           (2.7a) 

subjected  to the boundary conditions 

( ) 0, on 0,p x p z
z

μ∂
− = =

∂
                                                                                     (2.7b) 

( )0, on ,p dh p z h x
z dx x
∂ ∂

+ = = −
∂ ∂

                                                                           (2.7c) 

where ( ) ( )x qU xσ σ ω= = −  is the local intrinsic frequency and 2 / gμ σ=  is the 

corresponding frequency parameter. Following Eq. (2.3), the free-surface elevation can 

be  obtained from the solution of the above problem as follows 

( ) ( ) ( )( ), 0
, ; Re exp ,

p x z
x y t i qy t

g
η ω

ρ
=⎧ ⎫

= − −⎨ ⎬
⎩ ⎭

                                                           (2.8) 

x=a x=b 

Reflected 
wave 

Incident 
wave 

x 

y 

z 

h(x) 

L 

λ 

1θ  

Nonhomogeneous 
current  U(x) 

3θ  

Transmitted 
wave 

1h  
3h  
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where ρ is the (constant) liquid density. Other quantities of interest, as, e.g., the wave 

velocities, can be obtained in terms of ( ),p x z  and its spatial derivatives from the 

linearized Euler equations (Mei  1983, Eqs. 6.15 and 6.16) as follows: 

1 2 2

1, ,i p iq U p i pu u p w
x x x zρσ ρσ ρσ ρσ
∂ ∂ ∂ ∂

= − = − − = −
∂ ∂ ∂ ∂

.                                        (2.9) 

 

The problem of water-wave scattering by the shearing current ( ) ,U x with the effects of 

variable bathymetry, can be formulated as a transmission problem in the bounded 

subdomain ( )2D , with the aid of the following general representations of the pressure 

( ),p x z  in the semi-infinite strips ( )1D  and ( )3D  (Smith 1983, 1987, Kirby et al 1987): 

( ) ( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 1
0 0 0 0

1
, exp exp expR n n n

n
p x z A ik x A ik x Z z C Z z k x a

∞

=

= + − + −∑    

( )1in D ,   (2.10a) 

where 0A  is the amplitude of the incident wave which is assumed to be known, and 

( ) ( ) ( )( ) ( ) ( )3 3 3
0 0, expTp x z A ik x Z z= + ( ) ( ) ( ) ( ) ( )( )3 3 3

1
exp ,n n n

n
C Z z k b x

∞

=

−∑ ( )3in D .        (2.10b) 

The above expansions are obtained from the eigensolutions of the modified Helmholtz 

equation to which (2.7a) reduces in ( )1D  and  ( )3D  (since / 0dU dx =  there). The terms 

( )( ) ( )( )( ) ( ) ( )1 1 1
0 0 0 0exp expRA ik x A ik x Z z+ −   and ( )( ) ( ) ( )3 3

0 0expTA ik x Z z  in the series (2.10) 

are the  propagating modes, associated with incident wave (which is considered to be 

known), the reflected and the transmitted wave, respectively. The remaining terms 

( )1, 2,n = …  are the evanescent modes.  In the expansions (2.10) the horizontal 

wavenumbers ( )l
nk , 1,3l = , are defined as follows 

( ) ( )( ) ( ) ( )( )2 2
2 2

0 0 , , 1l l l l
n nk q k q nκ κ= − = + ≥ ,                                                       (2.11a) 

where { }( ) ( )
0 , , 1, 2,i i

ni nκ κ = … , 1,3l = , are obtained as the roots of the dispersion relations 

(formulated at the depths , 1,3lh l = ): 

( )( ) ( )tan ,l l
l l l lh h hμ κ κ= −      1,3l = .                                                                         (2.11b) 
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In the above equations 2 / , , 1,3l l l lg qU lμ σ σ ω= = − = . Also, the functions  

( ){ }( ) , 0,1, 2,l
nZ z n = …   appearing in Eqs. (2.10) are given by 

( )
( )( )

( )
( )
0( )

0 ( )
0

cosh

cosh

l
ll

l
l

z h
Z z

h

κ

κ

+
= ,    ( )

( )( )
( )
( )

( )
( )

cos

cos

l
n ll

n l
n l

z h
Z z

h

κ

κ

+
=  , 1, 2, ,n = …   1,3l = .    (2.12) 

Since the current is assumed to be zero in (1)D , the intrincic and absolute frequencies are 

equal there (σ ω= ). Thus, the periodicity constant q is obtained from the wavenumber of 

the incident wave, as follows 
( )1
0 1sinq κ θ= .                                                                                                                (2.12) 

where ( )1
0iκ  is the unique imaginary-positive root of  Eq. (2.11b) for  l=1. Then, the 

direction of the transmitted wave in ( )3D  is calculated by 

( ) ( )( )1 31
3 0 1 0sin sin /θ κ θ κ−= .                                                                                          (2.13) 

where ( )3
0iκ  is the unique imaginary-positive root of  Eq. (2.11b) for  l=3. 

Given the representations (2.10), the problem can be reformulated as a transmission 

boundary value problem for the pressure ( ) ( )2 ,p x z  in the bounded subdomain (2)D , 

consisting of the following equations, boundary and matching conditions: 

( ) ( )
( )

( )
( )

( ) ( )
2 2 22 2

2 22
2 2

2 0, ,p p q U pq p x z D
x z x x xσ

∂ ∂ ∂ ∂
+ − + = ∈

∂ ∂ ∂ ∂
,                            (2.14a) 

( )
(2)

(2) 0p x p
z

∂ μ
∂

− = ,              0z = ,                                                                        (2.14b) 

( ) ( )2 2

0p dh dp
z dx dx

∂
+ =

∂
,                 ( )z h x= − ,                                                                (2.14c) 

(2) (1)
(2) (1) , p pp p

x x
∂ ∂
∂ ∂

= = ,      1, 0x a h z= − < < ,                                               (2.14d,e) 

(2) (3)
(2) (3) , p pp p

x x
∂ ∂
∂ ∂

= = ,       3, 0x b h z= − < < .                                              (2.14f,g) 

In the next section we shall present a new variational principle equivalent to the 

transmission problem (2.14). This principle will be used in Sec. 4 to derive a new 

coupled-mode system governing the scattering of waves by horizontally shear current in 

variable bathymetry regions. 
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3.  Variational  formulation 

For simplicity in the presentation, from now on we will use ( ),p x z  to denote ( ) ( )2 ,p x z  

in the bounded subdomain (2)D . The problem (2.14) admits an equivalent variational 

formulation, which will serve as the basis for the derivation of the coupled-mode system 

of horizontal equations. Consider the functional: 

( ){ } ( ){ }( )
( )2

2 22 1
1 3 2

2

1, , , ,
2R n T nn N n N

D

p pp A C A C q dxdz
x
σσ

σ σ

−

∈ ∈

⎛ ⎞⎛ ⎞ ∂⎛ ⎞ ⎛ ⎞= ∇ + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫F   

        
( ) ( )2 2

2 21 1 1
2 2

FD D

p pdS dS
n

∂ ∂

μ σ
σ σ σ

Π

⎛ ∂ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫  

        ( )
( )

(12)

1
1

2

1 1
2

I
a D

pp p dS
x∂

∂
σ ∂

⎛ ⎞+ −⎜ ⎟
⎝ ⎠∫ ( )

( )
( )

( 23)

3
3 1

02

1 1
2

I

R
b D

pp p dS A A J
x∂

∂
σ ∂

⎛ ⎞− − −⎜ ⎟
⎝ ⎠∫ .     (3.1) 

In the above equation, ( ) ( ) ( ) ( )( )
1

0 21 1 1
0 02

z

z h

J k Z z dz
=

=−

= ∫ , ( )a x aσ σ= =  and ( )b x bσ σ= = , 

/ n∂ ∂  denotes the outward normal derivative on the boundary and ( )/ , /x z∇ = ∂ ∂ ∂ ∂ . 

The functions ( )lp  and their derivatives ( ) / , 1,3,lp x l∂ ∂ =  appearing in Eq. (3.1), are 

considered to be represented by means of their series expansions, Eqs. (2.10),  and their 

horizontal derivatives, respectively. 

The function ( ) ( ) ( ) ( )2 2, , ,p p x z x z D= ∈  and the coefficients  ( ){ }1,R n n N
A C

∈
 and  

( ){ }3,T n n N
A C

∈
 constitute a solution of the problem, if they render the functional F  

stationary,  

{ } { }( )(1) (3), , , , = 0R n T np A C A CδF .                                                                               (3.2) 

As shown in Appendix A, by calculating the first variation Fδ  of the above functional  

the variational equation (3.2) takes the form: 

( )2

2 2
2 2 2

1 2 1 1x a x b

x a x aD

q U p p p dh pp q p pdxdz p pdx pdx
x x z z dx x

∂δ δ μ δ δ
σ σ σ ∂ σ

= =

= =

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞=− ∇ − + + − − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫ ∫F

          
( )

1

0 1

2

1 z

a z h

p p p dz
x x

∂ ∂ δ
σ ∂ ∂

=

=−

⎛ ⎞
− − +⎜ ⎟⎜ ⎟

⎝ ⎠
∫

( )

3

0 3

2

1 z

b z h

p p pdz
x x

∂ ∂ δ
σ ∂ ∂

=

=−

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  

          ( )( )
( )

1

0 1
1

2

1 z

a z h

pp p dz
x

∂δ
σ ∂

=

=−

⎛ ⎞
+ − ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ( )( )

( )

3

0 3
3

2

1 0
z

b z h

pp p dz
x

∂δ
σ ∂

=

=−

⎛ ⎞
− − =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ .              (3.3) 
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The proof of the equivalence of the variational equation (3.3) and the transmission 

problem (2.14) is finally obtained by using standard arguments of the Calculus of 

Variations (see, e.g., Rectorys 1977).  

 

4.  The Coupled-Mode System (CMS) 

In this section we shall present a new coupled-mode system modelling the scattering of 

waves by horizontally shear current in variable bathymetry regions. The CMS is derived 

from the variational principle (3.3) on the basis of the following enhanced local-mode 

series representation of the wave pressure field in the variable bathymetry region ( )2D  

(where also the current velocity U(x) is varying): 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 0
1

, ; ; ;n n
n

p x z P x Z z x P x Z z x P x Z z x
∞

− −
=

= + + ∑  .                                  (4.1) 

The above representation has been first introduced and studied by Athanassoulis & 

Belibassakis (1999) for the propagation of water waves over variable bathymetry regions. 

In Eq. (4.1) the term ( ) ( )0 0 ;P x Z z x  is the propagating mode of the wave pressure field 

and the remaining terms ( ) ( ); , 1, 2,n nP x Z z x n = … are the evanescent modes. The 

additional term ( ) ( )1 1 ;P x Z z x− −  is  a correction term called the sloping-bottom mode, 

which properly accounts for the satisfaction of the bottom boundary condition on the 

sloping parts of the bottom, and identically vanishes on the horizontal  parts of the 

bottom. The function ( );nZ z x  represents the vertical structure of the n -th mode. The 

function ( )nP x  describes the horizontal pattern of the n -th mode and is called the 

complex amplitude of the n -th mode. The functions ( );nZ z x , 0,1, 2...n = , appearing in 

Eq. (4.1) are obtained as the eigenfunctions of the following local vertical Sturm-

Liouville problem, 

( ) ( )
2

2
2 0n

n n

d Z z
Z z

dz
κ+ =     ,                          in the interval   ( ) 0h x z− < < ,           (4.2a) 

( ) ( ) ( )0
0 0n

n

dZ z
x Z z

dz
μ

=
− = = ,              at    0z = .                                            (4.2b) 

( ) 0ndZ z h
dz
= −

= ,                                          at   ( )z h x= − ,                                    (4.2c) 

 

and are given by 
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( )
( ) ( )( )
( ) ( )( )

0
0

0

cosh
;

cosh

x z h x
Z z x

x h x

κ

κ

⎡ ⎤+⎣ ⎦= , ( )
( ) ( )( )
( ) ( )( )

cos
; , 1,2,

cos
n

n
n

x z h x
Z z x n

x h x

κ

κ

⎡ ⎤+⎣ ⎦= = … , (4.3a)   

where the eigenvalues ( ) ( ){ }0 , ni x xκ κ  are obtained  as the roots of the local dispersion 

relation (formulated at the local depth ( )h x  and for the local frequency parameter ( )xμ ): 

( ) ( ) ( ) ( ) ( ) ( )tanx h x x h x x h xμ κ κ= − ⎡ ⎤⎣ ⎦ ,  in a x b≤ ≤ ,   where ( ) ( )2 /x x gμ σ= .   (4.3b)      

A specific convenient form of the function ( )1 ;Z z x−  associated with the sloping bottom 

mode is given by  

( ) ( ) ( )( ) ( )( )3 2
1 ; / /  Z z x h x z h x z h x−

⎡ ⎤= +
⎣ ⎦

,                                                                     (4.4) 

and all numerical results presented in this work are based on this choice. However, other 

choices are also possible (see Athanassoulis & Belibassakis 1999, Sec.4). From Eqs. 

(4.1), (4.2c) and (4.4), we easily obtain that the sloping-bottom mode satisfies: 

( ) ( )( )
1

,p x z h x
P x

z−

∂ = −
=

∂
   ,                                                                                        (4.5) 

and thus, it is needed only in subareas where the bottom surface is not flat. This 

additional mode makes the series (4.1) compatible with the Neumann bottom boundary 

condition (2.7c) in the sloping parts of the bottom surface, while, at the same time, it 

significantly accelerates the convergence of the local-mode series. For more details about 

the role and significance of this term we  refer to Athanassoulis & Belibassakis (1999, 

Sec. 4), where this idea is first introduced and discussed for wave propagation/diffraction 

problems in variable bathymetry regions. Further details about the extension of this 

model to 3D can be found in Belibassakis et al (2001). 

 

By using the local-mode series representation (4.1) in the variational principle (3.3), in a 

similar way as described in Athanassoulis & Belibassakis (1999, Sec.5), the following 

coupled-mode system (CMS) with respect to the pressure mode amplitudes is obtained:   

( ) ( ) ( ) ( ) ( )( ) ( )2

1
0,mn n mn n mn mn n

n
a x P x b x P x c x a q P x

∞

=−

′′ ′+ + − =∑                                      (4.6) 

in , 1,0,1,....a x b m< < = − , where a prime denotes differentiation with respect to x.  The 

coefficients , ,mn mn mna b c  , , 1,0,1,2,...,m n = −  of the CMS (4.6) are given by 
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( ) ( )
( )

0

, ; ;
z

mn n m n m
z h x

a Z Z Z z x Z z x dz
=

=−

= = ∫ ,                                                                                       (4.7a) 

[ ]22 , ,n
mn m n m n m z h

Z q dU dhb Z Z Z Z Z
x dx dxσ =−

∂
= + +

∂
,                                                 (4.7b) 

2 2, ,n n n
mn n m m

z h

Z Z Zq dU dhc Z Z Z
dx x dx x zσ =−

∂ ⎡ ∂ ∂ ⎤⎛ ⎞= ∇ + + +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
.                                  (4.7c) 

 

4.1 Boundary conditions for  the CMS 

The CMS (4.6) is  supplemented by the following decoupled end-conditions at x=a and 

x=b, which are obtained from the last four terms of the variational equation (3.3), 

( ) ( )1 1 0P a P a− −′= = , ( ) ( )1 1 0P b P b− −′= = ,              1n = − ,                                      (4.8a) 

( ) ( ) ( ) ( ) ( )( )1 1 1
0 0 0 0 0 02 expP a ik P a i k Α i k a′ + = ,    ( ) ( )(1) 0, 1, 2,..n n nP a k P a n′ − = = ,        (4.8b)        

( ) ( )(3)
0 0 0 0P b ik P b′ − = ,                                ( ) ( )(3) 0, 1, 2,n n nP b k P b n′ + = = … ,        (4.8c) 

where  the coefficients ( ) ( )1 3,n nk k ,   n=0,1,2,...,  are defined  by Eqs. (2.11a). The 

coefficients of the series expansions (2.10) in the two half strips are obtained from the 

solution of the coupled-mode system  through ( ) ( ),n nP a P b , and are given by similar 

relations as in Athanassoulis & Belibassakis (1999, Eqs. 5.18). In particular, the 

coefficients andR TA A  defining the reflection and transmission coefficients  

0 0/ , /R Tr tK A A K A A= =  ,                                                                                    (4.9a) 

are obtained from the solution of the CMS (4.6) as follows: 

( ) ( )( ) ( )(1) (1)
0 0 0 0exp expRA P a A i k a i k a= − ,        ( ) ( )(3)

0 0expTA P b i k b= − .               (4.9b) 

An important feature of the solution of the present scattering problem by means of the 

representation (4.1), is that it exhibits an improved rate of decay of the modal amplitudes 

( )nP x  of the order ( )4O n− . Thus, a small number of modes suffices to obtain a 

numerically convergent solution to ( ),P x z , even for large bottom slopes and rapidly 

varying currents. 
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4.2 Simplified forms of the CMS 

In the case of  mild bottom topography and slow current variations the evanescent modes 

, 1, 2,3,...nP n = , producing localised second-order effects, can be approximately 

disregarded. Also, due to bottom mildness the sloping-bottom mode ( )1n = − can be 

neglected. In this case, the CMS (4.6) is simplified to the following one-equation, which 

is called the mild-slope and shear equation: 

( ) ( ) ( ) ( ) ( )( ) ( )2
00 0 00 0 00 00 0 0a x P x b x P x c x a q P x′′ ′+ + − = ,                                            (4.10) 

where the coefficients are 

( )
( )

( ) ( )
0

2 0
00 0 0

0 0

21; tanh 1
2 sinh 2

z

z h x

ha Z z x dz h
h

κκ
κ κ

=

=−

⎛ ⎞
= = +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ,                                                     (4.11a) 

( ) ( )
( )

( )( )
0

0 2
00 0 0 00

; 22 ; ;
z

z h x

Z z x dh q dUb Z z x dz Z z h x x a
x dx dxσ

=

=−

∂
= + = − +

∂∫ ,                     (4.11b) 

( ) ( )
( )

( )( )20
002

00 0 00 02

;;
;

z

z h x

Z z h x xZ z x dhc a Z z x dz
x dx x

κ
=

=−

∂ = −∂
= + + +

∂ ∂∫          

        ( ) ( )
( )

0
0

0

;2 ;
z

z h x

Z z xq dU Z z x dz
dx xσ

=

=−

∂
+

∂∫  .                                                                 (4.11c) 

In the above equations, the function ( )0 ;Z z x  is given by Eq. (4.3a) and 0κ  is the 

positive root of the dispersion  relation  ( )0 0tanhh hμ κ κ= , which is exactly Eq. (4.3b) 

for  n=0. In order to illustrate the richness and validity of the present model, we will now 

discuss two particular forms to which Eq. (4.10) reduces, when there is no current and 

when the bottom is horizontal. 

(i) No current (U=0) 

In the case of wave scattering by bottom topography without current, the above model 

exactly reduces to the Modified Mild-Slope equation (MMS), Massel (1993), 

Chamberlain & Porter (1995), Miles & Chamberlain (1998). This is easily seen from the 

above equations, since in this case  00 00b a′= , and thus Eq. (4.10) becomes 

( ) ( )( ) ( )( ) ( )2
00 0 0 00 00 0 02a x P x κ a K x a q P x′′ + − − = ,                                                  (4.12a) 

 where 
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( ) ( ) ( )
( )

( )( ) ( )
20

200
0 1 0 22

;;
;

z

z h x

Z z h x xZ z x
K x Z z x dz h K h K h

x x
κ

=

=−

∂ = −∂
′ ′′ ′= − − = +

∂ ∂∫ ,  (4.12b) 

and 1 2,K K  are functions of 0hκ , as given by Miles & Chamberlain (1998, Eqs. 1.14b,c). 
 

(ii) Scattering by shear current in flat domain (dh/dx=0) 

In the case of horizontal bottom, the coefficients defined by Eqs. (4.11) become 

00 0 0,a Z Z= ,                                                                                                                                                (4.13a) 

 

0
00 0 0 0

22 , ,Z q dUb Z Z Z
x dxσ

∂
= +

∂
,                                                                          (4.13b)             

2
2 0 0

00 0 0 0 02

2, ,Z Zq dUc Z Z Z
x dx x

κ
σ

∂ ∂
= + +

∂ ∂
.                                                                                (4.13c) 

In this case, Eq. (4.10) can be written in the following  form: 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )2 2
0 0 0 0x P x x x q x P xκ

′′Γ + Γ − +Λ = ,                                            (4.14a) 

where  

( ) ( ) ( )-2
00/x a xσ ωΓ = ,  and ( )

2 2
0 0

0 02

2 , ,Z Zq dUx Z Z
dx x x

σ
ω σ

− ⎛ ⎞∂ ∂⎛ ⎞Λ = +⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠ ⎝ ⎠
.  (4.14b) 

The above equation is the Enhanced Mild-Shear Equation (EMSE), which has been 

derived and studied by McKee (1996). Furthermore, on the basis of very slow current 

variations ( / 1dU dx << ), the coefficient  ( )xΛ  becomes of higher order in comparison 

with ( )2
0 xκ Γ  and can be approximately neglected ( ( ) 0xΛ ≈ ). In this case, Eq. (4.14) 

further reduces to the Mild-Shear Equation (MSE), which has also been derived and 

studied by McKee (1987). 

In order to investigate the validity of EMSE and MSE models, in constant depth regions, 

McKee (2003) has developed an ‘exact’ multidomain approximation method, which is 

based on piecewise constant approximation of the current velocity and on complete 

normal-mode expansions (of the form of the present Eqs. 2.10) in each subdomain. The 

final solution concerning the coefficients of these expansions is obtained by satisfying 

the matching conditions at the vertical interfaces (vortex sheets) separating each 

subdomain (see, e.g., Smith 1983, Eqs. 2.3-4, Kirby et al 1987, Eqs. 2.13-14). As it will 
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be illustrated in Sec.5.1 (below), the  present CMS (4.6) results are found to be in perfect 

compatibility with the multidomain approximation method.  

5.  Numerical results and discussion 

In this section we shall present numerical results obtained by the present CMS and 

comparisons with other models. The discrete coupled-mode system is obtained by 

truncating the local-mode series (4.1) to a finite number  of terms, 

                                        ( ) ( ) ( )
1

, ;
M

n n
n

p x z P x Z z x
=−

= ∑ ,                                                 (5.1) 

retaining a number M of evanescent modes, in addition to the propagating and the 

sloping-bottom modes, and by using central, second-order finite differences based on a 

uniform horizontal grid of pN  points to approximate the (horizontal) derivatives in Eqs. 

(4.6). Discrete boundary conditions are obtained from Eqs. (4.8) by using second-order 

forward and backward differences to approximate derivatives at the ends (x=a and x=b). 

Thus, the discrete scheme  is uniformly of second-order in the horizontal direction. The 

forcing due to the incoming wave appears only in one equation, at the left endpoint x a=  

(see Eq. 4.8b). 

 

5.1 Scattering of water waves by jet-like shear currents in constant depth 

We first consider the case of obliquely incident waves ( )1 45οθ = ,  in constant depth 

(h=const), scattered by a jet-like current of the form: 

                       ( ) ( )( )2
max exp /U x U x= − A ,                                                                   (5.2) 

To model the above shear current profile by the present method, we use 3a = − A ,  3b = A  

and 1 3 0U U= = . In this example taken from McKee (2003), except of the incidence 

wave direction ( )1θ , the other important non-dimensional parameters  are :  

                  2 2
max/ , / , /g U g S h gε ω β ω ω= = =A  .                                                 (5.3) 

In Fig. 2 we present results concerning the reflection coefficient for H=1 (deep water 

conditions), ε=1 and various maximum current velocities maxU , corresponding to  β 

ranging in 2 2β− < < , where negative values are associated with adverse currents and 

positive values with following currents, respectively. The present CMS results (shown by 

solid line) have been obtained by using 5 totally modes (n=0,1,2,3,4), which were found 
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to be enough for numerical convergence. We recall here that in constant depth the 

sloping-bottom mode is zero by definition (see Eq. 4.5) and needs not to be considered. 

The present CMS results are found to be in perfect agreement with the ones obtained by 

the multidomain approximation method by McKee (2003), shown in Fig.2 by using 

crosses. In addition, in this figure we include the predictions for the reflection coefficient 

by EMSE (dashed line) and MSE (dotted line), respectively, as calculated by the present 

method, using only the propagating mode (n=0) and, in addition, by disregarding the 

contribution of  ( )xΛ   in the coefficient 00c  (defined by Eq. 4.13c). We are able to 

observe in Fig.2 the enhanced performance of the EMSE vs. the MSE model, as also 

reported by McKee (2003). In particular, in the examined case the EMSE model 

accurately predicts the reflection coefficient for 0.5β > − , i.e. for relatively weak 

adverse currents and for following currents. 

As a second example, we present in Fig. 3 results concerning again the reflection 

coefficient for 1β = −  (strong adverse jet current) and  H=0.1 (shallow water conditions). 

In this case, various wave frequencies have been considered, corresponding to  ε  ranging 

in 0 1ε< < . Again, we note that the results obtained by the present CMS with 5 modes 

(shown by solid line) are found to be in perfect agreement with the ones by the 

multidomain approximation method, McKee (2003) shown in Fig.3 by using crosses. 

Furthermore, we are able to observe in this figure that the EMSE predictions (shown by 

using dashed line) are better than the predictions obtained by the MSE (shown by dotted 

line), for values of the frequency parameter in the interval 0.07<ε<0.85. However, it is 

also seen in Fig. 3 that for very low frequencies, corresponding to ε<0.07, the EMSE fails 

to correctly predict the reflection coefficient, producing large discrepancies. In particular, 

as 0ε →  the EMSE erroneously predicts 1rK → . 

5.2 Waves scattered by smooth underwater shoal  (with and without current) 

In order to illustrate the combined effects of variable bathymetry and shearing current on 

the wave field, we examine in this section the case of a smooth but steep underwater 

shoal, which is characterised by the following depth function 

( ) 1 3 1 3 1tanh 3 ,
2 2 2

h h h h x ah x
b a

π
+ − ⎛ ⎞−⎛ ⎞= − −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

                                                             (5.4) 
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Figure 2.  Obliquely incident waves scattered by opposing and following currents, in deep water. 
Comparison of the modulus of the reflection coefficient, as obtained by the present CMS (solid 
line), EMSE (dashed line) and MSE (dotted line), for various current velocities. Results obtained 
by the multidomain approximation method (McKee 2003) are shown by using crosses. 

 
Figure 3.  Obliquely incident waves scattered scattered by opposing shear current, in shallow 
water. Comparison of the modulus of the reflection coefficient, as obtained by the present CMS 
(solid line), EMSE (dashed line) and MSE (dotted line), for various frequencies. Results obtained 
by the multidomain approximation method (McKee 2003) are shown by using crosses. 

1 45οθ =  
2 / gε ω= A  
2 / 1S h gω= =  

1 45οθ =  

0 /U gβ ω=
2 / 0.1S h gω= =  
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in 0 20 ,a x b m= < < =  with 1 15h m=  and 3 5h m= . This bottom profile is quite steep, 

having mean slope 50% and maximum slope 240%. (A sketch of the bottom topography 

is shown in Fig. 4). The angular frequency of the incident wave is selected to be 

1.62ω = rad/sec, corresponding to shoaling ratio 1 / 0.64h λ = , where λ is the local 

wavelength (that implies almost deep-water   wave   conditions   in ( )1D ),  and the 

incident wave direction is taken to be 1 45oθ = − . The phase speed of the waves in the 

region of incidence is 1 6.06 /c m s= .  

We first consider the case of wave scattering by bottom topography only, without any 

current effects. In this case, the shoaling ratio is 3 / 0.235h λ =  (implying intermediate 

water-depth wave conditions in ( )3D ), and the corresponding phase speed of the waves in 

the region of transmission is 3 5.47 /c m s= . After passing through the variable 

bathymetry region the waves are refracted due to shoaling and the direction of the 

transmitted wave is 3 39.6oθ = − .  In this case, the reflection and transmission coefficients, 

as calculated by the present CMS (4.6) using totally 5 modes (n=-1,0,1,2,3) and 

251pN = ,  are  found to be: 0.025, 0.884r tK K= = . In this and similar cases that will be 

presented in the sequel, such a small number of retained modes in the local-mode series 

(4.1) is found to be enough for numerical convergence, provided that the sloping-bottom 

mode (n=-1) is included. 

A contour plot of the wave field (real part of wave pressure) above the variable 

bathymetry domain is shown in Fig. 4. In this figure the system of isobars is shown both 

in the horizontal plane (upper part of the figure) and in the vertical plane (lower part). 

Extension of the isobars below the bottom surface has been maintained in the lower part 

of this figure in order to better visualise the fulfilment of the Neumann boundary 

condition on ( )z h x= − , which is equivalent to the fact that the equipressure lines 

intersect the bottom  profile  perpendicularly (cf. Eq. 2.7c).   Also, the distribution of the 

wave pressure on the free surface is plotted on the lower part of Fig.4, which is 

proportional to the free-surface elevation (Eq. 2.8). It is worth noticing here that in the 

case of no current, the present CMS is equivalent  to the consistent coupled-mode model 

developed by Athanassoulis & Belibassakis (1999) for the propagation of waves over 

variable bathymetry regions results. Thus, the results presented in Fig.4 are in perfect 

agreement with the ones obtained by latter coupled-mode model. 
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Figure 4. Refraction/diffraction of waves over a smooth  but steep shoal, without the 

effects of current. Incident wave frequency ω=1.62rad/s and direction ο
1 45θ = . Plot of 

the wave field (a) on the horizontal plane, (b) on the vertical plane. 

3 39.6oθ = −  

1 45oθ = −  

(a) 

(b) 
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In Figs. 5 and 6, we present similar results for the same shoal and wave incidence as 

before, but with the additional effects of a following (Fig. 5)  and of an opposing (Fig. 6) 

transitional shear current. The magnitude of the current velocity is taken to be: 

( ) 3 3 1tanh 3 ,
2 2 2

U U x aU x
b a

π⎛ − ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
                                                                    (5.5) 

in 0 20 .a x b m= < < =  Thus, the shear current velocity varies monotonically from a 

minimum value 1 0U =  to a maximum value  3U , which is taken to be one quarter of the 

phase speed of waves in the region of incidence, 3 1max 0.25U U c= =  (where 

1 6.06 /c m s= ). Now, the wave directions in the region of transmission ( )3D  are modified 

due to current,  and in the case of the following current 3θ  increases, while in the case of 

the adverse current 3θ  decreases, as predicted  by Eq. (2.13). 

To illustrate the current effects on the detailed structure of the wave pressure field, the 

latter  is comparatively plotted in Figs. 5 and 6, on both the horizontal and vertical planes, 

by using contour lines. (Again, only the real part of the wave pressure field is shown). 

The direction and horizontal structure of the current is also schematically presented in 

these figures by using arrows. We observe in these figures, in comparison with the 

previous results with no current presented in Fig.4, the continuous variation of the 

wavelength (which increases for following and decreases for adverse currents), taking 

place in the intermediate subdomain ( )2D . In addition, in all cases we observe that the 

equipressure lines intersect the bottom surface perpendicularly, which is evidence of  the 

consistent satisfaction of the Neumann bottom boundary condition, both on the horizontal 

and on the sloping parts of the bottom. The previous examples (Figs. 4,5,6) correspond to 

incident wave conditions and current velocity such that much of the wave energy 

penetrates the region of transmission. The main results concerning the refraction 

parameters, reflection and transmission coefficients are summarized in Table 1. 

current type 1max /U c  3θ  rK  tK  

−  0 39.6 0.025 0.884 

following 0.25 57.5 0.176 0.852 

opposing -0.25 29.3 0.053 0.999 

Table 1. Refraction/diffraction parameters of waves scattered by transitional 

current over smooth underwater shoal 
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Figure 5. Refraction/diffraction of waves over a smooth and steep shoal, with the effects 

of a following transitional shear current. Incident wave frequency and direction same as 

in Fig. 4. Plot of the wave field (a) on the horizontal plane, (b) on the vertical plane. 

1 45oθ = −  

3 57.5oθ = −  

transitional following current 

(a) 

(b) 
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Figure 6. Refraction/diffraction of waves over a smooth and steep shoal, with the effects 

of an opposing transitional shear current. Incident wave frequency and direction same as 

in Fig. 4. Plot of the wave field (a) on the horizontal plane, (b) on the vertical plane. 

 

3 29.3oθ = −  

1 45oθ = −  

transitional adverse current 

(a) 

(b) 
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5.3  The case of a sinusoidal current 

It is well known that in the case of obliquely incident waves on an opposing jet-like shear 

current, in constant depth, wave trapping can occur under particular conditions (see, e.g. 

the discussion by Mei 1983, Sec.3.7.2 and Fig.7.2, and the discussion after Eq.6.22). This 

could lead to great amplification of the wave in a transverse channel along the current 

maximum. On the other hand, observations suggested that wind-waves amplitudes might 

be enhanced within the downwind-directed current maxima associated with alternating 

‘wind streaks’ or ‘Langmuir circulation’ (see also Smith 2001), leading to preferential 

breaking of waves along such current jets.  In order to theoretically investigate such 

phenomena, Smith (1983) developed an eigenfunction expansion technique for the 

scattering of waves in constant depth by narrow current jets, modelled by a top-hat 

pattern. The model problem consisted of three homogeneous subregions separated by 

vertical vortex sheets. However, the results indicated that wave amplitudes should be 

decreased within such current jets.  

 

In order to extend the above investigation, that was restricted to single uniform current 

jets and shear concentrated along the edges of the jet, to the case of more complex, 

horizontally alternating current structure, we consider here as another example  the case 

of waves of angular frequency 2.2ω = rad/sec,  propagating with direction 1 60θ = °  in a 

constant depth strip h=15m, and scattered by a following sinusoidal shear current with 

horizontal profile of the form: 

( ) 1 1 cos 2 ,
20 2
c x a b aU x L

L
π⎛ − ⎞ −⎛ ⎞= − =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.                                                         (5.6) 

 

Thus, the maximum current velocity is equal to one tenth of the phase speed of waves in 
( )1D  and ( )3D , which in the present case is 1 3 4.46 /c c m s= = . This current has the form of 

two streaks and is characterised by continuously distributed shear. More specifically, the 

shear current exists only in the region from  a=0m to  b=20m ( 1 3 0U U= = ), and it has a 

periodic horizontal structure with characteristic length L=10m, that is comparable to the 

incident wavelength ( / 0.78L λ = ). In addition, the wave conditions in the region of 

incidence correspond to deep water  conditions ( / 1.17h λ = ).   
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Figure 7.  Refraction/diffraction of waves by a following sinusoidal current, in constant 

depth. Incident wave frequency ω=2.2rad/s and direction ο
1 60θ = . Plot of the wave field 

(a) on the horizontal plane, (b) on the vertical plane. 

1 60oθ =  

3 60oθ =  

sinusoidal following 
shear current

(a) 

(b) 
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Figure 8.  Amplification factor of waves scattered by a following sinusoidal current. 

Incident wave frequency ω=2.2rad/s and direction ο
1 60θ = . 

 

The real part of the calculated wave field, as well as the distribution  of the wave pressure 

on the free surface (which is proportional to the free-surface elevation), are shown in Fig. 

7, as obtained by the present method by using only 5 modes (n=0,1,2,3,4) in the series 

(4.1) and 251pN = . Again the latter have been proved enough for numerical 

convergence, even for such large gradients of the horizontal current velocity. We observe 

in the upper part of Fig.7 the formation of a transverse channel on the horizontal plane, 

centered at x=10m, associated with partial trapping of the wave energy. In Fig.8 we 

present the amplification factor  of the wave  ( ) 0, 0 /P x z A=  (where 0A  is the amplitude 

of the incident wave), as calculated by the present method, along with the sinusoidal 

current profile. Strong enhancement of the wave amplitude is observed at x=10m, i.e. 

along the central axis of the current (5.6), corresponding to more than 180% increase of 

the incident wave amplitude. 

An explanation of the above result is possible on the basis of simple refraction principles. 

The incident wave direction increases within the first current jet  ( 0 10mx< < ) due to 

increase of phase speed, as shown in Mei (1983, Fig.7.2a). Due to the fact that the 

1/U c  

( ) 0, 0 /P x z A=  
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wavelength is comparable with the horizontal length of the current, the wave at the exit of 

from the first jet ( 10mx = ) has a local direction which is greater than 60o . The latter is 

such that the wave is partially reflected from the second jet, as shown in Mei (1983, 

Fig.7.2b). Thus, small part of wave energy returns towards the central axis of the current 

(5.6) and is trapped in the transverse channel. The calculated reflection and transmission 

coefficients by the present CMS, as also can be observed in Fig.7, are: 

0.085, 0.996r tK K= = . Thus, almost all the wave energy penetrates the region of 

transmission ( )3D , and at x>20m the wave direction has recovered its initial value: 

3 1 60θ θ= = ° . Consequently, repeated similar patterns of wave enhancement are expected 

to occur, if the alternating following current structure (5.6) is assumed to be periodically 

extended in ( )3D .  

 

5.4  Scattering of waves by current flowing along a smooth underwater trench 

Another interesting case that can be further investigated by means the present method 

concerns the propagation of obliquely incident waves over trenches with currents flowing 

along them. As pointed out by Kirby et al (1987), such phenomena could occur from 

waves scattered by tidal flows along natural or dredged channels, where in the latter case 

the presence of rigid walls may serve to guide the current and stabilize the position of 

boundaries in a practical sense.  In order to study scattering of waves by current flowing 

along an abrupt underwater trench, Kirby et al (1987), extending previous works by 

Evans(1975) and Smith(1983,1987), developed and compared methods based on matched 

eigenfunction expansions and boundary integral equations. Again, the model problem 

consisted of three homogeneous subregions separated by vertical vortex sheets. 

 

For illustrating the extending capability of the present method and the compatibility of its 

predictions with the analysis by Kirby et al (1987), we present in Fig.9 results concerning 

the transmission coefficient over two symmetric underwater trenches with the effects of 

current flowing over them. Two bottom profiles, shown in the upper part of Fig.9 with 

thick solid and dashed lines have been used for calculations. At the regions of incidence 

and transmission the depth is  1 3 5mh h= =  and  at the center of the trench the maximum 

depth is max 15mh = . The corresponding depth functions have been obtained by 

symmetrical use of  Eq.(5.4), with appropriate values of the parameters and of the 
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coefficient in the argument of hyperbolic tangent controlling the maximum bed steepness, 

which in the first case (solid line) is 94.2% and in the second (dashed line) is 188%. Also, 

in the upper part of Fig.9 the horizontal structure of the current flowing over the trench is 

shown, which in the examined case is defined by 

( ) max 1 cos 2 ,
2

U x aU x
b a

π⎛ − ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
in     ,a x b< <                                         (5.7) 

where 50m, 50m,a b= − =  and max max/F U gh=  denotes the bathymetric Froude 

number associated with the maximum current velocity. The shear current exists only in 

the region from  50m, 50ma b= − =  ( 1 3 0U U= = ). As it can been seen in the upper part 

of Fig. 9 the mean width of the trench, where also the flowing current is significant, is 

L=50m, and thus 110L h= . The situation resembles the one presented and discussed by 

Kirby et al (1987, Fig.6), with the difference that here the bathymetry and current 

velocity vary continuously. 

In Fig. 9 we present results concerning the transmission coefficient ( tK ) over the two 

smooth but steep underwater trenches, with the effects of current flowing over them. The 

incident wave direction is selected to be 1 45oθ = . The present method results for various 

values of the nondimensional wavenumber 1 1hκ   have been obtained by using 5 modes 

(n=-1,0,1,2,3) in the series (4.1) and 501pN = . For compatibility with the analysis by 

Kirby et al (1987, Fig.6) for an abrupt underwater trench, in this example  three cases 

have been considered, corresponding to 0.05, 0, 0.05F = − . In the range of 1 1hκ  from 0.1 

to 0.8, 1.0, 1.3, for  previous values of the Froude number, respectively, where the wave-

current-seabed interaction is significant, the transmission coefficient of the smooth but 

steep trenches is found to be  greater than the one corresponding to the abrupt trench, as it 

is naturally expected.  Furthermore, as the trench wall steepness increases the present 

method results converge to ones by Kirby et al (1987), shown in Fig.9 by using symbols. 

 

5.5  Longshore current effects on resonant reflection of waves by sinusoidal bathymetry 

A final result presented in this work concerns the investigation of longshore current 

effects on the reflection of waves by sinusoidal bathymetry. The phenomenon of resonant 

reflection by undulating bottom topography has drawn considerable attention owing to its  
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Figure 9.  Wave transmission over smooth but steep symmetric trenches, for various 

nondimensional wavenumbers 1 1hκ  and bathymetric Froude numbers max max/F U gh= , 

as obtained by the present CMS. (a) Bottom geometry and current profile. (b) 

Transmission coefficient. Solid line: smooth trench with max wall steepness 94.2%. 

Dashed line: smooth  trench with max wall steepness 94.2%. Symbols indicate results by 

Kirby et al (1987, Fig6) for an abrupt underwater trench. 

 

 

F=-0.05 

F=0 

F=0.05 

L=50m 

U(x) 

h(x) 

(a) 

(b) 
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significant role in the evolution of nearshore waves and its possible relation to coastal 

morphology  (development  of  shore-parallel bars). In addition,  the  existence  of  Bragg 

scattering provides a possible means for constructing coastal protection devices relatively 

low in profile in comparison to the waterdepth. The above remarks justify the extent of 

theoretical and experimental works presented on this subject by many authors (see, for 

example, Davies & Heathershaw 1984, Mei 1985, Dalrymple & Kirby 1986, Mei et al 

1988, Guazzelli et al 1992, O'Hare & Davies 1993, Kirby 1993,  Liu & Yue 1998).  

However, as pointed out by Kirby (1988), any such physical formation or installation 

being of finite length along the longshore dimension, it is likely to result in depression of 

the maximum setup behind the bar that would generate a nearshore circulation pattern. 

This is expected to produce mean flows with onshore/offshore directions, and perhaps 

also with longshore component above the bar field. The  effects of cross-shore current on 

the resonant reflection of water waves by sand bars have been studied by Kirby (1988), 

by using multiple-scale expansions to obtain evolution equations for the amplitudes of 

waves. The latter were then used to investigate the resonant reflection of waves by bar 

fields for both normal and oblique incidence.  In order to examine the longshore shear 

current effects on resonant reflection of waves by sinusoidal bathymetry using the present 

CM, we consider the bottom topography characterised by the following depth function:   

( ) ( ) ( )0 sin , in 2 / 2 1 /b b bh x h B x x nπ π= − < < +A A A , and  ( ) 0h x h=  otherwise.   (5.8) 

In the above equation, bA  denotes the bottom wavenumber and B  the amplitude of the 

bottom undulations. To maintain correspondence with the experimental results presented 

in Davies and Heathershaw (1984), n=4 case, we chose  0 015.625cm, / 0.32h B h= =  and 

2b π=A  (so that the length of the bottom periodic cell is 1m). A plot of this bottom 

topography is shown in the upper part of Fig. 10.  Numerical results are obtained by the 

present CMS using 5 totally modes (n=-1,0,1,2,3) and 251 gridpoints per bottom 

wavelength. The results concerning the reflection coefficient are shown in Fig. 10 in the 

following  range  of the resonant parameter ( )0.5 2 cos / 1.8bκ θ< <A , around the point of 

first-order Bragg resonance, which in the case of no current is given by 

( )2 cos / 1bκ θ =A ,                                                                                                          (5.9) 

where in this subsection κ and θ will be used to denote the incident wavenumber and 

direction ( ( )1
0 1andκ κ θ θ= = ).  For comparison,  in Fig. 10  we  present  results (always  
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Figure 10.  Wave reflection over sinusoidal bottom topography for various incidence 

angles 1θ   and  bathymetric Froude numbers F. (a) Bottom geometry and longshore 

current profile. (b) Reflection coefficient. 
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obtained by the present CMS) for normal 0oθ =  and  oblique 30oθ =  incidence, 

without current (shown by dashed lines),   and  for oblique  incidence 30oθ =  with the 

effects of following and opposing jet-like currents. The current profile is of the form of 

Eq. (5.7), with 0m, 6ma b= =  (and is shown in Fig.10(a) by using solid lines).  In order 

to better illustrate the current effects, relatively strong velocities have been considered, 

corresponding to bathymetric Froude numbers  max 0/ 0.25F U gh= = ± .  

In the case of no current, the present method results, shown by dashed lines in Fig.10(b), 

are found to be in very good agreement with corresponding predictions by other 

theoretical models and with experimental data; cf. O’Hare & Davies (1993, Fig.3b), in 

the case of normal incidence, and  Kirby (1993, Fig.5), in the case of oblique incidence. 

We observe in Fig. 10 that the peak of the main lobe of  the reflection coefficient ( rK )  is 

located at ( )2 cos / 0.98bκ θ ≈A , i.e. slightly shifted to lower value of the resonance 

parameter than the one predicted by Eq. (5.9). 

The Doppler shift of frequency due to the current, also shifts the position of the peak of 

the main lobe of  rK   from ( )2 cos / 1bκ θ ≈A , for 0F = , to much lower value 

( )2 cos / 0.84bκ θ ≈A   in the case of opposing current ( 0.25F = − ), and to higher value 

( )2 cos / 1.16bκ θ ≈A  in the case of following current ( 0.25F = ). The above differences 

(-0.14 and 0.18, respectively) in the values of the resonant parameter ( )2 cos / bκ θ A  

controlling the location of the main the peak of rK  can be predicted, at a first order of 

approximation, by using the dispersion relation formulated at F=0 to obtain the variation 

of wavenumber in the neighbourhood of the rK -peak due to frequency shift : 

( ) ( ) maxmax sin1

g g g

UqU
C C C

κ θ
κ σ ωΔ = − = − = −  ,                                                          (5.10) 

where /gC d dkω=  denotes the group velocity calculated  at ( )/ 2cosbκ θ= A  without 

taking into account any current effects. Using Eq. (5.10) for ( )/ 2cosbκ θ= A , in 

conjunction with the resonance condition, which now reads 

( ) ( )2 cos / 1bκ κ θ+ Δ =A ,                                                                                            (5.11) 

we obtain the following result 
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( )2 cos / 1bκ θ ε= ±A .                                                                                                 (5.12a) 

In the above equation the plus sign refers to following current and the minus sign to 

opposing current, respectively, and 

( ) ( ) ( )
( )

1/ 2
2 cos 2sin 2cos

tanh ,
2cos

b

b b

F h
P h

κ θ θ θ
ε

θ

−
⎛ ⎞⎛ ⎞Δ

= = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

A
A A

                            (5.12b) 

where ( )
( )( )

/ cos
1

sinh / cos
b

b

h
P

h
θ
θ

= +
A
A

. Application of the above formula to the examined case 

results in ε=0.145. Thus, Eq. (5.12) predicts the location of the main-lobe peak at 

( )2 cos / 1 0.145bκ θ = ±A  which is found to approximate well the real values 0.84 and 

1.16, respectively. 

  

Furthermore, we observe in Fig. 10 that in the examined wave incidence 30oθ = , the 

shape of the main lobe of rK  for 0.25F = ±  looks similar to the one for 0F = . 

However, the main lobe is ~9%  narrower in the case of opposing current, and  ~19%  

broader in the case of following current, in comparison with the no current case ( 0F = ). 

Also, the peak value of  rK  appears to be ~10%  greater  for 0.25F = − ,  and ~18% 

lower for 0.25F = . Thus, it seems that the area under the main lobe of the reflection 

coefficient is approximately conserved for symmetric jet-like currents. The above results 

and remarks could be found useful for extending analytical models for the approximate 

prediction of the  reflection coefficient around the position of the peak of the main lobe 

(as e.g., the ones given by Mei et al 1988 and Kirby 1993) to the case of Bragg scattering 

by sinusoidal bottom in the presence of longshore shear currents, at least for low angles 

of wave incidence where the rK  pattern is less complex (see, e.g., Kirby 1993, Fig.5). 
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5 .  Conclusions 

A continuous coupled-mode method has been developed for wave-current-seabed 

interaction in variable bathymetry regions, with application  to the  problem of wave 

scattering by steady shearing currents, characterised by current variations on various 

scales. The present method does not introduce any simplifying assumptions or other 

restrictions concerning the bottom slope and curvature or the  horizontal gradient of the 

current. Based on a variational principle, in conjunction with a rapidly-convergent local-

mode series expansion of the wave pressure field in a finite subregion containing the 

current variation and the bottom irregularity, a new coupled-mode system of equations is 

obtained, governing the scattering of waves in the presence of variable bathymetry and 

longshore shearing currents. 

In addition, by keeping only the propagating mode in the local-mode series, a new one-

equation model has been derived, called the mild slope and shear equation, having the 

property to reduce to modified mild-slope equation when current is zero and to the 

enhanced mild-shear equation when the bottom is flat. 

Finally, the analytical structure of the present model facilitates its extension to various 

directions as:  (i) to three-dimensional problems, (ii) to treat wave scattering by more 

complex current systems, characterized by more general vertical structure with cross-jet 

component, and (iii) to include the effects of weak nonlinearity.  
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Appendix A.  First variation of the functional F  

 
In order to derive the first variation of the functional F  defined by Eq. (3.1), we first 
decompose it into the following  terms: 

( ) ( ) ( ) ( ) ( ){ }( ) ( ){ }( )1 3, , , ,a b c d R L R n R T nn N n N
p p p A p A C p A C

∈ ∈
+ + + + +F F F F F F F= ,      (A1) 

where  p stands for ( ) ( ) ( )2 2, inp x z D . The various components  of  F  are defined as 
follows: 
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where ( )a x aσ σ= =  and ( )b x bσ σ= = . In accordance with the above decomposition, 
the variation δ F of the functional F  is obtained as the sum of the variations of all  its 
components. The variation aδF  is easily calculated to be:  
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where  Green’s theorem has been applied to functions p
σ

 and pδ
σ

 in  ( )D 2 . The 

variations of the second, third and fourth components, are easily calculated as follows, 
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Gathering all the above four terms, and using  
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For the last two terms in the right-hand side of the above equation use was also made of 
the fact that  both ( )U x  and ( )h x  have been assumed to be smooth functions, attaining 
constant (but possibly different) values at the ends x=a and x=b of the variable 
bathymetry region, and thus, / 0nσ∂ ∂ =  on ( )12

ID∂  and ( )23
ID∂ . Furthermore, using the 

the outward normal derivative at the bottom  ( )2
BD∂  

1/ 22

1p dh p dh p
n dx z dx x

−
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,          ( )z h x= − ,                                              (A.5) 

in conjunction with  the expression of the surface differential at the bottom ( )2
BD∂  

dS =
2

1 dh dx
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⎛ ⎞+ ⎜ ⎟
⎝ ⎠

,  Eq. (A4)  takes the form: 
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We now proceed to calculate the variation of the last two components LF and RF  of 

the functional, defined on the vertical interfaces ( )12
ID∂  and ( )23

ID∂  separating the variable 

depth subdomain ( )2D  from the left ( )1D  and the right half strip ( )3D , respectively. We 
first consider two harmonic functions Φ Ψ, , defined in the left half-strip and satisfying 
the modified Helmholtz equation, the linearised free-surface boundary condition and the 
no-entrance bottom boundary condition. In addition, we suppose the following behaviour 
of the functions Φ Ψ,  at infinity, x → −∞  
    ( ) ( ) ( ) ( ) ( ) ( )Φ Ψx z P f x z P f x z x z p f x z p f x zR R, , , , , , ,* *= + = +0 0   ,           (A.7) 
where P P p pR R0 0, , ,  are complex constants, ( )f x z,  is any bounded function with 
bounded derivatives and an asterisk symbolizes the complex conjugate. Under condition 
(A.7), the following relation holds for the Green’s integral of these potentials on the 
vertical boundary ( )12

ID∂ : 
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where ( )1J  is given by      
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Eq. (A.8) is obtained by applying Green’s theorem to Φ Ψ,  in the left half-strip ( )1D , 
taking into account the free-surface and the bottom boundary condition and the 
asymptotic behaviour of the functions Φ Ψ,  at x = −∞ . In particular, when 

( ) ( )( ) ( ) ( )1 1
0 0, expf x z ik x Z z=  and ( ) ( ) ( ) ( )( ) ( )( )1 1 1

0 0 1 0 1cosh / coshZ z k z h k h= + , the term  
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( )1J  becomes ( ) ( ) ( ) ( )( )
1

0 21 1 1
0 02

z

z h

J k Z z dz
=

=−

= ∫ . A similar result can also be established for the 

harmonic functions Φ Ψ,   defined in the right half-strip ( )3D . 
 
On the basis of Eq. (A.8), we now proceed to calculate the variations LδF and RδF . 
The variation LδF  is calculated as follows, 
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where ( )1n  denotes the outward normal vector on the (vertical) boundary ( )12
ID∂  of ( )D 1 , 

and thus, ( )1/ /n x∂ ∂ = ∂ ∂ . Taking into account the asymptotic behaviour of the function 
( )1p  in ( )D 1  (given by Eq. 2.10a),  for x → −∞ ,  and by applying Eqs. (A.8) to the 

functions ( )1pδ  and ( )1p  on ( )12
ID∂ ,  the third term in  the right-hand side of Eq. (A.9) is 

transformed as follows 
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Consequently, the variation LδF  is given by the following relation 
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Similarly, the  variation RδF ,  is calculated as follows: 
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where ( )3n  denotes the outward normal vector of the (vertical) boundary ( )23

ID∂  of ( )D 1 , 

and thus, ( )3/ /n x∂ ∂ = −∂ ∂ . By following the same procedure as before, we finally obtain 
in this case 
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Finally, by combining the partial results given by Eqs. (A.6), (A.10) and (A.11), the 
variation of the functional F  is finally obtained, in the form given by the left-hand side 
of Eq. (3.3). 

Page 41 of 41


