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Abstract

A coupled-mode method is developed and applied to hydroelastic analysis of large floating platforms of shallow draft over variable bathymetry
regions, characterised by parallel bottom contours. We consider the scattering problem of surface waves, under the combined effects of variable
bathymetry and a semi-infinite floating elastic plate, in the time domain. The present development is based on appropriate generalisation of the
unconstrained variational principle of Luke [Luke JC. A variational principle for a fluid with a free surface. J Fluid Mech 1967;27:395–7], which
models the evolution of nonlinear water waves in intermediate water depth over a general bathymetry. Assuming small plate deflections and
neglecting the rotation of plate section, the large floating structure has been modelled as a thin elastic plate. The present approach is based on
appropriate extensions of the nonlinear coupled-mode model developed by Athanassoulis and Belibassakis [A nonlinear coupled-mode model
for water waves over a general bathymetry. In: Proc. 21st international conference on offshore mechanics and arctic engineering OMAE 2002.
2002] for waves propagating in variable bathymetry regions. In order to consistently treat the wave field beneath the elastic floating plate down
to the sloping bottom boundary, a complete, local-mode series expansion of the wave field is used, enhanced by appropriate sloping-bottom
and free-surface modes. The latter enable consistent satisfaction of the Neumann bottom-boundary condition on a general topography, as well
as the kinematical conditions on the free surface and on the elastic plate surface. By introducing this expansion into the variational principle,
an equivalent coupled-mode system of horizontal equations is derived, fully accounting for the effects of nonlinearity and dispersion. Boundary
conditions are also provided by the variational principle, ensuring that the edges of the plate are free of moment and shear force. Numerical results
concerning floating structures lying over sloping seabeds are presented, as obtained by simplifying the fully nonlinear coupled-mode system,
keeping only up to second-order terms. The present method can be extended to treat large floating elastic bodies or structures characterised by
variable thickness (draft), flexural rigidity and mass distributions.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Very large floating structures; Nonlinear hydroelastic analysis; Variable bathymetry; Coupled modes

1. Introduction

The nonlinear interaction of free-surface gravity waves
with floating bodies of large dimensions is a mathematically
interesting and difficult problem finding important applications.
Very Large Floating Structures (VLFS), e.g., megafloats and
platforms of shallow draft, have been studied intensively, being
under consideration for use as floating airports and mobile
offshore bases. Useful information, as well as progress on this
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subject, can be found in Eatock Taylor and Ohkusu [11] and
Ertekin et al. [12]. Moreover, the hydroelastic analysis of VLFS
is very relevant to problems concerning the interaction of water
waves with ice sheets, [37]. In all these cases, hydroelasticity
plays a substantial role.

Under the assumption of small slope of the free surface and
of the elastic plate surface, the corresponding linearised hy-
droelastic problems can be effectively treated in the frequency
domain. In this case, many methods have been developed,
including the B-spline Galerkin method [20], Boundary
Element Methods [18,19], eigenfunction expansion techniques
[22,38,19], integro-differential equations [1], Wiener–Hopf
techniques [39], Green–Naghdi models [23], and others; more
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complete reviews can be found in Kashiwagi [21] and Watanabe
et al. [42]. Moreover, high-frequency asymptotic methods have
been developed to describe the deflection dynamics of VLFS;
see, e.g., Ohkusu and Namba [33] and Hermans [17]. The lat-
ter are particularly useful in the case of short waves interacting
with a deformable floating body of large horizontal dimensions.

In most applications, the water depth has been assumed
to be constant, which is practically valid in the case when
the horizontal dimensions of the floating structure are small
in comparison with the bottom variation length, or in
the case when the depth is large compared to the local
wavelength (weak wave-seabed interaction). However, in cases
involving the operation of VLFS in nearshore and/or coastal
waters, the variations of bathymetry may have a significant
effect; see, e.g. Shiraishi et al. [35]. Numerical methods for
predicting the linearised hydroelastic responses of VLFS in
variable bathymetry regions have also been developed, based
on Boundary Element Methods (BEMs) [40,41] and Finite
Element Methods (FEM) [24], on eigenfunction expansions in
conjunction with step-like bottom approximation [30] and on
hydroelastic local-mode series expansions [7]. Furthermore, in
connection with the wave–ice sheet interaction problem, Porter
and Porter [34] have recently derived an approximate, vertically
integrated, mild-slope model for wave scattering by an ice sheet
of variable thickness over variable bathymetry, which is valid
under mild-slope assumptions with respect to the wetted surface
of the ice sheet and to the bottom boundary. Although linear
theory is able to provide valuable information, in many cases
the effects of nonlinearity are important (as, for example, in the
study of significant local slamming phenomena, Faltinsen [13],
Greco et al. [16]) and should be properly taken into account.
This necessitates the development of weakly and fully nonlinear
models.

In the present work, a continuous, nonlinear, coupled-
mode technique is developed and applied to the hydroelastic
analysis of very large floating structures of shallow draft over a
general bottom topography, based on an appropriate extension
of the coupled-mode model developed by Athanassoulis and
Belibassakis [3,4] for waves propagating in variable bathymetry
regions. In contrast to the step-like bottom approximation, the
present approach does not introduce artificial discontinuities
(bottom corners), and has the property of converging fast.
A parallel-contour bathymetry is assumed, characterised by
a continuous depth function of the form h(x, y) = h(x),
which attains constant, but possibly different, values at the
semi-infinite regions x < a and x > b. We consider
the scattering problem of surface waves, under the combined
effects of variable bathymetry and a semi-infinite floating
deformable structure of shallow draft, extending from x = a
to x = b; see Fig. 1. Under the assumption of small deflections
and neglecting the rotation of plate section, the shallow-draft
platform has been modelled as a thin floating plate, using linear
elastic plate theory. On the other hand, the hydrodynamical part
of the problem has been modelled on the basis of nonlinear
water-wave theory.

The present development is based on an appropriate
generalisation of the unconstrained variational principle of

Fig. 1. Floating elastic plate in variable bathymetry region.

Luke [26], which models the evolution of nonlinear water
waves in intermediate depth over a general bathymetry. In order
to treat the wave field beneath the elastic floating structure
consistently, a complete, local-mode series expansion of the
wave field is used, enhanced by appropriate sloping-bottom and
upper-surface modes. The latter enable consistent satisfaction
of the Neumann boundary condition on a general bottom
topography, as well as the kinematical conditions on the free
surface and on the elastic plate surface.

By introducing the local-mode series expansion into the
variational principle, an equivalent coupled-mode system of
horizontal equations is derived that describes the time evolution
of the modal amplitudes, the free-surface elevation, and
the plate deflection. The coupled-mode system accounts for
the effects of wave nonlinearity and dispersion. Boundary
conditions are also provided by the variational principle,
ensuring that the edges of the plate are free of moment
and shear force. Numerical results are presented, as obtained
by simplifying the fully nonlinear coupled-mode system
and keeping up to second-order terms, and compared with
known solutions. Furthermore, in order to investigate the
scattering effects of a large floating elastic structure in variable
bathymetry regions, we examine two cases comparatively: (a)
waves interacting with a sloping bottom profile; and (b) the
same as before, in the presence of a floating elastic plate over
the sloping bottom area.

Important aspects of the present method are that it can
be extended further to treat fully three-dimensional problems,
as well as floating elastic bodies or structures characterised
by variable thickness (draft), flexural rigidity, and mass
distributions.

2. Formulation of the problem

The environment that was studied consists of a water
layer bounded above partly by the free surface and partly
by a shallow-draft, large floating structure, modelled as a
floating elastic plate, and below by a rigid bottom. It is
assumed that the bottom surface exhibits an arbitrary one-
dimensional variation in a subdomain of finite length, i.e. the
bathymetry is characterised by straight and parallel bottom
contours lying between two regions of constant, but possibly
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different, depths: h = h1 (region of incidence) and h = h3
(region of transmission); see Fig. 1. A Cartesian coordinate
system is introduced, with its origin at some point on the mean
elastic-plate surface (in the variable bathymetry region), the z-
axis pointing upwards, and the y-axis parallel to the bottom
contours. We consider the scattering problem of surface plane
waves, under the combined effects of variable bathymetry and
the semi-infinite (along the y-direction), thin, floating elastic
plate, extending over the whole variable bathymetry region,
from x = a to x = b. This problem also finds applications in
the case of wave interaction with ice sheets of uniform thickness
in variable bathymetry.

We restrict ourselves to the two-dimensional problem
corresponding to normally incident waves. However, all
the analysis presented in this work can be generalised to
three spatial dimensions, i.e. the two horizontal dimensions
associated with the propagation space and the vertical
dimension (cross space). The liquid domain is a generally
shaped (non-uniform) strip D, extending to infinity in both
directions x → ±∞, bounded below by the seabed z = −h(x),
and above by the free surface z = ζ(x, t), for x ∈ RSL =

{−∞ < x < a} and x ∈ RSR = {b < x < ∞} (in the regions
of incidence and transmission, respectively), and by the elastic-
plate surface, z = w(x, t), for x ∈ RE = {a ≤ x ≤ b} (in the
variable bathymetry region). Thus,

D = D(h(x), ζ(x; t), w(x; t)) = DSL ∪ DE ∪ DSR,

where DSL = {(x, z) : x ∈ RSL, −h(x) < z < ζ(x, t)}, DE =

{(x, z) : x ∈ RE , −h(x) < z < w(x, t)}, and DSR = {(x, z) :

x ∈ RSR, −h(x) < z < ζ(x, t)}. All functions h(x), ζ(x, t)
and w(x, t) are assumed bounded and smooth functions of x .
Moreover, the functions ζ(x, t) and w(x, t) are continuously
dependent on time t , ranging over the half-line I = {t : t ≥ 0}.
These functions satisfy the following inequality (ensuring the
connectedness of D):

−h(x) < ζ(x, t), for x ∈ RSL ∪ RSR, and

−h(x) < w(x, t), for x ∈ RE , for all t ∈ I.

The function h(x), appearing in the above definitions,
represents the local depth, measured from the mean water level.
It is considered to be a smooth function defined on the whole
real axis R, such that h(x) = h(a) = h1 for all x ≤ a, and
h(x) = h(b) = h3 for all x ≥ b; see Fig. 1.

Moreover, the following assumptions are made:

ζ(x = a − 0, t) = w(x = a + 0, t),

ζ(x = b + 0, t) = w(x = b − 0, t), t > 0, (2.1)
∂ζ(x = a − 0, t)

∂x
=

∂w(x = a + 0, t)

∂x
,

∂ζ(x = b + 0, t)

∂x
=

∂w(x = b − 0, t)

∂x
, t > 0, (2.2)

ensuring that the upper (free-surface and elastic plate) boundary
remains (at all times) a smooth surface of class C1. The
first condition (2.1) expresses the natural requirement that the
ends of the plate are in contact with the liquid free surface,
thus excluding gaps between the free-surface elevation and the

plate deflection at the plate edges. The second condition (2.2)
expresses the requirement that the slope of the free surface and
the slope of the elastic plate at its ends are equal. As will be
discussed at the end of the next section, the latter condition is
compatible with the free-surface and elastic plate kinematical
conditions in the vicinity of the plate ends.

Further assumptions that are usually made (see, e.g., [42])
are that the VLFS is modelled as an elastic thin plate with
free edges, and that the fluid is incompressible, inviscid and
its motion is irrotational, so that a velocity potential exists.
Moreover, most papers on wave response analysis of VLFS
assume a linear wave. The latter assumption, however, is not
valid when the wave steepness is large or when the water
depth is very shallow in relation to the wavelength. Aiming
to investigate the effects of wave nonlinearity, in this work we
retain nonlinearity in the water-wave hydrodynamics part of the
problem associated with the free-surface boundary conditions.
On the other hand, in order to not add extra complexity, the
irrotational flow model is used, and the large floating structure
is modelled approximately on the basis of thin elastic-plate
theory, assuming small plate deflections and neglecting the
rotation of the plate section; see, e.g., Magrab [27] and Fung
([14], Sec. 16.8). Under these assumptions, an extension of the
variational principle of Luke [26] to the hydroelastic problem
that is examined is presented in the next section, governing
the interaction of nonlinear water waves with floating elastic
plates or ice sheets of uniform thickness in variable bathymetry
regions.

3. An unconstrained variational principle for the hydro-
elastic problem

Under the assumptions of incompressibility and irrotation-
ality, the non-linear problem of evolution of water waves prop-
agating over a variable bathymetry region admits two differ-
ent types of variational formulations: Hamiltonian-type, con-
strained on the below-the-surface kinematics [44], and uncon-
strained variational formulations, as e.g., the one proposed by
Luke [26], in which the admissible fields are free of essential
conditions, except for smoothness and completeness (compati-
bility) requirements.

The wave–elastic plate–seabed interaction problem also
admits similar variational formulations, both Hamiltonian (see,
e.g., [29,31]) and unconstrained. In the sequel, we shall present
an extension of the variational principle of Luke [26] to the
examined hydroelastic problem, which, in conjunction with
an enhanced local-mode representation of the wave potential
(presented in the next section), will serve as the basis for the
derivation of an equivalent coupled-mode system of equations
on the horizontal plane. To start with, we consider the following
functional:

F [ϕ, ζ,w] = F [ϕ(x, z, t), ζ(x, t), w(x, t)]

= FSL + FE + FSR, (3.1a)

where
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FSL[ϕ, ζ ] =

∫ t2

t1

∫ x=a

x=−∞

dxdt
∫ z=ζ(x,t)

z=−h(x)

ρ

×

(
∂ϕ

∂t
+

1
2

{(
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
}

+ gz

)
dz, (3.1b)

FSR[ϕ, ζ ] =

∫ t2

t1

∫ x=∞

x=b
dxdt

∫ z=ζ(x,t)

z=−h(x)

ρ

×

(
∂ϕ

∂t
+

1
2

{(
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
}

+ gz

)
dz, (3.1c)

FE[ϕ, w] =

∫ t2

t1

∫ x=b

x=a
dxdt

{
1
2

(
D

(
∂2w

∂x2

)2

− m

(
∂w

∂t

)2
)

+

∫ z=w(x,t)

z=−h(x)

ρ

(
∂ϕ

∂t
+

1
2

{(
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
}

+ gz

)
dz

}
, (3.1d)

and t2 > t1 ≥ 0. The parameter D = E I denotes the flexural
rigidity of the elastic plate (the equivalent flexural rigidity of
the floating platform or the ice sheet), where E is the Young’s
modulus and I is the moment of inertia of the plate section (per
unit length along the transverse direction). Moreover, m denotes
the mass per unit area of the plate, ρ denotes the fluid density,
and g is the gravitational acceleration. All the above parameters
are considered to be constants. However, the present analysis
can be extended to the case of variable D, m and ρ.

The only requirements imposed on the admissible function
spaces are smoothness assumptions. As concerns the wave
potential ϕ(x, z, t), it is assumed to be of the class C2 in D,
and at least C1 in D ∪ ∂ D. The functions ζ(x, t) and w(x, t)
are assumed to be appropriately smooth, obeying the continuity
conditions (2.1) and (2.2).

The parts FSL and FSR of the functional, defined in the
constant-depth water regions DSL and DSR, respectively, are
exactly the same as in Luke’s [26] functional, and are based
on integration of the pressure in the liquid subdomains. The
part FE , defined in the variable bathymetry region DE (which
is bounded above by the elastic plate), consists of two terms:
(i) the surface term, which is connected with the strain energy
and kinetic energy of the plate, respectively (see, e.g., Gelfand
and Fomin ([15], Sec. 36) Magrab ([27] Chap. 6)); and (ii)
the volume term, which is again based on the integration of
pressure in the liquid, in a variable bathymetry subdomain
below the elastic plate. We shall now prove the following:

Theorem A. In terms of the functional F [ϕ, ζ,w], Eq. (3.1),
the examined hydroelastic problem in the variable bathymetry
region, is equivalently reformulated as a variational problem of
the form:

δF [ϕ, ζ,w] = 0. (3.2)

Proof. The variation of the functional in the left-hand side of
Eq. (3.2) is obtained as the sum of variations of all terms,

δF = δFSL + δFE + δFSR

= (δϕFSL + δϕFE + δϕFSR)

+ (δζ FSL + δwFE + δζ FSR), (3.3)

with respect to the wave potential ϕ and to the upper surface
elevation, i.e. the free-surface elevation ζ and the elastic-plate
deflection w. We now proceed to the calculation of all variations
appearing in the right-hand side of Eq. (3.3). The first variation
δϕFSL is calculated as follows (see, e.g. [43]):

δϕFSL = ρ

∫ t2

t1

∫ x=a

x=−∞

dtdx

×

∫ z=ζ(x,t)

z=−h(x)

(
∂δϕ

∂t
+

∂ϕ

∂x

∂δϕ

∂x
+

∂ϕ

∂z

∂δϕ

∂z

)
dz. (3.4)

Choosing the variation δϕ to vanish at infinity (x → ±∞) and
at the ends of the time interval (t = t1,2), and changing the
order of differentiation and integration, we obtain, for the first
term in the right-hand side of Eq. (3.4),∫ t2

t1

∫ x=a

x=−∞

dtdx
∫ z=ζ(x,t)

z=−h(x)

∂δϕ

∂t
dz =

∫ t2

t1

∫ x=a

x=−∞

dtdx

×

{
∂

∂t

∫ z=ζ(x,t)

z=−h(x)

δϕdz −
∂ζ

∂t
δϕ

∣∣∣∣
z=ζ(x,t)

}

= −

∫ t2

t1

∫ x=a

x=−∞

∂ζ

∂t
δϕ

∣∣∣∣
z=ζ(x,t)

dtdx, (3.5a)

where the integral involving the time derivative term (the first
term in the brackets) is dropped because the variation δϕ

vanishes at the ends of the time interval. For the second term
in the right-hand side of Eq. (3.4), we obtain, by applying
integration by parts,∫ t2

t1

∫ x=a

x=−∞

dtdx
∫ z=ζ(x,t)

z=−h(x)

∂ϕ

∂x

∂δϕ

∂x
dz

=

∫ t2

t1

∫ x=a

x=−∞

dtdx

{
∂

∂x

∫ z=ζ(x,t)

z=−h(x)

∂ϕ

∂x
δϕdz

−

∫ z=ζ(x,t)

z=−h(x)

∂2ϕ

∂x2 δϕ −
∂ζ

∂x

∂ϕ

∂x
δϕ

∣∣∣∣
z=ζ(x,t)

+

(
−

dh

dx

∂ϕ

∂x
δϕ

∣∣∣∣
z=−h(x)

)}

=

∫ t2

t1
dt

(∫ z=ζ(x,t)

z=−h(x)

dz
∂ϕ

∂x
δϕ

∣∣∣∣∣
x=a

+

∫ x=a

x=−∞

dx

×

{
−

∫ z=ζ(x,t)

z=−h(x)

∂2ϕ

∂x2 δϕdz −
∂ζ

∂x

∂ϕ

∂x
δϕ

∣∣∣∣
z=ζ(x,t)

+

(
−

dh

dx

∂ϕ

∂x
δϕ

∣∣∣∣
z=−h(x)

)})
(3.5b)

and, for the third term,∫ t2

t1

∫ x=a

x=−∞

dtdx
∫ z=ζ(x,t)

z=−h(x)

∂ϕ

∂z

∂δϕ

∂z
dz =

∫ t2

t1

∫ x=a

x=−∞

dtdx

×

{[
∂ϕ

∂z
δϕ

]z=ζ(x,t)

z=−h(x)

−

∫ z=ζ(x,t)

z=−h(x)

∂2ϕ

∂z2 δϕdz

}
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=

∫ t2

t1

∫ x=a

x=−∞

dtdx

{
∂ϕ

∂z
δϕ

∣∣∣∣
z=ζ(x,t)

−
∂ϕ

∂z
δϕ

∣∣∣∣
z=−h(x)

−

∫ z=ζ(x,t)

z=−h(x)

∂2ϕ

∂z2 δϕdz

}
. (3.5c)

Collecting together all terms, Eqs. (3.4) and (3.5), the
variation δϕFSL finally becomes:

δϕFSL = ρ

∫ t2

t1
dt
∫ ζ(x,t)

z=−h(x)

∂ϕ

∂x
δϕ

∣∣∣∣
x=a

dz

− ρ

∫ t2

t1

∫ x=a

x=−∞

dxdt
∫ z=ζ(x,t)

z=−h(x)

dz

(
∂2ϕ

∂x2 +
∂2ϕ

∂z2

)
δϕ

− ρ

∫ t2

t1

∫ x=a

x=−∞

dtdx

(
∂ζ

∂t
+

∂ζ

∂x

∂ϕ

∂x
−

∂ϕ

∂z

)
δϕ

∣∣∣∣
z=ζ(x,t)

− ρ

∫ t2

t1

∫ x=a

x=−∞

dtdx

(
∂h

∂x

∂ϕ

∂x
+

∂ϕ

∂z

)
δϕ

∣∣∣∣
z=−h(x)

. (3.6)

Working similarly, we obtain, for δϕFSR,

δϕFSR = −ρ

∫ t2

t1
dt
∫ ζ(x,t)

z=−h(z)

∂ϕ

∂x
δϕ

∣∣∣∣
x=b

dz

− ρ

∫ t2

t1

∫ x=∞

x=b
dxdt

∫ z=ζ(x,t)

z=−h(x)

dz

(
∂2ϕ

∂x2 +
∂2ϕ

∂z2

)
δϕ

− ρ

∫ t2

t1

∫ x=∞

x=b
dtdx

(
∂ζ

∂t
+

∂ζ

∂x

∂ϕ

∂x
−

∂ϕ

∂z

)
δϕ

∣∣∣∣
z=ζ(x,t)

− ρ

∫ t2

t1

∫ x=∞

x=b
dtdx

(
∂h

∂x

∂ϕ

∂x
+

∂ϕ

∂z

)
δϕ

∣∣∣∣
z=−h(x)

, (3.7)

and, for δϕFE ,

δϕFE = ρ

∫ t2

t1
dt
∫ w(x,t)

z=−h(x)

[
∂ϕ

∂x
δϕ

]x=b

x=a
dz

− ρ

∫ t2

t1

∫ x=∞

x=b
dxdt

∫ z=w(x,t)

z=−h(x)

dz

(
∂2ϕ

∂x2 +
∂2ϕ

∂z2

)
δϕ

− ρ

∫ t2

t1

∫ x=b

x=a
dtdx

(
∂w

∂t
+

∂w

∂x

∂ϕ

∂x
−

∂ϕ

∂z

)
δϕ

∣∣∣∣
z=w(x,t)

− ρ

∫ t2

t1

∫ x=b

x=a
dtdx

(
∂h

∂x

∂ϕ

∂x
+

∂ϕ

∂z

)
δϕ

∣∣∣∣
z=−h(x)

. (3.8)

We now proceed to the calculation of the terms associated
with the variation of the free-surface ζ and the plate deflection
w (the terms in the last parentheses in the right-hand side of
Eq. (3.3)). The variations δζ FSL and δζ FSR are easily obtained
as follows:

δζ FSL = ρ

∫ t2

t1

∫ x=a

x=−∞

dxdt


(

∂ϕ

∂t
+

1
2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
))

z=ζ(x,t)

+ gζ

 δζ, (3.9a)

δζ FSR = ρ

∫ t2

t1

∫ x=∞

x=b
dxdt


(

∂ϕ

∂t
+

1
2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
))

z=ζ(x,t)

+ gζ

 δζ. (3.9b)

The variation δwFE , with respect to the variation of the plate
deflection δw, is given by

δwFE = ρ

∫ t2

t1

∫ x=b

x=a
dxdt

×


(

∂ϕ

∂t
+

1
2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
))

z=w(x,t)

+ gw

 δw

+

∫ t2

t1

∫ x=b

x=a
dxdt

(
−m

∂w

∂t

∂δw

∂t
+ D

∂2w

∂x2

∂2δw

∂x2

)
,

and, after applying integration by parts to the last two terms, we
obtain

δwFE =

∫ t2

t1

∫ x=b

x=a
dxdt

×


(

ρ
∂ϕ

∂t
+

ρ

2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
))

z=w(x,t)

+ ρgw


× δw − m

∫ x=b

x=a

[
∂w

∂t
δw

]t=t2

t=t1

dx

+ D
∫ t2

t1
dt

{[
∂2w

∂x2 δ

(
∂w

∂x

)
−

∂3w

∂x3 δw

]x=b

x=a

+

∫ x=b

x=a
dx

(
m

∂2w

∂t2 + D
∂4w

∂x4

)
δw

}
.

In addition, assuming that the variations δw vanish at t = t1
and t = t2 (i.e., at the beginning and end of the time interval),
the second integral in the right-hand side of the above equation
becomes zero, resulting in

δwFE =

∫ t2

t1

∫ x=b

x=a
dxdt

m
∂2w

∂t2 + D
∂4w

∂x4

+ ρ

(
∂ϕ

∂t
+

1
2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
))

z=w(x,t)

+ ρgw


× δw + D

∫ t2

t1

[
∂2w

∂x2 δ

(
∂w

∂x

)
−

∂3w

∂x3 δw

]x=b

x=a
dt. (3.10)

Gathering together all terms, and considering the variation of
each part of the functional F , Eq. (3.3), independent of the
others, it can be seen that the condition of stationarity of the
functional F is equivalent to the hydroelastic problem studied.
More precisely, the variational equations δϕFSL = δϕFSR = 0
model the water-wave kinematics in the two half-strips DSL and
DSR, respectively:

1ϕ = 0, −∞ < x < a and b < x < +∞,

−h(x) < z < ζ(x, t), (3.11a)
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∂ζ

∂t
+

∂ζ

∂x

∂ϕ

∂x
−

∂ϕ

∂z
= 0, on z = ζ(x, t), (3.11b)

∂h

∂x

∂ϕ

∂x
+

∂ϕ

∂z
= 0, on z = −h(x), (3.11c)

where 1 =
∂2

∂x2 +
∂2

∂z2 denotes the Laplacian on the vertical (xz)
plane. The equation δϕFE = 0 models the wave kinematics in
the elastic plate region:

1ϕ = 0, a < x < b, −h < z < w(x, t), (3.12a)

∂w

∂t
+

∂w

∂x

∂ϕ

∂x
−

∂ϕ

∂z
= 0, on z = w(x; t), (3.12b)

∂h

∂x

∂ϕ

∂x
+

∂ϕ

∂z
= 0, on z = −h(x). (3.12c)

Moreover, the equations δζ FSL = δζ FSR = 0 model the free-
surface dynamics (Bernoulli’s integral) on the upper boundary
of the two half-strips DSL and DSR, respectively:

1
2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
)

+
∂ϕ

∂t
+ gζ = 0,

−∞ < x < a and b < x < ∞, on z = ζ(x, t). (3.13a)

Finally, from Eq. (3.10), expressing δwFE = 0 by considering
(i) the variation of the plate deflection δw at the interior points
of the interval a < x < b, (ii) the variation δw at the end-points
x = a and x = b, and (iii) the variation δ( ∂w

∂x ) in the slope of the
deflection at the end-points x = a and x = b to be independent,
we obtain the equations and boundary conditions modelling
the (semi-linearised) elastic-plate dynamics. More specifically,
from the term associated with the variation δw(x; t), a < x <

b, we obtain the elastic plate equation:

ρ

(
∂ϕ

∂t
+

1
2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
)

+ gw

)
+ m

∂2w

∂t2

+ D
∂4w

∂x4 = 0, a < x < b, on z = w(x, t). (3.13b)

Also, from the terms of δwFE associated with the variations
δw(x = a, t), δw(x = b, t), δ

(
∂w(x=a,t)

∂x

)
and δ

(
∂w(x=b,t)

∂x

)
,

at the plate ends, we obtain the following edge conditions,
respectively:

∂3w(x = a + 0, t)

∂x3 = 0, and (3.14a)

∂3w(x = b − 0, t)

∂x3 = 0, (3.14b)

∂2w(x = a + 0, t)

∂x2 = 0 and (3.15a)

∂2w(x = b − 0, t)

∂x2 = 0. (3.15b)

Eqs. (3.14) and (3.15) ensure that the elastic plate, at the ends
x = a and x = b, is free of shear force and moment,
respectively. This concludes the proof of Theorem A.

In concluding this section, we shall make some comments
concerning the compatibility of condition (2.2), requiring the
continuity of the free-surface slope and the plate slope at the
plate ends, with the kinematical conditions (3.11b) and (3.12b)
on the upper boundary. Without loss of generality, we consider
the latter conditions only at the left end-point of the plate. Using
Eq. (3.11b) at x = a − 0 and Eq. (3.12b) at x = a + 0,
in conjunction with the C2-continuity of the wave potential
ϕ(x, z, t), for (x, z) ∈ D and all t > 0, we obtain(

∂w(a + 0, t)

∂t
−

∂ζ(a − 0, t)

∂t

)
+

(
∂w(a + 0, t)

∂x
−

∂ζ(a − 0, t)

∂x

)
∂ϕ(a, z = ζ, t)

∂x
= 0.

However, the first term in the left-hand side of the above
equation vanishes by virtue of assumption (2.1). Using the fact
that the horizontal flow velocity ∂ϕ(a,z=ζ,t)

∂x at the plate end is
generally non-zero, we obtain condition (2.2).

On the basis of conditions (2.1) and (2.2), we shall proceed
to our analysis by using the unified notation

η(x, t) =

{
ζ(x, t), −∞ < x < a and b < x < ∞

w(x, t), a ≤ x ≤ b
(3.16)

expressing the elevation of the upper boundary of the whole
liquid domain D.

4. Local-mode representation

In this section, a complete, local-mode series expansion of
the wave potential ϕ, valid in both the two half-strips DSL
and DSR, and in the variable bathymetry region containing
the elastic plate DE , is presented. This representation has the
general form

ϕ(x, z, t) =

∑
n

ϕn(x, t)Zn(z, h(x), η(x, t)),

and has been derived by Athanassoulis and Belibassakis [3,4]
with application to the problem of nonlinear water waves
propagating over variable bathymetry regions. The usefulness
of the above representation is that, substituted in the variational
equation (3.2), it leads to a nonlinear, coupled-mode system
of differential equations on the horizontal plane, with respect
to unknown modal amplitudes ϕn(x, t) and the unknown
elevation η(x, t). The coupled-mode system greatly facilitates
the numerical solution of the present hydroelastic problem and
its derivation will be presented in the next section.

A similar modal-type series expansion has been introduced
earlier by Nadaoka et al. [32] for the development of a
fully dispersive, weakly nonlinear, multiterm-coupling model
for water waves, with application to slowly varying bottom
topography. In that work, the vertical modes have been selected
to have the form cosh(kn(z+h)) cosh−1(knh), with kn > 0, thus
being independent from the upper surface elevation η(x, t).
As will be described in more detail in the sequel, the major
part of the present set of vertical modes {Zn(z, h, η), n =

0, 1, 2, . . .} is obtained by solving a Sturm–Liouville problem,
formulated at the local vertical interval −h(x) < z < η(x, t),
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ensuring L2-completeness. This set contains both hyperbolic
and trigonometric functions, dependent on both the local depth
h(x) and the (instantaneous) upper surface elevation η(x, t).
However, the boundary conditions satisfied by these local
vertical eigenfunctions are not compatible with the boundary
conditions of the problem at the bottom surface, if the bottom
is not horizontal or mildly sloping, and at the upper surface.
In order to overcome the mild-slope bottom approximation and
to satisfy the upper-surface boundary conditions consistently,
the present set has been enhanced by including the two
additional modes {Z−2(z, h, η), Z−1(z, h, η)} with unknown
amplitudes {ϕ−2(x, t), ϕ−1(x, t)}. The latter are the additional
degrees of freedom required for the consistent satisfaction of
the upper-surface and the sloping-bottom boundary conditions,
respectively. The idea of the sloping-bottom mode has
been presented by Athanassoulis and Belibassakis [2] for
the propagation of linearised waves in general bathymetry
regions. The latter work has been extended to second-order
Stokes waves (in the frequency domain) by Belibassakis
and Athanassoulis [6], where the necessity of a free-surface
additional mode has also been discussed for the satisfaction of
the (second-order) free-surface boundary condition.

We now proceed to state and prove the following:

Theorem B. Consider the generally shaped (non-uniform)
strip D, extending to infinity in both directions x → ±∞ and
bounded by the graphs of the functions z = −h(x) (“lower”
boundary, seabed) and z = η(x, t) (“upper” boundary);
see Fig. 2. Let ϕ(x, z, t), defined on D × I , be a twice
continuously differentiable function in D with continuous first
spatial derivatives up to and including the boundary ∂ D, for
all t ∈ I . Moreover, ϕ(x, z; t) is considered to be continuously
differentiable with respect to t ∈ I , for each (x, z) ∈ D ∪ ∂ D.
Then, the field ϕ(x, z, t), standing for the wave potential,
admits the following, uniformly convergent, local-mode series
expansion:

ϕ(x, z, t) =

∞∑
n=−2

ϕn(x, t)Zn(z, h(x), η(x, t)), (4.1)

where

Z−2(z, h, η) =
µ0h0 + 1

2(η + h)h0
(z + h)2

−
µ0h0 + 1

2h0
(η + h) + 1, (4.2)

represents the vertical structure of the term ϕ−2 Z−2, which will
be called the upper-surface mode,

Z−1(z, h, η) =
µ0h0 − 1

2h0(η + h)
(z + h)2

+
1
h0

(z + h)

+
2h0 − (η + h)(µ0h0 + 1)

2h0
, (4.3)

represents the vertical structure of the term ϕ−1 Z−1, which will
be called the sloping-bottom mode, and

Z0(z, h, η) =
cosh[k0(z + h)]

cosh[k0(η + h)]
, and

Fig. 2. Shapshot of the flow domain.

Zn(z, h, η) =
cos[kn(z + h)]

cos[kn(η + h)]
, n = 1, 2, 3, . . . (4.4)

are the corresponding functions associated with the rest
of the terms, which will be called the propagating (ϕ0 Z0)

and evanescent (ϕn Zn, n = 1, 2, . . .) modes.

The (numerical) parameters µ0, h0 > 0 are positive
constants, not subjected to any a priori restrictions. Moreover,
the z-independent quantities kn = kn(h, η), n = 0, 1, 2 . . .,
appearing in Eq. (4.4) are defined as the positive roots of the
transcendental equations,

µ0 − k0 tanh[k0(h + η)] = 0, and

µ0 + kn tan[kn(h + η)] = 0, n = 1, 2, 3, . . . . (4.5)

Proof. Consider the restriction f (z) of the wave potential
ϕ(x, z; t) at any vertical section x = const and for any time
instant t ∈ I ; see Fig. 2. Obviously, this function, defined on
the vertical interval −h(x) ≤ z ≤ η(x, t), is a smooth one
f (z) ∈ {C2(J ) ∩ C1( J̄ )}, where J = {−h(x) < z < η(x, t)}
and J̄ = J ∪ ∂ J . Let us now define the following mixed
derivative of f (z) at the upper end z = η(x, t):

f ′
η =

∂ϕ(x, z, t)

∂z

∣∣∣∣
z=η(x,t)

− µ0 ϕ(x, z, t)|z=η(x,t), (4.6)

where µ0 = ω2
0/g is a fixed frequency-type parameter.

As mentioned already, this parameter is not subjected to
any a priori restriction, and can be selected arbitrarily. (An
appropriate choice for this parameter is to be selected on the
basis of the central frequency, ω0, of the waveform propagating
in D.)

Except for the case of linearised (infinitesimal amplitude)
monochromatic waves of frequency ω = ω0, the derivative
f ′
η = f ′

η(x, t) is generally non-zero. From its definition,
Eq. (4.6), it is expected to be a continuously differentiable
function with respect to both x and t .

Let us also consider the vertical derivative of f (z) at the
bottom surface z = −h(x):

f ′

h =
∂ϕ(x, z, t)

∂z

∣∣∣∣
z=−h(x)

. (4.7)

Except for the case of waves propagating in a uniform-depth
strip (h(x) = h = const), f ′

h = f ′

h(x, t) is generally non-zero.
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From its definition, Eq. (4.7), it follows that this function is also
a continuously differentiable function with respect to both x
and t .

These two quantities f ′
η(x, t) and f ′

h(x, t) are unknown
in the general case of waves propagating in the variable
bathymetry region. We define the upper-surface and the
sloping-bottom mode amplitudes (ϕn, n = −2, −1), to be
given by:

ϕ−2(x, t) = h0 f ′
η(x, t), (4.8a)

ϕ−1(x, t) = h0 f ′

h(x, t), (4.8b)

where h0 is an appropriate scaling parameter that can also be
selected arbitrarily. (An appropriate choice for this parameter is
the average depth of the variable bathymetry domain D.)

By noticing the vertical structure of these modes, given by
Eqs. (4.2) and (4.3), we easily see that the reduced potential

ϕR(x, z, t) = ϕ(x, z, t) − ϕ−2(x, t)Z−2(z, η, h)

− ϕ−1(x, t)Z−1(z, η, h), (4.9)

is a twice continuously differentiable function, ϕR ∈ C2(D ×

I ) ∩ C1(D̄ × I ), which, for all x and t , at the upper surface and
at the bottom surface satisfies the following conditions:

∂ϕR(x, z, t)

∂z

∣∣∣∣
z=η(x,t)

− µ0 ϕR(x, z, t)|z=η(x,t) = 0, (4.10a)

∂ϕR(x, z, t)

∂z

∣∣∣∣
z=−h(x)

= 0. (4.10b)

The above conditions are sufficient to ensure the representa-
tion of ϕR(x, z, t), at any vertical section (x = const) and any
time (t = const), in the form of the eigenfunction expansion,

ϕR(x, z, t) =

∞∑
n=0

ϕn(x, t)Zn(z, h(x), η(x, t)), (4.11)

where the set of vertical functions {Zn(z, h(x), η(x, t)), n =

0, 1, 2, 3 . . .} and the set of numbers {kn, n = 0, 1, 2, 3 . . .},
given by Eqs. (4.4) and (4.5), respectively, are obtained as
the solution of the local (for each x and t) Sturm–Liouville
problem:

∂2 Zn

∂z2 − k2
n Zn = 0, −h(x) < z < η(x; t), (4.12a)

∂ Zn(z)

∂z

∣∣∣∣
z=η(x,t)

− µ0 Zn(z)|z=η(x,t) = 0, (4.12b)

∂ Zn(z)

∂z

∣∣∣∣
z=−h(x)

= 0. (4.12c)

From the properties of regular eigenvalue problems (see
e.g., [9]), the set of eigenfunctions {Zn(z, h, η), n =

0, 1, 2, 3 . . .} constitutes an L2-basis in the z-interval −h(x) <

z < η(x, t), for each x and t . Moreover, since the function
ϕR(x, z; t) fulfils the same boundary conditions, Eqs. (4.10), as
the eigenfunctions, Eqs. (4.12b) and (4.12c), the series (4.11)
converges uniformly to the function ϕR(x, z; t). Then, by using
Eq. (4.9) in Eq. (4.11) and passing the newly introduced modes

ϕn Zn, n = −2, −1, to the right-hand side, we obtain the
enhanced local-mode representation given by Eq. (4.1), and the
theorem is proved. �

Remarks. (i) For the representation (4.1) to be valid, the
vertical structure of each of the two additional modes,
Zn(z, h, η), n = −2, −1, needs to be a smooth function
satisfying

∂ Z−2(z)

∂z

∣∣∣∣
z=η(x,t)

− µ0 Z−2(z)|z=η(x,t) = α 6= 0,

∂ Z−2(z)

∂z

∣∣∣∣
z=−h(x)

= 0,

and

∂ Z−1(z)

∂z

∣∣∣∣
z=η(x,t)

− µ0 Z−1(z)|z=η(x,t) = 0,

∂ Z−1(z)

∂z

∣∣∣∣
z=−h(x)

= β 6= 0,

respectively. The particular choices given by Eqs. (4.2) and
(4.3) are simply least-degree polynomials satisfying exactly the
above requirements (with α = β =

1
h0

), which, in addition,
have been normalised:

Z−2(z)|z=η(x,t) = Z−1(z)|z=η(x,t) = 1,

in order to be compatible with the eigenfunctions {Zn(z, h, η), n
= 0, 1, 2, 3 . . .}.

(ii) On the basis of smoothness assumptions concerning
the depth function h(x) and the elevation η(x, t), the series
(4.1) can be term-by-term differentiated with respect to x ,
z, and t , leading to corresponding series expansions for the
corresponding derivatives. For example,

∂ϕ(x, z, t)

∂x
=

∞∑
n=−2

∂ϕn(x, t)

∂x
Zn(z, h(x), η(x, t))

+ ϕn(x, t)
∂ Zn(z, h(x), η(x, t))

∂x
, (4.13a)

∂ϕ(x, z, t)

∂z
=

∞∑
n=−2

ϕn(x, t)
∂ Zn(z, h(x), η(x, t))

∂z
, (4.13b)

∂ϕ(x, z, t)

∂t
=

∞∑
n=−2

∂ϕn(x, t)

∂t
Zn(z, h(x), η(x, t))

+ ϕn(x, t)
∂ Zn(z, h(x), η(x, t))

∂t
. (4.13c)

(iii) From Eqs. (4.8), we can clearly see that the sloping-
bottom mode (ϕ−1 Z−1) is zero, and thus it is not needed in
subareas where the bottom is flat (h′(x) = 0). Moreover,
the upper-surface mode (ϕ−2 Z−2) becomes zero, and thus
it is not needed only in the very special case of linearised
(small-amplitude), monochromatic waves characterised by the
frequency parameter µ = ω2/g that coincides with the
numerical parameter µ0 (i.e., µ = µ0).

(iv) Finally, we note here that the series expansion (4.1) has
been constructed bearing in mind its convergence properties
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and the smoothness requirements of the solution of the studied
problem. None of the terms of the series (4.1) individually
satisfies the differential (Laplace) equation and the boundary
conditions of the problem. This is to be obtained by the sum of
all terms, by the appropriate calculation of the mode amplitudes
ϕn(x, t), n = −2, −1, 0, 1, 2, . . ., through the variational
equation (3.2). The latter, as shown in the previous section,
contains both the Laplace equation and the boundary conditions
of the problem.

5. The coupled mode system of equations

The series expansion (4.1) permits us to obtain a series
representation of the variation δϕ of the wave potential, in terms
of the variations of the modal amplitudes ϕn and the upper
surface elevation η. The general form of δϕ is given by

δϕ(x, z, t) =

∞∑
n=−2

δϕn(x, t)Zn(z, h, η)

+ ϕn(x, t)δZn(z, h, η). (5.1)

Since Zn = Zn(z, h, η) is independent of ϕn , we have, in
general,

δZn(z, h, η) = Wn(z, h, η)δη, for −h ≤ z < η, (5.2a)

where

Wn(z, h, η) =
∂ Zn(z, h, η)

∂η
, for −h ≤ z < η. (5.2b)

The vertical modes Zn = Zn(z, h, η), as given by Eqs.
(4.2)–(4.4), are normalized, and on the upper surface, z =

η(x; t), they all take the constant value 1, i.e., Zn(z =

η; h, η) = 1. Thus, for points on the upper surface, it holds
that δZn = 0.

Furthermore, the series expansion (4.1) of ϕ(x, z, t) permits
us to obtain corresponding modal series expansions for all
expressions appearing in the right-hand side of Eqs. (3.3), as,
for example, given by Eqs. (4.13) for the first spatial and
time derivatives. Under the assumption that ϕn(x, t) are twice
continuously differentiable with respect to x , by introducing the
above series in the variational equation (3.2) and using standard
arguments of the calculus of variations, we eventually arrive at
the following.

Theorem C. The examined hydroelastic problem in the
variable bathymetry region is equivalent to the nonlinear
Coupled-Mode System (CMS):

∂η

∂t
+

∞∑
n=−2

(
Amn(η)

∂2ϕn

∂x2 + Bmn(η)
∂ϕn

∂x
+ Cmn(η)ϕn

)
= 0, m = −2, −1, 0, 1, 2 . . . , (5.3a)

χ

(
m

ρ

∂2η

∂t2 +
D

ρ

∂4η

∂x4

)
+ gη

+

∞∑
n=−2

(
∂ϕn

∂t
+ [Wn]z=ηϕn

∂η

∂t

)

−

∞∑
`=−2

∞∑
n=−2

(
a(0,2)
`n (η)ϕ`

∂2ϕn

∂x2 + a(1,1)
`n (η)

∂ϕ`

∂x

∂ϕn

∂x

+ b`n(η)ϕ`

∂ϕn

∂x
+ c`n(η)ϕ`ϕn

)
= 0, (5.3b)

for −∞ < x < ∞. In Eq. (5.3b), the function χ(x) is the
characteristic function of the interval a < x < b (χ = 1, if
a < x < b, and 0 otherwise). The CMS (5.3) is supplemented
by the following edge conditions (cf. Eqs. (3.14) and (3.15)):

∂3η(x = a + 0; t)

∂x3 = 0 and (5.4a)

∂3η(x = b − 0; t)

∂x3 = 0, (5.4b)

∂2η(x = a + 0; t)

∂x2 = 0 and (5.4c)

∂2η(x = b − 0; t)

∂x2 = 0. (5.4d)

The matrix coefficients Amn(η), Bmn(η), Cmn(η), appearing
in Eq. (5.3a), are dependent on the elevation η, and are ex-
pressed in terms of the local vertical modes {Zn}n=−2,−1,0,1,...

and their derivatives, as follows:

Amn(η) = 〈Zn, Zm〉

=

∫ z=η(x;t)

z=−h(x)

Zn(z, h, η)Zm(z, h, η)dz, (5.5a)

Bmn(η) = 2
〈
∂ Zn

∂x
, Zm

〉
+

∂h

∂x
[Zn Zm]z=−h +

∂η

∂x
[Zn Zm]z=η, (5.5b)

Cmn(η) = 〈1Zn, Zm〉 +

[(
∂h

∂x

∂ Zn

∂x
+

∂ Zn

∂z

)
Zm

]
z=−h

+

[(
∂η

∂x

∂ Zn

∂x
−

∂ Zn

∂z

)
Zm

]
z=η

, (5.5c)

where 1Zn =
∂2 Zn
∂x2 +

∂2 Zn
∂z2 . The matrix coefficients

amn(η), bmn(η) and cmn(η), appearing in Eq. (5.3b), are
also dependent on the elevation η, and are defined as
follows:

a(0,2)
`n (η) = 〈Zn, W`〉

=

∫ z=η(x;t)

z=−h(x)

Zn(z, h, η)W`(z, h, η)dz, (5.6a)

a(1,1)
`n (η) = −

1
2
[Zn Z`]z=η = −

1
2
, (5.6b)

b`n(η) = 2
〈
∂ Zn

∂x
, W`

〉
+

∂h

∂x
[ZnW`]z=−h −

[
∂ Zn

∂x

]
z=η

,

(5.6c)

c`n(η) = 〈1Zn, W`〉 +

[(
∂h

∂x

∂ Zn

∂x
+

∂ Zn

∂z

)
W`

]
z=−h

−
1
2

[
∂ Z`

∂x

∂ Zn

∂x
+

∂ Z`

∂z

∂ Zn

∂z

]
z=η

. (5.6d)
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The nonlinear CMS, Eqs. (5.3) and (5.4), has been derived
by the same variational principle, Eq. (3.2), and thus it is
equivalent to the examined hydroelastic problem defined by
Eqs. (3.11)–(3.15). Moreover, it has been obtained without
any assumptions concerning the vertical structure of the wave
potential. Thus, the present CMS, being equivalent to the
complete formulation, is expected to be able to fully account
for wave nonlinearity and dispersion.

Although the present CMS has been developed for the
hydroelastic problem of the interaction of water waves with a
large floating body (modelled as a thin elastic plate) in variable
bathymetry regions, the hydrodynamic part of Eqs. (5.3),
i.e. Eq. (5.3a) and ((5.3b), with χ = 0), can also serve as a
model for the propagation of nonlinear water waves in general
bathymetry. In this context, the present CMS exhibits similarity
to the fully dispersive, multiterm-coupling model by Nadaoka
et al. [32]. As is the case with the latter model, a distinctive
feature of the present CMS is that no simplifications have
been introduced for its derivation. Thus, in principle, simplified
models could be recovered as appropriate limiting forms of Eqs.
((5.3), with χ = 0). For example, keeping only the propagating
mode Z0(z) in the vertical expansion (4.1) and linearising
the coupled-mode equations, the classical mild-slope model is
obtained; see, e.g., Smith and Sprinks [36], Dingemans [10]. If
the evanescent modes Zn(z), n = 1, 2, . . ., are also retained, an
extended mild-slope model is obtained; see, e.g., Massel [28].
If we keep only the quadratic vertical mode Z−2(z), defined
by Eq. (4.2), in the vertical expansion of the wave potential
and retain up to second-order terms in the present CMS, a
Boussinesq-type model is obtained; see, e.g., Liu [25]. On
the other hand, if we keep in the local-mode series only the
propagating mode Z0(z) = cosh(k0(z + h)) cosh−1(k0(η + h))

and again retain up to second-order terms, a two-equation,
nonlinear, mild-slope model is derived, quite similar to the
time-dependent, nonlinear, mild-slope equation by Beji and
Nadaoka [5].

6. The weakly nonlinear CMS

A second-order, weakly nonlinear version of the present
nonlinear CMS can be obtained by suppressing the explicit
nonlinear terms appearing in Eqs. (5.3), (5.5) and (5.6) and
retaining up to second-order contributions. To this end, we
introduce the following expansion of the vertical local modes:

Zn(z, h(x), η(x, t)) = Zn(z, h(x), η = 0)

+ η(x, t)Wn(z, h(x), η = 0) + O(η2),

n = −2, −1, 0, 1, 2, . . . , (6.1)

where Wn(z, h, η) has been defined by Eq. (5.2b). For
convenience in the presentation, from now on we shall denote
the functions Zn(z, h, η = 0) by Z̃n(z, h) and the functions
Wn(z, h, η = 0) by W̃n(z, h). Both families of functions are
obtained from formulae (4.2)–(4.4), concerning Zn , and Eq.
(5.2b), concerning Wn , by setting η = 0. After carrying out
the necessary algebra, we eventually arrive at the following
second-order, weakly nonlinear Coupled-Mode System (in short

wnCMS):

∂η

∂t
+

∞∑
n=−2

(
Ãmn

∂2ϕn

∂x2 + B̃mn
∂ϕn

∂x
+ C̃mnϕn

)
= 0,

m = −2, −1, 0, 1, 2, . . . , (6.2a)

and

χ

(
m

ρ

∂2η

∂t2 +
D

ρ

∂4η

∂x4

)
+ gη +

∞∑
n=−2

(
∂ϕn

∂t
+ w̃nϕn

∂η

∂t

)

−

∞∑
`=−2

∞∑
n=−2

(
ã(0,2)
`n ϕ`

∂2ϕn

∂x2 + ã(1,1)
`n

∂ϕ`

∂x

∂ϕn

∂x

+ b̃`nϕ`

∂ϕn

∂x
+ c̃`nϕ`ϕn

)
= 0 (6.2b)

for −∞ < x < ∞. The wnCMS (6.2) is also supplemented by
the same plate edge conditions, Eqs. (5.4).

In the present case, the coefficients Ãmn, B̃mn and C̃mn are
obtained from Eqs. (5.5) and (5.6), using the approximation
(6.1) as follows:

Ãmn = Ã(0)
mn + η Ã(1)

mn + O(η2), (6.3a)

B̃mn = B̃(0)
mn + η B̃(1)

mn +
∂η

∂x
B̃(2)

mn + O(η2), (6.3b)

C̃mn = C̃ (0)
mn + ηC̃ (1)

mn +
∂η

∂x
C̃ (2)

mn +
∂2η

∂x2 C̃ (3)
mn + O(η2), (6.3c)

and thus they become explicitly dependent on the upper-
boundary elevation η(x, t).

The coefficients Ã(0,1)
mn , B̃(0,1,2)

mn and C̃ (0,1,2,3)
mn involved in

Eqs. (6.3), and the coefficients w̃n, ã(0,2)
`n , ã(1,1)

`n , b̃`n and c̃`n
involved in Eq. (6.2b), are all time-independent quantities.
These are defined in terms of the local vertical modes
{Z̃n(z, h)}n=−2,−1,0,1,... in the interval −h(x) ≤ z ≤ 0 and
their derivatives, and they are listed in the Appendix.

Two crucial facts concerning the theoretical value and
practical effectiveness of the second-order wnCMS, Eqs. (6.2),
are the following. (i) A small number of modes, e.g., 5 to
6, is practically enough for numerical convergence, even in
cases of very steep bathymetry. Extensive numerical evidence
suggests that the mode amplitudes exhibit a fast rate of decay,
which ensures fast algebraic convergence of the modal series
(4.1). (ii) The first three modes in the series, i.e., the newly
introduced upper-surface mode ϕ−2(x, t) and sloping-bottom
mode ϕ−1(x, t), and the propagating mode ϕ0(x; t), are the
most important terms in the series expansion, being one order
of magnitude higher than the other modes ϕn(x, t), n =

1, 2, 3, . . ..
The above facts will also be confirmed by examining the

linearised dispersion characteristics of the present coupled
mode system, described in the next section.

7. Dispersion characteristics of the present CMS

To study the dispersion characteristics of the present
coupled-mode system in constant depth, we first proceed to its
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linearisation. This is obtained by suppressing all nonlinearities
appearing in Eqs. (6.2). In this case, the coupled-mode system
reduces to its linear version, composed of the equations

∂η

∂t
+

∞∑
n=−2

(
Ã(0)

mn
∂2ϕn

∂x2 + B̃(0)
mn

∂ϕn

∂x
+ C̃ (0)

mnϕn

)
= 0,

m = −2, −1, 0, 1, 2, . . . , (7.1a)

and

χ

(
m

ρ

∂2η

∂t2 +
D

ρ

∂4η

∂x4

)
+ gη +

∞∑
n=−2

∂ϕn

∂t
= 0. (7.1b)

The coefficients Ã(0)
mn, B̃(0)

mn and C̃ (0)
mn of the linearised system,

appearing in Eq. (7.1a), are all independent of the elevation η.
These coefficients, given by Eqs. (A.1a), (A.2a) and (A.3a) in
the Appendix, are dependent only on the horizontal coordinate
x , through the local depth function h(x).

By differentiating Eq. (7.1b) once with respect to time and
substituting into (7.1a), we obtain

∞∑
n=−2

(
−

1
g

∂2ϕn

∂t2 + Ã(0)
mn

∂2ϕn

∂x2 + B̃(0)
mn

∂ϕn

∂x
+ C̃ (0)

mnϕn

)

= χ

(
ε
∂3η

∂t3 + δ
∂4

∂x4

∂η

∂t

)
,

m = −2, −1, 0, 1, 2, . . . , (7.2a)

and

χ

(
ε
∂2η

∂t2 + δ
∂4η

∂x4

)
+ η +

1
g

∞∑
n=−2

∂ϕn

∂t
= 0, (7.2b)

where ε = m/ρg and δ = D/ρg = E I/ρg. Restricting
ourselves to the constant-depth case, the sloping-bottom mode
ϕ−1(x, t) becomes identically zero (cf. Eqs. (4.7) and (4.8b)),
as well as the coefficients B̃(0)

mn = 0 (see Eq. (A.2a)). Also, in
this case, the coefficients Ã(0)

mn and C̃ (0)
mn take constant values for

all x .

7.1. Water waves under the free-surface

We first examine the case of water waves, without the
presence of the elastic plate, in constant depth. On the basis
of Eq. (7.2a), using χ = 0 and B̃(0)

mn = 0, the time-domain
linearised coupled-mode system reduces to

M∑
n=−2
n 6=−1

(
−

∂2ϕn

∂t2 + αmn
∂2ϕn

∂x2 + γmnϕn

)
= 0,

m = −2, 0, 1, 2, . . . , (7.3)

where the coefficients αmn = g Ã(0)
mn and γmn = gC̃ (0)

mn are
dependent only on h and the numerical parameters µ0 and
h0. In order to investigate the dispersion characteristics of the
coupled-mode system in this case, we examine if it admits
simple harmonic solutions of the form

ϕn(x, t) = fn cos(k(x ∓ Ĉt)), n = −2, 0, 1, 2, . . . , (7.4)

and find out the dependence (in non-dimensional form) of the
quantity

Ĉ
√

gh
= Ĉ(kh), (7.5a)

from the non-dimensional wavenumber kh. In the above
equations, Ĉ denotes the phase speed of the harmonic solution
(7.4), h is the (constant) depth considered, and fn are the
amplitudes of the modes. We recall from linearised water-wave
theory, that the exact form of the dispersion relation is

C
√

gh
= C(kh) =

√
tanh(kh)

kh
. (7.5b)

By introducing the representations (7.4) to the linearised
coupled-mode system (7.3) we obtain the following algebraic
system

M∑
n=−2
n 6=−1

(−k2αmn + (γmn + k2Ĉ2)) fn = 0,

m = −2, 0, 1, 2, . . . . (7.6)

Non-trivial solutions of the homogeneous system (7.6) are
obtained by requiring its determinant to vanish, which can
then be used for calculating Ĉ(kh) and comparing with the
analytical result, Eq. (7.5b). Fig. 3 presents such a comparison,
obtained by using µ0h = 0.25 and µ0h0 = 1, and by keeping
1 term (only mode 0), 3 terms (modes −2,0,1) and 5 terms
(modes −2,0,1,2,3) in the local-mode series. Recall that, in this
case, the bottom is flat and thus the sloping-bottom mode (mode
−1) is zero by definition and does not need to be included.
On the other hand, the inclusion of the additional upper-
surface mode (mode −2) in the local-mode series substantially
improves its convergence to the exact result, for an extended
range of wave frequencies, ranging from shallow to deep water-
wave conditions. In the example shown in Fig. 3 using 5 terms
(thick dashed line), the error is less than 1%, for kh up to 10, and
less than 5%, for kh up to 16. However, we wish to note here
that, if mode 0 (propagating mode) is included in the modal
series (which is suggested), the dispersion characteristics of the
present approximation (even using only 1 term) matches the
analytical curve at the point k∗h, where k∗h tanh k∗h = µ0h,
indicated by using a vertical arrow in Fig. 3.

Consequently, by appropriate choice of the numerical
parameter µ0, we are able to obtain a good approximation
for kh lying in an interval around the point k∗h, even when
the number of terms retained in the modal series is small.
Moreover, extensive numerical investigation of the effects
of the numerical parameters µ0 and h0 on the dispersion
characteristics of the present CMS has revealed that, if the
number of modes retained in the local-mode series is equal
or greater than 6, the results become practically independent
(error less than 0.5%) from the specific choice for the values of
the (numerical) parameters µ0 and h0, for all non-dimensional
wavenumbers in the interval 0 < kh < 24.

Quite similar results are obtained concerning the vertical
distribution of the wave potential and velocity. In conclusion,
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Fig. 3. Dispersion characteristics of the present coupled mode system using
the local-mode representation (4.1), keeping 1 and 3 terms (dashed lines) and 5
terms (thick dashed line) in the series. The values of the numerical parameters
used are: µ0h = 0.25 and µ0h0 = 1. The analytical result is shown by a solid
line.

a few modes (of the order of 5 to 6) are sufficient for modelling
fully dispersive waves in a constant-depth strip, for an extended
range of frequencies. In the more general case of variable
bathymetry regions, the enhancement of the local-mode series
(4.1) by the inclusion of the sloping-bottom mode (n = −1) in
the representation of the wave potential is of utmost importance
concerning consistent satisfaction of the Neumann boundary
condition (necessitating zero normal velocity) on the sloping
parts of the bottom. This requirement has been discussed in
detail in [2] and in [8], where it is also shown that the enhanced
series exhibits improved convergence due to the fast rate of
decay of the modal amplitudes |ϕn(x)| ≈ O(n−4). Thus, a
small number of modes suffices to obtain a convergent solution
to ϕ(x, z, t), for bottom slopes of the order of 1, or even higher.

7.2. Water waves under the elastic-plate surface

Working similarly, as in the previous subsection, we examine
the linearised coupled-mode system, in constant depth, under
the elastic plate, as defined by Eq. (7.2), using χ = 1 and
B̃(0)

mn = 0,

M∑
n=−2
n 6=−1

(
−

∂2ϕn

∂t2 + αmn
∂2ϕn

∂x2 + γmnϕn

)

= g

(
ε
∂3η

∂t3 + δ
∂4

∂x4

∂η

∂t

)
, m = −2, 0, 1, 2, . . . , (7.7a)

(
ε
∂2η

∂t2 + δ
∂4η

∂x4

)
+ η +

1
g

M∑
n=−2
n 6=−1

∂ϕn

∂t
= 0, (7.7b)

where the coefficients αmn and γmn are the same as before
(αmn = g Ã(0)

mn and γmn = gC̃ (0)
mn). In this case, we seek simple

harmonic solutions of Eq. (7.7) of the form

ϕn(x, t) = fn cos(kE (x ∓ ĈE t)), n = −2, 0, 1, 2, . . . ,

η(x, t) = β sin(kE (x ∓ ĈE t)), (7.8)

where β denotes the amplitude of the elastic-plate deflection.
Using Eq. (7.7b) to eliminate β through the mode amplitudes
fn , and substituting to Eq. (7.7a), we eventually arrive at the
following homogeneous system:

M∑
n=−2
n 6=−1

(
−k2

Eαmn + γmn +
k2

E Ĉ2
E

δk4
E − εk2

E Ĉ2
E + 1

)
fn = 0,

m = −2, 0, 1, 2, . . . . (7.9)

Non-trivial solutions of the system (7.9) are again obtained
by requiring its determinant to vanish, which can be used for
calculating the phase speed ĈE = ĈE (kE h) of the waves below
the elastic plate and compare with the analytical result, which
in this case is

CE
√

gh
= CE (kE h) =

1
kE

√
µ

h
, (7.10a)

where kE is the positive real root of the elastic-plate dispersion
relation [22,38,1],

µ = (δk4
E + 1 − ε)kE tanh(kE h). (7.10b)

Fig. 4 presents such a comparison for an elastic plate with
parameters δ = 105 m4 per meter in the transverse (y) direction
and ε = 0 (which is a usual approximation). Numerical results
have being obtained by using the same values of the numerical
parameters as before (µ0h = 0.25 and µ0h0 = 1) and by
keeping 1 term (only mode 0), 3 terms (modes −2,0,1) and
5 terms (modes −2,0,1,2,3) in the local-mode series (4.1) and
in the system (7.9). The results shown in Fig. 4, for N = 3
and 5, have been obtained by including the upper-surface mode
(n = −2) in the local-mode series representation (4.1). We
recall here that, in the case examined (constant-depth strip), the
bottom is flat, and thus the sloping-bottom mode (n = −1) is
zero (by definition) and does not need to be included.

Once again, the fast convergence of the present method to
the exact (analytical) solution, given by Eqs. (7.10), is clearly
illustrated. Also, in this case, extensive numerical evidence has
revealed that, if the number of modes retained in the local-
mode series is greater than 6, the results remain practically
independent from the specific choice of the (numerical)
parameters µ0 and h0, and the dispersion curve ĈE (kh)

agrees very well with the analytical one, for non-dimensional
wavenumbers in the interval 0 < kE h < 24, corresponding to
an extended band of frequencies.

8. Numerical examples

The discrete version of the wnCMS (6.2) is obtained by
truncating the local-mode series (4.1) to a finite number of
terms (modes), and using second-order finite differences, based
on time step 1t , to approximate the time derivatives appearing
in the system. Also, an 1/4-1/2-1/4 discrete scheme (defined
at t − 1t , t , t + 1t) using central, second-order spatial
finite differences, based on a step 1x , is used to approximate
the horizontal derivatives in the system. Discrete boundary
conditions are obtained by using second-order forward and
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Fig. 4. Dispersion characteristics of the present coupled-mode system for
waves in a constant-depth strip under a floating elastic plate, using the enhanced
local-mode representation (4.1), and retaining 1 and 3 terms (dashed lines) and
5 terms (thick dashed line) terms. Elastic plate parameters are δ = 105 m4 per
meter in the transverse (y) direction and ε = 0. The values of the (numerical)
parameters used in the calculations are: µ0h = 0.25 and µ0h0 = 1. The
analytical result is shown by a solid line.

backward differences to approximate the horizontal derivatives
in the boundary conditions, Eqs. (5.4), at x = a and x = b.
Thus, the discrete scheme is a fully implicit finite difference
scheme, uniformly of second order in the horizontal (spatial)
dimension. Numerical experience has shown that the stability of
the present discrete scheme is controlled by a Courant number
C1t/1x (where C is a representative value of the waves phase
speed in the domain D), which must take values much lower
than unity.

In this section, we concern ourselves with the derivation
and presentation of numerical results in the simpler case
of monochromatic waves, leaving the more interesting and
complex problem of the propagation of multichromatic waves
and wavepackets in variable bathymetry regions to be the
subject of a future work.

8.1. Monochromatic Stokes waves in constant depth and in
variable bathymetry

To demonstrate the applicability of our weakly nonlinear
model, in this section we first present two particular examples,
dealing with monochromatic waves propagating in constant
depth and above a smooth but very steep shoal. In the first case,
the present model results are compared with the results of the
standard second-order Stokes theory; see, e.g., [10]. In the case
of variable bathymetry, the present model results are compared
with the frequency-domain solution, corresponding to the
extension of Stokes theory in variable bathymetry, developed
by Belibassakis and Athanassoulis [6]. In both examples, a total
number of 6 modes (n = −2, −1, 0, 1, 2, 3) have been retained
in the enhanced local-mode series (4.1).

In the first example, we consider harmonic incident waves
of period T = 5.7 s and height H = 2 m propagating in
constant depth h = 6 m. In this case, the wavelength-to-depth

ratio is λ/h = 6.4 and the waveheight-to-depth ratio is H/h =

0.34, both parameters falling well inside the Stokes waves
regime. Numerical results obtained using the present model
are shown in Fig. 5. Starting from rest, the calculated wave
field converges to the analytical second-order Stokes solution
(Dingemans [10]) after about 15 periods. The latter is shown in
the last frame of Fig. 5 using crosses.

As a second example, we consider harmonic incident waves
of period T = 3 s and height H = 0.6 m, propagating over
a smooth but very steep shoal, connecting two half-strips of
constant but different depth. The bottom profile is characterised
by the following depth function:

h(x) =
h1 + h3

2
−

h1 − h3

2
tanh

(
3π

(
x − a

b − a
−

1
2

))
,

a < x < b. (8.1)

where h1 = 6 m for x < a = 20 m, and h3 = 2 m for
x > b = 40 m. The maximum bottom slope of this underwater
shoal is 95%, and the mean bottom slope is 20%.

In this case, the wavelength-to-depth ratio λ/h varies from
2.3 to 5.5 and the waveheight-to-depth ratio H/h varies from
0.1 to 0.3, both parameters falling again within the Stokes
waves regime. Numerical results obtained using the present
model are shown in Fig. 6. Starting from rest, the calculated
wave field converges to the time-harmonic solution after about
10–15 periods. A comparison is presented in the last frame
of Fig. 5, between the present time-domain solution and the
frequency-domain Stokes solution in variable bathymetry [6]
indicated using crosses. In this case, the effects of weakly
nonlinear, second-harmonic generation are evident, especially
as the shallow end of the shoal is approached. This is
illustrated in the last frames of Fig. 5, where we are able to
observe the wavelength variation and the increase in the wave
amplitude due to shoaling, as well as the fact that the waveform
changes from sinusoidal to second-order Stokes form. It is also
interesting to note here that, in the previous examples (and in
many other cases examined by the authors), the rate of decay
of modal amplitudes ϕn is found (numerically) to exhibit a very
rapid decay:

max
a<x<b

|ϕn| = O(n−4), (8.2)

ensuring the fast algebraic convergence of the present local-
mode series. Similar calculations carried out without including
the two additional modes (upper-surface mode and sloping-
bottom mode) in the representation of the wave potential,
i.e., keeping only the modes ϕ0, ϕ1, ϕ2, . . ., revealed that
the rate of decay of the modal amplitudes is much slower,
max |ϕn| = O(n−2), fully justifying the inclusion of the two
additional modes (ϕ−2 and ϕ−1) in the present local-mode
series expansion.

8.2. Scattering of monochromatic waves by an elastic plate in
variable bathymetry

As a final example, in Figs. 7 and 8 we examine the hydroe-
lastic behaviour of a thin elastic plate floating over a smooth
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Fig. 5. Application of wnCMS to harmonic waves propagating in a constant-depth strip (h = 6 m). The period of the incoming waves is T = 5.7 s. The frames,
from top to the bottom, show snapshots of the free-surface elevation, at equal time intervals δt = 2T = 11.4 s. The classical, time-harmonic, second-order Stokes
solution has also been plotted in the last frame using crosses.

Fig. 6. Evolution of incident harmonic waves over a smooth but very steep shoal. The period of the incoming waves is T = 3 s. The frames, from top to the bottom,
show the free-surface elevation obtained from the direct numerical solution of the wnCMS, at equal time intervals δt = T = 3 s. The monochromatic second-order
Stokes solution in variable bathymetry [6] has also been plotted in the last frame using crosses.

shoal, modelling a VLFS. The depth profile (shown in the last
subplot of Fig. 7) is taken to be given by the same Eq. (8.1),
using h1 = 15 m, h3 = 5 m, and a = 250 m, b = 750 m.

The average and maximum values of the slope of this bottom
profile are 2% and 9.5%, respectively. The elastic plate is taken
to extend from x = a = 250 m to x = b = 750 m, and thus, its
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Fig. 7. Evolution of incident harmonic waves over a smooth shoal. The bathymetry is defined by Eq. (8.1) with a = 250 m and b = 750 m. The period of the
incoming waves is T = 15.7 s (ω = 0.4 rad/s). The frames, from top to the bottom, show the spatial evolution of the free-surface elevation, as obtained by the
present wnCMS, at equal time intervals δt = T .

width is L = b − a = 500 m. The flexural rigidity parameter of
the plate is δ = 105 m4 (per meter in the y-direction), and, for
simplicity, the mass parameter is taken to be ε = 0, which is a
usual assumption concerning VLFS applications.

The angular frequency of the incident wave has been
selected to be ω = 0.4 rad/s, and thus the wave conditions
lie in the borderline between intermediate and shallow water
depth. Also, the waveheight of the incident wave is taken to
be H = 0.25 m, and thus the wave non-linearity remains at
relatively low levels.

In order to examine the effects of the floating elastic plate
on the diffraction of water waves, in Fig. 7 we first examine the
evolution of incident harmonic waves over the smooth shoal,
without the presence of the floating plate. The frames, from the
top to the bottom, show the spatial evolution of the free-surface
elevation, as obtained by the present wnCMS, at equal time
intervals δt = T = 15.7 s. Again, we can clearly observe the
continuous wavelength variation and the increase in the wave
amplitude due to shoaling.

In Fig. 8, the large-time form of the upper surface elevation
is shown with and without considering the effects of the floating
elastic plate, as obtained by the present wnCMS. The frames,
from top to the bottom, show the calculated elevation η(x, t),
at equal time intervals within one period. The free-surface
elevation is plotted by thin solid lines and the elastic plate
deflection by thick solid lines, respectively. For comparison,

the free-surface elevation over the same variable bathymetry
region, at the same instances, without taking into account the
scattering effect by the elastic plate, has been overplotted in
Fig. 8 using dashed lines.

We can observe in Fig. 8 that the presence of the elastic
plate significantly modifies the wavelength in the variable
bathymetry region. Moreover, the elastic plate deflection at
the plate ends increases in comparison to the free-surface
elevation in the same region, as obtained without consideration
of the floating elastic plate. The deflection may become
significant, especially at the downwave end of the plate, where
the amplitude of transmitted wave could also increase. This
result is justified by the higher hydroelastic excitation of
waves in the fluid domain under the elastic plate, induced
by the diffracted wave energy from the shoal. Future work
is directed towards the systematic examination of combined
scattering effects by the seabed and the elastic floating plate,
both for shoaling and undulating bottom profiles, aiming to
quantify the effects of general seabed topography (bottom
slope and curvature) on the hydroelastic responses of the
system.

9. Conclusions

The scattering problem of weakly nonlinear gravity
waves by a large floating elastic structure over a general
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Fig. 8. Diffraction of incident harmonic waves by a floating elastic plate, with parameters L = 500 m, δ = 105 m4, ε = 0, lying over a smooth shoal, extending
from x = 250 m to x = 750 m. The bathymetry and the period of the incoming waves are the same as in Fig. 7. The frames, from top to the bottom, show the
large-time form of the upper-surface elevation, as obtained by the present wnCMS, at equal time intervals within one period. The free-surface elevation is shown by
thin solid lines and the elastic plate deflection by thick solid lines, respectively. For comparison, the free-surface elevation at the same instances without the elastic
plate is also plotted by dashed lines.

bathymetry is considered. An appropriate generalisation of
Luke’s variational principle [26] is derived, which models the
evolution of nonlinear water waves in variable bathymetry
regions, including the scattering effects by a thin floating elastic
plate. A complete local-mode series expansion of the wave
potential has been developed, which, used in the variational
principle, enables us to reformulate the original problem as
an infinite, coupled-mode system of nonlinear equations in
the propagation (horizontal) space, with respect to the mode
amplitudes, the free-surface elevation, and the elastic plate
deflection. By keeping up to second-order nonlinearities, a
weakly nonlinear coupled-mode system has been derived
which fully accounts for the effects of weak nonlinearity and
dispersion, applicable both to deep water and to intermediate
water depth.

A specific feature of the present approach is that the local-
mode series converges very fast, and thus only a small number
of modes (up to 5 or 6) is practically enough for an accurate
numerical solution, provided that the two new modes (the
upper-surface mode and the sloping-bottom mode) are included
in the local-mode series.

Finally, important aspects of the present method are that
it can be extended further to treat fully three-dimensional
problems, as well as large floating elastic bodies or structures

characterised by variable thickness (draft), flexural rigidity, and
mass distributions.

Appendix. Coefficients of the second-order coupled-mode
system (wnCMS)

The coefficients Ã(0,1)
mn , B̃(0,1,2)

mn , C̃ (0,1,2,3)
mn of the second-

order Coupled-Mode System (wnCMS), Eq. (6.3), are given
by

Ã(0)
mn = 〈Z̃n, Z̃m〉0 =

∫ z=0

z=−h(x)

Z̃n(z, h)Z̃m(z, h)dz, (A.1a)

Ã(1)
mn = 1 + 〈W̃n, Z̃m〉0 + 〈Z̃n, W̃m〉0, (A.1b)

B̃(0)
mn = 2

〈
∂ Z̃n

∂x
, Z̃m

〉
0

+
∂h

∂x
[Z̃n Z̃m]z=−h, (A.2a)

B̃(1)
mn = 2

〈
∂W̃n

∂x
, Z̃m

〉
0

+ 2

〈
∂ Z̃n

∂x
, W̃m

〉
0

+ 2

[
∂ Z̃n

∂x

]
z=0

+
∂h

∂x

[
Z̃nW̃m + W̃n Z̃m

]
z=−h

, (A.2b)

B̃(2)
mn = 2〈W̃n, Z̃m〉0 + 1, (A.2c)
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C̃ (0)
mn = 〈1Z̃n, Z̃m〉0 +

[(
∂h

∂x

∂ Z̃n

∂x
+

∂ Z̃n

∂z

)
Z̃m

]
z=−h

−

[
∂ Z̃n

∂z

]
z=0

, (A.3a)

C̃ (1)
mn = 〈1Z̃n, W̃m〉0 + 〈1W̃n, Z̃m〉0 +

[
1Z̃n

]
z=0

+
∂h

∂x

[(
∂ Z̃n

∂x
W̃m +

∂W̃n

∂x
Z̃m

)]
z=−h

+

[(
∂ Z̃n

∂z
W̃m +

∂W̃n

∂z
Z̃m

)]
z=−h

, (A.3b)

C̃ (2)
mn =

〈
∂W̃n

∂x
, Z̃m

〉
0

+
∂h

∂x

[
W̃n Z̃m

]
−h

+

[
∂ Z̃n

∂x

]
z=0

, (A.3c)

C̃ (3)
mn = 〈Z̃m, W̃n〉0. (A.3d)

Furthermore, the coefficients w̃n, ã(0,2)
`n , ã(1,1)

`n , b̃`n , and c̃`n ,
involved in Eq. (6.2b), are given by

w̃n = W̃n(x, z = 0), (A.4)

ã(0,2)
`n = 〈Z̃n, W̃`〉0 =

∫ z=0

z=−h(x)

Z̃n(z; h)W̃`(z; h)dz, (A.5a)

ã(1,1)
`n = −

1
2
[Z̃n Z̃`]z=0 = −

1
2
, (A.5b)

b̃`n = 2

〈
∂ Z̃n

∂x
, W̃`

〉
0

+
∂h

∂x
[Z̃nW̃`]z=−h, (A.5c)

c̃`n = 〈1Z̃n, W̃`〉0 +

[(
∂h

∂x

∂ Z̃n

∂x
+

∂ Z̃n

∂z

)
W̃`

]
z=−h

+
1
2

[
∂ Z̃`

∂z

∂ Z̃n

∂z

]
z=0

. (A.5d)
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