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Abstract

A consistent coupled-mode model recently developed by Athanassoulis and Belibassakis [1], is generalized in 2 + 1 dimensions and
applied to the diffraction of small-amplitude water waves from localized three-dimensional scatterers lying over a parallel-contour bathy-
metry. The wave field is decomposed into an incident field, carrying out the effects of the background bathymetry, and a diffraction field, with
forcing restricted on the surface of the localized scatterer(s). The vertical distribution of the wave potential is represented by a uniformly
convergent local-mode series containing, except of the ususal propagating and evanescent modes, an additional mode, accounting for the
sloping bottom boundary condition. By applying a variational principle, the problem is reduced to a coupled-mode system of differential
equations in the horizontal space. To treat the unbounded domain, the Berenger perfectly matched layer model is optimized and used as an
absorbing boundary condition. Computed results are compared with other simpler models and verified against experimental data. The
inclusion of the sloping-bottom mode in the representation substantially accelerates its convergence, and thus, a few modes are enough
to obtain accurately the wave potential and velocity up to and including the boundaries, even in steep bathymetry regions. The present
method provides high-quality information concerning the pressure and the tangential velocity at the bottom, useful for the study of oscillating

bottom boundary layer, sea-bed movement and sediment transport studies. © 2002 Published by Elsevier Science Ltd.
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1. Introduction

The interaction of free-surface gravity waves with an
uneven bottom topography, e.g. a shoaling, containing
localized three-dimensional (3D) irregularities, in water of
intermediate depth, is a mathematically difficult problem for
which a broad class of approximation techniques has been
developed. This problem is complicated by the fact that the
physical properties of the medium (the wavenumber and the
propagation speed) are different at infinity in different direc-
tions. In this case the far-field wave pattern is not known a
priori, and a standard radiation condition cannot be applied.

In the case when the bed is mildly sloping in the region
under consideration, approximate one-equation models,
such as the classical mild-slope equation [2,3], or the modi-
fied mild-slope equation [4—6], can be used for the descrip-
tion of wave propagation and diffraction. Such models have
been widely used to predict the wave field in coastal regions,
since they are able to treat bottom topographies with satis-
factory accuracy for bottom slopes up to 1:3, or even higher
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[7,8]. Applications of these models to 3D scattering
problems have been presented by various authors using
various numerical techniques, such as the finite element
method [9,10], and the angular spectrum model [11,12].
The works by Panchang et al. [13], Li [14], Zhao and
Anastasiou [15] and Oliveira and Anastasiou [16], are all
based on the discretization of the elliptic mild-slope equa-
tion by finite differences, leading to large, sparse systems of
equations. The main innovation of the latter works is that the
numerical solutions are obtained by applying sophisticated
iterative methods, such as the generalized conjugate gradi-
ent method, the stabilized bi-conjugate gradient method and
the generalized minimum residual method. Li and Anasta-
siou [17] proposed an alternative model based on an expo-
nential transformation of the unknown wave field to a
slowly varying phase function, resulting in a non-linear
equation. A notable feature of all the above works is that
they are formulated with respect to the total wave potential.

The basic restriction inherent to any one-equation
model is that the vertical structure of the wave field is
given by a specific, preselected function. This restriction
makes them inappropriate to describe the wave field when
the bottom topography contains steep elements and/or
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Fig. 1. Domain decomposition and basic notation.

localized scatterers in waters of intermediate depth. The
improvement of the mild-slope models to match the require-
ments of this situation calls for a more general representa-
tion of the vertical structure of the wave field. Massel [5]
and Porter and Staziker [18] presented this kind of models,
called extended mild-slope equations, in which the vertical
profile of the wave potential at any horizontal position is
represented by a local-mode series involving the propagat-
ing and all evanescent modes, leading to an infinite coupled-
mode system of equations. See also the survey by Porter and
Chamberlain [19]. However, this expansion is inconsistent
with the Neumann condition on a sloping bottom, since each
of the vertical modes involved in the local-mode series
violates it and, thus, the solution, being a linear superposi-
tion of modes, behaves the same. This fact has two impor-
tant consequences. First, the velocity field in the vicinity of
the bottom is poorly represented and, secondly, wave energy

is not generally conserved. This problem has been remedied
by the consistent coupled-mode theory recently developed
by Athanassoulis and Belibassakis [1]. In the latter work the
standard local-mode representation is enhanced by includ-
ing an additional term, called the sloping-bottom mode,
leading to an enhanced coupled-mode system of equations.
This model is free of any simplifications concerning the
vertical structure of the wave field and of any assumptions
concerning the bottom slope and curvature, and it is consis-
tent since it enables the exact satisfaction of the bottom
boundary condition and the conservation of energy. More-
over, the consistent coupled-mode theory provides an
improved decay of the model-amplitude functions of order
O(n 74), where n is the mode number. Thus, in most practical
applications, a few (e.g. 3-5) modes is sufficient to
accurately calculate the complete 3D velocity field up to
(and including) the boundaries. The importance of the
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exact satisfaction of the sloping bottom boundary condition
by linear refraction—diffraction models applied to steep
bathymetry has been recently demonstrated also by
Chandrasekera and Cheung [20]. In this work an approximate
two-equation model is presented, where the second equation
takes care for the exact satisfaction of the sea-bed boundary
condition, showing significant enhancement of numerical
predictions in comparison to one-equation models.

In the present work, the consistent coupled-mode for-
mulation is applied to the complete linear problem of
propagation—refraction—diffraction of water waves in an
intermediate-depth coastal environment. The examined
environment consists of a transition region lying between
two areas of constant but different depth, and containing the
localized 3D inhomogeneities; see Fig. 1. A specific feature
of the present work is the decomposition of the problem to
an incident field carrying out the effects of the parallel-
contour bathymetry, and a diffraction field carrying out
the effects of the localized scatterer(s). It should be noted
that, in this case, the incident field is not given (known) a
priori, but it is calculated separately, as a first step in the
solution procedure. This is accomplished by applying the
consistent coupled-mode theory [1] to the case of an
obliquely incident monochromatic wave coming from the
offshore constant-depth region in the absence of the local-
ized scatterer(s). The diffraction problem is then treated
by applying a similar approach. In this way, the forcing
associated with the diffraction problem is restricted only
on the support of the localized scatterer(s). Working with
the diffraction potential in 3D applications is very beneficial
from the numerical point of view (described later).

A prominent difficulty that remains to be tackled is
associated with the unboundness of the domain and the
lack of a specific radiation condition. As concerns the far-
field structure of the diffraction potential, first results have
been obtained by studying the problem of a pulsating source
over a two-dimensional, uneven bottom topography, with
different depths at infinity, in Athanassoulis and Belibassakis
[21] and Belibassakis [22]. In these works it is shown that, in
the case of a monotonic bed profile, the far-field generated
by a source located in the variable bathymetry region
contains a shadow zone with an expanding width in the
transverse direction, i.e. along with the straight-line bottom
contours of the background bathymetry. Moreover, in each
of the two sectors not including the bottom shoaling area the
asymptotic behaviour of the wave field approaches the form
of an outgoing cylindrical wave, with amplitude of order
OR~ l/2), where R is the horizontal distance from the source,
and wavelength corresponding to the sector-depth at infin-
ity. On the contrary, localized disturbances over non-
monotonic bed profiles can generate duct propagation
along the bottom irregularity, since trapping modes exist
in this case; see Mei [3].

To tackle the problem of the unbounded domain, the
following numerical techniques are used in practice: the
artificial or non-reflecting boundary conditions (ABCs or

NRBCs), the absorbing layers and the infinite elements.
All the above are introduced in conjunction with an artificial
exterior boundary in order to eliminate the infinite domain,
absorbing at the same time the wave energy that reaches
the artificial boundary; see the surveys by Givoli [23],
Dalrymple and Martin [24] and Tsynkov [25]. The absorb-
ing layer technique occupies an intermediate position
between the high-quality, global NRBCs, which are the
hardest to construct and the most expensive to implement,
and the local ones, which are the cheapest and the less
accurate ones (Tsynkov [25]. In the present work the
Perfectly Matched Layer (PML) model, introduced by
Berenger [26] for the absorption of electromagnetic
waves, and formulated for general elliptic equations by
Turkel and Yefet [27] and by Collino and Monk [28], is
applied as the closure condition to the diffraction problem.
Restricting ourselves to the class of monotonic background
bed profiles, for which evidence exists that the solution of
the diffraction problem is composed only of decaying
outgoing waves, the PML technique is a good compromise
to the requirements of error minimization and low computa-
tional cost.

The present work is structured as follows: In Section 2 the
complete, linearized, boundary-value problem is considered
in the frequency domain. Since the water layer extends to
infinity in the horizontal directions, the assumption is made
that far ahead and behind the scatterer(s) the depth is even-
tually constant (although may be different in different direc-
tions). In Section 3 the consistent coupled-mode system for
obtaining the solution to the incident problem is presented
(the i-system). In Section 4 a variational formulation of the
diffraction problem is given and applied, in conjunction
with the enhanced local-mode representation of the diffrac-
tion field, to obtain the consistent coupled-mode system of
horizontal equations for the diffraction problem (d-system).
To restrict the support of the d-system in a bounded domain
containing the localized scatterer(s), in Section 5, the PML
model is adopted and optimized to serve as the closure
condition of the system. In Section 6 the approximate
solution of the problem is obtained by truncating the
enhanced local-mode series into a finite number of terms,
retaining the propagating, the sloping-bottom and a suffi-
cient number of evanescent modes to achieve numerical
convergence. The truncated coupled-mode systems are
numerically solved by using a second-order finite difference
scheme. Numerical results are presented for the case of the
Berkhoff elliptic shoal [9], and compared with the experi-
mental data and numerical results obtained by means of the
modified mild-slope equation. To illustrate the performance
of the present method for the case of non-mildly sloped
bathymetries, a second bottom geometry, corresponding to
a steep platform reef with bottom corrugations, is examined,
and the obtained results have been compared with the
corresponding ones obtained by the modified mild-slope
equation. Noticeable differences have been detected, which
are attributed to fine-scale three-dimensional wave-bottom
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interactions that cannot be well resolved by the modified
mild-slope equation.

2. Formulation of the problem

The studied marine environment consists of a water layer
D bounded above by the free surface dDg and below by a
rigid bottom 4Dy It is assumed that the bottom surface
exhibits an arbitrary variation in a bounded subdomain,
which includes the support of the localized scatterer(s).
Outside this area, the bathymetry is characterized by paral-
lel, straight bottom contours lying between two regions of
constant but different depth, 2 = h; (region of incidence)
and h = hj (region of transmission); see Fig. 1. The liquid is
assumed homogeneous, inviscid and incompressible. The
wave field is excited by a monochromatic plane wave of
angular frequency w, propagating with an oblique direction
0, with respect to the bottom contours (the oblique-incident
wave). In this case, the most important non-dimensional
characteristic numbers are: the shallowness ratio A/A,
where £ is the local depth and A is the local wavelength,
the bottom slope, and the shoaling ratio A/h;. In the present
work all these non-dimensional numbers are considered to
be of the same order of magnitude.

A Cartesian coordinate system is introduced, with its
origin at some point on the mean water level (in the variable
bathymetry region), the z-axis pointing upwards. The liquid
domain D is decomposed in three areas D('"), m=1,2,3
(Fig. 1), defined as follows: DY is the subdomain character-
ized by x < a; where the depth is constant and equal to A,
D® is the subdomain characterized by x> a; (a; < ay)
where the depth is constant and equal to /3, and D' is the
variable bathymetry subdomain lying between D" and D®.
Furthermore, D@ can be decomposed in three areas D(Sz),
DR, DY as follows: the central part DE’ containing the
localized scatterer(s), characterized by o <x < a, and
B1 <y < B,, where the bathymetry exhibits a two dimen-
sional variation h,(x,y), the part D(Sz) characterized by
ay<x<a; and y < B, and the part Dg) characterized
by a; <x<a, and y < ,, where the bathymetry 7,(x)
presents variability only along the x-axis. On the basis of
the above definitions, the depth function is decomposed as
follows

h(x,y) = hij(x) + hq(x, ), 2.1
where

hy, X =
h(x) = { h(x), @ <x< a,, and support(hy) C DZ

h3, X = asg
2.2)
Clearly, h4(x,y) is the disturbance of the parallel-contour

surface z = —h;(x) produced by the localized scatterer(s)
in D(Cz). We assume that A(x,y) is continuously differenti-

able. The above decomposition is also applied to the bound-
aries dDg and dDyy (Fig. 1). Without loss of generality, we
assume that ;> hs, i.e. D' is the deep water region and
DY is the shallow-water region. Assuming also that the
free-surface elevation and the velocity field are small, the
fluid motion can be described by a harmonic velocity poten-
tial of the form

D(x,y,z;t) = Re{— % d(x,y,7; M)eXp(—iwt)}, 2.3)

where w is the angular frequency, g is the acceleration due
to gravity, w = wz/g is the frequency parameter, H is the
oblique-incident wave height and i = ~/—1. The function
¢ = ¢P(x,y,z; ) is the normalized potential in the frequency
domain, usually written as ¢(x,y,z). Under the previous
assumptions the classical (differential) formulation of the
boundary value problem is stated as follows:

92
(@ + V2)¢(x,y, =0, (%2 €D, (2.4a)
Lo} o’
— —up=0, mw=—>0, (x,y,2) € dDg, (2.4b)
9z g
J
(a— + VhV)qb =0, (x,y,2) € oDy, (2.4¢)
Z
&(x,y,z) and its derivatives remain bounded as
R = /x> + y* — oo, (2.4d)

where V = (9/0x, 9/dy) is the horizontal gradient operator.
The above problem is forced by the oblique-incident wave,
characterized by the potential

cosh(kg”(z + hl))
cosh(kf)l)hl)

d)oi(x’ Vs Z) = eXP(i(KxX + Kyy))
(2.52)

(x,y,2) € DV,
The wavenumber vector of the oblique-incident wave is

Kol + Ky ] = ki cosB,i + k{sind,j, (2.5b)

where k(" is the positive root of the dispersion
relation wh; = k(()l)h] tanh(k(()l)h]) in DV, and i, j are the
unit normal vectors along the axes x and y, respectively.

2.1. Formulation of the incident and the diffraction
problems

Exploiting the linearity of the problem (2.4a)—(2.4d) and
the depth definition (2.1), the total wave potential ¢(x,y,z)
can be decomposed in two parts, the potential ¢;(x,y,z)
representing the propagation over the parallel-contour
surface h;(x), which will be called the incident wave field,
and the potential ¢y(x, y, z) representing the diffraction field
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by the 3D localized bathymetric features hy(x, y),
d(x, y,2) = ¢i(x,y,2) + Py(x, y,2). (2.6)

On the basis of physical grounds we assume that, since the
oblique-incident wave (Eqgs. (2.5a) and (2.5b)) is periodic
along the y-direction, the incident potential ¢;(x,y, z) is also
y-periodic with the same wavelength A = 27/k,, where
Ky = k(()') sinf;; see Kirby and Dalrymple [29], Massel [5].
Thus, by introducing the factorization

$i(x.y.2) = "7 g,(x,2), 2.7)
we obtain the following two-dimensional problem for
QD[()C,Z):
o (x, 0o (x,

qo,()zc A, %(;c ) Re6,2) =0,

ox 0z ’ (2.82)

—o0 < x <oo, —hix)<z<O,

Ipi(x,2)

d Hepi(x,2) = 0, —o0 < x< oo, z=0,
b4
(2.8b)
d dh; 9
(3_ + dxl a—)%(x,z): 0,
) ! (2.8¢)
0 <x <00, z=—hix),
supplemented by the radiation conditions
@i(x,2) — [eik{)” cos Oix A e—ik((J” cos le]
cosh(ké”(z + hl)) (2.8d)
X 0 X — —00,
cosh(k0 hl)
" COSh(ké‘”(z + h3))
@i(x,7) — Ay elfo €08 0% : .
cosh(kg )h3>
(2.8e)

In the above equations, Az and At are the reflection and
transmission coefficients, respectively. The direction of
the transmitted wave in D®® is given by

6, = sin“(kg‘) sinol/kg3>); (2.8f)

see also Massel [5]. The wavenumbers kg”) m=1,3,
appearing in Egs. (2.8a)—(2.8f) are obtained by the corre-
sponding dispersion relations
jhy, = Kh, tanh(kg”)hm), m=1,3, 2.9)
formulated at the depths 4,,, m = 1, 3, respectively.

By substituting the decomposition (2.6) in Eqgs. (2.4a)—
(2.4d) and using Eqs. (2.7) and (2.8a)—(2.8f), we obtain the

following problem for the diffraction potential ¢4(x, y, z):

(92
(a—zz + V2)¢d(x’ y,2) =0, (x,y,2) €D (2.10a)

9 2
ﬂ _l-'l’d)d:()’ M= 1 >03 (X,y,Z)eaDF’
0z g
(2.10b)
9 9
(7 + th)¢d =g(x,y) = —(— + VhV)dn,
9z 9z (2.10c)

(x,y,2) € aDyy,

supplemented by the radiation condition requiring that ¢4
behaves like outgoing waves as

R =4/x* + y> — oo,

It is obvious that the support of the forcing g(x, y) of diffrac-
tion problems (2.10a)—(2.10d) is exactly the same as the
support of the localized scatterer(s).

It must be noted here that, although a solution of the
present problem based on the formulation with respect to
the total wave potential, Eqs. (2.4a)—(2.4d), is possible,
working with the diffraction potential is much more efficient
from the numerical point of view. To better understand this
assertion, consider the simple case of scattering of a plane
incident wave by a submerged circular sill in constant depth.
In this case an analytical solution is available in cylindrical
coordinates in the form of infinite series involving Bessel
and Hankel functions (Longuet-Higgins [30], see also Mei
[3], Section 4.9.2). From this solution it is evident that the
number of azimuthal modes required for the numerical
convergence of the total wave field is of the order O(kR),
where k is the propagating wavenumber, while the diffrac-
tion potential requires only O(kp,.) terms, where p,. is the
radius of the scatterer. Thus, the numerical efficiency of the
series representing the diffraction field is uniform in space,
while the numerical efficiency of the total field series
degrades as the distance from the scatterer(s) increases.

(2.10d)

2.2. The far-field structure of the diffraction potential

The radiation condition (2.10d) will be now put in a more
explicit form. To this aim, we need more information
concerning the far-field structure of the diffraction potential
¢ 4. This question is answered with the aid of the appropriate
Green’s function G(7; ), representing the pulsating-source
potential over the background (parallel-contour) bathy-
metry, which has been studied by Athanassoulis and
Belibassakis [21] and Belibassakis [22]. In the latter
works, the following far-field asymptotic results have been
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established:

exp(i k(()’")Rh) cosh(kg") (z+ hm))

G(?, ?0) = Fm(e)
VR cosh(kg")hm)

(2.11a)
+ O(R;m),

FeD™, m=13,

G(F,Ty) = o(Rh‘3’2), 7 e D?, (2.11b)

under the assumptions that

(i) the source point 7y = (xg, Yo, Zo) lies in the variable
bathymetry subdomain D?;

(ii) the field point 7 = (x, y, z) is far from 7, in the sense
that R, = \/(x — x9)2 + (y — yp)?> — 0, i.e. R, is large in
comparison with the characteristic wave lengths;

(iii) the depth function #;(x) is monotonic (to ensure that
trapping modes are not excited).

In Eqgs. (2.11a) and (2.11b), 6 = tan” ' ((y — yo)/(x — xo))
and F,,(0) is the far-field pattern of the source potential
in D(m), m = 1,3, which is independent from R;. On the
basis of the above asymptotics, the following results are
obtained concerning the far-field behaviour of the diffrac-
tion potential ¢g:

(i) In each sector lying entirely in D™ m = 1,3, the
asymptotic behaviour of the diffraction field approaches
the form of an outgoing cylindrical wave, propagating
with wavelength corresponding to the sector-depth at
infinity. In these sectors the diffraction field exhibits a
decay ¢y = OR ), R— o0, 7€ D™, m=1,3, and
obeys the standard (Sommerfeld) radiation condition

3bs . m _
3 4 — k(" g = OR™),
(2.12a)

R— oo, 7€D™, m=1,3.

(ii) Along the bottom irregularity in D?, ie. as 6
approaches 6 = /2, the diffraction field exhibits a faster
decay

Iba _ OR™?)

R— o0, 7€ DP.
dy

(2.12b)

Egs. (2.12) and (2.12b), taken together, express analytically
the appropriate radiation condition of the diffraction
problem (2.10a)—(2.10d). Note that, the far-field behaviour
of ¢y is anisotropic with respect to 6.

3. The coupled-mode system of equations for the
incident-field problem

The problem on ¢;(x,z), Eqgs. (2.8a)—(2.8f), will be
treated by means of the consistent coupled mode theory
[1]. This theory is based on the following enhanced local-
mode representation of the incident field (in the absence of
the localized scatterers):

@i(x,2) = @ 1(0)Z_1(z; X) + @p(x)Zy(z; X)

® (3.1
+ D 0, (0Z,(z:%).
n=1

In Eq. (3.1) the term ¢y(x)Zy(z; x) is the propagating mode
of the incident field and will be called the i-propagating
mode. The remaining terms ¢,(x)Z,(z;x), n=1,2,...
are the evanescent modes, and the additional term
¢_1(x)Z_1(z;x) is a correction term called the sloping-
bottom mode, which accounts for the bottom boundary
condition on a sloping bottom. The function Z,(z; x) repre-
sents the vertical structure of the nth mode. The function
¢, (x) describes the horizontal pattern of the nth mode and is
called the complex amplitude of the nth mode. The func-
tions Z,(z;x), n=20,1,2,... appearing in Eq. (3.1) are
obtained as the eigenfunctions of local vertical Sturm—
Liouville problems, and are given by

cosh[ko(x)(z + h;(x))]

L0 = hky )
k() + ()] -2
. cos[k,(x)(z (x _
HEN= ey TR

where the eigenvalues {ikq(x),k,(x)} are obtained as the
roots of the dispersion relation

phi(x) = —k(x)h;(x) - tan[k(x)h;(x)],

a =X = .

(3.2b)

The necessity for enhancing the local-mode series by
including the sloping-bottom mode ¢_;(x)Z_;(z;x), in the
case of a steep bathymetry, has been described in detail in
Ref. [1]. The vertical structure Z_;(z;x) of this additional
mode has to be smooth z-function in [—#4;(x), 0], satisfying
the conditions

0Z_1(z=0,
M —uZ_(z=0,x) =0,
0z
(3.3a)
0Z_1(z = —h(x),x) —1
9z '

We remark that the first of the above conditions implies that
¢_1(x)Z_(z;x) satisfies the free-surface condition, and
second one, in conjunction with Eq. (3.2a) and the repre-
sentation (3.1), implies that

@1 (x) = dgi(x,z = —h(x))0z. (3.3b)

Thus, the sloping-bottom mode vanishes in constant-depth
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subregions, where d¢;(x,z = —h;(x))/dz = 0. We also note
here that Z_;(z;x) is not uniquely defined; however, this
freedom does not affect the final results. For an extensive
discussion about this issue the reader is referred to Ref. [1,
Section 4]. A specific convenient form of Z_(z; x) is given
by

3 2
Z (z3x) = hi(x)[( hf@) +( h-fX)) ]

and all numerical results presented in this work are based on
this choice for Z_,(z;x). By following exactly the same
procedure as in Ref. [1], the coupled-mode system for the
incident wave field (the i-system) is obtained

(3.3¢)

o]

> @ + by @) + () = )@, = 0,

n=-—1

o <x<a, m=

-1,0,1,..., (3.4)

where a prime denotes differentiation with respect to x. The
coefficients a,,,, b, C,ny Of the system (3.4) can be found in
Table 1 of Ref. [1]. The system (3.4) is supplemented by the
following boundary conditions [5]

o_1(ay) = ¢"(a)) =0, e_1(ay) = ¢~ (ay) = 0,

(3.5a)
golan) + Ay go(en) = 2iA exp(iag ),

(3.5b)
¢nla) = Ao @) =0, n=12,..,
eo(an) — iA§ go(az) = 0,

(3.5¢)

o) + AV, () =0, n=1,2,3,...,
where the coefficients /\;”, )\;3), n=20,1,2,... are given by

)\B') = kf)') cosf),

. - (3.62)
Ay =\/(k£“) (k" sing,), n=1,2...
/\63) = k(()3) cosbs,
(3.6b)

A® — \/(kg3>)2+(k§f> sins ), n=12....

In the above equations 6; is defined by Eq. (2.8f),
{ik(l),kill) } are the eigenvalues {iky(x), k,(x)},—q,, Which
remain the same all over the region D(l), and {ikff),kﬁﬁ)}
are the eigenvalues {iky(x), k,(x)},—,,, Which remain the
same all over the region D®. The reflection and transmis-
sion coefficients (Ar, At) appearing in Egs. (2.8d) and (2.8e)

are calculated from the solution of the i-system by

Ag = (%(al) - exp(iAg‘>a,))exp(i/\g“al),
3.7)
Ay = @o(apexp(—iAay),

and the forcing term g(x,y) of the diffraction problem is
calculated by using Eq. (2.10c) in conjunction with Egs.
(2.7) and (3.1).

An important feature of the solution of the incident
problem by means of the enhanced representation (3.1), is
that it exhibits and improved rate of decay of the modal
amplitudes |, (x)| of the order O(n~*). Thus, a small number
of modes suffices to obtain a convergent solution to ¢;(x, z),
even for bottom slopes of the order of 1:1, or higher; see the
results presented in Section 6 of Ref. [1].

4. The coupled-mode system of equations for the
diffraction problem

In this section the corresponding coupled-mode system of
horizontal equations for the diffraction problem (the d-
system) will be derived from a variational principle. This
principle, first introduced by Bai [31] for the diffraction by
localized scatterer(s) in constant depth (see also Bai and
Yeung [32], Yeung [33]), is an approximate one, due to
the fact that the radiation conditions are applied to a vertical
boundary located at a large but finite distance from the
scatterer(s). In this way, the exact problem, Egs. (2.10a)—
(2.10c), formulated in a truncated domain D(R,,) consisting
of a finite part of the strip D® (containing the localized
scatterers) and two semi-circular finite cylinders of large
radius R,, lying in D" and DY, respectively. At a later
stage (Section 5), these closure conditions will be further
improved by using optimal absorbing layers.

4.1. The variational principle

To start with, consider the functional

1 1
T =5 Jm (Vg v E,U«LD o, (007 s

ik} J > kS J 2
- — ds — —— ds
> Vo, @ > Vs, @
+ J i gy dS, 4.1
9D (Reo)
where k(()l), m = 1,3, are obtained by the dispersion relation

(2.9), and g is the forcing of the diffraction problem defined
by Eq. (2.10c). In Eq. (4.1), BDF(ROO) is the part of the free
surface contained in D(Ry), dDp(Ry) is the part of the
bottom surface contained in D(Ry,), and 9DV (Ry,), m =
1,3, are the vertical parts of the boundary of the semi-
circular cylinders lying in the subdomains D™, m = 1,3,
respectively. By restricting the admissible function space
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Table 1

Coefficients of the d-system. Note that A- = 6%-/92* + V2, {f,g) = [ 400 [@g(@ dz, | fI? = (f.f), and §,,, is Kronecker’s delta

m=-1;n=-1,0,1,2,... m=0,1,2,....n=—1

m=20,1,2,....n=0,1,2,...

(X, Y) <Z—1 > Zn> <sz Z 1>
by (x,y) AZ_1,VZ,) 2Z VZ_1)
Con (X, Y) (Zz.,Az,) (Z, AZ 1) + (1 + VIVZ (= ))Z,,(—h)

6llﬂ’l”Zl'VlHZ
27,0, VZ,) + VhZ, (—)Z,(—h)
(Z, AZ,) + VhZ,(=h)Z,,(—h)

for the function ¢4 in D(R,,) to be
AD(R)) = {x(x,y,2) € C*(D(Rw))

NC'(D(R) U dD(R))}, 4.2)

the variational formulation of the reduced diffraction
problem takes the form:

3F (¢a) = 0, bs € AD(R)). (4.3)

The equivalence between Eq. (4.3) and the diffraction
problem can be easily shown by calculating the first varia-
tion 8% of the functional [32,34], obtaining the following
variational equation:

9
[, eossiave [ (20— g, Jog as
D(Ry) aDp(R-) \ 0N
r 3
+ | (ﬂ + g>8¢d ds
JobpRe) \ On
[ Iba .. )
+ — — ik Sy dS
] aé(vl)(Roo)( n 1 0 d)d d)d
[ by . 3
+ | (—811 ik g |0y dS
( 9
+ (ﬁ)&f)d ds = 0. (4.4)
Jab®®.) \ In

In Eq. (4.4), d¢p4/dn denotes the (outward) normal derivative
of the diffraction potential on each part of the boundary. In
particular, at the bottom boundary, the normal derivative
takes the form

0ba _ (9% | ), !
= (az +th¢d) — (4.5)

The proof of the equivalence of the variational Eq. (4.4) and
the diffraction problem is completed by using standard argu-
ments of the calculus of variations.

4.2. The d-system

Let us reconsider the variational principle (4.4) assuming
that the diffraction field ¢4 in D(R,,) is represented by the
enhanced local-mode series

ba(x,y,2) = @1, )Z_1(z;x,y) + @o(x,y)Zy(z; X, )

+ D uxZy(z x5 ). (4.6)

n=1

In the above representation, the vertical functions Z,,(z; x, y)
are given, at every point (x,y) of the horizontal plane
8DF(ROO), by equations similar to Eqgs. (3.2a), (3.2b) and
(3.3c), with h;(x) being replaced by h(x,y). The diffraction
modal-amplitude functions ¢,(x,y), n = —1,0, 1, ... will be
distinguished from the corresponding ones for the incident
field ¢,(x), n= —1,0,1,... by the number of their argu-
ments. The representation (4.6) identically satisfies the
free-surface boundary condition, Eq. (2.10b), because of
the choice of the vertical functions Z,(z; x,y). Similarly as
in the case of the incident field, Eq. (3.3b), the sloping-
bottom mode of the diffraction potential, defined by
@_1(x,y) = [0¢py(x,y,2)/0z],——;, vanishes in constant-
depth subregions. By substituting Eq. (4.6) in Eq. (4.4),
we note that the term on the free-surface is identically
zero, and using Eq. (4.5), the following coupled-mode
system of equations for the diffraction problem is derived:

00

D (5 )V 0, (x,y) + by (x,9)-V @, (x, )

n=—1

4.7
+ (6 V)@ (X, y) = g (X, ¥),

m=—-1,0,1,..., (x,y) € IDp(Rs),
supplemented by the following boundary conditions

- I@u(x,)
z amn(x’ y)( T

n=—1

— ik g, y)) 0,
(4.8)

m=—1,0,1,..., (x,y) € 0*°D{(Roo),

00

0@ (X, y) .3
z amn(x’ y)(li.);v - lké)g)

(Pn(x7 y)) = O,
(4.8)

00

> dux.y)

n=—1

Ien.y) _
v

)

(4.8¢)
m=—1,0,1,..., (x,y) € GZD(\f)(ROQ),

where 92D (R.,) = 9(0D{)(R.)), 1 =1,2,3, denote the
projections of the parts of the vertical boundary
GZD(\?(ROO) on the mean free surface dD, and 7 is the projec-
tion of the (outward) normal vector 7 on dDg.

The forcing g,,(x,y), m = —1,0, 1,2, ... of the d-system is
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defined by

_ a(ﬁi()@)’, _h)
gm('xu))) - 9
Z

+ Vh-Vo,(x,y, —h))

XZy(—h;x,y) = g6, )Zy(—h; X, y), (4.9)

and the coefficients a,,,, b,,,, c,,, are given in Table 1. These
coefficients are distinguished from the corresponding ones
involved in the i-system, Eq. (3.4), again by the number of
their arguments. It is obvious that the support of the forcing
gn(x,y), m= —1,0,1,2,..., of the d-system is the same as
the support of the localized scatterer(s). Moreover, since
Z_1(—h;x,y) = 0, see Eq. (3.3¢c), the function g_(x,y) =
0, everywhere.

If we restrict our attention to the class of monotonic back-
ground bed profiles £;(x), in order to avoid wave trapping in
the strip D, it is expected from the far-field behaviour of
the diffraction potential, Egs. (2.12) and (2.12b), that the d-
propagating mode ¢, (x, y) will be at most of order O(R 112y,
as R — oo0. On the other hand, ¢,(x,y) n # 0, will exhibit a
faster decay as R — oo. This is true as x — a| or as x —
in D?, since the depth there eventually becomes con-
stant, and thus, the sloping-bottom mode ¢_;(x,y) =
[0¢g(x,y,2)/0z],=—, vanishes, and all ¢,(x,y) n=1,
behaves like the evanescent eigenmodes of the modified
Helmholtz equation. Furthermore, for a; < x < a, and |y|
large in D', all modes ¢, (x,y),n = —1,0,1,2, ..., exhibit a
faster decay of the order O(R™"), as implied by the radia-
tion condition (2.12b).

Thus, at large distances from the localized scatterer(s),
the wavelike behaviour of the d-system is substantially
determined by the propagating (n = 0) mode. Therefore,
moving away from the area D(CZ) (Fig. 1), all modes except
the d-propagating mode can be approximately neglected. In
this case, the system (4.7) reduces exactly to the homo-
geneous modified mild-slope equation [5,6,8]:

V(ce,)

Veolx,y) + k(1 + Peg(x,y) = 0,
(ccy)

Vipo(x,y) +

(x,y) € DIDZ. (4.10)

In Eq. (4.10), ¢ = c(x,y) and c; = cy(x,y) are the local
phase and group velocities, respectively, and ky(x, y) is the
local propagating wavenumber. The function ¢ = Yi(x,y) is
dependent on the gradient and the curvature of the depth
function.

A difficulty associated with the numerical solution of the
d-system (4.7) is that the support dDg(R,,) of the modal
amplitude functions ¢,(x,y), n = —1,0,1,2,..., has to be
extended in a large part of the mean free surface dDg, in
order to avoid undesirable reflections from the boundary
conditions (4.8a)—(4.8c). This difficulty can be greatly alle-
viated by introducing an absorbing layer as the closure
condition of the d-system, located at the borderline of Dg)
in the horizontal plane, as shown by using thick dashed lines

in Fig. 1. In Section 5 the PML model, introduced by
Berenger [26], will be adopted and optimized to serve as
the closure condition of the d-system, in replacement of the
boundary conditions (4.8a)—(4.8c).

5. The PML model as a closure condition of the
diffraction problem

The basic feature of the perfectly matched layer (PML)
model is that, by properly modifying the coefficients of the
d-system in a finite-thickness layer surrounding the central
region D(Cz), away from the three-dimensional bathymetric
features, the diffraction wave energy that reaches this area
is rapidly attenuated, avoiding the contamination of the
numerical solution by spurious reflections. The derivation
of a complete version of the d-system in the finite sub-
domain [ay, ap] X [B), B2], with a PML-model closure,
will be performed in two steps. First, the PML model will
be implemented to the modified mild-slope Eq. (4.10),
which is approximately describing the behaviour of the d-
system in the area of the absorbing layer, and optimum PML
coefficients will be derived in terms of the local value of the
propagating wavenumber. Then, the consideration will be
generalized to the d-system (4.7), taking into account that
any spurious reflections might come out essentially from the
interaction with the propagating mode. To begin with, we
consider the modified mild-slope Eq. (4.10), which by
means of the substitution F' = _/cc ¢y reduces to the 2D
Helmholtz equation

ViF+ K F=0, (5.1
where

V2
Ry = B+ ) — —Yot (5.2)

/CCg

Locally, in the neighbourhood of any point P at the absorb-
ing layer, Fig. 2, the wavenumber k(x, y) can be considered
constant. Introducing local coordinates (%, §), with the ¥-axis
taken to be normal to the absorbing layer, any outgoing
solution of Eq. (5.1) in this neighbourhood can be analysed
into plane waves of wavelength A = 2m/k, incident from
various directions from ¥ < 0, and propagating into the
absorbing layer 0 < % </ (of thickness [). Inside the
absorbing layer, the PML model for the Helmholtz equation,
as provided by Turkel and Yefet [27] and Collino and Monk
[28], reads

1(d (1 oF 9°F
Se \ 0X \ s, 0X ay
where
o= s@® =1+ 79
k (5.4)

o(%) > 0, for ¥ > 0, and a(0) = ¢’(0) = ¢’ (0) = 0,
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Fig. 2. Definition sketch of the PML model, locally at some place in the
border of the truncated horizontal domain.

and a prime denotes differentiation with respect to . In Eq.
(5.3), s, = s(x) is the PML coefficient which varies only
across the absorbing layer. The models (5.3) and (5.4) are
completed by a termination, e.g. Robin, boundary condition
at the end of the layer ¥ = [ :

AFG =1+ TE=D (5.5)

0x

where A, B are constants. As follows from the PML litera-
ture [26,28], the specific choice of the coefficients A, B
appears to be of minor importance. This is reasonable,
since the model is aiming to attenuate the wave energy
entering the layer, mainly during the ‘propagation’ phase,
so that only a tiny fraction of it reaches the termination
boundary at ¥ = /. Moreover, the reflected (at X = /) energy
continues to attenuate during the ‘back propagation’ phase,
as approaches the interface ¥ = 0 again.

5.1. Analysis of the PML reflection coefficient in the high
frequency limit

Consider a plane wave incident at an arbitrary angle 6
from ¥ < 0 to the interface ¥ = 0 of the absorbing layer 0 <
% < I. By expressing the wave potential in ¥ < O as a super-
position of incident and reflected components, and using
WKB analysis, we obtain a high-frequency approximate
solution to Eq. (5.3) in 0 < X <, for 6 # w/2, subjected
to the termination condition (5.5). This solution, leads to the
following result concerning the modulus of the PML reflec-
tion coefficient Ky

=1
|Kg| = |7] exp<—2 cos HJ o(t) dt), (5.6)
t=0

where 7 depends on the coefficients A, B of the termination
condition. The basic feature of the PML model is the expo-
nential decay of the reflection coefficient, which is governed

by o(%) and /. Berenger [26] introduced the following poly-
nomial form for o (%)

a(X) = oo(¥/)",
which when substituted in Eq. (5.6) leads to

n=3, (5.7a)

|Kg| oc exp(—2 cos Oapl/(n + 1)). (5.7b)

Thus, the efficiency of the PML model, in the high
frequency limit, increases exponentially as ogl/(n + 1)
increases. In applications, the layer thickness [ should
remain relatively small, say of the order of 1 wavelength,
since we are willing to keep the computational cost as low as
possible. Having fixed the thickness, /, of the layer, the
theoretical result (5.7b) indicates that a very high value of
oy > 0 and the smallest possible value of the exponent, n =
3, should produce the best results. However, in discretizing
the PML equations by using a finite-difference scheme,
additional factors enter into play, related with numerical
reflections generated by the discretization. As shown by
Collino and Monk [28], for a fixed number of points N
per wavelength A = 2m/k, the theoretical requirement of
large oy > 0 should be balanced with the requirement of
smooth variation of the discretized o(X), to ensure small
numerical reflection.

5.2. The optimum discrete PML model

In implementing the discrete PML model, the following
assumptions are introduced. (i) A fixed number N of grid-
points per wavelength is used for discretizing the field
equation by a finite-difference scheme (usually N = 10),
and (ii) the grid spacing is kept the same both in the fluid
domain and within the absorbing layer. Under these assump-
tions, optimum oy and n values for the PML model (5.7a)
are obtained by means of the merit function

O=m/2
R, (n, ook~ UAN) = J |RdB(0; n, ook~ A, N)
6=0

X (cos 6)* d6, (5.8)

where Rgg = —20 log;o|KR| is the PML reflection coeffi-
cient, expressed for convenience in dB. The weight function
(cos 6)"™ is used in order to put more emphasis in the range
of directions from normal incidence, 6 = 0, up to 6 = /3,
which are most important for our purposes. For the calcula-
tion of the reflection coefficient appearing in Eq. (5.8) under
the integral, the PML equations are discretized and numeri-
cally solved by using a second-order finite difference
scheme. Then, the corresponding optimization problems
are solved with respect to n and o-ok_', for the parameters
I/A and N taking values in the ranges //A € [0.5,2] and N €
[7,20]. It is worth mentioning that the final results remain
practically the same by using either a Neumann or a
Dirichlet termination condition for the PML model.

As an example, the distributions of the optimum discrete
PML reflection coefficient Ryg o (6; I/A, N), obtained by the
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Fig. 3. Optimum PML reflection coefficients for layer thickness //A = 1 and various discretizations corresponding to N = 7 (solid line), N = 10 (dash-dot line)

and N = 20 (dashed line) points per wavelength.

optimization of Eq. (5.8), are presented in Fig. 3 vs. the
angle of incidence 6, for a layer thickness //A =1 and
three typical resolutions (numbers of gridpoints per
wavelenth) N =7, 10, 20. From this figure we can
see that, by using the PML model (5.7a) with grid
resolution N = 10 (dash-dot line), the reflection coeffi-
cient remains below 1% (or —40 dB) for angles of incidence
up to almost @ = 80°. As the layer thickness and the grid
resolution increase, the efficiency of the PML model
becomes even better.

5.3. The PML d-system

On the basis of the above analysis, we proceed now to
couple the PML model with the d-system. The area Dpyy of
the absorbing layer of uniform thickness /, surrounding the
horizontal computational domain (as shown by thick dashed
line in Fig. 1), is the part of the mean free surface enclosed
bAy the rectangles D,g = {a; =x = o, B =y=p,} and
Dy ={d) =x=a,,B) =y=p,}, where &, = a; — |,
Bi1=pB1—1, & =a +1, B, =, + [ Recalling that in
this area the forcing of the d-system is zero, and assuming
that the coefficient matrix a,, is non-singular, we obtain
from Eq. (4.7)

Z ainnV2¢n(x’y) + (amn)_l(bmn(x’y)'VQDn(x’y)

n=—1
+Cmn()on(x’y)):0, m = _1,0,1,.... (59)

Since the wavelike behaviour of the system for (x,y) €
Dpyy 1s essentially determined by the propagating (n = 0)
mode, a straightforward approach is to substitute, at the next
step, the horizontal Laplacian operator appearing in Eq.

(5.9) by the PML operator D?, defined as follows:

170 (1 g, 1o [1dg,
5 —=—(— + —| = — , n=0
D, =1 5 dx \'s, 0x sy \ dy \ s, dy

Vzgo,l, n#0

(5.10)

In Eq. (5.10), s, is given by Eq. (5.4) and s, is defined
similarily. These coefficients are calculated in terms of
the local value of the propagating wavenumber kq(x,y)
in the absorbing layer Dpy by means of the optimiza-
tion of Eq. (5.8). Extending these functions by unity for
all points outside the absorbing layer, (x,y) € D,g, and
transforming back the system to its normal form by left
multiplication with the matrix a,,,, we obtain finally PML d-
system:

<]

D @ ND? 0%, Y) + Dy (6,3)- V0,5, 3) + € (6, 1), (%, )

n=—1

= gu(x.y), m=—1,0,1,..., (x,y) € Dyg. (5.11)

6. Numerical results and discussion

The discrete scheme for the numerical solution of the i-
system, Eqs. (3.3a2)—(3.3c) and (3.4), has been presented in
Athanassoulis and Belibassakis [1], and will not be
discussed herein. In this section, the discrete scheme for
the numerical solution of the PML d-system, Eq. (5.11),
is presented and discussed. Then, numerical results are
presented for the scattering by an elliptic shoal super-
imposed over a sloping bottom, and compared with
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Fig. 4. Bathymetry of the elliptic shoal over a 2% sloping bottom [9], and contours of the modulus of the diffraction wave field |¢| on the free surface, as

calculated by the present method.

experimental measurements and numerical results obtained
by means of the modified mild-slope (Eq. (4.10)). In this
case, the bottom slope is small and thus, the mild-slope is
adequate to describe the wave field. In order to better illus-
trate the effect of steeper bottom slopes on the calculated
wave field, a second geometry corresponding to a steep
platform reef with bottom corrugations is examined, and
the results obtained using the present method and the modi-
fied mild-slope equation are compared and discussed.

6.1. Discrete approximation of the coupled-mode system of
equations

Truncating the series (4.6) to a finite number of terms
(modes), and denoting by N, the number of evanescent
modes retained in the representation, the following
approximation of the diffraction wave potential is
obtained

NE

a3, = D @5, )Z,(z 5, ). (6.1)

n=—1

The total number of modes retained is N, =N, + 2.
The construction of the discrete system is completed
by using central, second-order finite differences to
approximate the derivatives of the amplitude functions
@,(x,y) in the PML d-system (5.11). The system is

supplemented by using Neumann-type termination
conditions of the PML model at x = &; and x = &,,
and at y= 3, and y = f3,, respectively. The coefficient
matrix of the obtained algebraic system is block struc-
tured, each block being composed by a sparse band-
diagonal submatrix of dimension Ny The forcing
g,(x,y) of the discrete system is non-zero only for the
gridpoints falling inside the support of hy(x,y), and
g-1(x,y) =0 throughout the whole domain ﬁaB. As
concerns the numerical solution of the linear algebraic
system, a direct method, based on Gaussian elimination,
is used for Ny = 300000, requiring a computation time
of order of 10 CPU minutes in a Pentium III 500 MHz
machine. For larger systems, an iterative solution has
been implemented, based on the hierarchy of the magni-
tude of the modes.

Let us make here some additional comments concerning
our choice to formulate and solve the problem with respect
to the diffraction potential ¢4 instead of the total wave
potential ¢; see Eq. (2.6). In numerically solving a scatter-
ing problem using finite differences, two kinds of error are
introduced by the discretization procedure (i) the amplitude
error, which is of order O(k”s”) for a pth-order finite
difference scheme with grid spacing s, and (ii) the phase
error, which grows linearly with the distance from the
forcing of the system, at a rate of order O(k” ") [35]. In



K.A. Belibassakis et al. / Applied Ocean Research 23 (2001) 319-336 331

x(m)

8 10 12

Fig. 5. Bathymetry as in Fig. 4 and contours of the modulus of the total wave field |¢| on the free surface, as calculated by the present method. The
experimental measurements, reported by Berkhoff et al. [9], refer to sections 1-8 shown by using solid lines.

the formulation with respect to the total wave potential, the
forcing of the system applies through a boundary condition
to the offshore boundary, which is usually located far from
the area of the localized scatterer(s). On the contrary, in the
formulation with respect to the diffraction wave potential,
the forcing has the same support as the localized scatterer(s).
Thus, working with the diffraction potential we obtain
numerical solutions of superior quality in the area around
the scatterer(s), since the growing phase error travels signi-
ficantly less distance.

6.2. Presentation of numerical results and discussion

6.2.1. The case of an elliptic scatterer over a sloping bottom
As a first example, we consider here the scattering by an
elliptic shoal superimposed over a sloping bottom of
constant slope 2%, studied by Berkhoff et al. [9]. In this
case, the background bathymetry /;(x) (the constant slope
supporting the elliptic shoal) is defined as follows

0.45, x < —5.85
0.45 —0.02(5.85 +x), —585=x=14.15
0.05, x> 14.15

hi(x) =

(6.2a)

and the disturbance h4(x,y) produced by the localized

scatterer is given by

0,
ha(x, y) = ’
03— 051 — (/3757 — (W51, (/37 + (/) = 1

(6.2b)

(/3)? + (v/4)? > 1

where all distances are in metres. For this environment,
experimental data are available from Ref. [9], for an inci-
dent wave of period T = 1 s, propagating at an angle 6, =
20° with respect to the small semi-axis of the elliptical
scatterer. In this case, the shallowness ratio is varying
from h/A; = 0.3, in the deep-water region, to h3/A; =
0.075, at the shallow end of the sloping bottom. Thus, every-
where in the variable bathymetry region, and especially in
the neighbourhood of the scatterer, the shallowness ratio
falls well outside the limits of application of the deep or
the shallow water theory. All numerical results presented
in Figs. 4-6 refer to the above environment and wave
conditions.

The maximum bottom slope of the above environment
appears at the front side of the scatterer, facing the incident
wave, and is 18%. Let it be noted that, in this example, the
bed slope is rather small, and thus, the mild-slope equation
can be considered to be adequate for calculating the wave
field. Nevertheless, this example has been selected as a case
study in the present work, because experimental data are
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Fig. 6. Normalized wave height along sections 1-8 of Fig. 5. Comparison between the experimental data from Berkhoff et al. [9], the numerical results
obtained by the modified mild-slope equation (CMM_1 (MMS), shown by dashed lines), the present method using five modes (CMM_S5, shown by thin solid
lines), and the present method with non-linear corrections (CMM_5 NL, shown by thick solid lines).

available to compare with, and because it has been used by
many researchers as a benchmark problem. The bathymetric
contours along with the calculated modulus of the diffrac-
tion and the total wave potential on the free-surface, in the
area around the localized scatterer, are illustrated in Figs. 4
and 5, respectively, as obtained by the present method.
Numerical results shown have been obtained by subdividing

the ranges &, — &; = 25 mand 3, — B; =20 mintoN, =
N, =231 segments, which corresponds to 10 points per
wavelength on the average. In Fig. 4 we observe that the
contours representing equal-amplitude lines of the modulus
of the diffraction potential on the free-surface are smooth,
i.e. the calculated pattern does not appear to be con-
taminated by spurious reflections. This implies that the
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Fig. 7. Three-dimensional plot of a steep platform reef with bottom corru-
gations. The bathymetry is defined by Eqgs. (6.6a) and (6.6b).

PML-model closure of the d-system operates efficiently,
absorbing almost all outgoing wave energy.

It must be mentioned here that the present method does
not require any alignment of the computational domain with
the direction of the oblique-incident wave. This is due to the
fact that we solve independently the incident and the diffrac-
tion problems. In this way, the problem on the incident field
is reduced to a two-dimensional problem, Eqgs. (2.8a)—
(2.8f), which is solved by implementing the complete
matching-boundary conditions, while the diffraction field
is solved by means of the PML d-system, which is able to
absorb the diffraction energy coming from any direction.
Thus, the whole numerical solution is insensitive to the
direction of incidence 6, as far as the latter is not very
close to /2.

Comparisons between the results obtained by the present
coupled-mode system predictions using five modes
(CMML_5) and laboratory data, concerning the normalized
wave height, are presented in Fig. 6. Also, in the same
figure, the corresponding results by the modified mild-
slope (MMS) are plotted by using dashed lines. The latter
have been obtained by the present code, by retaining only
the propagating mode (n = 0) in the representations of both
the incident and the diffraction fields, and solving Egs.
(3.32)-(3.3c) and (4.7) only for the propagating mode.
The experimental measurements, reported by Berkhoff et
al. [9], refer to sections 1-8 shown in Fig. 5 by using
solid lines and annotated by corresponding numbers. As
already discussed, in this example the bed slope is small,
and thus, MMS results (annotated as CMM_1) are quite
close to the coupled-mode method ones. Specific discrepan-
cies between the present method results and experimental
data, as, e.g. the overestimation of the focal peak in sections
2, 3 and 7, the misalignment of the wave field along section
5, and the lack of prediction of the trough along section 6,
are due to the non-linear effects (see Dalrymple et al. [12],
Fig. 7), that are not modelled by the present (linear) theory.

This discrepancy can be remedied by introducing non-linear
corrections, using the second-order, amplitude-dependent
dispersion relation proposed by Kirby and Dalrymple [36],
and also used by Panchang et al. [13]. An iterative approach
for including weakly non-linear effects has been imple-
mented to the present method, and the results are also
plotted in Fig. 6, using a thick line (annotated as CMM_5
NL). We can observe from this figure that the agreement
between present method results and experimental data is
substantially improved.

As concerns the rate of convergence of the representa-
tions (3.1) and (4.6) of the incident and the diffraction fields,
respectively, extensive numerical experience of the present
authors (demonstrated also in Figs. 5 and 6 and discussed in
detail in Section 6.2 of Ref. [1]), has shown that, the corre-
sponding modal amplitude functions ¢,(x) and ¢,(x,y)
exhibit a decay of the order o™, uniformly with respect
tox and y

@.(x, )] = O(n™ ),

Eq. (6.3) suggests that only a few modes are sufficient in
order to accurately calculate the fully three-dimensional
wave field up to (and including) the boundaries. For
example, in the present test case, N, = 5 (N, = 3) modes
are enough to limit the error due to the truncation of the
infinite series of the diffraction field to less than 0.001.
Another interesting conclusion drawn from the present
results, and supported by extensive numerical experience,
is that the amplitude of the slopping-bottom mode is
comparable in magnitude to the amplitude of the propagat-
ing mode in subregions of appreciable bottom slope. Even if
the bottom slope is small, the sloping-bottom mode, being
also small, is an order of magnitude (or more) greater than
the first evanescent mode (see Fig. 5 of Ref. [1]). We
summarise the above hierarchy of the mode amplitudes as
follows:

| (x) n— o, (6.3)

)

mild-slope case :

O(eo) = O(e-1)) = Oe1)) = O @) = O @1 ])-
(6.4)

steep-slope case :

O(l@o)) = O(e-1)) = O(¢i) = --O(|@,) = O( @41 )---
(6.5)

This result justifies the concept and the usefulness of the
sloping-bottom mode ¢_;.

6.2.2. The case of steep platform reef with bottom
corrugations

As a second example, we consider the case of an idealized
platform reef with bottom corrugations. A three-dimensional
plot of the bottom surface of this environment is shown in
Fig. 7. In this case, the background bathymetry #4;(x) (the 2D
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Fig. 8. Comparison between (a) the modified mild-slope equation results, and (b) the present method results, concerning the wave pattern on the free surface,
for the steep platform reef with bottom corrugations (shown in Fig. 7). Contours of the modulus of the total wave field |¢(x,y,z = 0)|. Wave frequency
o = 2 rad/s. Wave height H = 1 m. The bathymetric contours are also shown by using dashed lines.
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sloaling supporting the 3D bathymetric features) is selected
to be given by

hy =5, x < =20
ho+hy b —h +2 1
hi(x) = sz _m 5 3tanh(31‘r(x 0 0_ E)) —20 < x < 20,
hy =3, x> 20
(6.6a)

where all distances are in metres. The depth disturbance
hy(x,y) is defined by

ha(x,y) = 0.5 ha(1 + cos(KR))exp(—(R/L)®),

R = \/xz + yz,

leading to bottom corrugations of length L = 2m/K = 12 m
and amplitude 0.5k, = 0.75 m, that gradually vanish
outside the cylinder of radius R = 12 m. The maximum
bottom slope in this environment is 50%, i.e. almost three
times higher than the previous case. The wave field is taken
to be excited by an incident wave of period T = 3.41s
(w = 2 rad/s), propagating at an angle 6, = 20° with respect
to x-axis (the centerline of the scatterer). In this case, the
shallowness ratio is varying from A;/A; = 0.33 in the deep-
water region to h3/A; = 0.22 at the shallow end of the
sloping bottom (Eq. (6.6a)).

Extensive comparisons between the present method
(obtained by using five modes in the representations) and
the modified mild-slope results, concerning the horizontal
bottom velocities and the wave potential (or pressure) at the
bottom, have shown that the modified mild-slope under-
estimates the amplitudes of the horizontal bottom velocity
and of the bottom pressure. The differences are concentrated
in the area of the three-dimensional scatterer and are maxi-
mized as its middle and rear tops, where the depth is
minimum. These differences are considered significant,
especially as concerns the exploitation of the results for
further studies, as e.g. the calculation of oscillating bottom
boundary layer and wave-energy dissipation due to bottom
friction, as well as for sea-bed movement and sediment
transport.

To illustrate further the differences between the present
method and the modified mild-slope equation results, a
comparison is presented in Fig. 8, concerning the calculated
wave patterns on the free surface. In this figure the bathy-
metric contours along with the calculated modulus of the
total wave potential on the free surface (which is the same as
the free-surface elevation normalized with respect to the
amplitude of the oblique-incident wave) are plotted, in the
area around the localized scatterer of Fig. 7. Focusing Fig. 8,
we observe that, at the rear part of the scatterer, in the
sectors designated as ‘A’ and ‘B’ outside the focal region,
the differences between the modified mild-slope (top) and
the present method (bottom) are of the order of 5—10%. In
these areas the present method exhibits an increased total
wave energy, which should be attributed to stronger diffrac-

(6.6b)

tion due to fine-scale three-dimensional wave-bottom inter-
actions that cannot be well resolved by the modified mild
slope model. Let it be noted that, the free surface is the part
of the field where the results obtained by the present
coupled-mode system and the modified mild-slope equation
exhibit the least discrepancy.

7. Concluding remarks

A consistent coupled-mode theory has been derived for
calculating the diffraction of small-amplitude water waves
by localized scatterers superimposed over a parallel-contour
bathymetry. The present method does not introduce any
simplifying assumptions or other restrictions concerning
either the bottom slope and curvature, or the vertical struc-
ture of the wave field. All wave phenomena (refraction,
reflection, diffraction) are fully modelled and, thus, the
present method can serve as a useful tool for the analysis
of the wave field in the whole range of parameters within the
regime of linear theory.

A key feature of the present method is the introduction of
an additional mode, completely describing the influence of
the bottom slope. It turns out that the presence of the addi-
tional mode in the series representation of the potential
makes it consistent with the bottom boundary condition
and substantially accelerates its convergence. The obtained
coupled-mode system of horizontal equations presents a
number of advantages as (i) only a few modes (e.g. 3-5)
are sufficient to accurately calculate the wave field in the
whole liquid domain; (ii) the enhanced coupled-mode
system can be naturally simplified either to the extended
mild-slope equation or to the modified one in subareas
where the physical conditions permit it; (iii) owing to a
successful coupling between the diffraction system and the
PML absorbing layer model, the support of the d-system can
be restricted to an area a little larger than the support of the
three-dimensional bathymetric features, offering a great
reduction in computational cost; (iv) The present method
provides high-quality information concerning the pressure
and the tangential velocity at the bottom, which is useful for
the study of oscillating bottom boundary transport studies.
Finally, the analytical structure of the present model facili-
tates its extension to various directions as, e.g. to wave-
current systems or to the weakly non-linear (second and
higher order) wave interactions in a variable bathymetry
region.
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