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ABSTRACT

This is a review of the mechanisms that control neutrally stable turbulent bound-
ary-layer flow over hills and waves, their relative magnitudes, and how they exert
their greatest effects in different regions of the flow. We compare calculations
based on various analytical and computational models with each other and with
relevant experimental data. We discuss practical applications of these studies.

1. FLUID MECHANICAL AND PRACTICAL
ASPECTS

The psalmist’s line “I will lift up mine eyes unto the hills from whence cometh
my help” (Psalms 121) is relevent to students of complex turbulent flows. This
is because turbulent boundary-layer flows over hills and waves are both con-
trolled by mechanisms that are active in many other perturbed turbulent flows.
Study of these fluid-dynamical problems contributes to our fundamental un-
derstanding of mechanisms that control distorted flows and helps to answer
practical environmental and engineering questions.

Twenty years of research in this field has led to general concepts and formulae
that have become broadly understood, so much so that they have now been
applied in several other disciplines:

1. Atmospheric flows are significantly accelerated over the tops of hills even
when the maximum slopes are quite small, because shear in the approaching
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wind amplifies this acceleration (Jackson & Hunt 1975). For example, even
if the slope of the hill is1

5 then the wind speed at the crest is faster by a
factor of about12. This speed-up factor is now incorporated into estima-
tion of wind energy and wind loads on structures on hill tops and other
exposed sites (Building Research Establishment 1989; Troen & Petersen
1989).

2. The bulk effect of flow over hills is to increase the drag of the surface on
the large-scale atmospheric motion. It is remarkable that this effect only
began to be introduced into numerical weather prediction (NWP) in about
1986, when the computational grid became sufficiently refined for this extra
drag to be significant. The first steps involved introducing only the drag
produced by lee waves generated by stable stratification in the troposphere
and stratosphere (Palmer et al 1986). The need to incorporate into NWP the
orographic drag from neutrally stable atmospheric boundary-layer flow over
hills was recognized only very recently (Mason 1985, Taylor et al 1989),
and has led to about a 4% reduction in the root-mean-square (rms) error
of forecasts of mean sea-level pressure for three-day weather predictions
(Milton & Wilson 1996). This is significant because typically it is the
progress in NWP expected over two years.

3. Some of the mean streamlines in the accelerating wind over hills approach the
hill surface, whereas others may recirculate in wake regions. Furthermore,
turbulence in the flow is greatly changed by hills, especially in the wake.
Together these changes to the mean flow and turbulence affect mixing and
exchange processes. Examples include (a) heat and mass transfer at the
surface (Raupach et al 1992, Hewer & Wood 1998); (b) precipitation from
rain clouds (Carruthers & Choularton 1983, Choularton & Perry 1986);
and (c) dispersion, deposition and chemical transformation of pollutants
(Berlyand 1972, Castro & Snyder 1982). All these effects are beginning to be
represented in mesoscale numerical models used for detailed environmental
studies (e.g. Pielke 1984, p. 456; Hunt et al 1991). These studies have been
extended to the more difficult problem of the transport of sand particles
over sand dunes to improve understanding and quantitative modeling of the
shapes and bulk movement of sand dunes (e.g. Barndorff-Nielson & Willetts
1991).

4. Research and forecasting models of ocean waves have been guided by
Miles’s (1957) theory of wave generation by the wind and by Hasselmann’s
(1962) theory of weakly nonlinear transfer of energy between waves of dif-
ferent wavelength (e.g. Komen et al 1994), but with little relation to ideas
or methods of calculating wind over hills, or the resulting drag. Recently,
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however, these two fields have begun to converge, as we explain in this re-
view. Current 24-hour forecasts of ocean waves typically have global rms
errors of 0.6 m (Fuller & Kellett 1997), which is about 15–20% of the rms
wave height. These errors increase systematically when large waves are
forecast, when the waves are not forced locally by wind, and when the mean
wind conditions are changing.

In fluid dynamical terms, the special and interesting feature of turbulent
boundary-layer flow over hills and waves is that the boundary layer is distorted
over a horizontal length scale,L, that is comparable to, or shorter than, the depth
of the boundary layer,h, so that a large fraction of the depth of the boundary
layer does not have time to come into equilibrium during the distortion. This
means that special care is needed in modeling the turbulent stresses, as explained
in Section 2. The basic structure of the broadly unidirectional boundary-layer
flow is maintained over the hill or wave, but the dynamical balance is disturbed
enough that significant changes occur to the mean wind (Section 2.4), the
turbulence (Section 5), and the processes dependent on the flow, such as the
drag (Section 7).

In this paper we explain how various aspects of the changes in the flow
over hills and waves are different in different parts of the flow by identifying
the largest terms in the equations governing the mean dynamics and the main
mechanisms and time scales that govern perturbations to the turbulence. We also
review the ways in which various approaches to modeling these aspects are being
used for research and for practical problems involving environmental flows. Our
review highlights the aspects of the subject where progress has been made, and
also areas where there remain controversy and limited understanding.

2. STRUCTURE AND MODELING FLOW
OVER A HILL

Upstream of the hill is thebasic flow, which is taken to be a fully developed,
neutrally stratified turbulent boundary layer flowing along thex-axis over level
homogeneous terrain. Basic-flow profiles are chosen to model the steady uni-
directional surface layer of the atmospheric boundary layer, where the velocity
profile,UB (z), is logarithmic, namely

UB(z) = u∗
κ

ln(z/z0). (1)

Hereκ ≈ 0.4 is the von Karman constant,z0 is the roughness parameter, and
u2

∗ = τB(z0) defines the friction velocity,u∗, in terms ofτB the Reynolds shear
stress (Panofsky 1974). Pressure and Reynolds stresses are all normalized on
density, which therefore does not appear in equations here. The logarithmic
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velocity profile needs minor modification at upper levels when the horizontal
length scale of the hill is comparable with the boundary-layer depth (Taylor
1977).

The hill is described byzs= Hf (x), with heightH and half lengthL (defined to
be the distance for the hill height to drop to half its maximum height), and pro-
duces perturbations to the basic flow, denoted here by1u, 1w, 1p, and1τ for
the horizontal and vertical velocity perturbations and the pressure and Reynolds
shear stress perturbations. The length of the hill is small enough (less than about
104 m) that effects of the Earth’s rotation are negligible. We focus here mainly
on two-dimensional ridges, with no variation in they-direction. For three-
dimensional effects see Mason & Sykes (1979) and Hunt et al (1988). A sketch
of the flow geometry is shown in Figure 1.

To accommodate boundary conditions at the surface of the hill, it is conve-
nient to use a transformed vertical coordinate. Jackson & Hunt (1975) used a
terrain-following vertical coordinate, defined by

Z = z − zs, (2)

near the surface and a Cartesian coordinate,z, far aloft. For ease of explanation,
this approach will be followed here because the governing equations then retain
their familiar forms, but at the expense of using different coordinate systems
in different parts of the flow. For numerical studies (e.g. Gent & Taylor 1976,
Newley 1985, Wood & Mason 1993, Burgers & Makin 1993) it is more conve-
nient to use a terrain-following coordinate,Z′, that follows the hill surface near

Figure 1 Flow geometry and asymptotic structure for flow over a hill.
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the ground and tends smoothly to horizontal far above, e.g. defined by

Z′ = z − zs

1 − zs/D
, (3)

whereD is the depth of the computational domain. Additional Jacobian terms
then appear in equations for the perturbed flow. A further, and more economical,
approach is to use a streamline coordinate system, (x,η), so that

z = η + δ(x, η), (4)

whereδ(x,η) is the displacement of the mean streamline from the horizontal.
In the recast equations of motion,δ(x,η) then becomes the dependent variable
(Miles 1993).

For hills with low slopes, so thatH/L � 1, perturbations to the basic flow
are small enough that1u/UB (L) = O(H/L) � 1, and they can be calculated
using linearized equations, with products of perturbations neglected, namely

UB
∂1u

∂x
+ 1w

dUB

dz
= −∂1p

∂x
+ ∂1τ

∂z

UB
∂1w

∂x
= −∂1p

∂z
+ ∂1τ

∂x

∂1u

∂x
+ ∂1w

∂z
= 0.

(5)

There are also linear terms in the momentum equations involving normal
Reynolds stresses,1τ11 = −1u′2 and 1τ33 = −1w′2, but they play no
significant dynamical role (Townsend 1972, Jackson & Hunt 1975) and so are
neglected here.

The mean wind speed is zero at the hill surface (z = zs + z0, wherez0 is the
roughness of the surface), and all perturbations decay far above the hill; hence

1u = 1w = 0, on z = zs + z0; 1u, 1w → 0 asz/L → ∞. (6)

The air flow over the hill can be calculated once the Reynolds stress perturbation,
1τ , has been modeled. This important issue is discussed next.

2.1 Time Scales of the Distortion to the Turbulence
The undisturbed boundary layer is a very slowly changing turbulent flow, and
so can be approximately modeled throughout its depth using turbulence models
based on eddy-transfer concepts, such as an eddy-viscosity model. However,
changes to the boundary layer induced by the hill occur over short length and
time scales, which invalidates the use of such an eddy-viscosity model through-
out the flow (as also demonstrated, in engineering contexts, by Launder 1989).
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Hence in this and other distorted turbulent flows it is instructive to define two
time scales: one that characterizes distortion of the turbulence by the mean
flow, and another that characterizes relaxation of the turbulence to equilibrium
with the surrounding mean-flow environment. The ratio of these time scales
then gives a measure of how far the turbulence is from local equilibrium (Britter
et al 1981) and thence provides guidance toward suitable turbulence models.

First, the advection time scale,TA, characterizes the time for turbulent eddies
to be advected and distorted by the mean flow over the hill:

TA = L

UB + 1u
≈ L

UB

{
1 + O

(
1u

UB

)}
, whenH/L � 1. (7)

On this time scale, turbulent eddies in the air flow are distorted by straining
motions associated with perturbations to the mean flow caused by the hill.

Second, the Lagrangian integral time scale,TL, characterizes the decorrela-
tion and relaxation time scale of the large energy-containing eddies, and it scales
as the ratio of the smallest integral length scale,Lx , to the corresponding rms
velocity scale (Tennekes & Lumley 1972, Ch. 2). In a boundary layer near a
surface the turbulence is anisotropic and the vertical integral length scale,L(w)

x ,
is smallest because it is constrained by the boundary, so thatL (w)

x ≈ κ Z. The
appropriate velocity scale for the eddying motions is then the vertical-velocity
variance, which is(w′2)

1
2 ≈ 1.3u∗ in the surface layer (Panofsky 1974). The

Lagrangian time scale can then be estimated to be

TL = κ Z/u∗. (8)

On this time scale the energy-containing eddies are also dissipated, and the
turbulence comes into equilibrium with the surrounding mean-flow velocity
gradient (Tennekes & Lumley 1972, Ch. 3).

2.2 Regions of the Flow
In local-equilibrium regionsof the flow,TL � TA, and turbulent eddies adjust
to equilibrium with the surrounding mean-flow velocity gradient before they
are advected over the hill; hence an eddy viscosity can be used to relate the
Reynolds stress perturbations to the local mean-velocity gradient (Townsend
1961). By contrast, inrapid-distortion regions, TL � TA, and the mean flow
advects turbulent eddies over the hill more rapidly than they interact nonlinearly.
Hence, local properties of the turbulence are determined by distortion of the
upstream turbulence by the cumulative mean strain, which is described by rapid-
distortion theory (Batchelor & Proudman 1954, Hunt 1973) (see also Section 5).

Now, TA decreases andTL increases with height, and they are comparable at
heightsZ ∼ li, where

l i ln(l i /z0) = 2κ2L . (9)
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The coefficient on the right, 2κ2, is chosen to be consistent with Jackson &
Hunt’s (1975) estimate from the mean-momentum equation. For practical
purposes, in the range 104 < L/z0 < 107, li can be estimated explicitly by
l i /z0 = 1

8(L/z0)
0.9. Flow over hills can then be divided into two regions

(Figure 1): a local-equilibrium region near the surface,Z < li, whereTL < TA,
which has been called theinner region; and a rapid-distortion region,Z > li,
whereTA < TL, which has been called theouter region. In most practical appli-
cations the length of the hill is sufficiently large compared with the roughness
that ln(L/z0) � 1, so thatl i /L ∼ 1/ ln(l i /z0) � 1 and the inner region is a thin
layer. For a typical case whereinL = 500 m andz0 = 0.1 m, the inner-region
height isli ≈ 28 m.

The ratioTA/TL has the same magnitude as the ratio of the rate of dissipation
of turbulent kinetic energy,ε, to the advection of turbulent kinetic energy,
UB∂q/∂x, and so the regions of the flow can be identified from the relative
magnitudes of the terms in the turbulent kinetic energy equation. Figure 2
(Belcher et al 1993) shows profiles of these terms at the top of an isolated
hill computed using the second-order closure model of Launder et al (1975),
which includes approximations to all the terms, namely advection, production,
transport, and dissipation of turbulent kinetic energy. Noting the logarithmic
scale, the results are consistent with the physical interpretations of the inner
and outer regions given above, showing how production balances dissipation
in the lower part of the inner region (Z . 1

2l i ), and how production balances
advection of turbulent kinetic energy in the outer region (Z< li). All terms are
of comparable magnitude whereZ ∼ li. If the Reynolds-stress equations are
considered, curvature of the mean streamlines also has a significant effect on
the stress perturbations at levelsZ ∼ li (Zeman & Jensen 1987).

2.3 Modeling the Turbulent Stress
These ideas can now be drawn together to identify appropriate modeling of
turbulent stresses. Consider first zonal models, whereby different turbulence
models are used in different regions. Eddy-viscosity models are appropriate
when used only in the inner region and when the slope of the hill is small.
Following Townsend (1961), the mixing-length model is then a useful approx-
imation to the Reynolds shear stress, so that for hills of low slope perturbations
to the shear stress,1τ , are given by

1τ = 2κu∗Z∂1u/∂ Z. (10)

In the outer region, turbulent eddies are advected over the hill in a time that is
too small for them to transport significant momentum, so that perturbations to
the Reynolds stress have a negligible effect on the perturbed mean flow (see
Section 2.4). The perturbation shear stress can therefore be set to zero when
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Figure 2 Balance of terms in the turbulent kinetic energy equation integrated from far upstream
to the summit of an isolated hill and normalized onu3∗/L. Solid linesdenote positive quantities,
dashed linesnegative quantities.P: integrated production rate;A: integrated advection;T: integrated
transport;ε: integrated dissipation rate. (From Belcher et al 1993.)

calculating the mean flow. Perturbations to the turbulence in this region are
discussed in Section 5.

In an analytical model, Belcher et al (1993) used the mixing-length model
in the inner region and set the perturbation stress gradients to zero in the outer
region (atruncated mixing-length model). This procedure actually leads to
small, but non-zero, stress perturbations far above the hill, and so does not satisfy
the boundary condition that1τ → 0 asz/L → ∞. Harris et al (1995) and van
Duin (1997) introduce damping functions so that the eddy viscosity, and hence
1τ , decay smoothly to zero in the outer region and show that the vertical scale of
the damping can affect results. Although this approach approximates decay of
the Reynolds stresses between the inner and outer regions, it does not explicitly
model the particular physical processes that occur in this intermediate zone.
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More general models for the turbulent stress should describe the limiting
behaviors in the inner and outer regions in one model valid over the whole
flow. Full second-order closure models are one possibility, as used for example
in the computations of Newley (1985) or Mastenbroek (1996), who both used
the second-order closure of Launder et al (1975), or in the computations of
Zeman & Jensen (1987). A less general method that is appropriate for weakly
perturbed turbulent boundary layers is to calculate the shear stress from an
equation based on the turbulent kinetic energy equation with the assumption
that the ratio of the shear stress to the turbulent kinetic energy is constant (e.g.
Bradshaw et al 1967, Townsend 1972, 1980, Miles 1993). Effects of advection
of the shear stress in the outer region are then correctly modeled; in contrast the
more commonk − ε model fails badly in the outer region because it is based
on an eddy viscosity (Belcher et al 1993).

2.4 Scaling Changes to the Mean Flow
Now that the model for the Reynolds stress has been decided, scaling analy-
sis shows how the dynamical balances in the momentum equations change in
the different regions of the flow, which then illustrates the structure of linear
perturbations to flow over hills of low slope.

In the outer region, wherez & li and in the present discussion the Cartesian
coordinatez is used, the turbulence is distorted rapidly so that1τ/u2

∗ ∼
1u/UB(L) = O(H/L) (Britter et al 1981). The ratio of the perturbation stress
gradient to mean-flow advection in thex-momentum equation (Equation 5) is
then

∂1τ/∂z

UB∂1u/∂x
∼ (H/L)u2

∗/L

UB(L)(H/L)UB(L)/L
∼
(

u∗
UB(L)

)2

. (11)

In the atmospheric boundary layer,u∗/UB (L) is typically in the range 0.03–0.07,
and so the perturbation stress gradient is negligible in the outer region, with only
very small corrections. If an eddy-viscosity model is used erroneously in the
outer region, then, although the outer region remains inviscid at leading order,
the small stress gradients, which are ofO(u∗/UB(L)) relative to the advection
terms (Jacobs 1987, van Duin & Janssen 1992), affect the pressure and thence
the drag on the hill (see Section 7).

The dynamics in the outer region are analyzed by considering first anupper
layer, wherez ∼ L and the curvature of the basic velocity profile is small,
i.e. d2UB/dz2 � UB(L)/L2. The perturbed flow then reduces to potential
flow, so that1w is described by Laplace’s equation,∇21w = 0 (Jackson
& Hunt 1975). Solutions show that, at the crest of the hill,1u, 1w ∼ UB

(L)H/L, and1p ∼ −U2
B(L)H/L. Toward the surface, the curvature of the

basic logarithmic velocity profile needs to be accounted for. In thismiddle
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layer, wherez∼ lm, with lmdefined byd2UB/dz2|z=lm = UB(lm)/L2, the vertical
velocity is governed by the Rayleigh equation (Hunt et al 1988), namely(

∇2 − U
′′
B

UB

)
1w = 0. (12)

Perturbations in the middle layer are then inviscid, but rotational. WhenL =
500 m andz0 = 0.1 m,lm = 180 m. When the hill is very long, the middle-layer
extends to the top of the boundary layer. At the crest of a hill,1w increases
with height through the middle layer, whereas it decreases in the upper layer;
1u decreases with height through both layers, with a more rapid decrease in
the middle layer.

In the inner region, whereZ ∼ li and in the present discussion the displaced
coordinateZ is used, perturbations to the shear stress can be estimated using the
mixing-length model (Equation 10). The detailed solutions show that shear in
the perturbation velocity scales as∂1u/∂ Z ∼ (1u/ l i )l i /L, because the per-
turbed velocity is approximately logarithmic. On using Equation 10, the ratio
of the perturbation stress gradient to mean-flow advection in thex-momentum
equation (Equation 5) is then estimated to be

∂1τ/∂ Z

UB∂1u/∂x
∼ (2κu∗l i ∂1u/∂ Z)/ l i

UB(l i )1u/L
∼ u∗

UB(l i )
. (13)

Hence the perturbation stress gradient remains small compared with the mean-
flow advection at leading order. But at first order inu∗/UB(li), both the stress
terms and the inertial terms associated with the mean-velocity gradient have to
be retained, and the perturbed flow is controlled by the boundary-layer equations
(Hunt et al 1988). The combination of these effects means that the maximum
velocity perturbation is1u ∼ UB(L){UB(L)/UB(l i )}2H/L, which occurs at the
crest of the hill atZ ≈ l i/3, with small variation withz0/L. Above this height,
over the crest of the hill, the velocity perturbation decreases in proportion
to 1/UB (z). Some authors have redefined the thickness of the inner region
phenomenologically to be the height of the maximum velocity perturbation
(see the discussion in Walmsley & Taylor 1996).

Very near the surface,∂1τ/∂ Z becomes large, and there is a new balance in
the momentum equation with the shear stress perturbation important at leading
order (Sykes 1980). In thisinner surface layer(Hunt et al 1988) the perturbation
stress is constant with height and the perturbation streamwise velocity tends to a
logarithmic profile. The depth of this layer,ls, can be estimated byls ∼ (l i z0)

1
2

(Hunt et al 1988), which givesls ≈ 1.7 m if li = 28 m andz0 = 0.1 m; it is a
very thin layer.
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3. INTERACTIONS BETWEEN THE INNER
AND OUTER REGIONS

Stewartson (1974) and Messiter (1979) first identified the mechanisms that
couple flow between the inner and outer regions of laminar boundary layers.
The same concepts can be applied to turbulent boundary layers, but as is now
shown, the magnitudes are different.

Accordingly, consider the displacement of a streamline,δ(x, z), which for
hills of low slope is related to the vertical velocity by1w = UB dδ(x, z)/dx.
The displacement at the top of the inner region, written asδ(x), is caused by (a)
displacement over the hill itself; (b) a Bernoulli displacement associated with
the horizontal pressure gradient that develops in the upper layer; (c) the effects
of mean shear in the middle layer; and (d) frictional effects of the shear stresses
in the inner region. Now, in the upper layer the perturbed flow is approximately
irrotational, so that1w is determined by Laplace’s equation with the boundary
conditions that1w tends to zero far aloft, far upstream and downstream of the
hill, and that atz ∼ lm the condition is1w = UB dδ(x, lm)/dx ≈ UB dδ(x)/dx
becauseδ(x, z) remains nearly constant with height through the middle layer.
Hence the vertical velocity and thence also the horizontal pressure gradient in
the upper layer are determined byδ(x). But the horizontal pressure gradient
in the upper layer is equal, at leading order, to the horizontal pressure gradient
in the inner region, because the middle layer and inner region are both thin.
This horizontal pressure gradient in the inner region then accelerates flow in
the inner region and so changesδ(x), which then further affects the upper-layer
pressure gradient: Hence there is a coupling.

To estimate the magnitude ofδ(x), consider first the vertical velocity, which
is given by the continuity equation (Equation 5 transformed into displaced
coordinates), so that at the top of the inner region,Z ∼ li,

1w(Z ∼ l i ) = UB(l i )H
d f

dx
−
∫ l i

z0

∂1u

∂x
d Z. (14)

Now ∂1u/∂x can be estimated using thex-momentum equation (Equation 5
transformed into displaced coordinates)

UB(l i )
∂1u

∂x
= −∂1p

∂x
+ ∂1τ

∂ Z
+ inertial shear terms. (15)

The inertial shear terms lead only to small corrections to the Bernoulli contri-
bution to displacement of streamlines and so are not considered futher here.
Since the inner region is thin,li � L, the pressure is approximately constant
with height there. Hence combining Equations 14 and 15 shows thatδ(x) can
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be expressed as a sum of effects:

δ(x) ' H f (x) + l i
1p

U2
B(l i )

+ δτ (x), (16a)

namely, displacement by the hill itself, the Bernoulli variation of streamline
height associated with pressure variations, and the displacement caused by the
surface shear stress, which is given by

δτ (x) = 1

U2
B(l i )

∫ x

−∞
1τ(x′, z0)dx′. (16b)

So, how does1τ (x, z0) vary in relation to the outer-region flow? As is well
known from classical boundary-layer theory, Equation 5 shows that at the sur-
face, whereZ = z0, the stress gradient is

∂1τ/∂ Z|Z=z0 = ∂1p/∂x|Z=z0. (17)

But to determine how1τ (x, z0) varies with1p or ∂1p/∂x, we need to con-
sider how1τ varies withZ. Differentiating Equation 15 with respect toZ and
multiplying by 2κu∗ Z leads to an approximate equation for1τ in the inner
region, namely

UB(l i )
∂1τ

∂x
≈ 2κu∗Z

∂21τ

∂ Z2
, (18)

which shows that∂21τ/∂ Z2 becomes large asZ/ l i → 0 (Sykes 1980). By
integrating Equation 18 overx andZ and using Equation 17, Hunt & Richards
(1984) show that1τ (x, z0) is related to1p(x, z0) by

−1p(x, z0) = UB(l i )

2κu∗

∫ l i

z0

1τ(x, Z)

Z
d Z ≈ ln2(l i /z0)

2κ2
1τ(x, z0). (19)

By contrast, in a high Reynolds number laminar flow, where1τ = ν∂1u/∂ Z,
it follows from Equation 5 that∂21τ/∂ Z2|Z=z0 = 0, and so∂1τ/∂ Z varies
only slowly through the inner region. Hence, on using Equation 17, the surface
stress is estimated to be

1τ(x, z0) ' −
∫ l i

z0

∂τ

∂ Z
d Z ' −l i

∂τ

∂ Z
(x, z0) = −l i

∂1p

∂x
(x, z0). (20)

Comparing Equations 19 and 20 (which are strictly valid only for hills with
low slopes,H/L � 1, and small roughness, ln(L/z0) � 1) shows how, when
the flow is turbulent, the surface shear-stress perturbation tends to be in phase
with, and proportional to, the surface pressure perturbation. But when the flow
is laminar with high Reynolds number, the surface stress perturbation tends to
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be approximately in phase with the surface pressure gradient (Hunt & Richards
1984). The result, (Equation 19) is broadly applicable to many boundary-layer
flows from aerofoils to bluff bodies (where the slopes are certainly not small) as
shown by the experimental results of Achenbach (1968), and it helps indicate
where boundary layers separate, as explained in Section 6.

Return now to the original question of estimating the magnitude of the stream-
line displacement at the top of the inner regionδ(x). It follows from Equation
16b and Equation 19 that for turbulent flows

δτ (x) ∼ 1

U2
B(l i )

2κ2

ln2(l i /z0)

∫ x

−∞
1p(x, z0)dx

= O

(
l i

H

L

1

ln(l i /z0)

U2
B(L)

U2
B(l i )

)
. (21)

The inviscid Bernoulli contribution to the displacement is of order

l i
1p

U2
B(l i )

= O

(
l i

H

L

U2
B(L)

U2
B(l i )

)
. (22)

Hence δτ(x) is smaller than the Bernoulli contribution by a factor of
ln−1(l i /z0) � 1. This explains why the inviscid analysis of the outer re-
gion is, to the first approximation, independent ofδτ(x) and the effects of shear
stresses in the inner region. Although small,δτ(x) is significant because it is
asymmetric about the crest of the hill, with streamlines being displaced closer
to the surface on the upwind side than on the downwind side, and leads to a net
drag force on hills and waves, as explained in Section 7.

In contrast, for high Reynolds number laminar flow, the shear stress leads to
a displacement calculated from Equation 16b and Equation 20 given by

δτ (x) ∼ 1

U2
B(l i )

∫ x

−∞
l i

∂1p

∂x′ dx′ = l i
1p(x, z0)

U2
B(l i )

= O

(
l i

H

L

U2
B(L)

U2
B(l i )

)
, (23)

which is of the same order as the Bernoulli term. Hence in the laminar flow
the coupling between the inner and outer regions is much stronger (Benjamin
1959, Smith et al 1982).

4. SPECIAL FEATURES OF FLOW OVER
MOVING WAVES

Suppose now that the surface carries a sinusoidal traveling wave,ζ ′ =
Re{a exp{ik(x′ − ct′)}}, which has complex phase speedc = cr + ici, so
that it propagates at speedcr and its amplitude grows at ratekci. The charac-
teristic horizontal length scale isL = k−1 andH = a. Turbulent flow over
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Figure 3 Flow geometry and asymptotic structure for flow over a wave viewed as moving with
the wave crests.

such waves has similarities and also differences with flow over rigid stationary
undulations (such as a range of hills), which can be clarified by studying the
flow in a frame moving at the wave speed,cr, when the wave surface and basic
velocity becomēζ = a exp{ik(x − ici t)} andŪB = UB − cr (Figure 3).

4.1 Effects of the Critical Layer
When the wind and waves propagate in the same direction, the wind speed,
ŪB, is zero at heightzc, called thecritical height, which has both kinematical
and dynamical consequences. Following Phillips (1977, p. 121), the kinemat-
ical effect can be understood by considering the displacement of streamlines,
δ(x, z), which is given by

δ(x, z) =
∫ x 1w

ŪB + 1u
dx′. (24)

Hence, for waves of low slope,δ(x, z) is largest at the critical height where
ŪB is zero. Local analysis of the mean stream function in the vicinity of the
critical height shows that there are closed streamlines centered at the crest of
the wave at the critical height, as sketched in Figure 4. If the wave is growing,
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Figure 4 Mean streamlines of flow over waves viewed as moving with the waves. The closed
loops are centered at the critical height and shifted downwind of the crest for a growing wave.
(From Phillips 1977.)

then the centers of the closed streamlines move downstream of the crest by
kx ∼ ci/UB(L). The thickness of the region of closed mean streamlines can be
estimated from the local analysis to be

lc ∼ (41w(zc)/kŪ ′
B(zc))

1
2 . (25)

In a turbulent flow, the critical-layer streamlines represent only the weak mean
flow because fluid elements are rapidly advected across the critical layer by the
turbulent eddies.

Changes in1u across the critical height have a dynamical effect on the
whole perturbed flow. Linear stability analysis of a sheared boundary layer
over a flat rigid surface shows that there can be growing propagating modes
centered on the critical height, as illustrated in Prandtl (1960, p. 115). A surface
wave traveling along a water surface can force a coupled motion in the air and
water, both propagating at the same speed, namely the eigenvaluecr. Hence the
surface wave could force an unstable shear mode in the air, which then grows and
induces growth of the water wave. The first thorough analysis of this mechanism
was by Miles (1957), who assumed that the critical height was sufficiently high
that the turbulent stress could be neglected, i.e. in our terminology the critical
height is in the outer region. Given this assumption, Miles (1957) argued that the
airflow perturbations are described by the unsteady Rayleigh equation, which
contains the key term̄U

′′
B/(ŪB − ici ), as in Equation 12. Clearly, unless the

wave amplitude varies with time, i.e.ci 6= 0, the equation is singular atzc. By
solving the inviscid equations above and below the air–water interface and by
matching the vertical velocity and pressure atzc, Miles (1957) calculatedci in
the limitci /u∗ → 0 from the resulting eigenvalue relationship. Lighthill (1962)
suggested a physical interpretation of how redistribution of vorticity over the
growing wave leads to a “vortex force” and hence wave growth. Over long
times ofO(ρw/ρa) wave periods, the growing wave extracts momentum from
the air flow and reduces the curvature of the wind profile until this mechanism is
quenched (Janssen 1982). These analyses leave unanswered questions about the
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role of turbulent stress near the critical layer or near the boundary. Mastenbroek
(1996) commented that none of the numerical studies of turbulent air flow over
slowly growing waves,ci/u∗ � 1, demonstrated dynamical effects of a critical
layer directly.

4.2 Scaling the Distortion to the Turbulence
Following Belcher & Hunt (1993), Mastenbroek (1996), and Cohen (1997),
effects of a traveling wave on the turbulence in the air flow can be estimated
using an extension of the scale analysis developed for the flow over hills, in
Section 2. The main difference in flow over waves is that the advection speed
by the mean wind relative to the wave is̄UB = UB − cr , which is negative
below the critical height. The time scale over which the eddies are distorted
is defined to remain positive by using the magnitude of the advection speed so
thatTA = k−1/|UB(Z) − cr |. The Lagrangian time scale remains the same to
leading order, namelyTL = κZ/u∗, because the basic flow over the wave is
a surface layer (e.g. Phillips 1977, Section 4.10). Hence, over a propagating
wave,TL ∼ TA at heightsZ ∼ li, whereli is given implicitly by

kli | ln(l i /z0) − κcr /u∗| = 2κ2. (26)

Solutions of Equation 26 forli vary with cr/u∗, as shown in Figure 5. When
cr/u∗ is smaller than a bifurcation value, (cr/u∗)b ≈ 23 whenkz0 = 10−4, there
is just one solution to Equation 26. The structure of the air flow is then similar
to flow over hills, namely, a local-equilibriuminner regionnear the surface,
z < l i, which contains the critical height, and a rapid-distortionouter region
in z> li. Hence the Reynolds stress can be modeled using approaches similar
to those used in flow over hills. Ascr/u∗ increases, the critical height moves
away from the wave surface and, because mean-flow advection is small in the
vicinity of the critical height, the inner region thickens.

Whencr/u∗ > (cr/u∗)b, there are three solutions to Equation 26. But the
flow can again be considered to have a two-layer structure with an inner region,
z< li, whose depth is given by the smallest solution to Equation 26, and an
outer region,z > li, which now contains the critical height surrounded by the
other two solutions to Equation 26 (Figure 5). Turbulence modeling follows
as for slow waves, with the additional observation that fluid elements do not
spend long enough in the critical layer to come into a local equilibrium (Phillips
1977, p. 121), so that rapid-distortion effects need to be accounted for there.
As cr/u∗ increases, mean-flow advection near the surface relative to the wave
increases, and the inner-region depth reduces, so thatkli ∼ 2κu∗/cr.

4.3 Wind–Wave Regimes
Figure 5 provides a conceptual framework for classifying air flow over water
waves and suggests that it may be useful to consider three parameter regimes.
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Figure 5 Variation withcr/u∗ of solutions for the normalized inner-region height,kli, and critical
height,kzc, whenkz0 = 10−4. For givencr/u∗, an inner, local equilibrium region lies betweenkz
= 0 and the smallest value ofkli, and an outer, rapid-distortion, region lies above.Solid lines: kli;
dotted lines: kzc.

Slow waveshavecr/u∗ . 15, so thatkli � 1. The critical height then lies in
the inner surface layer and plays no significant dynamical role. The air flow
perturbations are similar to flow over a stationary undulation, but effectively
with roughnesszc and small corrections to the velocity ofO(akcr kli) owing to
the orbital motions at the wave surface (Belcher & Hunt 1993). Asymmetry in
the flow is then similar to asymmetry in flow over a hill described in Section 3,
but withzc andŪB replacingz0 andUB in Equation 21.

Intermediate waveslie in the range 15. cr/u∗ . 25, so the inner region
is thick,kli ∼ 1, and the critical height lies inli . zc . k−1. The critical layer and
the inner region are not then distinct, and the details of their interaction remain
to be elucidated. We anticipate that, ascr /u∗ increases from the slow regime,
the reverse flow below the critical height becomes stronger and produces a
“negative” asymmetric displacement of streamlines, i.e. upwind of the crest,
while above the critical height the asymmetric displacement is positive, i.e.
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downwind of the crest as for slow waves. The critical-layer mechanism prob-
ably also displaces streamlines downwind of the crest. Hence we expect that,
ascr/u∗ increases across the intermediate regime, the asymmetric component
of the flow reaches a maximum and then decreases to zero.

Fast waveslie in the rangecr/u∗ & 25, so thatcr/ŪB(L)& 1, and the critical
layer is far above the surface,kzc & 1, and so plays no significant dynamical
role. Flow over the wave is therefore largely against the wave, and there is “neg-
ative” asymmetry from sheltering. Orbital motions at the water surface force
additional air-flow perturbations (1u,1w ∼ akcr kli ∼ aku∗) that contribute
comparable negative asymmetries (Mastenbroek 1996, Cohen 1997).

5. DISTORTION OF VORTICITY AND THE
STRUCTURE OF TURBULENCE

We now turn to effects of hills and waves on the large energy-containing tur-
bulent eddies, which are affected by linear processes through rapid distortion
in the outer regions. In addition, weakly nonlinear processes can reorganize
mean-flow vorticity to produce new large-scale circulations.

As explained in Section 2, in the rapid-distortion regionsTA � TL , so that
vortex lines, and thence vorticity of the energy-containing eddies(ωx, ωy, ωz),
are primarily distorted by anisotropic straining by the mean flow (Batchelor
& Proudman 1954). Over the top of a hill or wave,ωx ∝ 1u and is in-
creased, whileωz ∝ (UB + 1u)−1 is decreased; the turbulence intensity
then changes, so that, ifu0 is the intensity in the upstream boundary layer,
1u′2/u2

0 and1w′2/u2
0 are of order1u(x, z)/UB(z) (Britter et al 1981). These

rapid-distortion estimates agree reasonably well with laboratory data (Britter
et al 1981, Gong et al 1996, Mastenbroek et al 1996) and field experiments
(Mason & King 1985, Zeman & Jensen 1987). The asymmetric displacement
of the inner layer (Equation 21) leads to an asymmetric component of the
outer-region flow and thence to small asymmetric changes to the intensities
(Sykes 1980). Changes to the normal stresses caused by rapid distortion do
also occur in the inner region but are usually neglected in leading-order analy-
ses (Townsend 1980, Belcher et al 1993). The rapid-distortion changes to the
intensities, and also to the shear stress, are much smaller, by a factoru∗/UB(z),
than estimates obtained using the mixing-length model (Belcher et al 1993).
Mason & King (1985) also measured spectra and showed that distortion of the
energy-containing eddies, with wavenumbers of orderz−1, agrees broadly with
rapid-distortion theory based on the strain at heightz; however, the largest-scale
eddies, with wavenumbers smaller thanz−1, impinge on the surface of the hill,
and their associated horizontal and vertical velocity fluctuationsũ andw̃ behave
like a slowly varying basic flow, so that we expect1ũ ∝ 1u.
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When the basic flow is perpendicular to the crests of ridges, a secondary mean
flow can grow exponentially through an inviscid instability. Analyses of Craik
(1982) and Phillips et al (1996) show that a perturbation velocity that varies
with wavenumberk2 in the spanwise direction, namelyu(s)(x, t) = eσ t eik2yû(z),
interacts with the mean flow over the hills. The vertical component of vorticity
ωz increases exponentially through a Stokes drift ofO(H/L)2, whereby the
net vertical stretching ofωz on the upwind slope exceeds the net shortening
over hill tops. The resulting net vorticity has a vertical scale of the order of the
wavelength of the ridges,L. Exponential growth of the streamwise vorticity,
ωx, is produced by the rotation and stretching ofωz by the mean shear. This
explanation (Phillips et al 1996) is consistent with wind-tunnel measurements
of Gong et al (1996), which show oscillations in the streamwise mean velocity
in the spanwise direction on a scale comparable to the wavelength of the hills.

When the hill slopes are steep enough to cause separation, there are other
causes of cellular structure and streamwise vortices (as described in Section 6).
Also, persistent longitudinal vortices occur in turbulent boundary layers over
flat surfaces: According to Townsend’s (1976, Section 7.20) stability analysis,
these are driven by mean perturbations in the normal stresses. Over hills the
normal stresses are, on average, larger than over flat surfaces, which suggests
that this mechanism is even more likely to be initiated over hills. In natural
boundary layers, streamwise vortices can also develop on Coriolis time scales
driven by wind shear, which is larger for larger surface drag (Mason & Sykes
1980). The resulting streamwise vortices have vertical scale comparable with
the boundary layer depth,h, i.e. greater thanL.

In tropical and semi-arid countries, the turbulence over hills and sand dunes
driven by thermal convection can be more energetic than the shear-driven turbu-
lence. The eddies are then larger and impinge on the surface, i.e.L(w)

x ∼ z, for
z . h/5, cf. L(w)

x ∼ κz for shear-driven turbulence. Interaction between the
hill and turbulence can then lead to a different kind of circulating motion. For
example, in the limit of weak mean flow parallel to a ridge of hills that run in the
x-direction, large-scale eddies impinge on the undulating surface and produce
variations in they andz directions in the normal stresses. The curl of these
normal stresses,∂2(1τ22 − 1τ33)/∂x∂y, produces a weak mean circulation
with mean velocity ofO((H/L)u0), and mean vorticity over a vertical scale of
orderL parallel to the crests of the hills (Wong 1985, Kretenauer & Schumann
1992). Shear flows running parallel to hills or waves are likely to produce a
similar effect, and thence mean circulation, through a mechanism similar to the
one that causes secondary flows in the corners of ducts or edges of plates first
described by Prandtl (Townsend 1976, Section 7.20). Surface stress caused by
these secondary flows may well contribute to the formation of seif dunes in
sand that sometimes run parallel to the wind (e.g. Bagnold 1984).
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6. SEPARATED FLOWS AND DOWNSTREAM
WAKES

So far we have considered linear and weakly nonlinear processes caused by
hills and waves with low slopes. When the slopes are steep, different, strongly
nonlinear, phenomena become important. In the lee of a hill, downwind of the
crest, the mean wind speed decreases and, if the slope of the hill is large enough,
the mean near-surface wind decreases to such an extent that the mean-velocity
gradient reverses. Consequently the mean-velocity gradient at the surface has
to be zero at certaincritical pointswhere both the mean velocity and its gradient
is zero. At least some of these critical points must be separation points, where
streamlines leave the surface (Tobak & Peake 1982). Over two-dimensional
hills, if the mean flow is also two dimensional, the same mean streamline
connects the upstream and downstream critical points, namelyseparationand
attachmentpoints, thus forming a closedseparated-flow region. Steep wind-
ward slopes can induce separation upwind of the crest, e.g. upwind of steep
sand dunes (Barndorff-Neilson & Willetts 1991).

For typical hills with low slopes,H/L . 0.3, the thickness of any separated-
flow region is comparable with the thickness of the inner regionli, as in the
Askervein experiment (e.g. Taylor & Teunissen 1987). In this case, flow in the
outer region is not changed significantly, in the same way that the overall flow
over the leading edge of an aircraft wing is not ruptured by a thin “separation
bubble” within the boundary layer. So, to a first approximation, the surface-
stress and the surface-pressure perturbations remain related by Equation 19.
Then as the slope increases, and for large ln(l i /z0), the flow tends to separate,
i.e. τB + 1τ = 0, toward the location where1p is largest, namely about half
way down a typically rounded isolated hill. For finite values of ln(l i /z0), the
separation point moves up nearer the crest. This is consistent with Neish &
Smith’s (1992) asymptotic theory for flow around bluff bodies, which suggests
that the separation point tends to the rear stagnation point as ln(l i /z0) →
∞. When the hills are rougher or when the approach flow is more sheared,
Equation 19 shows that the stress perturbation has larger magnitude, so that
separation tends to occur at smaller slopes. Experimental and numerical data
in conjunction with these linear and weakly nonlinear concepts have led to
useful practical estimates for the onset and location of separation as the slope
and shape of the hill varies (Tampieri 1987, Wood 1995). In contrast to these
characteristics of separation in turbulent flows, Equation 20 shows that in a high
Reynolds number laminar flow separation tends to occur first where∂1p/∂x
is greatest, namely near of the top of an isolated hill, as it does on a circular
cylinder (Achenbach 1968).
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Returning to turbulent flow, as the slope steepens the depth of the separated-
flow region becomes comparable with the heightH of the hill and extends a
distanceLR downwind. This reattachment lengthLR ranges from up to 12H
for very smooth hills with steep slopes and low turbulence to about 6H if the
downwind slope is greater than unity.LR can decrease to as low as 3H for
very turbulent flows and unevenly sloped or three-dimensional hills (Arya et al
1987).

Separated flows over hills, as with those over aircraft wings and bluff bodies
(e.g. Lighthill 1963, Tobak & Peake 1982), are seldom precisely two dimen-
sional or axisymmetric with closed streamlines. In fact, most separated regions
in flow over hills are open, so that mean streamlines from the approach flow
enter and leave the separated-flow regions, although they may recirculate sev-
eral times within them. Thus the concept, advanced in the earliest papers, of
a separated-flow region with closed streamlines and a separation bubble is not
really appropriate. However, contaminants in some flows do tend to behave
as if they are trapped because the recirculating streamlines delay downwind
transport and dispersion for a time scale of about 3L R/UB(H) (e.g. Humphries
& Vincent 1976, Hunt et al 1978).

It is observed in wind tunnels and water flumes that even if the hill is two
dimensional, steep upwind slopes lead to flow patterns that vary in the cross-
wind direction and that this is a result of vertical and longitudinal vortices
being generated in the separated-flow regions upwind or downwind of the hill
crest. Their origin appears to be a basic instability in which perturbations to
the mean vorticity are stretched by the vertical and horizontal straining motion
(e.g. Jackson 1973). The mechanism is, we believe, similar to that explored by
Phillips et al (1996), discussed in Section 5.

Air leaving the separation point on steep leeward slopes of three-dimensional
hills also tends to cause swirling flow far downwind of the hill (e.g. Jenkins et al
1981). The sense of the swirl (or sign of the vorticityωx) is more determined by
the angle between the separation line and the incident flow than by the shear in
the incident flow (cf. Mason & Morton 1987 and Hawthorne & Martin 1955).
In weak turbulence, these vortices can persist far downwind and can distort
the mean vorticityωy of the boundary layer. The result is that, in contrast to
the usual wake behavior when the streamwise mean velocity is reduced, the
streamwise mean velocity is actually increased (Kothari et al 1986). Again
strong turbulence can disrupt these vortices.

Calculating turbulent wake flows downwind of hills in turbulent flows re-
quires a model for the Reynolds stresses in relaxing shear layers in the presence
of strong external turbulence, with initial conditions defined by the intermittent
and large-scale eddies in the separated-flow region. One might argue that, in
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these complex situations, simple models are not appropriate, but when used
carefully simple models can give useful results. For example, Counihan et al
(1974) and Arya et al (1987) have found that data from wind tunnel and some
field experiments for the downwind variation of the maximum velocity deficit
(−1u)m followed a power law decay

(−1u)m/UB(H) ∝ (x/H)−m.

In two-dimensional wakes downwind of hills with low slopes and no separated-
flow region, the data typically showm≈ 2.0, which follows using the mixing-
length model (Equation 10). In two-dimensional wakes downwind of hills
(and other obstacles) where the separated-flow region extends to the hill top,
data showm ≈ 1.0, which follows from calculations using Prandtl’s mixing-
length model for free shear layers, namely a constant mixing length (Counihan
et al 1974). For separated three-dimensional flowsm≈ 1.5. Recently, several
authors calculated these or similar wake flows using closure models (e.g. Bonin
et al 1995) and direct numerical simulation (Le et al 1997).

As explained in Section 4.1, whenever the flow over a wave contains a critical
height, whereŪB = 0, there is reversed flow near the surface below the critical
height. Hence the usual way of identifying separated flow by the presence of
reversed flow requires modification. Identification of the critical points where
the mean velocity and the velocity gradient are both zero remains the key to
understanding, because they define the topology of the streamlines. When the
wave amplitude is small, the recirculation associated with the critical layer lies
entirely within the air flow, with two stagnation points, where the velocity is
zero, lying on the critical height (Figure 4). Numerical simulations with an
eddy viscosity suggest that, as the wave amplitude is increased, there remains
just these two stagnation points even for steep waves (Gent & Taylor 1977).
The streamline topology, therefore, remains the same, there are no critical
points, and the flow is not separated. Hence, although the velocity gradient
and surface stress may become zero at the wave surface, the surface velocity
remains nonzero there: it remains determined by motions in the water. The
air-flow streamline topology is changed when there is a critical point at the wave
surface (Figure 6), which Banner & Melville (1976) show is associated with the
onset of wave breaking. The overall shape of the wave surface is then affected,
with a sharp change in wave slope near the crest (Banner & Peregrine 1993).
This local geometrical discontinuity in slope affects the statistical description of
the wave surface in terms of its spectrum (Belcher & Vassilicos 1997). Maat &
Makin (1992) calculated the mean flow, shear stresses, and pressure field over
a simple model of a breaking wave using an eddy viscosity to parameterize the
stress, and showed a large increase in the asymmetry of the flow comparable to
measurements of Banner (1990).
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Figure 6 Conjectured mean streamlines for air flow over a breaking wave if the downwind wave
is (a) breaking and (b) not breaking. Points markedSare critical points. (From Banner & Melville
1976).

7. ESTIMATES OF DRAG ON HILLS AND GROWTH
OF WAVES

Over level terrain, the drag on the surface per unit area isF0 = u2
∗. A hill

induces additional drag1F per unit area, which is evaluated by integrating the
stress over the surface of the hill, and can be separated into two components
1F = 1Fp + 1Fτ , where

1Fp = 1

3

∫
Z=z0

(1p − 1τ33) sinθ dx, 1Fτ = 1

3

∫
Z=z0

1τ cosθ dx,

(27)

and where tanθ = Hdf/dx, and3 is an appropriate averaging length (e.g. the
hill’s wavelength).1Fτ is thefrictional drag. 1Fp is theform drag, which re-
sults from the component of the pressure perturbation that is correlated with the
slope of the hill,Hdf/dx, i.e. the pressure associated with the asymmetric part of
the perturbed flow. The contribution to1Fp from1τ 33 is small (Newley 1985).

Upper bounds for the two components of the drag can be found for hills with
low slope, namely

1Fp ≤ |1pmax|| sinθmax| ∼ H2

L2
U2

B(L),

1Fτ ≤ |1τmax| ∼ H

L

U2
B(L)

U2
B(l i )

u2
∗. (28a, b)
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Growth of traveling surface waves, with surface elevationζ ′ = Re{aeik(x′−ct′)},
of low slope,ak � 1, and with energy input given by the rate of working of
the surface forces,̇E per unit wavelength, is governed byĖ = Ėp + Ėτ (e.g.
Belcher & Hunt 1993), where

Ėp =
∫

Z=z0

(1p − 1τ33) ∂ζ/∂t dx, Ėτ =
∫

Z=z0

1τ1u|z0dx. (29)

Since for a quasi-steady traveling wave∂ζ ′/∂t ′ = −c∂ζ ′/∂x′, it is the asym-
metric part of the pressure that controlsĖp. The contribution from1τ33 is small
for all wave speeds (e.g. Mastenbroek 1996). The surface shear stress that is
correlated with the surface-velocity perturbation contributes toĖτ . Notice that
an explicit model is needed for the water motions beforeĖτ can be evalu-
ated, whereas thėEp can be evaluated for any wave motion. A low-amplitude
gravity wave in deep water has energy per unit wavelengthE = 1

2ρwga2 and
1u|z0 = akcr cosθ , and the two contributions tȯE normalized onE have the
following upper bounds

Ėp

E
. 2

ρa

ρw

{UB(L) − cr }2

c2
r

kcr ,
Ėτ

E
. 2

ρa

ρw

u2
∗

c2
r

kcr . (30a, b)

More refined estimates require estimates for the asymmetrical components of
the flow.

7.1 Estimates of Drag on Hills
A number of mechanisms have been proposed that can lead to asymmetric
components of flow over hills and waves. Jeffreys (1925) first proposed the
sheltering effect, wherein the airflow separates. Neither his photographs of
waves on Newnham Mill pond nor the low observed values of the wave growth
rate supported this hypothesis. Ursell (1956) concluded that this proposal was
discredited. However, as explained by Benjamin (1959) and in Section 3, a net
drag can be caused by a sheltering effect even though the flow is not separated.
Hence the termnonseparated sheltering(Belcher et al 1993) has been used
to describe the mechanism whereby turbulent stresses in the boundary layer
decelerate the air flow near the surface at the crest of the hill or wave leading,
as explained in Section 3, to an asymmetric displacement,δτ(x), that lead to
(Sykes 1980, Belcher et al 1993)

1Fp ∼ H

L
U2

B(L)
δτ

L
∼ H2

L2

U4
B(L)

U4
B(l i )

u2
∗, (31)

which is a factoru2
∗/U2

B(L) smaller than the maximum estimate made by
Jeffreys (1925). Changes to the turbulent normal stresses induced by the mean
straining motions also contribute to1p and thence the drag on hills or growth
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Figure 7 Drag on sinusoidal hills showing that models that correctly account for rapid distortion
in the outer region (filled symbolsand line) lead to smaller drag than models based on eddy-
viscosity throughout the flow (open symbols). Solid line: linear theory for non-separated sheltering
(Equation 31);filled circles: nonlinear numerical model with second-order closure;open circles:
nonlinear numerical model with mixing-length closure (all from Belcher et al 1993);filled squares:
nonlinear numerical model with second-order closure;open squares: nonlinear numerical model
with mixing-length closure (from Mastenbroek 1996);filled triangles: linear numerical model with
damped eddy-viscosity closure (Harris et al 1996).

of waves as explained in Section 5. Belcher et al (1993) showed that this mech-
anism acting in the outer and inner regions contributes1Fp ∼ (H/L)3u2

∗,
(H/L)2u2

∗/ ln(l i /z0), which, for low slopes and smooth surfaces, are much
smaller than the nonseparated sheltering. Figure 7 shows that different meth-
ods for calculating the drag compare well, provided the rapid-distortion regions
are accounted for. It also shows that, if an eddy-viscosity model is inappro-
priately used in the outer region the drag would be overestimated by a factor
UB(L)/u∗ (e.g. Jacobs 1987, van Duin & Janssen 1992), because the shear
stress in the outer region then leads to asymmetry in addition to the asymmetry
in the inner region (Belcher et al 1993).

Wood & Mason (1993) showed that the linear result (Equation 31) can be
extended to drag on three-dimensional hills by dividing the hill into thin slices
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parallel to the flow, calculating the drag on each slice using the results for two-
dimensional hills, and then summing over slices. Mason (1985) argued that
when the slopes of the hills are steep, the hill acts as a bluff body, so that the
drag is approximately equal to the maximum estimate given by Equation 28a.
Wood & Mason (1993) obtained an estimate for the drag coefficient over the
whole range of slopes and for two-dimensional and three-dimensional hills by
switching from the low-slope estimate (Equation 31) to the bluff-body estimate
(Equation 28a) at a critical value of the hill slope. Their resulting formula
for the drag showed excellent agreement with values computed from nonlinear
numerical simulations.

The resulting formula for the drag is now used for parameterizing the subgrid-
scale contribution to the drag of hills in NWP models. Observations of bound-
ary layers over hilly terrain show that the areally averaged velocity profile,
〈U 〉, is approximately logarithmic (e.g. Nappo 1977, Grant & Mason 1990),
namely

〈U 〉 ≈ (ueff
∗
/
κ
)

ln
(
(z − deff)

/
zeff

o

)
, (32)

where(ueff
∗ )2 is the total surface stress including the form drag, andzeff

0 anddeff

are theeffective roughness lengthandeffective displacement heightof the hills
(Mason 1985, Taylor et al 1989). Mason & Wood (1993) explained that their
formula for the drag can be used to compute this effective roughness length
and found that the ratiozeff

0 /H showed systematic variation with the shape and
properties of the hills and lay in the range 10−3 to 10−1, which is of similar
magnitude to the usual “rule of thumb” that the roughness length is1

30 of the
height of the roughness elements.

7.2 Growth of Waves
Figure 8 shows variation of measured and calculated values of the growth-rate
coefficient,β, defined byĖ/E = (ρa/ρw)(u∗/cr )

2β kcr, with the wind and
wave speeds,cr/u∗. Understanding the variation of the model curves follows
from the understanding of the asymmetry in the flow in each of the wind–wave
regimes.

As explained in Section 4.3, in the slow-wave regime,cr/u∗ . 15, asymmetry
in the flow has the same form as in flow over a hill. The growth rate from the
nonseparated sheltering then becomes (Belcher & Hunt 1993)

Ėp

E
∼ 2

ρa

ρw

{UB(L) − cr }2

c2
r

kcr kδτ ∼ 2
ρa

ρw

u2
∗

c2
r

U4
B(L)

U4
B(l i )

kcr . (33)

This has the same magnitude as the contribution from the surface stresses;
although detailed computations show that the stress contribution is numerically
smaller (Mastenbroek 1996). Just as with calculations of drag on hills, if a
mixing length is used erroneously in the outer region, then Equation 33 would
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Figure 8 Variation of wave growth-rate coefficient withcr/u∗ whenkz0 = 10−4. Filled upward-
pointing triangles: linear theory for slow waves (Belcher & Hunt 1993);filled downward-pointing
triangles: linear theory for fast waves (Cohen 1997);filled squares: linear numerical model
with damped mixing-length closure (Cohen 1997);filled circles: nonlinear numerical model with
second-order closure (Mastenbroek 1996);other symbols: data collated by Plant (1984).

be larger by a factor ofUB(L)/u∗ (Jacobs 1987, van Duin & Janssen 1992).
As cr/u∗ increases, the depth of the inner region, and hence asymmetry from
sheltering, increases, so that the growth rate increases, as shown in Figure 8.
Additional asymmetry, and hence contribution to growth, is generated by the
critical layer for growing slow waves, withci /u∗ � 1, but this contribution
is smaller than from the sheltering (Miles 1993, 1996). For slow waves, the
critical layer lies within the inner surface layer, where the Reynolds shear stress
dominates, and quantitative estimates for its contribution to growth might be
smaller than the value from Miles’ (1957) inviscid theory.

Following the qualitative reasoning given in Section 4.3, we expect that
across the intermediate regime, where 15. cr /u∗ . 25, the contribution to
wave growth from sheltering increases, reaches a maximum, and then reduces
to negative values as the negative sheltering from the reverse flow below the
critical height becomes larger than the positive sheltering. According to Miles
(1957, Figure 1) the critical-layer contribution to growth increases withkzc to a
maximum whenkzc ≈ 10−2, which impliescr /u∗ ≈ 12, and then falls rapidly
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to zero. The overall growth rate therefore increases and reaches a maximum
at cr /u∗ ≈ 15 and then becomes negative, as is indeed seen in the computed
results shown in Figure 8.

In the fast-wave regime, wherecr/UB(L) & 1 so thatkzc & 1, shear inUB atzc

is too small for the critical layer to contribute significantly to growth. Negative
sheltering from the reverse flow below the critical height and asymmetries
from the orbital velocities at the wave surface both lead to negative growth,
i.e. damping, rates of the same form as Equation 33 (Cohen 1997) (Figure 8).
But Equation 33 shows that the time scale for damping of fast waves is much
longer than the time scale for growth of slow waves becausecr/u∗ is much
larger for fast waves; hence fast waves, which frequently arise as swell, interact
only weakly with wind.

The growth rate given by Equation 33 has the same form as found by ex-
amining data (Plant 1981), but the coefficient obtained from theory is a factor
of two to three smaller than the coefficient derived from the measurements,
particularly at smallcr/u∗, as shown in Figure 8. So what is wrong? Varia-
tion in roughness along the wave might significantly change flow in the lee (as
Britter et al 1981 observed for hills); and, larger roughness near the crest does
increase the sheltering and thence the growth rate (Gent & Taylor 1976). But
Mastenbroek (1996) developed a comprehensive model of how roughness from
a spectrum of short waves varies along a long wave, allowing for wind-input
to, and advection of, the short waves, and found that growth of the long wave
is increased by only 50%. This is smaller than the required 200–300% to bring
theory into line with the data.

Although only a small fraction of ocean waves are breaking (something like
5%), their violent effect on the air flow may explain the discrepancy between
observations and theory of growth rates (Banner 1990). As explained in Sec-
tion 6.2, wave-breaking provokes air flow separation, so that asymmetry in the
air flow increases sufficiently that the wave growth rate becomes closer to its
maximum value (Equation 7.4) suggested by Jeffreys (1925), which is then of
the form suggested by Snyder et al (1974) based on ocean data. A significant
fraction of strongly forced waves, i.e. smallcr/u∗, break (Donelan et al 1985,
Figure 19), so this might explain the large difference between theory and data
at smallcr/u∗ less than about 5 (Figure 8). But for larger values ofcr/u∗, more
typical of the ocean, a smaller fraction break, and it is not yet clear whether the
average effect of breaking is significant.

An estimate of the total drag of the sea surface, or its effective roughness
length,zeff

0 , is obtained if the form drag on each sinusoidal wave component is
integrated over the spectrum of waves. Makin et al (1995) find that the drag
is largely determined by short waves with wavelengths in the range 1 cm to 5
m. The effective roughness is of the formzeff

0 = αc(ueff
∗ )2/g, which is of the
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form proposed by Charnock (1955) on dimensional grounds. The Charnock
parameter isαc ≈ 0.010− 0.19, and there remains debate over whether or not
it depends on sea state (Donelan et al 1993, Yelland & Taylor 1996).

8. CONCLUSIONS

There are many applications of modeling air flow over hills and waves, some of
which we mentioned in the introduction. For practical purposes, what is needed
is clear physical insight into the physical mechanisms, their orders of magnitude,
and their ranges of application. Current models do not represent several of the
mechanisms described here, particularly those associated with the secondary
motions described in Section 5. But these are, arguably, less significant in
applications with strong turbulence. However, they may affect mass transfer,
e.g. in the location of maximum transport. There remain interesting challenges
in modeling air flow over waves—for example air flow over a group of waves
or when a front of waves propagates into still water. These are both spatially
nonhomogeneous wave systems that require new experiments such as those
of Chu et al (1992) and new theoretical ideas such as proposed by McIntyre
(1996). Air flow on the lee side of the hills or waves is obviously important, yet
separated and relaxing turbulent wake flows are still not satisfactorily modeled.
Large-eddy simulation might give useful insights, although careful resolution of
the inner region will be costly. Finally, there remain interesting phenomena that
couple turbulent motions in air and water that depend on the relative strengths
of the turbulence in the two fluids.

Visit the Annual Reviews home pageat
http://www.AnnualReviews.org.
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