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[1] Arctic multiyear sea ice concentration maps for January 1988–2001 were generated
from SSM/I brightness temperatures (19H, 19V, and 37V) using modified multiple
layer perceptron neural networks. Learning data for the neural networks were extracted
from ice maps derived from Okean and ERS satellite imagery to capitalize on the stability
of active radar multiyear ice signatures. Evaluations of three learning algorithms and
several topologies indicated that networks constructed with error back propagation
learning and 3-20-1 topology produced the most consistent and physically plausible
results. Operational neural networks were developed specifically with January learning
data, and then used to estimate daily multiyear ice concentrations from daily-averaged
SSM/I brightness temperatures during January. Monthly mean maps were produced
for analysis by averaging the respective daily estimates. The 14-year series of January
multiyear ice distributions revealed dense and persistent cover in the central Arctic
surrounded by expansive regions of highly fluctuating interannual cover. Estimates of total
multiyear ice area by the neural network were intermediate to those of other passive
microwave algorithms, but annual fluctuations and trends were similar among all
algorithms. When compared to Radarsat estimates of multiyear ice concentration in the
Beaufort and Chukchi Seas (1997–1999), average discrepancies were small (0.9–2.5%)
and spatial coherency was reasonable, indicating the neural network’s Okean and ERS
learning data facilitated passive microwave inversion that emulated backscatter signatures.
During 1988–2001, total January multiyear ice area declined at a significant linear rate
of �54.3 � 103 km2 yr�1 (�1.4% yr�1). The most persistent and extensive decline in
multiyear ice concentration (�3.3% yr�1) occurred in the southern Beaufort and Chukchi
Seas. In autumn 1996, a large multiyear ice recruitment of over 106 km2 (mostly in the
Siberian Arctic) fully replenished the previous 8-year decline in total area, but it was
followed by an accelerated and compensatory decline during the subsequent 4 years.
Seventy-five percent of the interannual variation in January multiyear sea ice area was
explained by linear regression on two atmospheric parameters: the previous winter’s (JFM)
Arctic Oscillation index as a proxy to melt duration and the previous year’s average
sea level pressure gradient across the Fram Strait as a proxy to annual ice export.
Consecutive year changes (1994–2001) in January multiyear ice volume were significantly
correlated with duration of the intervening melt season (R2 = 0.73, �80.0 km3 d�1),
emphasizing a large thermodynamic influence on the Arctic’s mass sea ice balance during
summers with anomalous melt durations. INDEX TERMS: 1640 Global Change: Remote sensing;

4207 Oceanography: General: Arctic and Antarctic oceanography; 4215 Oceanography: General: Climate
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1. Introduction

[2] Arctic geophysical processes play an important role in
maintaining the thermodynamic balance of Earth’s climate
system. Arctic sea ice is a fundamental component of the
system, and understanding climate variability and trends
requires accurate information about sea ice dynamics and its
numerous feedback processes [Manabe et al., 1992; Barry,
1990; Barry et al., 1993; Thompson and Wallace, 1998;
Holland, 2001; Parkinson et al., 2001; Kukla, 2004]. Sea
ice modulates climate by influencing the short wave albedo,
heat, moisture, and momentum between the atmosphere and
ocean [Agnew, 1993; Chapman and Walsh, 1993; Deser and
Blackmon, 1993; Deser et al., 2002]. Sea ice is also
characterized by unexpected and significant interannual
variability [Walsh and Johnson, 1979; Hibler and Becky,
1985; Fang and Wallace, 1994; Mysak et al., 1996; Deser et
al., 2000].
[3] Changes and trends in Arctic sea ice cover have been

rigorously investigated during the recent decade using
passive microwave data [Chapman and Walsh, 1993;
Maslanik et al., 1996; Parkinson et al., 1999; Gloersen et
al., 1999; Vinnikov et al., 1999; Kwok and Rothrock, 1999;
Johannessen et al., 1999; Parkinson and Cavalieri, 2002;
Comiso, 2001, 2002a, 2002b]. However, validation studies
have indicated varying amounts of seasonal and regional
biases in SMMR and SSM/I sea ice concentration estimates
[Maslanik, 1992; Emery et al., 1994; Kwok et al., 1996;
Comiso and Kwok, 1996; Comiso et al., 1997], especially
with respect to multiyear (MY) sea ice concentration esti-
mates derived with the NASA Team algorithm [Belchansky
and Douglas, 2002]. Because MY ice dominates the thick-
ness distribution of Arctic sea ice and influences ice-albedo
feedbacks [Curry et al., 1995], accurate data about long-
term trends and interannual dynamics of the MY ice fraction
are needed to improve climate models [Rind et al., 1995,
1997; Holland and Curry, 1999; Steele et al., 2001; Hewitt
et al., 2001; Holland and Bitz, 2003, Kukla, 2004].
[4] Specific problems for accurately estimating sea ice

parameters are common to all active/passive microwave
sensors because the reflection/emission of sea ice depends
nonlinearly on numerous factors such as dielectric proper-
ties, density, homogeneity, surface roughness, sensor fre-
quency and polarization, and sensor look-angle [Cavalieri
et al., 1990a; Fung, 1994]. However, because sensitivities
among different microwave sensors vary across different
surface types and surface conditions, employing multisensor
algorithms allows the strengths of one sensor to compensate
for some deficiencies of another [Belchansky and Douglas,
2000]. Among different methods, artificial neural networks
(NN) are robust candidates to improve existing sea ice
classification techniques because they are able to approxi-
mate a wide class of functions without a priori assumptions
about their distribution laws, and build decision surfaces of
any configuration using a learning process [Hecht-Nielsen,
1987].
[5] In this paper, we present a comparative evaluation of

MY sea ice inversions of SSM/I brightness temperature (Tb)
data using different multiple layer perceptron (MLP) neural
networks that were constructed with learning data extracted
from ERS synthetic aperture radar (SAR) and Okean MY
ice map products. We evaluate different neural network

learning algorithms and topologies for their ability to
produce consistent and plausible estimates of multiyear
ice concentration, we evaluate performance of the Okean
and ERS derived learning data, and we assess the impact of
learning data errors.
[6] Next, we present and discuss the observed results, a

14-year series of January mean multiyear sea ice concen-
tration maps. Although the methodology was applicable to
any winter period, we selected the mid-winter month of
January to evaluate and debut the neural network results
because microwave sea ice signatures are most stable during
frozen conditions [Comiso and Kwok, 1996; Belchansky
and Douglas, 2002]. Comparisons are made with other
passive microwave and active radar estimates of MY ice
cover. We then examine interannual changes in MY ice
cover at regional scales, followed by an investigation of the
mechanisms that affect temporal fluctuations, and conclude
with an assessment of thickness and volume changes. In our
discussions, we often speculate about processes and mech-
anisms with the intent to illustrate how information about
MY ice dynamics might improve scientific understanding
of the integrated ocean-ice-atmosphere system. To this
end, we are currently constructing a longer time series of
observational MY ice data sets by adapting the neural
network methodology to all winter months of the entire
SSMR-SSM/I record (1979 to present).

2. Methods

2.1. Study Area

[7] Neural networks for estimating multiyear sea ice
concentration were developed, assessed, and applied within
the full extent (60.21�N, 120.96�W; 63.58�N, 29.05�E;
55.22�N, 169.51�W; 57.96�N, 83.16�E) of the geographic
area shown in Figure 1. A two-pixel buffer zone was applied
to a Northern Hemisphere land mask (25-km resolution,
obtained from NASA Goddard Space Flight Center) to
eliminate land-to-ocean Tb spillover. In section 3.5, analy-
ses were restricted to the Arctic Ocean, which included
adjacent parts of the Laptev, East Siberian, Chukchi, and
Beaufort Seas (Figure 1). The Arctic Ocean region encom-
passed approximately 6.04 � 106 km2 of the total pelagic
area (9.33 � 106 km2) delimited in Figure 1.

2.2. Satellite Data

[8] Defense Meteorological Satellite Program SSM/I
Daily Gridded Brightness Temperatures [Maslanik and
Stroeve, 1992] and Daily and Monthly Polar Gridded Sea
Ice Concentrations [Comiso, 1990a; Cavalieri et al., 1990b]
were acquired for 9 July 1987 to 31 December 2001 from
the National Snow and Ice Data Center (NSIDC), Boulder,
Colorado. We used daily total ice concentrations and MY
ice concentrations derived with the Bootstrap and NASA
Team algorithms, respectively [Comiso et al., 1997]. The
NSIDC data were distributed in polar stereographic projec-
tion (central meridian 45�W, latitude of true scale 70�N)
with 25 km � 25 km pixel size. We standardized the SSM/I
Tb data sets by correcting for instrument drift, reducing the
influences of atmospheric weather conditions and coastal
boundaries, and eliminating or interpolating missing data as
described by Cavalieri et al. [1999]. We also applied linear
regression coefficients to standardize intersatellite Tb cali-
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brations: F13 SSM/I to F11 SSM/I [Stroeve et al., 1998],
and F8 SSM/I to F11 SSM/I [Abdalati et al., 1995].
[9] Okean passive microwave (36.62 GHz H, 500-km

swath, 15-km resolution) and side-looking radar (9.52 GHz
VV, 450-km swath, 1.5-km resolution) images were ac-
quired from the Scientific Research Center for Natural
Resources (Dolgoprudny, Moscow District) during January
1996 (27 images), January 1997 (22 images), May 1997
(17 images), and January 1998 (4 images). The Okean raw
passive microwave and radar images were radiometrically
calibrated, equalized, and projected to polar stereographic
coordinates. Concentrations of MY ice, first-year (FY) ice,
and open water (OW) were estimated within a 3 km � 3 km
pixel-resolution grid using linear mixture modeling of the
measured backscattering cross section (s0) and Tb values
[Belchansky and Douglas, 2000]. Simultaneous analysis of
passive microwave and backscatter data improved separa-
tion of the ice classes. The ice-type coefficients for the
mixture model were visually estimated at the centroids of
three data clusters (MY, FY, and OW) evident on a two-
dimensional plot of the s0 and Tb pixels values, thus
providing independent image-specific tie-points for each
scene. The Okean ice maps were averaged daily within a
25 km � 25 km resolution grid identical to the SSM/I data
sets, and the MY ice concentration estimates were extracted
for the neural network learning data set.
[10] Multiyear sea ice concentration estimates derived

from ERS SAR data by the Geophysical Processor System
[Kwok and Cunningham, 1993] were obtained from the
Alaska SAR Facility, Fairbanks, Alaska. The ERS s0

images had been individually processed and were dissem-
inated as 100 km � 100 km ice maps with 5-km pixel size
in polar stereographic projection. For network learning, the
ERS MY ice concentration maps for January 1992 (n =
1725) and January 1993 (n = 107) were averaged daily
within a 25-km resolution grid identical to the SSM/I data
sets.

2.3. Neural Network Inversion of SSM/I Data

[11] An artificial neural network defines a computational
architecture for complex data processing using sets of many
simple processors called neurons. In a multilayer network,
all neurons are decomposed into non-overlapping subsets
(layers) that are interconnected through activation functions
parameterized by neuron weights and bias coefficients.
Network topology defines the structure of neuron connec-
tions, and network learning is the iterative task of param-

eterizing the activation functions to obtain the best
approximation with minimal error.
[12] However, practical use of neural networks for mul-

tichannel satellite data analysis is complicated by interac-
tions between the choice of learning algorithm and the
necessity to account for spectral, spatial, textural, and
statistical properties of the images during classification.
Accuracy of each learning algorithm is influenced by its
ability to find the global minima of the error function while
maintaining its ability to generalize the selected learning
data. For any applied task lacking a priori documentation,
conducting a thorough (albeit time consuming) evaluation
of learning algorithm efficacy is paramount to obtaining
sound results. Consequently, we present details of our
learning algorithm assessment in this paper to facilitate
prospective neural network studies of multiyear sea ice
using passive microwave data.
[13] Three feed-forward artificial MLP neural networks

were developed and evaluated to estimate MY sea-ice
concentrations, each using three SSM/I Tb channels (19H,
19V, and 37V) for input data and Okean and ERS MY ice
concentration maps for learning data. The three SSM/I Tb
input channels were selected to standardize comparisons
with other traditionally used passive microwave algorithms
that discriminate MY ice. The three neural networks were
each developed with a different learning algorithm: (1) error
back propagation and simulated annealing [Kirkpatrick,
1983]; (2) dynamic learning with polynomial basis func-
tions [Tzeng et al., 1994] and Kalman filtering [Kalman and
Bucy, 1961]; and (3) dynamic learning with two-step
optimization and Kalman filtering. These three learning
algorithms are subsequently referred to as: M1, M2, and
M3, respectively. Topology of each neural network was
defined with one input layer (n = 3 nodes: SSM/I Tb 19H,
19V, and 37V), p hidden layers (ni artificial neurons in
every ith hidden layer, i = 1, 2, 3, . . ., p), and one output
layer (n = 1 node: MY ice concentration) (Figure 2).
[14] In practice, we implemented a modified neural net-

work structure that provided higher degree approximations
using relatively fewer hidden neurons compared to the
simply connected MLP network illustrated in Figure 2
[Fung, 1994]. In each modified neural network, the activa-
tion functions of the output layer were linear, and output
neurons were connected with all input and hidden neurons.
Output of the modified neural network can be characterized
as a linear weighted sum. The error function for N learning
data sets can be written as

E ¼
XN

j¼1

d j �Wx j
� �T

d j �Wx j
� �

; ð1Þ

where Wx j is the output signal of the neural network
obtained after processing the x vector from the learning data
set j, and d j corresponds to the desired value of the output
signal for the x vector from the learning data set j.
[15] The M1 learning algorithm was based on error back

propagation and simulated annealing [Kirkpatrick, 1983]
with random assignment of the step-direction through
tunable parameters. The algorithm executed the first learn-
ing iteration with random initialization of the tunable
parameters. The possibility to perform gradient descending

Figure 1. Geographic extent of the entire study area and
the region defined as Arctic Ocean (dark shading).
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was estimated at every step based on analysis of the error
functional. In the case of a successful step (the error
functional value decreased) the iteration would finish;
otherwise, simulated annealing was performed. After each
iteration completed, a stopping criterion was checked, and if
it was not fulfilled, the next iteration was executed.
[16] The M2 learning algorithm was based on a com-

pressed MLP model where the output was represented as a
weighted sum of polynomial compositions [Tzeng et al.,
1994]. Since the output signal was a linear function of
weights, to minimize the error functional during learning,
only linear equations required solution. Adaptive Kalman
filtering was implemented to calculate the network weight-
ing vectors using recurrent equations [Kalman and Bucy,
1961]. Initial values of the network weights were assumed
to be a set of small positive numbers.
[17] The M3 learning algorithm decomposed the learning

process into linear and nonlinear optimization steps. The
linear step used the dynamic learning algorithm M2. After
the adaptive Kalman filtering had estimated the matrix of
weighting coefficients (W), the estimates were refined using
a simple second-order minimization scheme based on the
Newton-Raphson method [Barton, 1991]. Keeping all
other parameters fixed, small positive and negative changes
were made in one parameter, and the step required to move
to the quadratic minimum was calculated by expanding
equation (1) as a truncated Taylor series. The presence of
maxima and oscillations were tested for and avoided.

2.4. Evaluation of Learning Algorithms

[18] Experiments were conducted to evaluate the relative
performance of each neural network learning algorithm
(M1, M2, and M3). Two internally different neural network
topologies were also evaluated for each learning algorithm:
3-20-1 and 3-16-4-1. These two topologies were selected
for evaluation following extensive predevelopment trials.
Topologies with minimal internal layers were considered
first, and then the number of neurons in the internal levels
and the number of levels was increased, and so on. The
procedure was executed until a reasonable accuracy of
inversion was attained, and a reasonable learning time on
the previous step was achieved. Commonly, during the task
of inversion, a complex topology caused the network to lose
its ability to generalize the learning results, while too few

hidden neurons led the network to limited sensitivity of the
learning process.
[19] Two Okean multiyear ice concentration (CMY) maps

dated 4 May 1997 were selected as learning data sets for the
evaluation. A springtime period was chosen to maximize
representation of sea ice types and surface melt conditions.
Although ultimate application of the neural network was
intended for winter months, we challenged the learning
algorithms with a ‘‘worst case’’ scenario to expose their
robustness to novel or anomalous environmental conditions.
Geographic extent of the Okean learning data encompassed
good representation of the study area’s total 4 May 1997
SSM/I Tb variability (Figure 3). The combined 4 May 1997
Okean CMY data were randomly divided with equal prob-
ability into two data sets: learning and testing, each with
approximately 2000 samples (pixels). The randomization
procedure was independently repeated 10 times to create
10 pairs of learning and testing data sets. Each learning
and testing data set pair was used with each combination
of learning algorithm (M1, M2, M3) and topology (3-20-1,
3-4-16-1) to create a total of 60 neural networks.
[20] When compared to the Okean CMY source maps, the

neural network CMY estimates generated during learning
versus testing were similar in magnitude and dispersion
among all learning algorithms and topologies (Table 1). The
similarity indicated that representation of the MY ice
environment in the learning data set was sufficient for all
algorithms and topologies to perform equally well within
the geographic extent of learning data. However, further
evaluations were warranted to assess each algorithm’s
performance in regions beyond the geographic bounds of
the learning data, because it is inappropriate to assess the
quality of a neural network based solely on errors associated
with restricted learning data sets. Therefore, each of the
60 neural networks was used to estimate CMY throughout
the full study area on 4 May 1997.
[21] Despite apparently good representation of the learn-

ing data (Figure 3), the learning algorithms and topologies
performed differently in areas outside the learning data
boundaries (Figure 4). Among the 10 replications, the error
back propagation and simulated annealing learning algo-
rithm (M1) with 3-20-1 topology produced the most con-
sistent CMY estimates throughout the study area, while the
dynamic learning algorithms (M2 and M3) and the 3-16-4-1

Figure 2. Topology of the multiple layer perceptron feed-forward artificial neural network.
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topology manifested distinct regions with pronounced CMY

variability. Although all algorithms and topologies produced
fairly similar and acceptable results within the region of
learning data (Table 1, Figure 4), the M1 learning algorithm
with 3-20-1 topology produced the most physically plausi-
ble and correspondent CMY estimates across the entire study
area.
[22] Hemispheric-scale sea ice inversion from passive

microwave data presents challenges and difficulties because
relationships are highly nonlinear [Fung, 1994], and fully
representative learning data are lacking. Kalman filtering is
useful for approximating the third-power polynomial, but
only if the learning data are ideally representative (sufficient
volume spanning the whole approximation area) and accu-
rate (without noise); otherwise the network risks losing its
ability to generalize. Because the M2 and M3 learning
algorithms employed Kalman filtering, and both resulted
in discordant and sometimes physically implausible CMY

estimates, the third-power polynomial approximations were
probably overfitting the ‘‘less-than-ideal’’ learning data.
[23] We concluded that error back propagation with

simulated annealing (M1) was a more robust learning

algorithm by its ability to construct a ‘‘smooth’’ neural
network for estimating CMY throughout the entire Arctic,
especially given the impracticality of assembling an ideal
representation of learning samples over such a large and
heterogeneous geographic area. Consequently, we used the
M1 learning algorithm and 3-20-1 topology for all subse-
quent analyses and evaluations.

2.5. Evaluation of Learning Data

[24] All January Okean CMY learning data (n = 13563
pixels, 25-km pixel resolution, Figure 5) were pooled and
then randomly divided into a learning and testing data set
pair. The randomization procedure was repeated 10 times
to create 10 data set pairs. The M1 learning algorithm with
3-20-1 topology was applied to each of the learning data set
pairs to construct a total of 10 neural networks. The learning
data evaluations were conducted by examining CMY esti-
mates for a single day. Each network was used to estimate
CMY throughout the study area on 15 January 1988–2001,
by inverting the respective three-channel SSM/I Tb daily
image data (10 replicates estimating CMY on 15 January in
each of 14 years). Analogous methods were applied to
the full set of January ERS learning data (n = 2572 pixels,
25-km pixel resolution, Figure 5).
[25] Relative merits of Okean versus ERS learning data

were evaluated by comparing the CMY means and variances
among the 10 testing replicates in each year. All 14 years
demonstrated similar results, so 1993 was arbitrarily selected
for illustration. The neural networks derived from ERS
learning data produced consistent CMY estimates in high-
latitude regions, but grossly overestimated CMY in southern
regions (Figure 6). Because the combined January ERS
learning data set was dominated by sea ice in the northern
Beaufort Sea (Figure 5), the derivative neural networks were
inherently specific to high CMY conditions, but poorly
provisioned to estimate low CMY throughout the marginal
zones. Although the geophysical properties of sea ice are
known to vary over broad regions of the Arctic [Tucker et al.,
1992], failure of the ERS neural network was most likely
caused by insufficient representation of low CMY in the
learning data.
[26] In contrast, the January Okean learning data were

more proportionally balanced over a broader latitudinal
gradient of ice types, concentrations, and environmental
conditions (Figure 5), rendering more robust networks and
producing more reasonable and consistent CMY estimates
throughout the full study area. However, within the high-
latitude regions of contiguous multiyear ice, CMY estimates

Figure 3. Projected three-dimensional scatterplots of
SSM/I Tbs over Arctic sea ice on 4 May 1997; (top)
SSM/I pixels for the entire study area and (bottom) SSM/I
pixels corresponding to the area encompassed by two
Okean learning data sets used for assessing the neural
network learning algorithms and topologies.

Table 1. Mean (and Standard Deviation) Root Mean Square

(RMS) Differences Between Two 4 May 1997 Okean Multiyear

Sea Ice Concentration Maps and Their Derivative Neural Network

(NN) Estimates Obtained by 10 Learning and Testing Replications,

for Each of Three Learning Algorithms (M1, M2, M3) and Two

Topologies

NN Topology 3-20-1 NN Topology 3-16-4-1

RMSLEARN RMSTEST RMSLEARN RMSTEST

M1 8.14% (0.45) 8.57% (0.48) 7.91% (0.54) 8.41% (0.44)
M2 8.68% (0.42) 8.89% (0.51) 8.49% (0.49) 8.81% (0.38)
M3 8.36% (0.41) 8.64% (0.45) 8.42% (0.45) 8.75% (0.44)
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by the ERS neural networks had consistently less variability
than those obtained with the networks based on Okean
learning data (Figure 6).
[27] Assuming that (1) the Okean learning data may

have slightly overestimated CMY in high CMY ranges
[Belchansky and Douglas, 2002], (2) the CMY estimates
based on ERS learning data had better consistency and
hence better accuracy in high CMY ranges (Figure 6), and
(3) the CMY estimates based on ERS learning data over-
estimated CMY in low CMY ranges (Figure 6), we
concluded it reasonable to construct a merged CMY map
that capitalized on respective strengths of the Okean and
ERS learning data sets. Accordingly, the 10 Okean and
10 ERS daily CMY maps were, respectively, averaged,
and a single merged CMY daily map (Okean-ERS) was
conditionally constructed,

COKEAN-ERS ¼ COKEAN COKEAN < CERS;

COKEAN-ERS ¼ CERS COKEAN � CERS;
ð2Þ

SDOKEAN-ERS ¼ SDOKEAN COKEAN < CERS;

SDOKEAN-ERS ¼ SDERS COKEAN � CERS:
ð3Þ

If the above assumptions were correct, then errors
associated with the CMY estimates in the merged map
would be lower than the errors of either source map.

Figure 4. Standard deviation (SD) of MY sea ice concentration estimates (N = 10 replications) obtained
by neural networks constructed with two different topologies and three different learning algorithms.
Rectangles delineate boundaries of the 4 May 1997 Okean MY ice concentration learning data sets.

Figure 5. Composite distributions of (top) January 1996
and (bottom) 1997 ERS and Okean multiyear sea ice
concentration learning data: ERS Geoprocessing System
maps (Beaufort and Chukchi Seas) and Okean linear
mixture model maps (Barents, Kara, and Laptev Seas).
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2.6. Construction of Monthly Mean Maps

[28] For each day in January, the 10 Okean and 10 ERS
neural networks described above were used to produce
20 daily CMY maps by inverting the respective daily
SSM/I Tb three-channel inputs (19V, 19H, and 37V). The
resulting 10 Okean and 10 ERS CMY daily map-replicates
were respectively averaged, then merged (COKEAN-ERS)
using equation (2), and then averaged within years to
produce January mean CMY maps, 1988–2001. All results
presented henceforth were based on analyses of the January
mean CMY estimates.

2.7. Evaluation of Neural Network Estimates

[29] Accuracy of the Okean and ERS CMY learning
data is clearly important to accuracy of the derivative
neural network CMY estimates. Accuracy assessments of
sea ice parameters estimated by remote sensing methods
are largely deficient because definitive validation data are
lacking, especially for studies that discriminate ice age.
Comparative assessments are more common, where coin-
cident estimates derived from one sensor or algorithm are
contrasted with another. Direct comparisons between the
Okean and ERS CMY learning data were not possible
since the data did not overlap. However, Belchansky and
Douglas [2002] found that total ice concentration esti-
mates derived by the Okean linear mixture model aver-
aged 1.4% (sd = 5.9) higher in January compared to
Radarsat ScanSAR estimates derived by s0 image seg-
mentation. Also, ERS CMY estimates derived with look-up

tables and maximum likelihood classification averaged
3.8% (sd = 7.4) less than those obtained using supervised
classification, while an iterative maximum likelihood
algorithm used operationally by the GPS reduced the
discrepancy to 1.0% (sd = 6.1) [Fetterer et al., 1994].
[30] We investigated sensitivity of the neural network

CMY estimates to errors in Okean and ERS learning data
by comparing the original CMY estimates to those
obtained with new neural networks constructed from
learning data that contained simulated errors. Using
results from Fetterer et al. [1994] to establish liberal
estimates of variance and bias, we offset each Okean and
ERS CMY learning data pixel by a random amount
ranging uniformly between �10% and +18% (mean
+4%). A uniform distribution was chosen to exacerbate
the introduced error. Offsets resulting in <0% or >100%
were truncated. New Okean and ERS neural networks
were developed with the simulated learning data, and
then applied to construct new monthly mean CMY maps
for January 1996.
[31] Minor differences were observed between the orig-

inal Okean-ERS CMY estimates and those derived from
the learning data with simulated errors (Table 2). Variance
of the differences was commensurate to that of the
simulated noise, indicating that the network’s learning
algorithm and topology were robust against amplification
of errors in the learning data. Restricting the simulated
error to just the Okean or ERS learning data showed that
the Okean-ERS CMY estimates were more sensitive to

Figure 6. Mean and standard deviation multiyear (MY) sea ice concentration estimates, 15 January
1993, by 10 neural network replications based on (top) ERS learning data, (middle) Okean learning data,
and (bottom) conditional merging of the ERS and Okean estimates.
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errors in the Okean learning data (Table 2). A greater
sensitivity to errors in the Okean learning data was
expected since Okean-derived network estimates tended
to dominate the ERS-derived estimates when the two
products were merged (equation (2)). Mean differences
were a few percent less than the simulated +4% bias,
suggesting that the Okean-ERS neural network may have

slightly underestimated multiyear ice concentrations rela-
tive to the learning data.

3. Results and Discussion

3.1. Interannual Distributions

[32] January mean MY ice distributions were relatively
stable in the western central Arctic and highly variable
throughout the peripheral regions during 1988–2001
(Figure 7). Variance among the 14-year series of January
MY ice distribution maps (Figure 7, bottom right) delineat-
ed a discrete region of dense and persistent MY ice cover
located north of the Canadian Arctic Archipelago and the
north Greenland coast that is maintained by the consolidat-
ing forces of the Beaufort gyre and the Transpolar Drift
Stream [Erlingsson, 1988; Rigor et al., 2002]. An expansive
peripheral zone of highly variable CMY conditions sur-
rounded the consolidated region. Within the peripheral
zone, consecutive year fluctuations of multiyear ice cover
at regional scales were often maximal (presence-absence).

Table 2. Mean (and Standard Deviation) Differences Between

Average January (1996) Multiyear Ice Concentration Estimates

Derived From Neural Networks That Were Constructed Using the

Original Okean and ERS Learning Data Versus Networks

Constructed With Learning Data That Contained Simulated Errors

(Okean* and ERS*)a

Full Study Area Arctic Ocean

Okean-ERS minus Okean*-ERS* �0.6% (5.8) �1.4% (4.3)
Okean-ERS minus Okean*-ERS �0.7% (5.9) �1.6% (4.5)
Okean-ERS minus Okean-ERS* �0.3% (1.8) 0.6% (1.0)

aN = 14,542 pixels (Full Study Area); N = 9292 pixels (Arctic Ocean).

Figure 7. January mean multiyear sea ice concentration estimates, 1988–2001, based on neural
network inversions of daily SSM/I passive microwave brightness temperatures (19V, 19H, 37V). The
14-year standard deviation is shown in the bottom right panel.
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[33] The pronounced CMY variability throughout the
peripheral zone manifests a complex integration of seasonal
MY ice recruitment, melt, and transport. During winter,
surface air temperature, wind, water temperature, snow
cover, thermohaline stratification, and mechanical rafting
and ridging dictate the development and physical character
of first-year ice [Thomas and Dieckmann, 2003]. Winter
conditioning of first-year ice is important to its probability
of surviving variable summer melt conditions and becom-
ing recruited as MY ice the following winter. Concur-
rently, wind-driven forces associated with variable synoptic
[Maslanik et al., 1996] and oscillatory atmospheric circu-
lations [Rigor et al., 2002] dominate patterns of sea ice
motion, transporting ice into regions with different thermal
regimes or exporting it entirely from the Arctic basin.
Large interannual variations in regional CMY distributions
also imply correspondent variations to sea ice thickness
distributions [Winsor, 2001; Holloway and Sou, 2002].

3.2. Comparative Trends

[34] Previous passive microwave studies of MY ice have
used two distinct strategies to estimate area, extent, and
trends. One strategy uses linear combinations of the 18- or
19-GHz and 37-GHz Tb channels, and requires ‘‘tie points’’
to guide discriminations between water, first-year ice, and
multiyear ice signatures. The most common examples are
the NASA Team algorithm [Gloersen and Cavalieri, 1986]
and the NORSEX algorithm [Svendsen et al., 1983]. Prin-
cipal drawbacks of these classification algorithms stem from
unaccounted spatial and temporal variations in the MY ice
signature caused by the geophysical influences of dynamic

surface temperatures [Grenfell, 1992] that are not well
represented by a static set of tie points. The second strategy
is parsimoniously premised on the assumption that each
year the total sea ice at the end of the summer melt season
(annual minima) depicts MY ice by definition [Comiso,
1990b]. This approach possesses a distinct advantage be-
cause it precludes problems associated with ice type clas-
sification, but it is limited to a single observation of MY
distribution each year. In comparison, the neural network
approach embodies several notable advantages: (1) it
exploits the stability of MY ice signatures derived from
active radar instruments [Kwok et al., 1996]; (2) it accom-
modates nonlinear relationships between the input and
output variables [Fung, 1994; Kwok et al., 1996]; (3) it is
inherently calibrated to the seasonal conditions of broad
geographic areas, as represented in the learning data; and
(4) it can be used to investigate intraseasonal dynamics by
elaborating its application to other winter months.
[35] We compared our neural network estimates of mul-

tiyear ice area to those derived with other passive micro-
wave algorithms: the NASA Team MY ice algorithm and
both the Bootstrap and NASA Team algorithms for estimat-
ing total ice during the summer minima. For each method,
we calculated total MY ice area by summing the product of
each pixel’s ice concentration estimate and area (adjusted
for map distortion), for all pixels with �15% ice concen-
tration within the full geographic extent of Figure 1. The
date of minimum ice cover was annually determined using a
7-day running mean of daily total ice concentration esti-
mates, analogous to the method ascribed by Comiso
[2002a].
[36] The most apparent differences among the passive

microwave methods were the magnitudes of the MY ice
area estimates (Figure 8). On average, the Bootstrap
estimates of total ice area during the previous summer
minima were 26% (sd = 4.2%) higher than the neural
network estimates of January MY ice area. Attaining
higher MY ice area estimates during the late summer
melt/freeze transition can be partly attributed to incorrectly
assimilating regions of new ice, since minimum ice
cover does not occur in all areas of the Arctic on the
same date [Comiso, 2002b]. Lower MY ice area estimates
in January can be partly explained by ice export during
the intervening period, and to a lesser extent, ridging of
relatively thin second-year ice. Other factors may have
attenuated or masked the microwave signature of MY
ice, such as dense atmospheric water vapor [Maslanik,
1992], abundant frozen melt ponds [Grenfell, 1992],
heavy snow loads [Cavalieri et al., 1991], and seawater
intrusion at the snow-ice interface or over-rafting by first-
year ice [Comiso, 1990b; Kwok et al., 1996]. Also,
detection of new MY ice (second-year ice) may have
been problematic if it possessed transitional emissivity
characteristics [Tooma et al., 1975; Grody, 1988] that
were not adequately represented in the neural network
learning data. Of the average 26% difference between the
estimates of total MY ice area by the Bootstrap summer
minima and the Okean-ERS neural network the following
January, we very roughly attribute no more than 9% to
ice export [Vinje et al., 1998; Kwok and Rothrock, 1999;
G. Belchansky, unpublished data, 2004] and 6% to incor-
rect autumn assimilation of new ice [Comiso, 2002b],

Figure 8. Annual mean multiyear (MY) sea ice area
estimates and linear trends (1988–2001) obtained by five
different methods of SSM/I passive microwave analysis:
previous-year total ice area minimas by the Bootstrap and
NASATeam algorithms, and current year January multiyear
ice area estimates by the Okean-ERS neural network, Okean
neural network, and the NASA Team MY algorithm.
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leaving at least 10% accountable to ice convergence, Tb
signature attenuation, and/or methodological bias.
[37] The NASA Team MY ice algorithm consistently

produced the lowest area estimates (Figure 8), averaging
41% (sd = 3.9%) lower than the Bootstrap estimates of total
ice during the summer minima and 20% (sd = 4.4%) lower
than the January neural network estimates. Previous studies
have reported similar discrepancies between NASA Team
MY ice concentration estimates and those derived by other
algorithms and sensors [Kwok et al., 1996; Belchansky and
Douglas, 2000]. The NASATeam algorithm estimated 14%
(sd = 2.4%) less total ice area during the summer minima
compared to the Bootstrap algorithm, a commonly observed
relationship attributed to differences between the algorithms
[Comiso et al., 1997].
[38] In general, the Bootstrap and NASA Team algo-

rithms rendered similar spatial distributions of ice extent
during the summer minima, but the Team algorithm con-
sistently underestimated ice concentrations throughout all
regions. Consequently, the NASATeam total area estimates
for the summer minima were closer in magnitude to the
January neural network MY estimates, but the similarity did
not represent improved spatial congruency between their
mapped CMY distributions. Results of the strictly Okean-
derived neural network are presented in Figure 8 to illustrate
the subtle and consistent decrease (4%, sd = 0.5%) in MY
ice area that resulted when the Okean and ERS CMY

estimates were merged with equation (2).
[39] All passive microwave methods depicted similar

annual fluctuations and long-term trends among their total
MY ice area estimates (Figure 8). During 1988–1996, MY
ice cover diminished approximately 1.0 � 106 km2. The
decline was dramatically interrupted by complete replenish-
ment in autumn 1996, followed by a rapid and compensa-
tory 4-year decline. On the basis of the Okean-ERS neural
network, the overall 1988–2001 linear decline in January
MY ice area was �54.3 � 103 km2 yr�1 (�1.4% yr�1),
somewhat accelerated compared to rates of other studies
that included earlier years. Comiso [2002b] reported that
Arctic MY ice area had declined �0.9% yr�1 during 1979–
2000 based on estimates of minimum total ice cover derived
with the Bootstrap algorithm, and Johannessen et al. [1999]
reported a �31 � 103 km2 yr�1 (�0.7% yr�1) decline
during 1979–1998 based on winter CMY estimates derived
with the NORSEX algorithm.

3.3. Radarsat Comparison

[40] The Radarsat geophysical processor system (RGPS)
was developed to exploit the high temporal frequency
of Radarsat SAR imagery for estimating motion, deforma-
tion, and thickness of the Arctic Ocean sea ice cover
[Kwok and Cunningham, 2002]. The RGPS also produces

a backscatter-based classification [Kwok et al., 1992] of ice
age (MY versus FY). We averaged the January RGPS CMY

ice products (http://www-radar.jpl.nasa.gov/rgps) for 1997,
1998, and 1999 (N = 10, 7, 10, respectively) for comparison
with the corresponding January CMY maps derived with the
Okean-ERS neural network. Before averaging, each RGPS
CMY map (12.5-km pixel size) was resampled to 25-km
pixel resolution (by averaging the four nearest RGPS CMY

values) and smoothed with a 3 � 3 weighted low-pass filter
(1/4:1/8:1/16). Comparisons with respective Okean-ERS
neural network maps were restricted (masked) to pixels
where the RGPS January average had �6 samples in each
of the 3 years (N = 4126 pixels).
[41] On average, the Okean-ERS neural network CMY

estimates were slightly less (0.9–2.5%) than those
obtained by the RGPS, while the NASA Team MY
algorithm reiterated its propensity to significantly under-
estimate MY ice concentration (Table 3). Reasonable
spatial coherence was also attained between the neural
network and RGPS CMY maps (Figure 9). The RGPS
method tended to estimate slightly higher CMY than the
neural network in the northern regions of contiguous MY
ice. Discrepancies were most prevalent along the south-
ernmost MY ice margin, possibly due to insufficient
representation of the region in the learning data sets
(Figure 5). However, the notable level of overall corre-
spondence between the Okean-ERS neural network and
RGPS CMY estimates provided independent corroboration
of neural network retrievals from passive microwave data.
Since the Okean and ERS neural networks were con-
structed with learning data derived from active radar
instruments, it was not surprising that the methodology
emulated RGPS backscatter-based CMY estimates. Inci-
dentally, visual inspection of a mid-January 1997 map of
NSCAT (scatterometer) backscatter at 40� incidence angle
[Ezraty and Cavanié, 1999, Plate 3] indicated that areas
with s0 > 0.1 were closely aligned to areas with >50%
CMY in the January 1997 neural network map (Figure 7).
Apparently, using neural networks with learning data
derived from active radar instruments provides a strategy
to bridge continuity between CMY estimates based on
historical passive microwave data and those based on
recent or future active radar campaigns.

3.4. Spatial Variability

[42] Interannual fluctuations and trends in MY ice cover
were examined regionally by partitioning the study area
(Figure 1) into six longitudinal sectors corresponding with
major peripheral seas and landmasses: (1) Greenland and
Canadian Archipelago (0�–120�W) and (2) Beaufort and
Chukchi Seas (120�W–180�W), East Siberian Sea (180�–
140�E), Laptev Sea (140�E–100�E), Kara Sea (100�E–
60�E), and Barents Sea (60�E–0�).
[43] North of Greenland and Canada, the total area of MY

sea ice was relatively stable during 1988–2001 (Figure 10a).
Although subtle, this was the only longitudinal sector to
exhibit evidence of consistent periodicity (�5-year cycle).
Linear decline of MY ice area was most apparent in the
Beaufort and Chukchi Seas, diminishing at a significant rate
of �33.6 � 103 km2 yr�1 during 1988–2001 (Figure 10b).
During the 1990s, predominantly positive winter AO con-
ditions weakened the Beaufort Gyre, causing less MY ice to

Table 3. Mean (and Standard Deviation) Differences Between

RGPS Estimates of January Multiyear Ice Concentration in the

Beaufort-Chukchi Seas and Estimates by the Okean-ERS Neural

Network and the NASA Team MY Algorithma

1997 1998 1999

RGPS minus Okean-ERS NN 2.4% (9.8) 2.5% (11.5) 0.9% (13.7)
RGPS minus NASA Team MY 18.8% (13.1) 16.7% (14.2) 11.2% (14.2)

aN = 4126 pixels in each year.
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be transported from the western Canadian Arctic into the
southern Beaufort Sea [Drobot and Maslanik, 2003]. The
reduced southward MY ice transport is believed partly
responsible for the extreme minimum ice extents recently
observed in the western Arctic [Maslanik and Serreze,
1999; Serreze et al., 2003].
[44] The East Siberian sector exhibited a marked decline

in MY ice area during the early 1990s (Figure 10c) that
coincided with a greater frequency of low-pressure systems
during summer [Maslanik et al., 1996] and longer melt
seasons [Belchansky et al., 2004]. The East Siberian sector
gained the largest net recruitment of MY ice in autumn
1996, followed by a modest decline during the subsequent
4 years. In the Laptev Sea sector, MY ice cover was
relatively constant until the mid-1990s when a shift to

strong annual fluctuations developed (Figure 10d). Cause
of the shift to pronounced variability is unclear, but perhaps
changes in synoptic storm patterns regionally influenced the
strength and trajectory of the Transpolar Drift Stream as it
traversed the central Siberian Arctic (Figure 7).
[45] Multiyear ice area declined over 50% in the Kara

and Barents Sea regions, culminating in 2000–2001
(Figures 10e–10f). During the 1990s, volume and temper-
ature of Atlantic water entering the Eurasian Basin increased
[Grotefendt et al., 1998; Zhang et al., 1998], while the
insulating cold halocline layer (CHL) showed signs of
significant degradation [Steele and Boyd, 1998]. Both
mechanisms would tend to diminish winter ice production
[Dickson et al., 2000; Martinson and Steele, 2001] and
reduce recruitment and maintenance of the region’s MY ice.
Despite recent (late 1990s) indications that the temperature
of Atlantic water entering the Arctic Ocean has cooled
[Gunn and Muench, 2001] and a weakened CHL has
reestablished [Boyd et al., 2002], MY ice cover in the
Barents-Kara Seas reached a minimum in 2000–2001. The
absence of a concurrent MY ice recovery is intriguing, and
may indicate that the response of MY ice to thermohaline
dynamics in the Eurasian Basin integrates cumulative con-
ditioning over several years; however, distribution changes
due to ice motion must be simultaneously considered.
[46] Alternatively, we used cluster analysis to objectively

partition the observed CMY variability into classes (regions)
with similar interannual fluctuations in MY ice concentra-
tions. Compared to the somewhat arbitrary longitudinal
boundaries, the regions delineated by clustering expressed
the data’s inherent variability. A 14-band composite image
was constructed in which bands were sequential years and
pixel values were Okean-ERS CMYestimates. An ISODATA
clustering algorithm [Ball and Hall, 1967] was used to
define six classes, commensurate with the number of

Figure 9. January mean multiyear sea ice concentration
estimates (1997–1999), based on (left) daily SSM/I Tb
inversion by the Okean-ERS neural network and (right) 3–
6 day Radarsat s0 thresholding by the RGPS. Comparisons
were masked to pixels where the RGPS January mean was
based on �6 samples in each of the 3 years.

Figure 10. January mean multiyear sea ice areas and
linear trends (1988–2001), within six longitudinal sectors
of the study area.
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longitudinal sectors examined above. Pixels entering the
classification were required to have at least one annual CMY

estimate �80% to ensure that the algorithm was not
dominated by a small subset of highly variable pixels in
the extreme peripheral MY ice margin.
[47] The cluster analysis revealed latitudinal gradients

(Figure 11) that were dampened by the longitudinal sectors
(Figure 10). Two concentric regions of MY ice bordered the
periphery of the dense and stable central Arctic region: an
inner region with slightly less CMY and comparably low
fluctuations, and an outer region with variably less CMY

(Figure 11a). Coherency of East Siberian and Laptev Seas
regions was somewhat preserved in the cluster analysis
(Figure 11b), so the ice cover fluctuations were similar to
those of their respective longitudinal sectors (Figures 10c–
10d). The cluster analysis emphasized pronounced and
persistent CMY declines (�3.3% yr�1) in the southern MY
ice margins of the Beaufort-Chukchi Seas and the western
Eurasian Basin (Figure 11c). In the Beaufort-Chukchi Seas,
the decline’s southward emphasis substantiated diminished
MY ice transport by a weakened Beaufort Gyre [Drobot and
Maslanik, 2003], while reduced MY ice in the Eurasian
Basin complied with both a westward and accelerated shift
in the Transpolar Drift Stream [Rigor et al., 2002] and/or
increased ocean heat fluxes [Grotefendt et al., 1998; Steele
and Boyd, 1998].

3.5. Temporal Variability

[48] Total area of MY ice in the Arctic Ocean is annually
controlled by two principal mechanisms: (1) thermodynamic
recruitment or loss, governed by heat fluxes that influence
winter ice growth and summer melt [Holland et al., 1997;
Lindsay, 1998; Perovich et al., 2003]; and (2) dynamic loss,

governed primarily by wind-driven forces that export ice
through the Fram Strait [Vinje et al., 1998; Kwok and
Rothrock, 1999]. We used linear regression analyses to
examine relationships between the January estimates of
MY ice area within the Arctic Ocean (Figure 1) and
estimates of melt season duration, export, and associated
atmospheric pressure indices. We constrained analyses to the
Arctic Ocean to better correspond with the area drained by
the Fram Strait. The atmospheric indices likely incorporated
other factors that influence MY ice area such as ridging
[Holland and Curry, 1999] and trajectory of the Transpolar
Drift Stream [Rigor et al., 2002].
[49] Length of the melt season influences the probability

of FY ice surviving the summer and becoming recruited as
MY ice in following winter. We found a significant linear
relationship between the length of the melt season (days) in
FY ice [Belchansky et al., 2004] and the total area of MY ice
the following January (R2 = 0.63, Figure 12a), but only after
three outlying years (1996, 2000, 2001) were excluded (all
years, R2 = 0.21). Belchansky et al. [2004] reported that
length of the melt season (melt duration) in FY ice was
significantly correlated (r = 0.74) with the preceding winter
(JFM) AO index; hence we obtained similar results when
January MY ice area was regressed on the previous winter’s
AO index (Figure 12b).
[50] Most sea ice exported from the Arctic Ocean flows

through the Fram Strait. We examined Fram Strait area
fluxes reported by Vinje et al. [1998] for 1991–1995, and
by Kwok and Rothrock [1999] for 1979–1995. When
January MY ice area was regressed on their cumulative
monthly ice area flux estimates for the previous calendar
year, linear relationships were evident, but sample sizes
were small (Figure 12c). Kwok and Rothrock [1999] found

Figure 11. Six regions (classified by cluster analysis) with similar mean vectors in the 14-year
chronology (1988–2001) of January multiyear (MY) ice concentration estimates derived with the Okean-
ERS neural network algorithm. Class means (right) are color-coded to the mapped regions.
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that ice area flux was strongly correlated (r = 0.85) with
gradient sea level pressure (SLP) across the Fram Strait. We
regressed January MY ice area on the previous year’s
average pressure difference between 80.0�N 10.0�W and
72.5�N 20.0�E [Vinje, 2001a] using monthly SLP data from
the NCAR/NCEP 40-year Reanalysis, and found a signifi-
cant linear relationship (Figure 12d) that corroborated a
similar analysis presented by Vinje [2001a]. Interestingly,
the three outlying melt duration years (1996, 2000, 2001 in
Figures 12a–12b) were critical to statistical fit of the ice
flux regression (Figure 12d). Apparently, disposition of the
previous winter AO (through its putative effect on melt
duration in FY ice) was generally inadequate for predicting
January MY ice area following years when strong SLP
gradients across the Fram Strait caused anomalously high
ice export.
[51] When January MY ice area was regressed with both

atmospheric parameters (previous winter AO and previous
year Fram Strait SLP gradient), both contributed signifi-
cantly to the model, which explained 75% of the interan-
nual variation in MY ice area (Table 4). Although simplistic
in construct, the model indicates that atmospheric condi-
tions are closely tied to fluctuations in MY ice area through
integrated linkages with both melt duration and export.
Nevertheless, the model’s statistical fit was fortuitously
accentuated by highly variable atmospheric conditions

during 1988–2001 [Ostermeier and Wallace, 2002], which
contributed determinant extremities to the range of
regressed observations.
[52] Accelerated losses in ice cover since 1989

[Johannessen et al., 1995] have been attributed to a
distinct regime shift in the Arctic’s atmospheric circulation
patterns. The 1989 shift marked transition into a sustained
decade of anomalously positive wintertime Arctic Oscilla-
tion (AO) conditions [Thompson and Wallace, 1998]. The
shift established lower atmospheric pressure over the Arc-
tic, and was accompanied by warmer surface air temper-
atures [Rigor et al., 2000; Comiso, 2002a] and numerous
resultant changes in the sea ice environment [Maslanik et
al., 1996; Deser et al., 2000; Rigor et al., 2002; Comiso et

Figure 12. January multiyear ice area in the Arctic Ocean study area (Figure 1) regressed on
(a) previous-year mean melt duration in FY ice, (b) previous-winter AO index, (c) previous-year
cumulative ice area flux through the Fram Strait, and (d) previous-year average sea level pressure
gradient across the Fram Strait. Year labels denote January MY ice area. Open symbols denote years
excluded from regressions. Winter AO (JFM) indices were acquired from http://www.cpc.ncep.noaa.gov.

Table 4. January 1988–2001 Multiyear Ice Area (MYa)

Regressed on the Previous Winter’s (JFM) Arctic Oscillation

Index (AO) and the Previous Year’s Average Sea Level Pressure

Gradient (DSLP) Across the Fram Straita

Parameter Estimate SE S

AO (a) �0.110 0.049 0.96
DSLP (b) �0.177 0.034 >0.99
Intercept (c) 4.235 0.166 >0.99

aFor model MYa = a(AO) + b(DSLP) + c, with R2 = 0.75 and S > 0.99.
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al., 2003; Belchansky et al., 2004]. Notably, the decade
was punctuated in 1996 by a strong short-term phase
reversal in the North Atlantic Oscillation [Dickson et al.,
2000] that apparently favored conditions for a large autumn
recruitment of MY ice (Figure 8).

3.6. Thickness Changes

[53] Ice thickness is a difficult parameter to accurately
monitor, yet is a sensitive factor in predictions of amplified
Arctic warming [Rind et al., 1995; Holland and Bitz, 2003].
Multiyear ice has been diminishing from the Arctic at rates
2–3 times greater than the annual average losses in total ice
extent or area [Johannessen et al., 1999; Deser et al., 2000;
Parkinson and Cavalieri, 2002; Comiso, 2002a, 2002b;
Vinnikov et al., 2002]. Disproportionate loss of MY ice
infers net thinning and reduced volume of the ice pack,
especially during periods with large interannual fluctuations
in MY ice cover that would tend to increase the fraction of
thinner second-year ice [Comiso, 2002b].
[54] Studies of submarine sea ice draft data have reported

that accelerated thinning commenced in the late 1980s,
concurrent with the AO regime shift [Tucker et al., 2001;
Rothrock et al., 2003]. Johannessen et al. [1999] detected
the same accelerated thinning using surface elastic-gravity
wave measurements, and they also reported a strong annual
correspondence between total MY ice area and thickness of
the ice pack (r � 0.82, 1979–1991).
[55] Recent satellite altimeter measurements of Arctic sea

ice freeboard have documented large interannual changes in
mean ice thickness [Laxon et al., 2003]. Laxon et al. [2003]
analyzed altimetry data for areas with >1 m of estimated ice
thickness within 65.0�N–81.5�N during eight winters
(1993–2001), and reported a very high correlation (R2 =
0.92) between the change in consecutive winter mean ice
thickness and duration of the intervening melt season.
Similarly, we correlated Laxon et al.’s [2003, Figure 3b]
winter ice thickness changes with melt duration, but we
used melt duration estimates derived with a different passive
microwave algorithm [Belchansky et al., 2004]. We also
extended the analysis northward to 87.6�N, but restricted it
to areas of predominantly multiyear ice [Belchansky et al.,
2004] because the method Laxon et al. [2003] used to
estimate melt duration was only reliable in perennial ice

[Smith, 1998]. Likewise, we found a significant (S = 0.98)
but more modest correlation (R2 = 0.72) between ice
thickness change and melt duration. Our regression implied
a 2.2-cm decrease in ice thickness for each day the melt
season lengthened (Figure 13), compared to the 4.9 cm d�1

decrease reported by Laxon et al. [2003].
[56] We estimated annual change in MY ice volume by

multiplying Laxon et al.’s [2003] consecutive winter ice
thickness change with our neural network estimate of
January MY ice area for the latter winter. When regressed
on melt duration, an estimated 80 km3 of MY ice dimin-
ished with each increasing day of summer melt (Figure 13).
The large annual variations in volume thinning of MY
ice attributed to summer melt are noteworthy because
they’re comparable in magnitude to annual variations in
total volume export through the Fram Strait [Vinje et al.,
1998; Kwok and Rothrock, 1999], and higher than annual
variations in total freshwater input from terrestrial rivers
[Shiklomanov et al., 2000; Peterson et al., 2002]. Such
pronounced short-term changes in MY ice volume caused
by anomalous melt durations could disturb the freshwater
balance and haline convection of the Arctic Ocean’s upper
layer [Aagaard and Woodgate, 2001; Alekseev et al.,
2003].
[57] Laxon et al.’s [2003] relatively short study period

included two of the most extreme and thermodynamically
opposed melt seasons (1996 and 1998) in a 23-year record
(1979–2001) of observations [Belchansky et al., 2004]. The
second longest melt season in MY ice occurred in 1998, and
was determinant to statistical significance of our correla-
tions with thickness and volume changes (excluding 1998,
R2 = 0.41 and S = 0.87). The pronounced 1998 decrease in
mean ice thickness (Figure 13) was not accompanied by a
large decrease in MY ice area (Figure 8), substantiating a
thermodynamic loss of ice volume. In contrast, 1996 had
the shortest observed melt season in FY ice, and it preceded
the largest annual increase in MY ice cover (Figure 8)
and the largest consecutive year increase in Laxon et al.’s
[2003] mean ice thickness fields (Figure 13). The extensive
survival of FY ice during the short 1996 melt season caused
a large recruitment of second-year ice that was likely
responsible (at least in part) for Laxon et al.’s [2003]
observed increase in mean ice thickness.
[58] Concurrent with the 1989 positive AO phase shift,

interannual variability in melt duration shifted from rela-
tively constant to highly fluctuating [Belchansky et al.,
2004]. The most anomalous melt seasons of the 1990s
had significant impact on MY ice volume; reiterating the
importance of thermodynamic processes to high-frequency
changes in the Arctic’s mass sea ice balance [Laxon et al.,
2003]. However, the importance of dynamic forces should
not be overlooked, since they play a fundamental role in
shaping the thermal regimes of the sea ice environment.
During high-index AO winters, cyclonic wind and sea ice
motion anomalies promote formation of thin ice and open
leads [Zhang et al., 2000; Rigor et al., 2002] that enhance
the heat flux from water, decrease the surface albedo, and
amplify the summer melt through positive feedbacks [Curry
et al., 1995; Rigor et al., 2000]. Hence, dynamic processes
associated with winter AO conditions can imprint signatures
that persist later into the year through their influences on
spring melt and summer feedbacks [Rigor et al., 2002].

Figure 13. Consecutive winter mean ice thickness
changes (adapted from Laxon et al. [2003, Figure 3b])
and consecutive January MY ice volume changes regressed
on duration of the summer melt season in MY ice (1994–
2001). Year labels denote the summer melt period.
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During periods with stable melt duration, such as the low-
index AO phase of the1980s [Belchansky et al., 2004],
thermodynamic forces are probably more constant and
dynamic forces [Arfeuille et al., 2000] probably dominate
less variable changes in MY ice volume. Clearly, more
research is necessary to decompose and better understand
the complex interactions between dynamic and thermody-
namic processes that control melt, recruitment, and transport
of multiyear sea ice under different atmospheric circulation
regimes and trends.

4. Conclusions

[59] Neural network algorithms were developed to esti-
mate multiyear sea ice concentrations from SSM/I passive
microwave brightness temperature data (19V, 19H, and
37V) during January 1988–2001. Neural networks are able
to approximate a wide class of functions, without a priori
assumptions about their distribution laws, and build deci-
sion surfaces of any configuration using a learning process.
Here the neural networks accommodated important nonlin-
ear relationships between the three-channel SSM/I emissiv-
ity signatures of multiyear ice and its surface area. Learning
data for the neural networks utilized ice maps derived from
Okean and ERS imagery in order to indirectly exploit the
stability of multiyear ice signatures from active radar instru-
ments [Kwok et al., 1996]. After assessment of several
topologies and learning algorithms, we concluded that net-
works learned with error back propagation and simulated
annealing, under a 3-20-1 topology, produced the most
consistent and physically plausible estimates of multiyear
ice concentration.
[60] Interannual distributions of January multiyear ice

were highly variable among the 14-year time series. While
dense concentrations of multiyear ice were persistent in the
western central Arctic, peripheral regions exhibited pro-
nounced interannual fluctuations. Total area estimates of
multiyear ice by the neural network method were interme-
diate to those of other passive microwave methods (which
varied >40%), but the annual fluctuations and long-term
trends were similar among all methods. Average January
(1997–1999) multiyear ice concentration estimates by the
neural network method were only slightly less (0.9–2.5%)
than corresponding estimates derived from Radarsat data in
the Beaufort-Chukchi Seas, indicating that the network’s
use of Okean and ERS learning data afforded good conti-
nuity between multiyear ice retrievals from passive micro-
wave and those from active radar instruments.
[61] During 1988–2001, total January multiyear ice area

in the Arctic declined at a significant linear rate of �54.3 �
103 km2 yr�1 (�1.4% yr�1). Peripheral regions exhibited
variable rates of decline with pronounced interannual fluc-
tuations. Associations with atmospheric circulation patterns
were evident. The most extensive and persistent decline in
January multiyear ice occurred in the southern Beaufort
and Chukchi Seas, where average concentrations dropped
3.3% yr�1 in probable response to cyclonic atmospheric
circulation anomalies that have weakened the Beaufort Gyre
during the past decade [Drobot and Maslanik, 2003]. In
1996, a short-term phase reversal in atmospheric circulation
patterns [Dickson et al., 2000] coincided with a very large
recruitment (>106 km2) that replenished most of the multi-

year ice in the Arctic Basin, but accelerated declines during
1997–2001 offset the 1996 recruitment.
[62] Spatial and temporal variations of the Arctic’s mul-

tiyear ice cover manifest complex integrations of seasonal
ice recruitment, melt, and transport. Atmospheric circulation
patterns appeared to have controlling influences on both the
dynamic and thermodynamic processes affecting changes in
the perennial ice pack [Zhang et al., 2000; Dumas et al.,
2003]. The Arctic Oscillation index and the sea level
pressure gradient across the Fram Strait accounted for
75% of the 1988–2001 variability in multiyear ice area
fluctuations through their putative associations with dura-
tion of the summer melt season and ice export, respectively.
Melt duration also had significant influence on volume
changes in multiyear ice, corroborating the importance of
thermodynamic processes to short-term changes in the
Arctic’s mass sea ice balance [Laxon et al., 2003], although
the importance of dynamic processes in preconditioning the
thermal environment [Rigor et al., 2002] should not be
overlooked.
[63] Our 14-year analysis of multiyear ice dynamics is

insufficient to project long-term trends. Whether recent
declines in multiyear ice area and thickness are indicators
of anthropogenic exacerbations to positive feedbacks that
will lead the Arctic to an unprecedented future of reduced ice
cover [Vinnikov et al., 1999; Comiso, 2002b; Johannessen
et al., 2004], or whether they are simply ephemeral expres-
sions of natural low frequency oscillations [Vinje, 2001b;
Polyakov et al., 2002, 2003] bears significant ramifications
to Arctic ecology and global climate that clearly warrants
continued scientific investment.
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