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Abstract 

Numerical computations based on a one-dimensional time domain Boussinesq model with improved 
dispersion characteristics are carried out to model relatively long, unidirectional waves propagating 
over a submerged obstacle. Comparisons for non-breaking waves show good agreement between the 
numerical results and measurements obtained from experiments in a wave flume with a submerged 
trapezoidal bar. The observed phenomena of bound harmonics generation in the shoaling region 
(upslope) and their release, or wave decomposition, in the deepening part of the flume (downslope) 
are well predicted by the numerical model both for regular and random waves. The inclusion of the 
effects of wave breaking is briefly discussed. 

1. Introduct ion 

Harmonic generation in an initially narrow-banded spectrum of  a wave field propagating 
over a submerged obstacle has long been known both empirically and theoretically. 

Johnson et al. (1951) noted that over natural reefs the energy was transmitted as a 
multiple crest system. Jolas (1960) carried out experiments with a submerged shelf of  
rectangular section and observed harmonics of a simple incident wave on the transmission 
side when the water depth above the bar was shallow enough. Based on field measurements 
in nearshore regions with bar- t rough type bathymetries, Byrne (1969) ,  Dingemans (1989) 
and Young (1989) reported the same type of  findings. Recently Rey et al. (1992) reported 
detailed laboratory observations in the same vein. 

On the other hand, the phenomenon of  harmonic generation has been explained theoret- 
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ically, on the basis of nonlinear equations for shallow-water waves, usually after Boussinesq 
or Korteweg and de Vries. These theories were re-established by Friedrichs (1948), Ursell 
(1953) and Mei and Le Mrhaut6 (1966) on firm and rigorous bases. Peregrine (1967) 
presented a formulation, basically of Boussinesq-type, for nonlinear dispersive waves on a 
mildly sloping beach, which became a prototype for many studies of the same kind. 

Beginning from the 1970's Abbott and co-workers have developed numerical schemes 
for solving one- and two-dimensional wave propagation problems via Boussinesq models 
(Abbott et al., 1973; Abbott, 1974; Abbott et al., 1978, 1984). Following a slightly different 
approach, Schaper and Zielke (1984) developed an alternative scheme, including correc- 
tions to truncation errors, which was later enhanced by Priiser et al. (1986) and applied to 
various cases including irregular waves. 

In recent years, several improvements have been developed in the Boussinesq equations. 
Witting (1984) introduced a formulation with improved dispersion characteristics. Madsen 
et al. (1991a) utilized Witting's result to derive a new set of Boussinesq equations for 
horizontal bottom, containing additional third-order derivatives as compared to the conven- 
tional equations. This leads to improved dispersion for the higher-frequency components, 
effectively out to deep-water waves. Their technique was applied by Battjes and Beji ( 1991 ) 
and by Madsen and Scrensen (1992) to Boussinesq equations for mildly sloping bottoms. 

The formulations referred to above are in the time domain. Parallel to these, frequency- 
domain formulations have been developed, leading to coupled evolution equations for 
slowly varying amplitudes and phases of harmonic components, similar to the work by 
Bryant (1973) for Stokes waves. Reference is made to Freilich and Guza (1984) and Kirby 
(1990) for frequency-domain versions of conventional equations and to Madsen et al. 
( 1991 b), Madsen and Scrensen ( 1993 ) and Mase and Kirby ( 1992 ) for extended equation s, 
with improved linear shoaling and dispersion characteristics. 

In this paper we present the development and results of numerical computations based 
on a Boussinesq model for sloping bottoms with improved dispersion characteristics. We 
consider an isolated submerged obstacle, which poses a challenging case due to the phe- 
nomenon of wave decomposition taking place in the deepening region behind the obstacle. 
Release of bound harmonics past the obstacle, or wave decomposition, gives rise to rapidly 
varying wave forms, which can be simulated accurately only by a sufficiently nonlinear 
model with good dispersion characteristics. 

The scheme employed here is essentially based on the formulation introduced by Pere- 
grine (1967) but it differs in three aspects; namely, additional terms for improving the 
dispersion characteristics obtained as in Madsen et al. (1991a), the discretization of the 
continuity equation, and the treatment of the advective term. The development thus far is 
restricted to non-breaking waves. Work on inclusion of the effects of breaking is still in 
progress and will be reported separately; here we only mention it. 

The following section recapitulates the original and improved governing equations. 
Details of the numerical scheme are given in section 3. Comparisons of numerical compu- 
tations with results of laboratory measurements are presented in section 4. The inclusion of 
dissipation by breaking is briefly discussed in section 5. 
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2. Governing equations 

2.1. Original equations 

Equations of motion describing relatively long, small amplitude waves propagating in 
water of varying depth are given by Peregrine ( 1967): 

1 0 1 , 0  
u, + (u.  V)u + gV~= :h-2-V[V. (hu)]  -sh--2-V(V .u) 

2 Ot h o t  
(1) 

- ~ +  V. [ (h+f f )u ]  = 0  (2) 
Ot 

where ff is the surface displacement, u is the depth-averaged horizontal velocity vector, and 
h is the still water depth. For constant depth the above equations reduce to the well-known 
original Boussinesq equations. 

If the spatial variations of bottom geometry are considered mild and second--  and higher 
- -  order space derivatives of the sea bed elevation are neglected, the above equations, for 
one-dimensional propagation, read: 

l 2 
ur + uux + g~x= ~h ux.,, + hh,.ux, (3) 

~'r + [ (h + ~)u]., = 0 (4) 

where the subscripts denote partial differentiation with respect to the indicated indices and 
u is the depth-averaged velocity component in the x-direction. 

In general, Eqs. ( l ) and (2) describe waves with small but not infinitesimal amplitude, 
relatively long but not so long that the effects of depth attenuation on the pressure field are 
ignored completely. In other words, the equations represent weak nonlinearity and disper- 
sion. A lucid derivation of these equations for constant depth in terms of a nonlinearity 
parameter and a dispersion parameter can be found in Mei (1989). 

2.2. Boussinesq equations with improved dispersion characteristics 

In recent years the original Boussinesq equations have been successfully used to model 
wave phenomena in the near-shore zone, such as shoaling, refraction, diffraction, harmonic 
generation, etc. (see references cited in the Introduction). However, their poor dispersion 
characteristics in depths greater than about 20% of the wave length have been a major 
obstacle particularly in dealing with waves approaching from offshore. Several attempts 
have been made to improve the dispersion characteristics of the Boussinesq-type equations 
so that their excellent properties in the nearshore zone could be extended to deeper water. 

Witting (1984) expressed the vertically averaged velocity and the surface velocity in 
terms of a pseudo velocity expanded in Taylor series with coefficients different from the 
usual Taylor coefficients. These coefficients in turn were determined by matching with the 
Pad6 expansion of the linear theory phase celerity. 

Inspired by Witting's formulation, Madsen et al. (1991a) gave a formulation for hori- 
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zontal bottom in which they added third-order derivative terms with an adjustable propor- 
tionality factor (calibration factor) b. This was shown to give a very effective improvement 
of the linear dispersion characteristics. Battjes and Beji ( 1991 ) applied the technique of 
Madsen et al. (1991a) to Peregrine's form of the Boussinesq equations for mildly sloping 
bottoms (Eq. 1 given above). For the one-dimensional case, as considered here, the result 
is 

1 2 
ur +uux + g ~  =~h uxx, +hhxux, +bh2(uxxt +g~,xx) (5) 

~, + [ (h + OuJx = 0 (6) 

This set of equations is used in the following. The set used by Madsen et al. (1991a), as 
well as the extended version thereof by Madsen and S0rensen (1992), which allows for 
small bottom slopes, is formulated in conservative form for the vertically integrated momen- 
tum rather than in acceleration form for the vertically averaged velocity (u), which we have 
preferred because it results in a simpler momentum equation. This difference in formulation 
causes a small discrepancy between the bottom-slope terms in the momentum equation of 
Madsen and SCrensen (1992) and Eq. (5), respectively. However, this is of the order of 
magnitude of terms already neglected in the derivations. 

The factor b in Eq. (5) is not determined from first principles. It is free to take on any 
value that minimizes the overall phase celerity errors. Madsen et al. (1991a) suggest the 
value b = 1/21 as the one that leads to celerity errors less than 3% for depth-to-wavelength 
ratios up to 0.75. In our computations however the best agreement with the measurements 
was obtained for b =  1/15, which corresponds to a simpler form of Witting's original 
formulation. In a later publication, Madsen et al. (1991b) have also favored b = 1 / 15 rather 
than b = 1/21. 

3. D i s c r e t i s a t i o n  

3.1. Finite differences approximations 

It appears that the first numerical solutions of Boussinesq-type equations in the nearshore 
zone may be credited to Peregrine (1967), who also gave a formal derivation of these 
equations for a mildly sloping bottom and estimated the amplitude of waves reflected from 
the slope. Actually, a year earlier, Mei and Le Mrhaut6 (1966) had derived the same type 
of equations in a different manner and outlined a numerical scheme based essentially on 
the method of characteristics but they did not include any computations. 

In discretizing the momentum equation we shall basically follow Peregrine (1967) but 
the discretization of the continuity equation will be different because we base it on the 
conservation form, Eq. (6), rather than expanding the volume flux term. First, an explicit 
formulation of the continuity equation is used to obtain a first estimate of the surface 
displacements at the new time level O' + 1 ): 

~i.j+l --~i,j ~_ [ ( h + O u ] i + l . j -  [ ( h + ~ ) u ] i - l j  0 (7) 
At 2Ax 
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where the indices i and j stand respectively for the integers multiplying the increments in 
space and time. 

This first estimate of the surface displacements is used in an implicit discretization of the 
momentum equation, Eq. (5) with b = 1 / 15, to compute the velocity at the new time level 
( j +  1): 

U i . j +  1 - -  Ui , j  U i +  l . j +  1 - -  U i - -  l , j +  1 + U i +  I , j  - -  Ui--  l . j  

A t  " ~ - U i ' j + l / 2  4 A x  

~i+ l,j+ 1 - -  ~ i - -  l . j  + I ~ -  ~i  + I , j  - -  ~ i - -  l,j 

+ g  4&X 

_ 2 h2 ui+ i j +  l - 2ui,j+ l + u i -  t,j+ 1 --  Ui+ l,j "1- 2Ui,j -- Ui-- l,j m 
5 

+ h i  

~:2At 

hi+ 1 - -  hi- 1 U i +  l , j +  I - -  /~ i - -  l . j +  1 - -  U i +  l , j  + Ui- -  1, j  

2Ax 2AxAt 

1 f f i+2 , j+  1 - -  2 ~ i + 1 j + 1  + 2 ~ i - l , j + l  
+ - -  gh~ 

15 4Ax 3 

1 - -~ ' i - -2 . j+  1 +~i+2j--2~i+ljh-2~i-t.j--~i-2,j + - -  gh  2 • , 
15 4&,c 3 

(8) 

Note that central differences formulations are used both for time and space derivatives, 
which are computed at ( i j  + 1/2). The above formulation is suitable for application of the 
double-sweep algorithm which is the most efficient way of solving a tri-diagonal matrix 
system as long as the diagonal elements are dominant. 

Finally, the following discretization of the continuity equation is applied with the use of 
the new time level velocity field obtained from Eq. (8) and the provisional surface elevation 
from Eq. (7) in the nonlinear terms: 

~i , j  + I - -  ~i , j  

A t  

+ [ ( h + ~ ) u l i + 1 3 +  , - [ ( h +  ~ ) u l i - 1 4 + l  + [ ( h + ~ ) u ] i + l , j - -  [ ( h + ; ~ ) u l i - l . j  = 0  
4 A x  

(9) 

From this equation, improved estimates are obtained of the surface elevations at the new 
time level. Iteration between Eqs. (8) and (9) could have been carried out but was found 
to be unnecessary. 

In Eq. (8),  the factor ui j+ ~/2 in the advective acceleration term denotes the value of 
depth-averaged horizontal velocity at time t + ½At. It arises because all the derivatives are 
centered. In the original formulation, Peregrine (1967) uses the old time level value, uij as 
an approximation. Our computational tests with steep solitary waves however showed that 
this causes a gradual but consistent decay in wave height as time progresses. It was therefore 
necessary to estimate Ui , j+  1 / 2 "  
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To do this, we begin with the following Taylor series expansion truncated at the first 
order: 

a_t 
ui~=ui ' i+t /2  2 at i j + l / 2 + " "  (10) 

In order to estimate ur at time t + ½At, we first approximate ur by employing the momentum 
equation for the shallow water approximation, u, ~- - u u x -  g~,. The term u~ can be computed 
only at time t. We can however replace it with the time derivative of the surface displacement 
by employing the linearized continuity equation, ux = - ~,/h. After solving Eq. (10) for 
uij+ i/2 and substituting all the replacement terms we obtain: 

ui4 +,/2 "~ uij  +--~[~  - g ( 11 ) 
i,j+ i/2 

Except for the term uij+ 1/2, all the quantities on the right are available because at this stage 
of  our routine we have solved the continuity equation explicitly and obtained the surface 
displacement (provisional value) at the new time level. The factor uij + i/2 on the right can 
be handled in three different ways. The simplest is to replace it with uij, the value at time t. 
A better way is to take it to the left side of  the equation, combine it with the other u~j+ ~/z 
term there and then solve for uij+ ~/2. The third approach is to expand it in a Taylor series 
as in Eq. (10),  and then to replace u~ with - g ~ .  In our computations we have employed 
the last approach. 

Estimation of  u~j+ l/2 as described above did not completely cure the wave height decay 
observed in numerical simulations of very steep solitary waves; however it did provide 
visible improvements and therefore was included in the numerical scheme. 

3.2. Initial and  boundary condit ions 

The initial condition used in all our computations is the unperturbed state; that is, at time 
t = 0 both the surface displacements and the velocities are set to zero throughout the com- 
putational domain. 

The boundary conditions are handled as follows. At the first node, i = l, the surface 
elevation is specified either as an input from the measurements or as some other appropriate 
function specified at each time step: 

~'t (t) =f(t)  (12) 

The depth-averaged velocity is computed from the continuity equation for a progressive 
wave: 

u t ( t )  c l ~ l ( t )  (13) 
hi + ~'l (t) 

The subscript 1 stands for the quantities at the first boundary node, and ct and hi denote 
respectively the phase celerity and water depth at the first node. c~ is computed from the 
linear dispersion relation corresponding to Eqs. (5) and (6) for the (dominant) incident 
wave period. 
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At the outgoing boundary, i = n, we have used the radiation condition both for the surface 
displacement, when solving the continuity, and for the velocity, when solving the momen- 
tum equation: 

~'t + c~'x = 0  a t i = n  (14) 

u, + cux = 0 at i = n 

with c--- (gh )  1/2. Eqs. (14) are discretized as follows: 

l[w".J+l --W".J_l_W'~-'..i+l --W"-l.J]= _2[W",i+l --W"-l.j+l +W'~.,--z~ff-l,i ] 
2L At At Ax 

(15) 

where w =  [ ~',ul T. 
Condition (14) in principle ensures that the disturbances, with phase velocity c, travel 

only in the positive x-direction and leave the domain without reflection. On the other hand, 
waves with phase velocities different from c cannot be expected to radiate away without 
any problem. For this reason, the above condition is sometimes bolstered with the so-called 
sponge layer, which damps the outgoing waves either by a viscous or a frictional type - -  
Newtonian cooling - -  term which has a gradually increasing coefficient within the sponge 
layer (Israeli and Orszag, 1981 ). 

For obtaining spectral estimates from time domain simulations of  random waves it was 
necessary to perform long runs, which in turn required good absorption of outgoing waves. 
After trying several sponge-layer-plus-radiation-condition formulations and comparing 
these results with the radiation-condition-alone computations we have decided to drop the 
sponge layer because there was no appreciable improvement. Instead, at the expense of 
some data points, we performed a sequence of cold start computations which enabled us to 
clean our numerical wave tank before reflected waves could manifest themselves in the 
domain of interest. 

The third spatial derivative of  the surface displacement, appearing in Eq. (8) ,  requires 
some additional effort at the boundary nodes. For the node i = 2, at which the computation 
commences,  it is necessary to know ~'o, the surface displacement just outside the upwave 
boundary node i = I. Likewise, for the node i = n - l, at which the computation ends, ~',, + 1, 
the surface displacement just outside the last node i = n, must be known. We obtain these 
values by linear extrapolation: 

~o,j = 2~'l,j -- ~'2,j 

~ +  I.i ~ 2~na - ~ , - I . j  (16) 

4. Numerical results 

4.1. Input  data, computat ional  parameters ,  comparisons  

Results of  numerical computations, based on the extended Boussinesq model described 
above, are now compared with experimental results. 
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The experiments were carried out in a wave flume with a submerged trapezoidal bar (see 
Fig. 1 ). Free surface displacements were measured by parallel-wire resistance gages at 
seven stations as shown in Fig. 1. Detailed information about the experiments can be found 
in Beji and Battjes (1993). 

The experiments included breaking and nonbreaking waves. The results shown below 
are for steep but nonbreaking waves only. These runs were made with periodic incident 
waves (frequency)= 0.5 Hz, wave height H =  2.0 cm) as well as random incident waves 
(JONSWAP-shape spectrum, peak frequencyfp = 0.5 Hz, significant wave height H~ = 1.8 
c m ) .  

Time histories of surface displacement at station 1 and the corresponding depth-averaged 
velocity were used in the seaward boundary conditions. All cases shown were calculated 
with ~x approximately equal to 1/70 of the initial wavelength and At equal to 1/50 of the 
initial wave period (which corresponded to the 25 Hz sampling rate used in the experi- 
ments). Thus, the Courant number, c(At/Atx), at the seaward boundary was nearly one. 
Spatial and time resolutions of the initial wavelength and period were comparatively high; 
this was necessary for sufficient representation of the free higher harmonics generated at 
the lee side of the bar. Indeed for the fourth free harmonic the above resolutions were 
approximately 1/8 of the wavelength and 1/12 of the wave period, respectively. If the 
computations were to stop before the downslope section, where the free higher harmonics 
became particularly manifest, less stringent resolutions would be sufficient for obtaining 
good agreement between computed and measured values. 

Fig. 2 shows time domain comparisons of the measured and computed surface displace- 
ments for regular waves in the locations of gages 2 through 7. In Fig. 3 time histories of 
measured surface displacements are compared with the numerical simulations for steep but 
non-breaking random waves with a JONSWAP type spectrum while corresponding spectral 
estimates are plotted in Fig. 4, for stations 2-7. The spectral density estimates shown here 
have 80 degrees of freedom with 15.8% statistical error. 

4.2. Discussion of results 

Inspection of the figures shows at a glance that the model simulates the observed evolution 
and decomposition of the wave field very well, for the periodic waves as well as for the 
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Fig. 2. Surface elevations at several stations for monochromatic incident waves with frequency 0.5 Hz and wave 
height 2.0 cm. ( ) Measured values; ( + ) values obtained computationally with the improved Boussinesq 
model. 

irregular waves. The initial nonlinear steepening on the seaward slope is well represented, 
and also the subsequent enhancement of higher harmonics and ensuing profile distortion. 
The good representation of the wave field even in the area of its decomposition, where free 
second and higher harmonics propagate in relatively deep water, is particularly noteworthy. 
This remarkable performance is ascribed to the following points. 
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Fig. 3. As in figure 2, except that here the incident waves are random with a JONSWAP-shape spectrum with 
peak frequency 0.5 Hz and significant wave height 1.8 cm. 

First, the improved dispersion characteristics of the Boussinesq model as introduced by 
Madsen et al. (1991a) allow the propagation of relatively short waves, which is crucial in 
the downslope region due to the reasons indicated above. Secondly, the refinement intro- 
duced into the numerical scheme by the conservative type discretization of the continuity 
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Fig. 4. Spectral  densi ty funct ions o f  the surface elevations as in Fig. 3; legend as in Fig. 2. 

equation instead of the discretization proposed by Peregrine (1967) reduces the total 
discretization errors and results in better agreements with measurements. Finally, the 
improved estimation of the nonlinear term provides additional enhancement especially for 
steep waves. 

In order to demonstrate the overall effect of these improvements, results of some com- 
putations based on the non-extended Boussinesq equations (b = 0) and Peregrine' s original 
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numerical scheme are presented. Fig. 5 shows time domain comparisons for regular waves 
at stations 5, 6, and 7. At station 5 discrepancies between measured and computed values 
are basically due to the discretization errors of the continuity equation rather than the poor 
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Fig. 5, Surface elevations at stations 5, 6 and 7 for monochromatic incident waves with frequency 0.5 Hz and 
wave height 2.0 cm. ( ) Measured values; ( + ) values obtained computationally with Peregrine 's  Boussinesq 

model. 
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dispersive characteristics of the original equations because at this station the magnitude of 
higher harmonics are not yet comparable with the primary wave component. At stations 6 
and 7 however the essential cause of the disagreements is the original model's inability to 
propagate shorter waves. Discretization errors are of secondary importance here. 

5. Inclusion of breaking 

The experimental results used above are for nonbreaking waves. They are part of a more 
comprehensive investigation in which also waves were included which were breaking on 
the bar. The major conclusion of this investigation was that, for the conditions of the 
experiments, the generation of high frequency energy and its transfer among nearly harmonic 
wave components due to the nonlinear interactions taking place in the course of the waves' 
passage over the bar, are hardly affected by wave breaking, which was found to simply re- 
scale the wave spectrum through overall energy dissipation without changing the spectral 
shape significantly. A concise substantiation of this statement is offered in Fig. 6, in which 
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Fig. 6. Normalized measured spectral density functions at four stations for JONSWAP incident spectrum. 
( ) Nonbreaking waves, ( + ) plunging breakers. 
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direct comparisons of normalized spectra for JONSWAP type incident waves, fp = 0.4 Hz, 
for non-breaking and plunging waves at stations 2, 4, 6, and 8* are made. The normalization 
is such that the total area under the spectrum for every case is unity. Obviously, the spatial 
evolutions of the spectral shape follow almost identical trends regardless of the occurrence 
of breaking. 

The aforementioned experimental finding led Battjes and Beji (1991) to suggest a 
combined model, using the energy-conserving Boussinesq equations for the evolution of 
the spectral shape, in conjunction with a semi-empirical model to simulate the overall wave 
energy dissipation due to breaking. Such model has been implemented, using the energy 
dissipation model of Battjes and Janssen (1978). Preliminary results of this model look 
very promising (Battjes et al., 1994). A similar combined model has been presented by 
Mase and Kirby (1992). 

6. Conclusions 

An improved numerical scheme has been developed for a Boussinesq set of equations 
with an extension so as to improve the linear dispersion characteristics. The performance 
of this model has been tested by comparisons with measured surface elevations in waves 
travelling over a bar. The comparisons, for monochromatic and random waves, clearly 
demonstrate that the improved Boussinesq equations, as discretized here, are capable of 
reproducing the essential features and even the details of nonlinear wave transformations 
over barred topographies, even in the region of rapid wave deformation in deeper water 
behind the bar. Also, a possible approach is sketched for the inclusion of the effects of wave 
breaking by combining a semi-empirical energy dissipation formulation, to simulate the 
overall energy loss, with a Boussinesq-type model for the simulation of the evolution of the 
spectral shape. 
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Notation 

The following symbols are used in this paper: 
b calibration factor 
c phase velocity; 
f wave frequency; 
fp wave frequency at the spectral peak; 

*These results are from a different set of measurements with eight stations and 0.4 Hz peak frequency. 
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g gravitational acceleration; 
h water depth from still water level; 
H wave height; 
H~ significant wave height; 
i running index for spatial increments; 
j running index for time increments; 
k wave number, 27r/h; 
t time; 
u horizontal depth-averaged velocity component; 
x horizontal coordinate; and 
~" surface displacement as measured from still water level. 
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