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CONVERGENCE OF A BOUNDARY INTEGRAL METHOD FOR WATER WAVES* 

J. THOMAS BE ALE^, THOMAS Y. H O U ~ ,AND JOHN LOWENGRUB§ 

Abstract. We prove nonlinear stability and convergence of certain boundary integral methods for time-dependent 
water waves in a two-dimensional, inviscid, irrotational, incompressible fluid, with or without surface tension. The 
methods are convergent as long as the underlying solution remains fairly regular (and a sign condition holds in the case 
without surface tension). Thus, numerical instabilities are ruled out even in a fully nonlinear regime. The analysis 
is based on delicate energy estimates, following a framework previously developed in the continuous case [Beale, 
Hou, and Lowengrub, Comm. Pure Appl. Math., 46 (1993). pp. 1269-13011. No analyticity assumption is made for 
the physical solution. Our study indicates that the numerical methods must satisfy certain compatibility conditions 
in order to be stable. Violation of these conditions will lead to numerical instabilities. A breaking wave is calculated 
as an illustration. 

Key words. water waves, boundary integral methods, surface tension 
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1. Introduction. In this paper we prove convergence of certain boundary integral meth- 
ods for time-dependent, two-dimensional water waves, that is, waves on the surface of an 
inviscid, incompressible fluid in irrotational motion under the influence of gravity and pos- 
sibly surface tension. Boundary integral methods have been used extensively for calculating 
the motion of fluid interfaces. A partial list of works, discussed further below, includes [And, 
BMO, BN, BS, CS, Do, DY, GAS, Kerr, Kral, Kra2, LC, Moor, NMP, Pull, RS, Rob, Shel, SS, 
Tryg, VB, WBJ, Ye]. In boundary integral methods, the interface is tracked by markers which 
move with the fluid. While there are many variants, a key feature is that only quantities on 
the surface need to be computed because of the irrotationality. For water waves, the velocity 
field is expressed as a singular integral, determined by the position of the interface and one 
more scalar quantity, which could be the velocity potential, dipole sheet strength, or vortex 
sheet strength. The formulation used here is closely related to that of [BMO, Bak]. Numerical 
instabilities have been encountered and dealt with in computations, and linear analysis at equi- 
librium has identified sources of instability [Rob, Do, BN], but there has been no complete 
error analysis of boundary integral methods. (An exception is the ill-posed case of vortex 
sheets for which the solutions must be assumed analytic [CL, HLK].) The rigorous proof of 
convergence of the particular numerical methods for water waves presented here means that 
numerical instabilities are ruled out even in the fully nonlinear regime, as long as the solution 
remains fairly regular. A filtering in high wave numbers is used in evaluating the singular 
integrals occurring in the time step in order to maintain the numerical stability; the methods 
are designed so that accuracy is preserved even with this filtering. A calculation of a breaking 
wave without surface tension is presented as an example of the capability of these methods 
(see Figures 6-12). 

Error analysis for boundary integral methods is difficult, especially far away from equilib- 
rium, because of the nonstandard nature of the equations. Our convergence proof uses energy 
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estimates in discrete Sobolev spaces with norms measuring several derivatives. In order to 
maintain numerical stability, balances among terms with singular integrals and derivatives have 
to be taken into account. Examples indicate that poorly chosen discretizations can indeed lead 
to numerical instabilities. Our analysis follows a framework developed in the continuous 
case for linearized motion perturbed about an arbitrary exact solution [BHLl]. A balance of 
important terms was observed in the continuous equations. However, new difficulties arise at 
the discrete level. The discretization must not introduce new instabilities in the high modes, 
and this requires that certain compatibility conditions be imposed in the way various terms in 
the equations are discretized. For this reason, the choice of rules for integration and differen- 
tiation, as well as the placement of the filtering, is interdependent and affects whether or not 
the numerical method is stable. 

We now state the water wave problem in a form which leads naturally to the numerical 
method of interest. This formulation is very close to that of [BMO] for the more general case 
of an interface separating two fluids. For simplicity we assume that the fluid has infinite depth. 
The fluid interface is parametrized by a complex variable z ( a ,  t )  at the time t .  The parameter a 
is the Lagrangian variable. Further, we denote by $ ( a ,  t )  the velocity potential on the interface, 
and the real part and the imaginary parts of z as x and y ,  i.e., z(a ,  t )  = x ( a ,  t )  + i y (a ,  t ) .  
To obtain a system of evolution equations, we need to express the velocity potential in the 
fluid domain in terms of these two variables. Following [BMO] and [BHLl], we express the 
complex potential by a double-layer representation. Denote by p ( a ,  t )  the dipole strength to 
be determined from 4. We can write the complex potential @ in the fluid domain in terms of 
p as the principal value integral 

The real velocity potential in the interior is 

where G ( z )  = (2n) - I  log lzl. The normal derivative is taken outward from the fluid domain. 
The nonnormalized vortex sheet strength y is given as the Lagrangian derivative of the dipole 
strength, i.e., y = pa = ap/aa. For simplicity, we often drop the time variable from now 
on, but all the quantities z, p ,  4, and y will be time-dependent. It follows from the Plemelj 
formula of complex variables, or the properties of the double-layer potential, that the value of 
$ on the interface is given by 

Differentiating both sides of the $ equation with respect to a and integrating by parts, we 
obtain 

The complex velocity w = u - i v  can be obtained by differentiating the complex potential 
with respect to z .  We get 

1 
w=-=- y ( a l )  da ' .  
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Using the Plemelj formula one more time, we obtain the velocity on the interface 

where we have taken the limit of z approaching the free surface z(a) from the fluid region. 
Since a is a Lagrangian coordinate, the velocity of the interface is that of the fluid below, and 
we obtain an evolution equation for the interface 

az
-(a, t )  = w*(a, t), 
a t  

where the asterisk denotes the complex conjugate. For the evolution of $(a,  t), we use 
Bernoulli's equation. If we neglect surface tension, the pressure is zero at the interface. (The 
case with surface tension included will be treated later.) Thus, Bernoulli's equation in the 
Lagrangian frame is 

From now on, with z(a,  t)  = ar +s(a ,  t), we assume that s(ar, t )  and @(a ,  t)  are periodic 
in a with period 2 ~ r .  This implies that the flow is at rest at infinity. The singular kernel 
in the velocity integrand now becomes cot(;). To summarize, we obtain a system of time 
evolution equations for z and @ as follows: 

(1) z: = -
1 

y (a1) cot ( Y (a)  = W(QI,t) ,
4ni -, 2 2zE (a)  

Equations (1)-(3) completely determine the motion of the system. A unique solution is 
specified by giving initial conditions for the interface position z and the velocity potential @. 
It can be shown that the integral equation for the vortex sheet strength y can be solved in 
terms of @ [BMO]. This is done at each time; we then use the interface equation (1) and the 
Bernoulli equation (2) to update z and @. 

In order to use the system (1)-(3) for a numerical algorithm we need to make choices 
for a discrete derivative operator and a quadrature rule. In addition, we use a filtering of the 
interface location z. These choices must be made in conjunction. We find it natural to use 
a filtering related to the Fourier symbol of the derivative operator. To describe these choices 
further, we recall that the discrete Fourier transform is defined by 

The inversion formula reads 
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Here we assume N is even. We note that ikis periodic ink with period N. A discrete derivative 
operator may be expressed in the Fourier transform as 

We will always assume p ( n )  = 0; this is important in some of the arguments to follow. The 
choice of p (x) depends on the derivative operator. For the second-order centered difference 
operator, we have 

for the fourth-order centered differencing, 

and for the cubic spline approximation, 

It is clear that for the rth-order difference operator p (kh) satisfies 

Alternatively, if Dh is a spectral derivative, applied directly in the Fourier transform, we can 
choose p(kh) to be of infinite order. In this case we will assume that p satisfies the following 
properties: (i) p(-x) = p(x) and p(x) 2 0; (ii) p(.) E c2and p ( n )  = 0; and (iii) p(x) = 1 
for Ix 1 5 An, where 0 < h < 1. Property (iii) guarantees that Dh is spectrally accurate. We 
denote by Sh the pseudospectral derivative operator without smoothing. This corresponds to 
the case of p (kh) = 1 in the definition of Dh. 

The filtering or smoothing in the interface variable will be done by multiplying by p(kh) 
in the Fourier transform. When zj is an approximation to z(aj), s j  = zj - a, will be periodic. 
We define zp as olj +ST,where 

It is clear that zP is an rth-order approximation to z if p corresponds to the rth-order derivative 
operator. Similarly, if Dh is a spectral derivative, we take Dhzj to mean 

To approximate the velocity integral, given discrete functions zj x z(olj) and yj x y (a;.),we 
use the alternating trapezoidal rule, with smoothing in zj as above: 

Now we can present our numerical algorithm for the water wave equations (1)-(3) as follows: 
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These equations can be solved once initial conditions are specified for zi and #i and a time 
discretization is chosen. The integral equation (9 )must be solved for yiat each time step. Its 
solvability is proved in Lemma 5 below. In practice it is solved iteratively. The version of this 
algorithm with surface tension will be discussed later. 

Error estimates will be given in terms of the discrete no norm, given by 

We now state the convergence theorem for the numerical method without surface tension, 
followed by further discussion. 

THEOREM1. Assume that an exact solution of the water wave equations is regular 
enough so that z( . ,  t ) ,  #(., t )  E c"+~[o, 2x1 and y (., t )  E crn+l[O,2x1 for m 2 3, and 
lz(a, t )  - z ( B ,  t )1 2 cia - ,6 I for 0 5 t 5 T and some c > 0. Furthermore, assume the 
condition 

( 1 1 )  (u, ,  u , ) . n  - (0, -g) . n  2 co > 0 

holds at each point on the inteij5ace. Here ( u ,  u )  is the Lagrangian velocity, n is the normal 
vector to the integace (pointing out of the fluid region), and co is some constant. Suppose the 
numerical solution z( t ) ,  # ( t ) ,  y ( t )  of the initial value problem is computed using algorithm 
(7)-(9). Then if Dh is an rth-order derivative approximation with r 2 4, we have for h 5 
h o ( T >  

If Dh is a spectral approximation as above, we have the same convergence result with hr 
replaced by hm in the right-hand sides. 

Condition (1 1) simply means that the interface is not accelerating downward, normal to 
itself, as rapidly as the normal acceleration of gravity. It can be viewed as a generalization of 
the criterion of Taylor [Tay] for horizontal interfaces to rule out Rayleigh-Taylor instabilities. 
It appears naturally as a sign condition in the argument below, as well as in the analysis of 
[BHLl]. Of course the exact solution may become singular at a later time, and the theorem 
asserts convergence only as long as the solution is regular. Existence results for time-dependent 
water waves with a finite degree of smoothness are rather limited. They began with the work 
of Nalimov; see [Craig] and the references cited therein. 

The result proved here could be extended in several ways. In the case of finite-order 
derivative operators, we can improve the results by using asymptotic error expansions in 
the spirit of Strang [Str]. Then we can improve the convergence rate for y to the optimal 
order, i.e., hr.  Also, Strang's argument would enable us to prove convergence of the scheme 
corresponding to the second-order centered difference approximation. While our analysis 
shows that one set of choices leads to a fully convergent method, it is of course possible that 
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other choices could be made which are convergent; for example, a different quadrature rule 
might be used for the singular integrals, as has been done in practice. 

We have assumed here that the depth of the water is infinite. However, this boundary 
integral formulation can be modified to allow for a solid bottom below the fluid; see [BMO, 
$41. If the bottom is horizontal, we need only replace the fundamental solution G with the 
half-space Green function with a Neumann boundary condition. For a more general shape 
we need to include a single-layer integral over the bottom in the velocity potential, leading to 
an additional integral term in the velocity expression; see [BMO, Eqs. (4.1)-(4.7)]. The new 
integral terms over the bottom are similar to those before, but filtering of the location is not 
needed as in the integrals in (7) and (9) on the surface since the bottom boundary does not 
change. We expect that the convergence proof could be modified to include this more general 
case. 

The Fourier filtering in the discrete integrals of (7) and (9), replacing z with z< is intro- 
duced to balance the high wave number errors introduced by Dh;this is the reason the filtering 
is determined by the derivative operator. It will become apparent in the analysis that numerical 
stability is maintained in this way. Of course, this filtering within the increment in the time step 
is quite different from smoothing the entire computed solution. We do not need to apply filter- 
ing to y ; when we solve for y in (9), it is filtered implicitly through Dh and z p .  To illustrate 
that filtering is necessary for stability, we present several numerical calculations for finite- 
order derivatives without using this filtering (see $6). It is clear that numerical instabilities 
dominate the calculations in a short time. In the case of the pseudospectral derivative (p = I) ,  
the high wave number errors would in principle not be generated. However, numerical and 
analytical experience indicates that the pseudospectral method without smoothing introduces 
aliasing errors when the physical solution is underresolved (see [GO], [HLS]). Certain Fourier 
smoothing or dealiasing is thus required to stabilize the method. In our case with spectral 
derivatives, the inclusion of smoothing in the derivative is needed for our arguments, and it 
makes the filtering of z necessary, just as for finite-order derivatives. 

We treat the case with surface tension in $5. We show that in the presence of surface 
tension, properly designed numerical schemes are stable and convergent even in the case 
where the flow is unstably stratified. The manner of discretizing the spatial derivatives in the 
curvature is critical for stability. As before, discretization could introduce high wave number 
errors which destroy the stabilizing effect of surface tension at the discrete level. This can 
be seen by performing classical normal mode analysis around equilibrium solutions. Such 
analysis was done with various schemes for vortex sheets with surface tension in [BN]. 

To estimate the errors in the numerical solution and prove Theorem 1, we first write 
equations for the difference between the computed and exact solutions. The errors separate 
into consistency and stability parts. The stability analysis is difficult, largely because of the 
discretizations of the singular integrals. Individual terms occur which are as singular as those 
which cause Kelvin-Helmholtz instabilities in related problems which are not well posed. 
The terms which are linear in the error are the most important. Our approach is to identify the 
leading-order linear contributions and see how the various terms balance one another. To this 
end, we need to study the Fourier symbols of discrete singular operators, such as the discrete 
Hilbert transform and its variants. In [BHLl] it was found that the linearized equations have 
a qualitative structure surprisingly like that for the case near equilibrium. Here a similar 
structure is maintained, but the arguments are more complicated because of the discretization. 
An important consequence is that the most singular terms cancel out to the highest order. The 
remaining linear terms can be shown to be bounded independent of the wave number and 
the discretization parameter. The nonlinear terms are relatively easy to control because of the 
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smallness of the truncation error, provided the solution is fairly smooth and the method is of 
high-enough order of accuracy. Although the continuous case treated in [BHLl] serves as a 
guide, the argument here is independent of the earlier work. Similar analysis can be applied 
to other physical problems; these will be reported in [BHL2, BHL3, BHL4, BHLS]. 

Numerical methods with Lagrangian markers were attempted for vortex sheets long ago 
by Rosenhead [Ros]. (The vortex sheet in a single fluid is a special case in that the sheet 
strength is conserved, and only the interface position must be computed.) Such methods 
for more general fluid interfaces were apparently first proposed by Birkhoff [Bir]. The first 
successful boundary integral method was developed by Longuet-Higgins and Cokelet [LC], 
who calculated plunging breakers. Boundary integral methods for the exact, time-dependent 
equations have been developed and used in many other works, including Vinje and Brevig 
[VB], Baker, Meiron, and Orszag [BMO, Bak], Pullin [Pull], Roberts [Rob], New, McIver, 
and Peregrine [NMP], and Dold [Do]. Early work was reviewed by Schwartz and Fenton 
[SF] and Yeung [Ye]. A related approach for water waves is based on perturbations about 
equilibrium in Eulerian variables. An expansion in powers of the surface height is used to 
calculate Fourier modes. These works include Stiassnie and Shemer [SS], West, Brueckner, 
and Janda [WBJ], Dommermuth and Yue [DY], Glozman, Agnon, and Stiassnie [GAS], and 
Craig and Sulem [CS]. The last paper [CS] has the advantage that the expansion is evidently 
uniform in wave number. The Fourier method of Fenton and Rienecker [FR] is Eulerian but 
has some features in common with Fourier versions of the boundary integral method. Methods 
of boundary integral type have been used even for the ill-posed cases of fluid interface motion, 
including vortex sheets and Rayleigh-Taylor instabilities [Moor, And, Kral, Kra2, Kerr, Tryg, 
BS, Shel]. Either a regularization or filtering of high wave numbers is necessary to maintain 
an accurate solution. Surface tension is included in some interface calculations [Pull, RS, BN, 
HLS]. Related methods have also been used for viscous flow [Po]. 

Linear analysis has contributed to the understanding of numerical instabilities for bound- 
ary integral methods. Robert [Rob] showed how to remove a sawtooth instability. Baker and 
Nachbin [BN] have performed Fourier analysis near equilibrium for various schemes for a 
vortex sheet with surface tension, identified sources of instability, and proposed new schemes 
which are free of linear instabilities. Dold [Do] emphasized the role of time discretization 
with respect to instabilities. Hou, Lowengrub, and Shelley [HLS] introduced implicit time 
discretization with surface tension to avoid a severe time step constraint. 

The advantage of using the alternating trapezoidal quadrature is that the approximation 
is spectrally accurate. This and related quadrature rules have been used by several authors in 
the literature. Baker [Bak] used the alternating quadrature rule for a desingularized integrand 
in water wave calculations. It gives a quadrature similar to (6) but with a different (and desin- 
gularized) integrand. Sidi and Israeli [SI] analyzed the spectral accuracy of a midpoint rule 
approximation for a periodic singular integrand. They realized that the alternating quadrature 
rule applied to singular integrals, as in (6), gives spectral accuracy. Shelley [Shel] used scheme 
(6) (with Krasny's filtering) in the context of studying the vortex sheet singularity by vortex 
methods. By using the spectral accuracy of the alternating trapezoidal rule, Hou, Lowengrub, 
and Krasny gave a simplified proof of convergence of the point vorex method for vortex sheets 
[HLK]. 

The rest of the paper is organized as follows. Sections 2 and 3 are devoted to studying 
the consistency and stability, respectively. We present the convergence proof in §4. In 5.5 
we consider the case when surface tension is included. In §6 we present some numerical 
calculations which show that there is a class of unstable discretizations for the water wave 
equations (some of which have been used in the past). Comparisons in both physical and 
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spectral spaces are made with our stable scheme. A calculation of a breaking wave without 
surface tension is presented as an example of the capability of the numerical method. Finally, 
we prove a few technical lemmas in the appendix. 

From now on, we will use z(aj) ,y (a j ) ,and 4(a j )to represent the exact solution, and z j ,  

yj, and 4j to represent the discrete solution. 

2. Consistency. We first discuss the accuracy of the quadrature in (7). By change of 
variables a' = a + /? and using periodicity, we rewrite the velocity integral as 

l: y (a + 8 )cot ( z(a)- z(a + 8 ) )
y (a1) cot - dal = 

2 2 

z(a>- z(a + B )
= S x [ y ( a + ~ ) c o t (  dB,-7c ) + z f f(a )cot (:>I 

where we have used the fact that cot($) is an odd function and the integrals are principal value 
integrals. Note that the last integral on the right side of (12)has a removable singularity: > + ""cot ( ;>I = y (a)zuu(a)--2yff(a)

zf f(a )  z f f ( ~ ) ~  z f f(a )  

We define 

(12) F(a,B )  - y (a+ B ) cot ) + ..,cot (5)z f f(a )  

and 

Recall that z ( . )  E ~ " + ~ [ - n ,  En ]  and y(.) E cm+'[-n, n ] .  We conclude that F(a, .) 
Cm[-n, n ] .  It is well known that the trapezoidal rule approximation of a smooth periodic 
function gives spectral accuracy [DB]. We obtain 

Note that 

which implies 

Substituting (12)into (15),we obtain 
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In deriving (16),we have used the fact that cot($) is an odd function of f3,  and N is even. On 
the other hand, we know that if Dh is an rth-order approximation to D,, then 

If Dh corresponds to the spectral derivative operator, then we have (see, e.g., [Tad, p. 5421) 

Moreover, note that corresponding to the rth-order derivative operator Dh and z = a + s ( a )  

We have 

Combining (16)-(18), we have proved the following consistency result. 
CONSISTENCYLEMMA.The exact solution of the water wave equations z ( a ,  t ) ,  $ ( a ,  t )  

satisfies the discrete equations (7)-(10) with a truncation error of size 0 ( h r )  for the rth-order 
derivative operator (r  = m for the spectral derivative). 

3. Stability. To obtain stability of the method, one of the terms we need to estimate is 

in terms of zj -z ( a j )and yj - y ( a j ) .  For technical reasons, it is easier to work with the kernel 
in the infinite domain than in the periodic domain. To this end, we first extend the sum over a 
single period to the sum over the whole line. We note that 

which converges absolutely away from z = 2nk for any integer k. We have 
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Recall that z(a,t )  = a + s(a, t )  and s(a, t )  is 2n-periodic in a.  We obtain 

We define 

Then we obtain by a change of variables that 

Combining (19)and (20), we obtain 

Throughout the paper, we will use the notation 

Similarly, one can show that the corresponding extension holds for the numerical solution. 
We have 

where we have assumed that ST = Z; - a, is extended periodically outside the interval 

(-?N + 1 5 j 5 :); i.e., s!*N = ST.  Note that zj is different from z ( q ) ; zj  stands for the 
numerical solution obtained from our algorithm. 

We define the variations for z ,  y , and @ as 

These variations define the errors between the exact and numerical solutions. 
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We introduce an mth-order smoothing operator A_, which satisfies the property 

D ( A ~ ( ~ )5 z and I CIlz11121 1 ~ - m ( ~ f z j ) l l l 2  f o r 0  I k 5 m ,  

where Sh is the spectral derivative operator without smoothing. Apparently, the second in- 
equality also holds if we replace Sh by Dh.  In particular, when m = 0, Ao(z) denotes a 
bounded operator in 12,  

It is easy to see that 

In our stability analysis, we need to study the properties of the discrete derivative operator 
and the discrete smoothing operator. We have the following lemmas. 

LEMMA1. Assume f (.) E C 3and w E 12.  Then we have 

where 6; = 6kq(kh) and q ( x )  = 2 ( p ( x ) x ) ,  A. is a bounded operatox 
The exact form of the second term in Lemma 1is needed for the case with surface tension. 
Throughout the paper, we will frequently use the discrete "smoothing" operator of the 

form 

for some function f (a,a ' )  which is smooth in both a and a';  w is a generic periodic function. 
It is clear that the continuous analogue of Rh is a smoothing operator, i.e., R ( w )  = A-, (w)  
if f E C m .However, at the discrete level, Rh does not necessarily give a smoothing property 
due to aliasing errors. For example, if we let 

f (a,a ' )  = -1 g ( a )  -&?(a') with g ( a )  = e2i", 
n a - a '  ' 

and wi = e i"1(N/2 -1 ) ,then we can show (using Lemma 3 below) that 

which is as singular as the w that we started with. This shows that the discrete operator does 
not necessarily produce any smoothing effect on high-frequency components due to aliasing 
errors. However, with smoothing on the high-frequency components of w ,  we can prove the 
following result. 

LEMMA2. Assume f ( a ,  B )  is a smooth function in a and B, and f (., .) E C m  with m > 2. 
Then with Rh defined by (24) we have Rh ( w p )  = A-1 ( w ) ,  i.e., 

I f p ( x )  satisfies, in addition, that p l (&n)  = 0 and f (., .) E C m  with m > 3, then we have 
Rh(wP) = A - ~ ( w ) ,  i.e., 
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We will defer the proofs of these two lemmas to the appendix. 
We remark that, in particular, Lemma 2 means that Rh(ShiP)= Ao(z ) ,and, in the second 

case, R~( ~ i i ~ )= A O ( i ) .This property will be used later in our analysis. We define 

and 

Similarly, we define E ( a i ) ,  ( ( a i ) ,  and Q ( a i )with zi replaced by z (a i )and yi by y ( a i ) .Now 
we need to estimate the variances of these three variables: 

These variations define the errors between the exact quantity and its numerical counterpart. 
We first estimate E .  We decompose E into its linear part and the nonlinear part 

(27) Ei  = EL + ENL. 
Direct calculations show that the linear part E: is given by 

and the nonlinear part ~y~ is given by 

To estimate the linear part of Ei, we need to introduce a discrete Hilbert transform: 

where M > 0 is an integer. In the appendix, we will prove that this discrete Hilbert transform 
shares many properties of the continuous Hilbert transform. These are summarized in the 
following lemma. 

LEMMA3. Assume that f satisfies f o  = f N / 2  = 0. The discrete Hilbert transform 
defined by (30) satisfies the following properties: 

where Sh is the pseudospectral derivative operator without smoothing. 
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Using Lemmas 2 and 3, we can prove the following. 
LEMMA4. Assume z ( . ,  t )  E ~ " + ~ ( m1. 31, y (., t )  E Cm+', and za # 0. Then 

where Rh is an operator of the type (24) with a smooth kernel. 
We defer the proof to the appendix. 
Remark. Note that since we do not introduce smoothing in y explicitly, we do not have 

R h ( k )  = directly. As we will see in (60), j/ is related to ~~6 and Dhi.  Since 
Dhi = , (Shi)P,Lemma 2 implies that Rh ( D h i )  = A-1 ( S h i )  = AO(i ) .Similarly we have 
Rh(Dlz4)= This is sufficient to close our energy estimates. And this is why we do ~ ~ ( 6 ) .  
not need to filter j, in our numerical method. 

We now estimate i. Again, we decompose 5. into its linear part and the nonlinear part, 
i j= 5 )  + iyL,where the linear part i f is given by 

and the nonlinear part iyLis given by 

Note from Lemma 2 that the commutator of [Hh,f ] is a smoothing operator: 

(38) [H!,, f 12" HAf (ai)i" - f (ai)Hh( i f )  

since g(a, p )  = L@kL@ is a smooth function in both a and p. Here we define g(a,  a )  = a-B 
f ' ( a ) . Thus, we obtain from Lemma 1 and the above estimate on the commutator operator 
that 

where we have used A-I ( D h i )  = Ao(i).  
Remark. We remark that if we had not used the filtering z P  in approximating the velocity 

integral, then the term Hh Dh (i)in Lemma 4 would have become Hh Sh ( 2 ) .  In that case, the 
leading-order terms of (39)would become 

The high-mode errors between Hh Dh and Hh Sh would not allow us to combine E~ with iL 
into one term, as in (39).It can be seen that this upsets the high-mode balances and introduces 
numerical instability. This explains why we need to introduce the additional filtering in z to 
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compensate for the high-frequency errors introduced by Dh. Another benefit we have by using 
the Fourier filtering is to smooth out the aliasing errors in the commutator [Hh, f ] (see (38)). 

We define 

Note that 

We conclude that 

(41) llillm< 
-

h-112 
I l i l l l 2  I h2 fo r t  I T*  

and 

Note that 

Therefore, we obtain 

As a result, 

(42) llDhillm 5 2nh  fo r t  5 T*  


NOW, since Dhz = Za + O ( h r ) ,Za # 0 fo r t  5 T * ,we have from (37) that 


In view of (42),we conclude that 

115.N L  
llrz  ICllilllz, 

which implies that 

(44) iNL= Ao(i) fo r t  IT * .  

We are now left to estimate the nonlinear term ~r~defined in (29). It is sufficient to 
illustrate the idea for one of the two terms. The other can be treated similarly. We take the 
second term on the right-hand side of (29)as an example. By assumption we know that 

Therefore, for h small and t IT*,we have, by using (41), 
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Thus, for t  5 T* ,  

where we have used Young's inequality in the estimate that involves ijin the numerator. The 
above argument still applies when we replace z by z p  since z p  = z + O ( h r )with r 2 2. This 
shows that 

Similarly, we can show that the first term in (29)is Ao( i i ) .This proves 

(48) ~r~ = A O ( i )  for t  5 T* .  

Putting (39), (44), and (48)together, we obtain 

This completes the estimate for Ej + Fj/2. 
We now turn to estimate ejdefined below (26).It is easy to see that 

~i = ( D h ~ i ) E i+ ~ h Z ( a i ) E i  

= ( D h ~ i ) ( E ( a i )  + ~ h Z ( a i ) E i ,+ ~ i )  

where Ei is defined as before. It is easy to show that 11 E l l m  5 ch for t 5 T* .  On the other 
hand, from the consistency argument, we have 

E ( a i )= -/ da' + O ( h r )= wo(a;)+ O ( h r ) ,
2ni z (a i )- z (a l )  

where 

Moreover, we have 

Using the first estimate for E L in Lemma 4 and the previous estimate for ENL,we obtain that 
for t  5 T* 

Equations (49)and (50)are our main stability estimates in this section. 
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4. Energy estimates and convergence. We are ready to combine our consistency and 
stability estimates to obtain convergence of the method. It follows from the consistency lemma 
and the definition of E,  i ,and Q that 

Substituting estimates (49)and (50)into the above equations, we get 

(54) ~ ~ 4 i-Yi + Re Dhiiwo(ai)  ---Hh Dl,(i)]= -
2 2iza (ai )  

+ A o ( i i )+ O ( h r ) .  

Furthermore, we can write (54)as 

where 

We remark that 4 and y are not independent. Actually, one can solve for y in terms of 4 
and i in (54). In the rest of the paper, we will use i and 4 as our unknowns. So we need to 
express y in terms of z and 6,. From (54) we have 

Apparently, if (iI + K ~ ) - 'is bounded, then we can bound j/ in terms of ~ h 6 , ,Dhi and O ( h r ) .  
LEMMA5. Assume z( . ,  t )  E C3 and z, # 0. Then there exists a constant ho > 0 and 

C > 0, such that for all h with 0 < h 5 ho, 

The proof of Lemma 5 will be deferred to the appendix. 
It follows from (55)and (56) that 



1813 A CONVERGENT NUMERICAL METHOD FOR WATER WAVES 

We will show that Khj . is a lower-order term. To see this, we first rewrite (57)as 

where 

and we have used Lemma 1. Using (59)we have 

where we have used 

which can be verified easily. Furthermore, we note that 

for some smooth function g. Thus, Kh ( y )  is an operator of the type (24). Therefore, we obtain 
by using Lemma 2 that 

Since (iI + ZCh)-' is a bounded operator, we conclude that 

As a result, we get 

where we have used Lemma 1 and the estimate (38)on the commutator [ H h ,f 1. In (53)we 
have terms of the form Rh( 9 )and A w l( 9 ) .These can now be rewritten as error terms in z and 
$. For the first term in (60),for example, we have ~ h ( D h $ )= = AO($),usingR ~ ( s ~ $ P )  
Lemma 2. Treating other terms in (60)similarly, and using Lemma 1 in the second term, we 
obtain 

and 
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Note that from Lemma 3,  

since both the zeroth mode and the f t h  mode of Dh vanish. So we get 

(63)  ( I  - i  Hh)  Hh Dh = ( I  - i  Hh)  ( i  Dh).  

Now applying ( I  - i Hh) to both sides of (60),we get 

It follows from (63)that 

Therefore, we obtain 

where we have used Lemma 1. Now substituting (61),  (62),  and (64) into (53),we get 

(65) 

Note that 

where w ( a i )= w o ( a i )+ ( y( a i ) ) / ( 2 z a ( a i ) ) .Substituting (66)into (65)and using Lemma 1 
again, we get 

dz* 1 -- ( I  - i f f h ) [ ~ h $ i- Re(w(a i )Dh i i ) ]+ A O ( i i )+ A O ( d i )+ O ( h r )
d t  za (ai ) 
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It is natural to set 

(68) Fi = @i - Re(w(ai)ii) = @i - u(ai)xi - v(ai)yi. 

Then (67) becomes 

We can also write (69) as 

Note that 

(7 1) za(ai)z,*= (~a(a i )x i+ y a ( a i ) ~ i )- i(-yaxi +x a ~ i ) .  

We introduce the normal and tangential vectors of the interface position as 

where a = (xi + yi)-'I2. We define 

(73) iT= ( i ,  j )  . F, iN= ( i ,  j )  .S. 

Then we obtain 

Substituting (74) into (70), we get 

We introduce a change of variables 

Then ( 7 3 ,  (76) are reduced to 

where AO(xT, xN) = AO(xT)+ AO(xN). We still need to express the evolution equation for 
Fiin the new variables. From the definition (68), we have 
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where 

To evaluate (&),, we compare (8 )with the continuous Bernoulli law, i.e., 

Subtracting (82)from (81),we obtain 

1 1 2
(83) ( $ i ) r  = -(u? - ~ ( a i ) ~ )  - ) - gyi+ -(v? ~ ( a i )

2 2 

or, equivalently, 

Substituting (84)into (go),we obtain after cancellation 

It is important that the right-hand side of (85)depends only on the normal component of the 
vector ( x ,  y )  to the leading order. To see this, we note that the Lagrangian velocity ( u ,  v )  
satisfies the Euler equations 

so that 

Moreover, p = 0 on the interface so that V p is in the normal direction. We have 

where 

Therefore, we get 

1 
( F ~ ) ~= -c(ai)iN + -(i?+ I$).

2 

Now the whole set of evolution equations for i N ,8, and F is 
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Thus, we have reduced the error estimates for the full nonlinear, nonlocal water wave equations 
into a simple linear and almost-local system for the variation quantities. The only nonlocality 
in the leading-order terms comes from the discrete Hilbert transform Hh in (89). The lower- 
order terms are nonlocal, but they are smoother than the principal linearized terms. This 
simplification helps us identify and balance the most important terms in our energy estimates. 
Define a discrete operator 

It is important to note that Ah is a positive and symmetric operator. In fact, Ah has the discrete 
Fourier symbol I k 1 p (kh). We introduce a discrete H ' I2norm as 

We also assume as in hypothesis ( 1 1 )  of Theorem 1 that c ( a )is positive: 

To perform energy estimates, we multiply (89)by (c (a i ) ) / (a (a i ) )xN,(90)by ii,and (91)by 
(Ah + 1 )F i ,  sum in i, then add up. With 

the result is 

where 

l l f J l l 5 ~ ( 1 1 x 1 1+ 1 1 1 + 1 1 1 1 + h r  for j = 1 ,  2, 

By (69),we have 

. . .  di* - 1 
( I  - + O(hr) .(98) u .  - Z V .  - -L -- iHh)DhFj + Ao( i j )+ A ~ ( F ~ )  

- dt z , ( q )  

Arguing as in (41)we can show, using (40),that 

IIDh@IIm 1 2 n h .  

Thus, it follows from (40), (68) that for t 5 T*, 

(99) l l u l l ~+ Ilullca I ch. 

Therefore, we have 
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Note that 

Similarly, we can show 

As a consequence, 

Hence, we obtain 

The Gronwall inequality then implies 

(103) yo@) 5 C(T)hr,  t 5 T*. 

In terms of the original variables, we have 

where we have used formula (60) for 9 . For rn 2 3, and h small, we get 

It follows from the definition of T* in (40) that 

This implies that estimate (104) is valid for the entire time interval 0 5 t 5 T. Convergence 
of the interface velocity w follows from (98). This completes the convergence proof of 
our scheme. 

5. The case with surface tension. In this section, we consider the case with surface 
tension. As before, we assume that the fluid occupies the lower region. As it was shown in 
[BHLl], in the case with surface tension, the direction of gravity plays no role in the stability 
estimates. Consequently, the analysis also applies to the case with fluid above the interface. 

The effect of surface tension is to introduce a discontinuity in pressure across the interface 
proportional to the (mean) curvature. The pressure is larger below when the interface is curved 
toward the lower region. The earlier form of Bernoulli's equation (2) is now replaced by 
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Here K is the curvature and the constant t is the coefficient of surface tension. The new set of 
evolution equations now becomes 

(107) & = + Re [ASiy (a ' )cot - d a l ]
2 4ni -, 2 

The curvature K can be expressed by 

In the case with surface tension, we need to use the sharper estimate (26)in Lemma 2. This is 
because 4 now contains second-order derivatives of z .  In order to close the energy estimates, 
we require an ~ _ ~ ( d )  in (69). This will be seen in the in (65) or, equivalently, A - ~ ( F )  
proof. This amounts to having better control of the aliasing errors arising from the alternating- 
point vortex quadrature rule. This requirement will be satisfied if we impose, in addition, 
that p f ( fn )  = 0. For the spectral derivative approximation, we can always require that the 
Fourier smoothing multiplier p(x)  satisfy this property. The numerical approximation for 
(105)-(107) is given by 

where z P  = a + s P ,  2 4  = a + s 4 ,  Sl i)  = p(kh)Slk, iq = q(kh)Slk,and q ( x ) = & ( x p ( x ) ) .  
We remark that the use of 24 in ( 112) is to balance the high-mode error due to aliasing 

in the spectral approximation or in the finite-order accurate approximation. No additional 
smoothing is necessary for the second derivative terms D ~ X ~and Diy i .  This is determined by 
the precise form of the discrete product rule 

and 

as given by Lemma 1. The q smoothing on z is necessary in obtaining estimate (121).Without 
this modification, the numerical discretization would be unstable for finite-order derivative 
operators. This can be verified by performing linear stability analysis (the normal mode 
analysis) around equilibrium solutions. 
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Note that if p (kh)corresponds to an rth-order derivative, then 

This implies that 

Hence, 24 and z P  are rth-order approximations to z .  
For finite-order approximations, the natural filtering associated with Dh is not strong 

enough since p l (n )  # 0 for all finite-order derivative operators. Therefore, we need to apply 
an additional filtering before we take the finite-order derivative in equations (109)and ( 1  11) .  
That is, we should replace Dh by Eh in (109)and ( 1  1 I ) ,where D ~ Z ~Dhz,S and 2; iks(kh).= = 

The Fourier multiplier s satisfies 

I1 - s(kh)l 5 C(kh)' ,  s q 0 ,  and s ( f n )  = 0. 

The derivative operators in (112) remain unchanged. To maintain the balances of high- 
frequency errors, we need to modify the filtering operator accordingly to retain the structure of 
the high-frequency errors we had before. That is, 2; now becomes p(kh)s(kh)&. With these 
modifications, the algorithm is exactly the same as (109)-(112). We can prove the follow- 
ing result. 

THEOREM2. Assume that z(. ,  t ) ,  @(.,t )  E Cm+3[0, 2n]  for 2x1, and y (., t )  E c"+~[o, 
t 5 T and m 3 4. I f  Dh corresponds to an rth-order approximation r 2 4, then we have 

where 

and 

J k  is the discrete Fourier transform of &. If Dh corresponds to the spectral derivative, the 
result is the same b y  replacing r by m, and replacing p" b y  p. 

Remark 1 .  Again, by using Strang's argument, we can improve the convergence result to 
the optimal rate h' in the case of finite-order derivative approximations. In that case, we will 
obtain convergence for the second-order discretization as well. 

Remark 2. In the presence of surface tension, the right-hand sides of the equations 
involve higher-order derivatives of the interface variables. Therefore, we have to work with 
a high-order norm to obtain stability. Consequently, the accuracy is one order lower than the 
order of accuracy for the case without surface tension. 

To illustrate how the algorithm looks in a concrete example, we consider the case of the 
second-order finite difference approximation Dh: 
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The corresponding p(kh) is given by p(x)  = y,so that q ( x )= cos x .  Clearly, we have 

which implies that 

As a result, we obtain 

and 

This simply says that we should use every other gridpoint when discretizing the curvature K .  

Proof of Theorem 2. We take the spectral derivative approximation as an example. The 
consistency and the stability are almost the same as before. The only difference is in the way 
we treat the linear stability. Moreover, since the evolution equation for z is the same as before, 
we have from (89)and (90)that 

where we have used (26)to replace A,,(F) by A - ~ ( F )since we now have p ' ( f  n)= 0. In 
our nonlinear stability estimates, we need to modify the definition of T* in (40) as 

With this modification, we can show that the nonlinear term of the type defined by (47)is of 
the order A-l ( 2 )  instead of Ao( i ) in the case without surface tension. More precisely, the 
nonlinear terms are of the form hAo( i ) .We still set 

It follows from (91)and (106)that 

where K is defined by K i  = ~i - K(ai). In the discrete case, the linear stability estimate for 
the curvature term is considerably more difficult than its continuous counterpart. This is due 
to the high-frequency error in the discrete derivative operator Dh. In the continuous case, we 
have the product rule 

In the discrete case, we have from Lemma 1 that 



1822 J. T. BEALE, T. Y. HOU, AND J. LOWENGRUB 

We define Piby 

One crucial step in our estimates of the curvature term is to express the linear variation of Pi 
by 

where a = (xz + y2)-1/2. It can be shown that without the q smoothing in ( 119),estimate 
(120)is not valid. In proving (120),we have repeatedly used the discrete product rule (118). 
Using (120),we can show that the linear part of K has the following simple expression in terms 
of the normal component of i: 

Except for estimate (120),the proof of (1 21) is similar in spirit to the proof of the corresponding 
continuum case given in [BHLl] .Since the calculations are quite technical, we omit the proof 
here. Putting ( 1 15),( 116), (117), and (121)together, we arrive at 

One should note that the leading-order contribution in (124) comes from the surface 
tension. The term involving c (a i )is a lower-order term here. Therefore, it plays no role in the 
leading-order stability analysis. This is in contrast to the case without surface tension where 
the sign of c ( a ) is crucial for determining the linear stability of the numerical scheme. 

To perform energy estimates, we seek to balance the leading-order terms from (122)and 
(124).To this end, we first apply Dh to both sides of (122),then multiply the resulting equation 
by T D ( ~ ~ ) D ~ X ; ,and sum in i. On the other hand, in (124),we multiply AhFi and sum in i. 
We then add these two equations. After summation by parts, the leading-order terms cancel 
each other, i.e., 

where we have used (Dhf,g) = -( f,Dhg),which can be verified directly in Fourier space. 
Thus, we obtain 

where rl and r2 are given by the lower-order terms in the right-hand side of (122)and (124), 
respectively. The time dependence of a also introduces a lower-order term R which can be 
bounded in the same way as the lower-order terms rl and r2. We neglect this time dependency 
here. Further, we multiply (122)by hhx" and sum in i .  On the other hand, we multiply 
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(124)by &Fi  and sum in i. We then add these two equations. As before, the leading-order 
terms cancel out after summation by parts: 

where [Hh,a ]  = Hha - a Hh is the commutator operator. It has been shown in (38) that 
[Hh, a]zP = A - ~ ( z ) .We have 

Therefore, we get 

As for R1,note that H; Dh = -Dh. Applying summation by parts, we get 

Therefore, we have 

Now we define 

Then we can show that 

We remark that we do not lose any order of accuracy when we apply Dh to (122)-(123) because 
the error O ( h r )is of the form 

and the error coefficients are smooth. To prove (127), we need to estimate the lower-order 
contributions. We pick one term to illustrate the idea. To estimate ( t aD h x N ,  Dhrl ) ,  we note 
that 

Recall that in our derivation, A o ( i )  comes from the two sources. One is from Lemma 1 
when we use the discrete product rules. Another one comes from Lemma 4. From Lemma 
1 we know that Ao(i )  = f,i4 + h A o ( i ) .  From the proof of Lemma 4 we have A o ( i )  = 
D(ai)Hhi + A-I(?).  In either case, we can easily show that 
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Therefore, we have 

and 

The other lower-order terms can be treated similarly. This proves (124). By Gronwall's 
inequality, we obtain 

The rest of the argument is the same as in the case without surface tension. 
In the case of finite-order derivative operators, we need to modify the argument slightly. 

A 

The derivative operator Dh in (122)now becomes 5h,where (5h)k= ikp(kh)s(kh).Since 
we do not use s smoothing in computing the curvature, the derivative operator Dh in (124)is 
still the same, i.e., (6h)k= ikp(kh).We define Ah = f f h  D ~ .  

To perform energy estimates, we seek to balance the leading-order terms from (122)and 
(124).As before, we first apply Dh to both sides of (122),then multiply the resulting equation 
by to (a i )DhxY,and sum in i .  On the other hand, in (124),we multiply AhFi and sum in i .  
We then add these two equations. After summation by parts, the leading-order terms cancel 
each other, i.e., 

where we have used (Dhf,g) = -( f,Dhg). The rest of the argument is almost the same as 
in the case of using the spectral derivative. We omit the details here. 

6. Numerical examples. In this section we present some numerical calculations that 
illustrate the performance of methods for which the convergence theory applies and also the 
difficulties which can arise from the stability issues that have been dealt with analytically. We 
present calculations of a standing wave, with or without surface tension, using the methods 
developed here. We use the same solution to illustrate that instabilities occur with finite-order 
derivatives if the filtering in z is not used in the singular integrals. Finally, we present a 
calculation of a breaking wave without surface tension to demonstrate the behavior of the 
convergent method in the fully nonlinear regime. 

In the standing wave calculations we use four different discretizations. In all cases, the 
velocity integral is discretized using the alternating trapezoidal rule. The only difference in 
these four schemes is the way in which the space derivative 8, is discretized. In the first 
scheme, we use a pseudospectral method. This scheme has been proved to be stable with the 
filtering of z .  However, the filtering was not needed in the standing wave calculations because 
the solution is very smooth. The second scheme uses a second-order centered finite difference 
approximation for A; the third uses a fourth-order centered finite difference approximation 
for &. The fourth scheme uses a cubic spline approximation for &. We remark that the cubic 
splines have been widely used in boundary integral computations of interfacial flows; see, 
e.g., [BMO, Pull]. In our calculations, we choose a sinusoidal perturbation to the equilibrium 
solution of period 1. The initial condition is 

x (a ,  0 )  = a +0.01 sin ( 2na ) ,  y (a ,  0 )  = -0.01 sin ( 2na ) ,  

y ( a ,  0 )  = 0.01 sin (2na) .  
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The gravity coefficient is set to 9.8. This choice is not physically meaningful, but it leads to 
a predicted solution from the familiar linear theory of water waves which is a standing wave, 
periodic in time, with period 301, without surface tension. A simple iterative scheme is used 
to solve for y.  The (m + 1)st iterative solution ym+l is given by 

In our calculations presented in Figures 1-5, we use the fourth-order Runge-Kutta method 
as our time discretization. We use the solution of y at the previous time step as our initial 
guess for the iterative solution for y .  We stop the iteration when the error between the two 
consecutive iterative solutions is smaller than 10-lo. For the calculations presented in Figures 
1-5, it typically takes about four iterations to converge. 

We first use the pseudospectral method with no surface tension. In Figures l a  and lb,  we 
plot the numerical interface positions obtained from the first scheme from t = 0 to t = 4.8 
and from t = 5.2 to t = 10, respectively. As predicted from the linear theory, we obtain a 
standing water wave with a period of about 0.8 time unit. So there are, in total, about 12.5 
complete oscillations by time t = 10. Clearly, the numerical solution is stable and smooth. It 
also suggests that there is a global smooth solution for the exact problem. In Figure lc,  the 
log of absolute ik is plotted, where logs have base 10. We can see that the round-off errors 
remain small at all times, indicating that no high-mode instability occurs in the calculation. 
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gamma at 1-0 1 0 9. 9 7.N-128 dl-0.001 tau-0 005, sps-0 01 spectrum of gamma at 1-0 1 0 9, 9 7 N-128 d1-0 001. tau.0 005 eps-0 01 
0 ,  

In Figures 2a and 2b we present the calculation for the second-order derivative operator using 
the modified algorithm (109)-(112). The surface tension t is equal to 0.005. The period 
of oscillation predicted in the linear theory is shifted slightly to .792. Here it is important 
to use the p and q smoothing in (109)-(112) to obtain stability. We did not use the extra s 
smoothing here because the solution is very smooth. We plot the vortex sheet strength and its 
Fourier spectrum. We have also performed calculations with more refined mesh sizes. The 
method is indeed stable. This is clear from Figure 2. Calculations with the fourth order and 
the cubic spline derivative operator, as well as the spectral derivative operator, also confirm 
our theoretical result. We do not present the pictures here since they are all very similar. 

We remark that in the presence of surface tension there is an additional difficulty in time 
integration due to the stiffness of the resulting system. Surface tension introduces high-order 
spatial derivatives which are coupled to the interface equations in a nonlinear and nonlocal way. 
It is not straightforward how to apply implicit methods to remove the time step restrictions 
introduced by the surface tension. In [HLS], we present a new fosmulation of the interfacial 
problem that shows how to remove the strict time step restrictions. This reformation can be 
applied to a number of interfacial flows with surface tension, including the water wave problem 
considered here. 

The calculations presented in Figures 3-5 are for the case with zero surface tension for 
finite-order derivative operators but without using the modification z p  in the evaluation of the 
interface velocity. This is to illustrate that the additional filtering (i.e., z p )  is necessary. In 
Figure 3a, we plot the numerical vortex sheet strength obtained from the second scheme at 
different times. We can see that there is a critical time beyond which the numerical solution 
starts to produce numerical oscillations. The oscillations grow rapidly with respect to time. If 
we further reduce the mesh size, the numerical oscillations will appear earlier. In Figure 3b, 
we examine the growth of the Fourier coefficients for the vortex sheet strength. We show the 
log plot of spectrum at different times ranging from t = 0.008 to t = 0.22. For t small, we see 
that the spectrum decays exponentially. But due to numerical round-off errors, the computer 
cannot accurately represent the Fourier coefficients smaller than 10-16. These round-off errors 
are amplified by the numerical instability in time. As we can see, the round-off errors at the 
high modes are amplified the fastest. The ordering of the curves is in the increasing order of 
time. Only after the time t = 0.2, do we begin to see the effect of this numerical instability in 
the physical space. Numerical oscillations start to grow rapidly in time. The highest N mode 
does not grow, however, because the discrete derivative operator forces the highest mode to 
vanish. In our figures (except for Figure 5 ) for the Fourier spectrum, we did not plot the 
mode as it is identically zero. By comparison, the round-off error remains bounded at the 
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FIG.3(a). Second-orderjinite difference derivative, water wave 
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FIG.4(a). Fourth-order$nite difference derivative, water wave. 
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original round-off level for the first scheme; see Figure lc. Very similar behavior is observed 
for the third and fourth schemes, except that the instability occurs earlier for the fourth-order 
scheme and the cubic spline approximation. The results are plotted in Figures 4a, 4b, and 5. 
We also include the pseudospectral calculation in Figure 5 for comparison. In Figure 5 the 
cubic spline is the solid line above and the spectral is the one below. 
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One can also obtain a more intuitive understanding of these numerical instabilities by 
performing a linearization around the equilibrium solution z = a ,  y = 0, and 4 = 0. For 
this choice of equilibrium solution, the corresponding interface velocity is equal to zero, i.e., 
u = v = 0. The resulting linear equations for the variations reduce to a system of first-order 
partial differential equations with constant coefficients. Then, the usual normal mode analysis 
can be used to determine the linear stability of the various methods. We refer the reader to 
[BHLS]for details. Of course, it is not possible to analyze the aliasing errors (instability) from 
a near-equilibrium analysis as aliasing errors arise only in the case of nonconstant coefficients. 

Next, we present a calculation of a breaking wave using our first scheme for zero surface 
tension. For a survey of breaking waves, see [Per]. In order to produce breaking in the water 
wave we use the following initial condition: 

x(a,O) = a ,  y(a,O) = 0.1cos(2na),  

y (a,  0) = 1.0 + 0.1 sin (2na) .  

Note that the vortex sheet strength y does not have zero mean in this case. This amounts 
to a convenient choice of frame of reference. Although the derivation of (7)-(9) was for the 
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special case where 4 is periodic and y has zero mean, the formulation is still valid provided 
that we only apply Dh to equation (8); only D h 4  is needed in (9). Our numerical experiments 
have shown that a smaller perturbation of size 0.05 would give rise to an oscillatory wave 
which travels to the right and does not seem to break in finite time. The time integration in 
this numerical example is the fourth-order explicit Adams-Bashforth method. The fourth- 
order Runge-Kutta method is used to initialize the first three time steps. Also, a fourth-order 
extrapolation in time is used to obtain a more accurate initial guess for the iterative solution 
for y as suggested in [BMO]. With this improved initial guess, the iteration will converge 
with an iteration error of order lo-'' in two iterations for most time until the wave is close 
to breaking. In the calculation of breaking wave, we use a Fourier smoothing in the spectral 
derivative. The smoothing factor p is chosen to be 

p(kh) = for Ikl iN/2,e ~ ~ ( - 1 0 ( 2 1 k l / ~ ) ~ ~ )  

so that ( D ~ ) ~  ikp(kh) gives a 25th-order accurate approximation to the derivative operator. = 
In Figures 6a-c we present a series of interface profiles from t = 0 to t = 0.5175. In 

order to clearly see the time evolution of the water wave, we plot the solution at five different 
times in a single picture. The first curve from the top is obtained by adding 0.6 to the y 
coordinate; the successive ones are displaced by multiples of 0.3. Time increases from top 
to bottom. As we can see from Figure 6b, the interface becomes vertical around t = 0.32. 
After that, the wave turns over. In the mean time, the interface develops large curvature and 
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requires more refined numerical resolution. With N = 256, we can compute up to t = 0.5 
with six digits of accuracy in the interface positions; see Figure 7a. But in order to compute 
very close to the time of wave breaking, we need to increase our resolution to N = 512 or 
larger. Of course, beyond t = 0.32 where the interface becomes vertical, our convergence 
result will cease to be valid since it violates our condition (1 1) in Theorem 1. But one can 
see that our numerical calculations remain robust even after condition (1 1) is violated. In this 
highly nonlinear regime, the numerical filtering in our algorithm becomes crucial to remain 
stable in time. We plot the Fourier spectrum of the interface positions in Figure 7b. It is clear 
that the numerical round-off errors are kept small even in the fully nonlinear regime of our 
calculations. 

In Figure 8a, we plot the enlarged version of the wave fronts from t = 0.5 to 0.5 175 when 
the wave is close to breaking. It is evident that the wave will break in finite time. In Figure 
8b, we illustrate the number of computational particles near the wave front at the final time 
of our calculations. We can see that the interface is still well resolved and more particles are 
clustered near the head of the wave front. This demonstrates the self-adaptive nature of the 
boundary integral method. As the interface is close to breaking, the curvature increases very 
rapidly. In Figure 9a, we plot a sequence of curvatures from t = 0.48 to t = 0.515. It is 
more illustrative if we plot curvature as a function of arclength. This gives us a better idea 
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cuwatureas firnmm of alpha, 1=0 48 0 49.0 5,O 51.0 515, N S I 2 .  dtl5d4,eps-0 7 

" " " " ' I 

gamma as a functlon of arclength. 1=0.515. N=512, dl=0.000025, eps.0.l 
41 I 

how rapidly the curvature changes in a small neighborhood of the wave front; see Figure 9b. 
We plot the vortex sheet strength y in Figure 10. 

Finally, we would like to emphasize that our initial condition is 1-periodic and our gravity 
coefficient g is taken to be 9.8. The initial vortex sheet strength is perturbed around 1. 
This is responsible for obtaining a breaking wave with a relatively small perturbation of the 
equilibrium solution in short time. If we change to a 2n-periodic initial condition and set 
g = 1 as in other water wave calculations, then we can obtain a similar wave breaking for 
larger perturbation from the equilibrum solution. In Figure 11, we present a calculation using 
the initial condition 

x(a ,  0) = a ,  y (a, 0) = 0 . 6 ~ 0 ~(a),  

y (a ,  0) = 1.0 +0.6 sin (a). 

And the gravity coefficient is set to 1. Then the wave is going to break around t = 3.75; 
see Figure 1 1. For comparison, we also present the previous calculation at t = 0.5175 in 
Figure 12. 
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water wave at 1-3.75, N-512, dl-0.00025, eps-0.6. g=l,  2'pi penod 
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water wave at 1-0.5175, N-512, dl-0.000025, eps-0.1. g-9.8, unlt period 

0 5 k 

It would be interesting to see how the breaking wave calculation is affected by surface 
tension and whether it prevents the curvature from growing without bound. This would require 
us to use the reformulation introduced in [HLS] to remove the time step restriction. This will 
be reported elsewhere. 

Appendix. 
Proof of Lemma 1 .  From the assumption, we know that p is c2on -n 5 c 5 n ,  

p ( fn ) = 0, and p is even. Recall that = n. We define R(c)  = [ p  ( c ) . Then R is c2, 
R ( f n )= 0, and R is odd. Thus, R' is even, and R1(-n)  = R1(n) .Note that if we extend 
R periodically with period 2n , then R is C' everywhere and c2except for possible jumps in 
R" at [ = fn , etc. 

Now assume that f is smooth and w E 1 2 .  Then we have 
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with I = {- $ + 1 5 1 5 $1. Let k = kl + k2 and consider one term in the following two 
cases: 

(1) Suppose k = kl +k2 E I. Then we get 

Now use Taylor's theorem with the remainder 

Thus, we obtain 

where Q(x) = R' (x) and Ckl k2 is bounded independent of kl, k2. 
N(2)Supposekl +k2 > T.~ e t k= k l  + k 2 a n d i  = k -  N = k l  +k2  - N. Then 

Now extend R periodically past n = f h .  As noted earlier, R is C' and c2except for R" at 
n.The Taylor formula is still valid, and the same argument works! 

Of course, if kl +k2 < -f ,we can argue similarly. 
The first two terms in the expression above give the two main terms in (23). We still need 

to estimate the error term. We have to show that it is bounded in l2 by Ch 1 1  w 1 1 1 2  Omitting h, 
the coefficient of eikx, k E I, is 

We can think of this as a discrete integral operator, taking a function of k2 to a function of k. 
Using the discrete version of Young's inequality, we conclude that the operator is bounded on 
l2 provided that 

which holds since f E c3 .  This completes the proof of Lemma 1. 
Proof of Lemma 2. Recall that G[ = p(kh)Gk. We have 

Denote by fk(a) the Fourier coefficient of f (a, j3) as a function of j3. Further, we can write 
F as 
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It is easy to see that if kl + k2 # 0 mod ($), then we have 

Therefore, 

Recall that f ( a ,B ) is a smooth function in both variables. So f k l  ( a i )is a smooth function in 
ai . Moreover, f k l  ( a i )and its derivative in ai decay like 0 (k;"), where m is the number of 
continuous derivatives of f with respect to the second variable. Therefore, we have 

and 

We conclude that I = ( w ) .  
For the term 11, we note that f k ,  (ai)e-iu1-1N/2is not a smooth function in ai. However, 

since p ( n )  = 0, we get 

As a result, we obtain 

since m > 2. This proves II(wi)= hAo(w).Clearly, we have 

Similarly, we can prove I11 = hAo(w)and, consequently, I11 = AP1.If, in addition, we have 
p l ( n )  = 0, then ( p ( n  kl h ) (  i ck:h2. Then we have I1 = This proves Lemma 2.- h 2 ~ ~ ( w ) .  
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Proof of Lemma 3. We can express Hhf as a convolution, 

where 

if j is odd, 

and * is the discrete convolution, 

0 if j is even, 

Thus. we have 

(A31 

with 

We claim that 

We extend sgn([) periodically outside the interval ([( 4 n ,  with period 2 n .  To prove (A5) is 
the same as proving that sgn([) has the Fourier expension given by the left-hand side of (A5). 
Let F (c )  = sgn(c). The Fourier coefficients of F are given by 

1
Fk= ~ ( c ) e - ' ~ [  = -(I - (-l)k) for k # 0,d c-

2 n  S"-, n k i  

and fork = 0, we have f o = 0. This proves that 

2 
i fk  = 21 + 1, 

('46) 
0 i f k  = 21. 

Then by the classical result on convergence of Fourier series for piecewise smooth functions, 

for 0 4 ( < n on which F ( c )  is smooth. This proves (A5). Using (A5), we easily obtain 
that 
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Hence, 

N 
H&fk = - i  sgn(k)fk for ~ k l< -,2 

where we have defined sgn(0) = 0. From (A9), we get 

on functions f with f o= 0, fN/2 = 0. We now proceed to evaluate the symbol of 

Define 


I' if j is odd, 

G ( a j ) =  zff; 

( 0 if j is even. 

Then we can write 

Thus, we obtain 

where 

Using the identity 

we obtain 

We claim that 
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As before, to verify (A16), we first extend P(6) = $ - (6( periodically out the interval 161 < n 
with period 2 n ,  then compute its Fourier coefficients. They are given by 

1 - (-ilk
= -SZ ~ ( 6 ) e - ~ ~ t= i f k  # 0.Pk d6 

2 x  -, xk2  

And clearly Po = 0. This proves (A16) since P(6) is piecewise smooth and continuous at 
6 = 0. It follows from (A16) that 

That is. 

On the other hand, 
A 

Hh(Sh fk) = - i  sgn(k) . (ik)fk = 1klfk for lkh 1 < n. 

Therefore. we obtain 

for functions f with fo = 0 and f N / 2  = 0. And it is an easy matter to check that 

since each operator is multiplication in transformed space. This completes the proof of 
Lemma 3. 

Proof of Lemma 4. By definition, we have from (27) that 

Using the Taylor expansion, we have 

and 

+ + g(a i ,  a,), 
(ai - a j )  

where f (ai, a j )  and g(ai ,  a j )  are smooth functions of ai and a j ,  and 
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Note that z(a;)P = z ( a ; )+ C(a i )hrfor some smooth C ( a ) . We have 

z(aiIP- z (a j IP= ~ ( a ; )- z ( a j )+ O ( h r )= ( ~ ( a i )- z ( a j ) ) ( l+ O ( h r ) )  for i # j 

Thus, we get 

Therefore, it follows from Lemmas 2 and 3 that 

Y ( a j) (if- if) 1 y ( a j ) ( i f - i f)
2h = (1 + O ( h r ) )- C 2h 

( ~ ( a i ) P- ~ ( a j ) ' ) ~  2x1 (j-;,,dd ( ~ ( a i )- ~ ( a j ) ) ~  

Y(a'' HI ,S l , ( iP)-7= (1 + O ( h r ) )(- ' ( a ' )Hh(ip)+ A-l ( 2 ) )
2i z; ( a ;  ) 

since Sh( j p )  = Dh(i)and r 2 2. Similarly, we have 

where Rh is the discrete "smoothing" operator defined by (24),and the AP1  term corresponds 
to the error between z and zP. This completes the proof of Lemma 4.  

Proof of Lemma 5 .  First we state a result for the corresponding continuous problem. Let 

with z (a , t ) smooth and z, # 0. It is easy to see that the kernel K defined above is adjoint to 
the kernel K corresponding to the dipole strength formulation 

It has been proved in [BMO]that (iI + K )  is invertible and the inverse is bounded. Therefore, 
we have (iI + K )  is invertible and 

We now show that (iI + K h ) is invertible. We first consider the case when 

For any discrete l2 function y , we define 4 by 
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We will show that # = 0 implies that y = 0. This implies the invertibility of ( ; I  + K h ) . Let 
I; = [a;- h,  a; + h] .If a E I; with i odd, we partition the real line as the union of I; with i 
even. We define 

KO(a,a')  = Re (1 ) if a E I;,  a' E I for j even;
2ni z(a;)- Z(aj) 

KO(a,a ' )  = 0 otherwise. 

If a E I;  with i even, we partition the real line as the union of I; with i odd. Similarly, we 
define Ke(a,  a') as the piecewise constant kernel. Moreover, we define f ' ( a )  = yi, and 
#"(a)= #i if a E I; and i is odd. Similarly, we define f e ( a )= y;,and #e(a)= 4; if a E I; 
and i is even. Note that because of the alternating-point quadrature rule, when i is odd, K hyi 
uses only those yj with j even, and vice versa. Thus, for odd-valued index i ,  we have 

and for even-valued index i 

1 1 
-y; + K h y .  - - f e (a ; )+ SKe(a;,  a ')  fO(a')da'.  
2 ' - 2  


We first consider the case a E I; with i odd. We have 

S ~ ' ( a ,a')  fe (a ' )dd = x / Re { -I '  [ Dhz(ai )  ]] fe(a')da' 
( j - i I o d d  ~ I ~ E I ,  2ni z(ai>- z(aj> 

and 

Therefore, for a E I; with i odd, we can write 

S KO(ai,a ' )f e(a')da'= Re 

Note that Dhz(ai)= zf f(ai)+ O(hr").Let 

1 
Q(a, a ')  = Re 

z ( a )- z (a1)2ni 2n i (a - a')  

where G(a, a ')  is smooth in a and a'. This implies that Q(a, a') is smooth. Thus, 

Q<ai,aj)- Q(a ,  a ')  = Q f f(a;+ q ; ,aj)(ai- a ) + Qff f(a;+ qi,q + t j ) ( a j- a') 

= hF(a;,9,a ,  a ')  

for some bounded function F. Therefore, we obtain 

K"(a. a') fe(a')da' = Re (I(a') da' + h b ( a i ,aj, a )  fe(aj)h 2ni z(a)- z(al) 
( j - i ) o d d  
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for some bounded function F .  Now, for a E Iiwith i odd, the equation 

(A18) 

is equivalent to 

where L,  is a bounded linear operator generated from F .  Similarly, we can show that for 
a E I, with i even, (A18)is equivalent to 

where Lo is a bounded linear operator. Now we add and subtract the equations for f' and f O 

and we obtain the equations for f' + f O and f' - f O ,  respectively as follows: 

and 

1
- ( f O- f ' )  - K ( f O- f ' )  =q5" -q5 '+hLof0  - hL ' f ' .  
2 

Since the eigenvalues of K are all strictly less than in absolute values [BMO], the same is 
true for the operator (- K ) .  Therefore, the Neumann series of (iI - K )  converges. Hence, 
both (iI + K )  and (iI - K )  are invertible. As a result, we obtain 

and 

From this, we easily deduce that 

and 

which implies that 

where is a constant independent of h. This proves that (k I + K ~ )  =is invertible since q5 0 
implies y = 0. The above estimate shows that the inverse operator is bounded. 

Furthermore, we note that 

where L is a bounded operator. Thus, for h small, (iI + Kh) is invertible and its inverse is 
bounded independent of h , where Kh is defined by (56).This completes the proof of Lemma 5. 
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