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Assimilation of wave data into the wave model WA M
using an impulse response function method

E. Bauer,! K. Hasselmann,? I. R. Young,® and S. Hasselmann?

Abstract. A new method for the assimilation of wave data into a third-generation
wave model is presented. Deviations between observed and modeled wave spectra
are used to derive corrections of the wind field which drives the wave model.
The wave field can then be subsequently corrected by a new integration of the
wave model with the improved wind field. A basic difficulty of such dynamically
consistent wave data assimilations schemes which correct both wind and wave data
is the nonsynchronous and nonlocal nature of the wind field corrections: errors
observed in the wave spectrum at a given measurement time and location can be
produced by errors in the wind field at much earlier times and far distant locations.
Formally, these problems can be rigorously resolved by the adjoint modeling method.
However, in practice, the adjoint technique requires an order of magnitude more
computer time than the integration of the wave model itself. Here an alternative
method is developed. The linearized wave model equation which relates small wind
to wave spectrum changes is inverted. The central assumption of the inversion
is that the wind impact functions representing the impulse response (Green’s)
function of the wave evolution can be approximated by a §-function. Physically,
this implies that the wind field perturbations responsible for observed perturbations
in the wave spectrum can be regarded as strongly localized in space and time for
any given component of the spectrum. To obtain stable estimates, the corrections
for different wave components are averaged over wavenumber clusters representing
different wave systems. For cases in which the linear approximation is inadequate,
the method can be applied iteratively. Tests of the concept and application of the
method for a number of synthetic wind field cases are encouraging.

1. Introduction liable results [WAMDI Group, 1988; Zambresky, 1989;
Romeiser, 1993; Cardone et al., 1995; Komen et al.,
1994].

In a global wave hindcast study using altimeter data

of the satellite Seasat, however, the agreement between

In recent years, significant progress has been achieved
in our understanding of the mechanisms responsible for
the generation and evolution of ocean wind waves and

in our ability to implement these advances in numerical
wave models. In the latest third-generation wave mod-
els the energy balance equation is now solved for the
first time by direct integration of the physical source
function, without any predefined constraints on the
spectral shape. The first such wave model WAM is
now used at a large number of research institutes and
operational forecasting centers. It has been shown in
many independent intercomparison studies to yield re-

1 Institut fiir Meereskunde,
Germany.

2 Max-Planck-Institut fiir Meteorologie, Hamburg, Germany.

3 Department of Civil and Maritime Engineering, University College,
University of New South Wales , Canberra, Australia.

Universitdt Hamburg, Hamburg,

Copyright 1996 by the American Geophysical Union.

Paper number 95JC03306.
0148-0227/96/953C-03306$05.00

the WAM model and observed wave heights was found
to be poorer in the southern than in the northern hemi-
sphere [Hasselmann et al., 1988; Bauer et al., 1992;
see also Romeiser, 1993]. Most of the errors could be
attributed to inaccuracies in the forcing surface stress
fields. The studies demonstrated the sensitivity of wave
models to the input wind fields (which follows from the

- approximately quadratic dependence of the wave height

on the wind speed) and thus the potential value of wave
models as a tool for the quality assurance and correction
of wind field data.

Recently, both wind and wave data have become
available globally, continuously and in near real time
through ERS-1 and ERS-2 (and in an off-line mode
through TOPEX/POSEIDON). It is anticipated that
these data will continue to be provided in near real time
in the future by a series of polar platforms and special
satellites such as ADEOS and SARSAT. To make full
use of this new information, methods must be developed
for assimilating these data in real time into global wave
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models such as WAM in order to provide dynamically
consistent analyses of both wind and wave fields.

The accuracy of the wind and wave corrections de-
rived from such assimilation methods will necessarily
depend on the quality of the wave models. Errors in
the model dynamics will produce errors in the analyzed
fields. In the case of the WAM model, extensive veri-
fication studies [Komen et al., 1994] indicate that the
model has reached a sufficient level of maturity that
the wind field corrections derived by the assimilation of
wave data into the model should be operationally use-
ful. However, the value of dynamical data assimilation
is not governed simply by the quality of the models. As-
similation techniques should be viewed, rather, as tools
to jointly assess the quality of data and models in a dy-
namically consistent framework. To identify shortcom-
ings in the representation of the physical processes in
models of complex dynamical systems, many different
measurements are generally needed. The only effective
technique for analyzing the dynamical implications of
such different sources of data, with consideration both
to the structure of the model and the limitations of the
data, is data assimilation.

Preliminary attempts to assimilate wave data into
wave models have been described by Komen [1985],
Thomas [1988], Janssen et al. [1989], Bauer et al.
[1992], and Lionello et al. [1992].

These schemes have generally emphasized the use of
measurements of the wave field to directly modify the
wave field, without systematically correcting the ana-
lyzed wind field except (in some cases) in an ad hoc
manner at the measurement point. Although such tech-
niques yield some improvement of the wave model pre-
dictions, they basically address the symptom of the
problem (the waves), rather than the cause (the wind).

Ideally, a scheme is required which uses measured
wave data to correct the wind field, thereby also provid-
ing a dynamically consistent correction of the wave field
through a subsequent integration of the wave model
with the corrected winds. This paper presents such a
technique. It employs the WAM model to infer the cor-
rections which need to be applied to the input wind field
to minimize the difference between the observed and
model wave data. The approach may be regarded as a
first step toward a more comprehensive system in which
both wave and wind data, either from satellite sensors
or from conventional measurement networks, are assim-
ilated simultaneously into global wave models and at-
mospheric weather prediction models.

The success of such an integrated assimilation scheme
depends, of course, ultimately on the ability of the wave
model to reproduce the dynamics of the observed wave
field. The modified wind fields will be correct only if the
wave model is correct. Although the WAM model repre-
sents a significant advance over earlier first- and second-
generation wave models in the explicit representation
of the wave physics, the model will undoubtedly still
contain errors which will lead to systematic errors in
the corrected wind fields. However, the development of
wave models and wave data assimilation schemes should
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be regarded as an iterative, coupled enterprise. Only
through the experience gained from the application of
wave data assimilation schemes will it be possible to
exploit the wealth of information provided by modern
satellite systems to identify and correct shortcomings in
wind and wave models and the associated data assimi-
lation schemes.

The paper is organized as follows: Experience gained
from the preliminary assimilation studies is briefly dis-
cussed in section 2. In section 3 the general forms of the
cost function and the impulse response (Green’s) func-
tion approach are introduced. The implementation of
the §-function approximation for the wind impact func-
tions is presented in section 4, together with the asso-
ciated determination of the wave age. The numerical
implementation uses an analytical integration scheme
described in section 5. Free parameters of the Green’s
function scheme are adjusted using a conjugate gradient
algorithm described in section 6. Application studies of
the assimilation scheme in different synthetic sea state
conditions are presented in section 7. The results are
summarized and the anticipated performance in real ap-
plications is discussed in the concluding section 8.

2. Wave Data Assimilation Techniques

One of the first published attempts to assimilate wave
height data in a wave prediction model was made by
Komen [1985]. He investigated swell propagating from
a generation region in the Norwegian Sea to a mea-
surement point at the entrance of Rotterdam harbor.
The prediction of the swell at Rotterdam harbor for
this event using the Golven Nordzee (GONO) model
[Janssen et al., 1984] was significantly higher than mea-
sured. Updating the model with measured buoy data
at a point approximately 500 km north of the measure-
ment site significantly improved the model swell predic-
tion.

Thomas [1988] proposed the first scheme to update
the full wave spectrum using buoy measurements of sig-
nificant wave height and wind speed. A Joint North
Sea Wave Project (JONSWAP) parameterization [Has-
selmann et al., 1973] was assumed for the wind sea part
of the spectrum, which was then updated by using the
buoy wind speed to rescale the energy and peak fre-
quency (maintaining the so-called wave age, defined as
the ratio between the peak phase velocity and wind ve-
locity). The remaining swell part of the spectrum was
updated by changing only the energy scale. This tech-
nique yielded promising results and demonstrated the
basic feasibility of operational wave data assimilation
schemes.

Hasselmann et al. [1988] and Bauer et al. [1992]
made the first attempt at the assimilation of global
satellite data using Seasat altimeter wave height data
for a 30-day period in August 1978. Their update
scheme simply changed the scale of the spectrum,

Enew(f; 0) = 'YEmodel(f) 0)
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where Enew(f,0) is the new or modified spectrum,
Emodel(f,0) is the initial model spectrum, f is fre-
quency, and @ is the propagation direction. The scale
factor 4 at the subsatellite point of the altimeter mea-
surement was set proportional to the square of the ra-
tio between the altimeter wave height and the model
first-guess wave height and relaxed back linearly to
unity at the boundary of some specified “region of in-
fluence”. For a continuous 1-month assimilation experi-
ment, good results were achieved using a region of influ-
ence of 9° x 9°. The assimilation scheme was successful
in updating regions dominated by swell, yielding glob-
ally averaged decay times for the swell correction of the
order of 5 days, but had littlesimpact on the wind sea,
which reverted rather rapidly to an equilibrium corre-
sponding to the uncorrected local wind. It was con-
cluded that the improvement of the wind sea predic-
tions would require a scheme which also corrects the
erroneous wind forcing.

This problem was addressed by Janssen et al. [1989],
who used the altimeter wave height data to introduce
corrections to both the wave and wind fields. Their
scheme first partitioned the spectrum into wind sea and
swell, the swell being defined as the region of the spec-
trum in which the atmospheric input source term was
zero. The swell spectrum was modified by a change of
the energy scale, maintaining the spectral shape and
peak frequency. The wind sea part of the spectrum
was corrected in a manner similar to that of Thomas
[1988] using JONSWAP-type [Hasselmann et al., 1976)
duration limited growth relations. Introducing the ad-
ditional assumption that the energies of the wind sea
and swell were changed by the same factor, new wind
sea and swell spectra were then determined. At the
same time the wind speed (or friction velocity u,) was
adapted to conform with the new wind sea. This infor-
mation was then distributed to surrounding grid points,
as in the work of Hasselmann et al. [1988], but using a
correlation region of only one wave model grid square
(3° x 3°). Although both the wind and sea state had
now been adjusted, only relatively short correction de-
cay times of the order of 1 day were achieved. This was
presumably largely due to the much smaller region of
influence used. If the scale of the region of influence is
significantly smaller than the spacing between succes-
sive ascending or descending satellite orbits (~25° lon-
gitude), only a small fraction of the ocean is corrected
in 1 day’s sweep of the satellite over the ocean. Wave
energy from uncorrected regions between the satellite
tracks can then propagate into the corrected regions
and degrade the quality of the updated regions.

Lionello et al. [1992] have proposed a modifica-
tion of the scheme of Janssen et al. [1989] using a
large region of influence and alternative scaling rela-
tions. When swell leaves a generation region, it ini-
tially has a relatively large steepness characteristic of
a wind sea. However, linear dispersion and the nonlin-
ear processes of dissipation and energy transfer, both
of which are strongly dependent on the wave steepness,
rapidly reduce the steepness to a level where all the
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source terms become negligible. If the wave height is un-
derpredicted by the model (which was normally the case
for the Seasat studies), the assimilation schemes men-
tioned above all increase the swell steepness. This im-
mediately activates the dissipation and nonlinear source
terms, causing the wave energy to decrease again. In the
rescaling scheme of Lionello et al. [1992] both the am-
plitude and the frequency of the swell were altered such
that the swell steepness is maintained during the assim-
ilation process. By this modified method the correction
decay times were increased significantly, in the case of
swell, up to the order of the ocean-basin traversal times.

The above assimilation schemes are all relatively sim-
ple and exhibit a number of shortcomings when im-
plemented in a third-generation wave model. All treat
wind sea and swell separately, as in second-generation
models, and introduce rather ad hoc assumptions to
distribute the correction in the total energy between
these two components. This negates one of the ma-
jor strengths of third-generation wave models, in which
such a division is no longer needed, the spectrum being
free to respond to the given source functions without
prescribing the spectral shape or scales. Finally, the
wind update is made only for the local instantaneous
wind, although the wave spectrum often represents the
nonlocal response to the past wind at a distant location.
Furthermore, the significantly higher potential informa-
tion contained in the remote-sensed spectral wave ob-
servations from synthetic aperture radars (SAR) [Has-
selmann and Hasselmann, 1991; Bruning et al., 1993,
1994] is not included.

A more fundamental approach is clearly called for in
which the model predictions are fitted to the observa-
tions by modifying the model control variables, i.e., the
wind field, rather than the model output. A general
solution to this problem is given by the adjoint model
formalism [Marchuk, 1974; Le Dimet and Talagrand,
1986; Thacker, 1988]. The basic concept of this ap-
proach is to determine changes needed in the control
variables to achieve a desired change in the model pre-
diction. Adjoint wave models have been developed and
successfully applied to assimilate wave data in individ-
ual case studies [de Valk and Calkoen, 1989; de las Heras
and Janssen, 1992] or to optimize the model source
functions (G. Barzel et al., manuscript in preparation
1994). However, for global operational implementation
with a third-generation wave model the adjoint model
approach appears to be computationally very costly.

Formally, the change in the wind field needed to pro-
duce a given change in the wave field can be determined
by inverting the wave model equation. However, this
is normally an even more expensive computation. In
fact, the purpose of the adjoint method is to determine
the control variable changes needed to achieve a desired
change in the model output without explicitly inverting
the model equations [cf. Komen et al., 1994]. The ad-
joint model approach requires successively solving the
model equations and adjoint model equations for pre-
scribed source terms in an iterative minimization loop.
In contrast, the inversion of the model equations re-
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quires the determination of the inverse of the linear sys-
tem matrix, which for n variables is a roughly n times
more costly operation than determining a single solu-
tion of the linearized model equations. For large n the
number of minimization iterations required for the ad-
joint approach is normally significantly smaller than n,
so that the adjoint method is more efficient than the di-
rect inversion approach. Nevertheless, we explore in the
following an alternative assimilation method in which
the wave transport equation operator is inverted, but
under strongly simplifying assumptions. The basic idea
is to estimate the impulse response (Green’s) function
of the linearized system which describes the response
of the spectral energy balance to perturbations in the
wind fields. Our central assumption is that the response
is strongly localized in space and time.

We shall not address in this paper the full problem of
simultaneously assimilating both wind and wave data in
an atmospheric weather prediction model and a global
wave model. However, the method presented here can,
in principle, be readily extended to such a comprehen-
sive data assimilation system.

3. General Structure of the Green’s
Function Assimilation Approach

We wish to optimally adapt the wave field predicted
by a wave model to a finite set of wave measurements.
These can represent, e.g., significant wave heights ob-
tained from satellite altimeters; one-dimensional fre-
quency spectra; low directional resolution, two-dimen-
sional spectra measured with buoys; or full two-dimen-
sional spectra inferred from wave arrays, SARs, or other
special remote sensing systems. Optimal implies here
that the modified wave field should represent a best fit
to the observed data under the dynamic constraints of
the wave model in a maximum likelihood sense.

The maximum likelihood solution is defined as the set
of control parameters which maximizes the joint prob-
ability function of the multivariate data distribution.
The control parameters in the present case are wind
corrections. Assuming the errors of the wave data obey
Gaussian statistics, then maximizing the multivariate
normal probability function is equivalent to minimizing
the first term of the cost function

J=(D-D)YTM Y (D-D)+U-UTN YU -U)
(1)

where the vectors D and D represent the adjusted and
the observed wave data, respectively; M is the error
covariance matrix of the observational errors, and the
superscript 7' denotes the transpose. Low values of
the costs are achieved for small distances between the
improved model data and the observed data, with a
distance metric given by the inverse of the data error
covariance matrix. The second term of the cost func-
tion represents an additional penalty to limit excessively
large wind corrections, where U and U are the adjusted
and the first-guess wind data, respectively, and IV is the
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error covariance of the first-guess wind data. Since D
is a function of U through the wave model, the mini-
mization of (1) defines an optimization problem for the
wind velocity field U .

As the error covariance matrices are normally not well
known, we assume that the data errors are uncorrelated.
Thus the error covariance matrices are reduced to diag-
onal forms and the cost function becomes

[0+ - 02) oy

r

+ HY {43/ + v /(o)1)

J =
(2)

where DCPS is the rth observed wave data value; D,
is the corresponding first-guess value inferred from the
model; d, is the modification to this first-guess value af-
ter optimization; u, and v, are the changes introduced
into the z and y components of the wind velocity fields
(at locations indicated by the index p); H is a suitably

chosen weighting factor and o, oy, 0, represent the

standard deviations of the observed data D°PS and the
first-guess wind data (U, V'), respectively. Initially, we
shall set oy = o, = const, so that these terms can be
incorporated in the common weighting factor H and
dropped. While the assumption of uncorrelated errors
appears reasonable for wave data, it will not normally
apply for the first-guess wind field errors. However, it
will be found that this is not critical in the following ap-
plications, in which the wind corrections inferred from
the wave model are not yet assimilated in an atmo-
spheric model.

From the wave energy balance equation
DE 0OF
ﬁ:'é?‘}'cg'vE:St(E,U) (3)

where E is the directional wave spectrum, ¢, is the wave
group velocity, and S; is the total source function [cf.
WAMDI Group, 1988]. A linearized relation between a
small modification e of the wave spectrum and a small
modification u of the friction velocity can be obtained
in the form,

De _ 65 95 (4
Dt SE- Tou ™ 2)
or 65’
_ 05
Le = 30 u (4b)

where L = (D/Dt — A) with A = 6S;/6E. The integra-
tion of (4b) is obtained formally by inverting the linear
operator L

T (5a)

or explicitly for e as function of wavenumber k, loca-
tion @ and time ¢

e=L"! {85} u]

e(k;z,t) =
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///G(k;w,t;w',t’)gil}-u(k;w’,t')dm’dt' (5b)

where G = L~! is the Green’s (or impulse response)
function for which

LG(k;z,t;a' 1) = 6(k; . — 2, t — ') (6)

[Roach, 1982; Fennel and Lass, 1989)].

In practice, the rigorous implementation of this ap-
proach will not be feasible, since the determination of
the impulse response function G requires the inversion
of the prognostic operator L occurring in the spectral
perturbation equation (4b). In discretized form this
involves the inversion of a very high dimensional ma-
trix. In the adjoint method the inversion problem is
avoided by solving the linearized model equations only
for the specific source function perturbations arising in
the iterative construction of the optimal solution [cf.
Marchuk, 1974; Le Dimet and Talagrand, 1986]. Even
this approach, however, requires multiple integrations
of the model and the adjoint model equations and be-
comes very time-consuming when applied to a full third-
generation wave model.

We shall accordingly pursue a direct inversion ap-
proach but will attempt to reduce the problem to a
computationally tractable level by introducing appro-
priate simplifications for the impulse response function.
Our essential approximation, motivated by the dynam-
ics of the wave field and discussed in section 4, is that
for any given spectral perturbation e(k;x,t) there ex-
ists a highly localized region in space and time in which
a perturbation u of the wind velocity field is most effec-
tive. Thus we assume that the factor in the integrand
of (5) which acts on the wind field perturbation u, can
be approximated by a é-function,

G(k;z,t; w',t’)g—% =6(x' —xp)8(t' —tp)W(k;x,1)
(7)

where the influence point (z,,1,) is a function of (k, z,t).

W = (W", W") represents the spectral impact function
with respect to wind perturbations u, v in the z and the
y directions, respectively. Thus the general relation for
the spectral energy changes resulting from wind changes
simplifies to

e(k;z,t) = WU (k; @, t)up(k) + WY (k; z,t)v, (k) (8)

where (up,vp) = [u(®p,1p), v(xp,t,)] are the wind mod-
ifications at the influence points. It should be kept in
mind in the following that although the index p is used
for brevity to denote quantities defined at the influence
point ®,,t,, thesé coordinates are, in fact, functions of
the coordinates z,t associated with the wave measure-
ment (identified by the index r) and wavenumber k.
The spectral impact functions W* and WY depend on
the past evolution of the sea state and form the causal
relation between the wind changes at the displaced in-
fluence point (®p,t,) in the past and the spectral energy
changes at the measurement point (x,1).
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Small changes d, in (integral) model data can be lin-
early related to the perturbation of the local wave spec-
trum e,

d = 3 Ar(R)e(k ) )
k

where the transfer function A,(k) depends on the kind
of observed data (i.e., SAR spectrum, significant wave
height, etc.). Combining (8) and (9), the modification
d, of some integral model data can then be linearly re-
lated to the modification of the velocity components at
the set of influence points p which affect the measure-
ment d,,

d, = (B} (k)up (k) + By (k)u, (k)] (10)

k
where
B (k) = A (k)W*"(k) (11a)
By (k) = A (B)W" (k) (11b)

Substitution of (10) into the cost function (2) yields

J=3 o) F +HY [up +v)] (12a)

where
Fy = AD, + 3 (B (K yup(k) + BY(K yup(K')] (12b)
k/
AD, = D, — D°" and p = p(r, k). Thus (2) has be-
come a linear optimization problem for the modification

in the wind velocity field. From the minimization con-
ditions 8J/du, = 0 and 8J/0v, = 0 we obtain

up(k) = ~(0)PHELBER) (133)
w(k) = (o) HUEBR) (13b)
The solution of (13) is given by
u, = Ky AD, B (14a)
vy = K, AD, B (14b)

where
K, =~ | (28 + 3 {[Br))” + (B ()}
=
(15)

Thus for each spectral wave component k of each mea-
surement r one derives an associated wind correction
vector (up,vp) which is proportional to the net spec-
tral impact functions By, By of the wave component k
and to the difference between the first-guess and the
observed wave data AD,. The wind correction vector
depends also on the quality of the observations and the
integral sensitivity, expressed by the sum in (15).
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In the following the main interest will be in the assim-
ilation of measured two-dimensional ocean wave spec-
tra (e.g., SAR or buoy spectral data). In this case a
large number of measurements are available for a given
position, each spectral measurement at a wavenumber
k being regarded formally as a separate data value

r. However, from the measurement of a single energy

value from only one spectral component it is, in princi-
ple, impossible to determine the correction of a two-
dimensional wind vector: the deviation between the
predicted and observed energy can be due to a change in
either the magnitude or the direction of the wind vector
at the influence point. The two components of the wind
vector can be inferred only if we combine several spec-
tral bins to describe the change in the relative distri-
bution of energy in the spectrum. We shall accordingly
consider a cluster of spectral bins (m=+s;,n+s;) around
a given reference spectral bin (m,n) = (frequency, di-
rection), where s1,s2 = 0,1, or 2. For each cluster
we introduce three derived data values Dy, Dy, and D3
representing the mean energy difference and two com-
ponents of the spectral gradient at (m,n)

Di(m,m) = 3D(m,m)
+ %[D(m +1,n)+ D(m,n=+1)] (16)
2
Dy(m,n) = Z [D(m,n + s) — D(m,n — s)](17)
s=1
Ds(m,n) = D(m+1,n)—D(m—1,n) (18)

We anticipate that changes in the magnitude of the
wind will affect mainly the mean energy and the gra-
dient of the spectrum with respect to frequency, while
changes in wind direction will modify mainly the deriva-
tive of the spectrum with respect to the propagation
direction. Tests with various degrees of smoothing in
the definition of the mean energy and the derivatives of
the spectrum yielded optimal results for the weighting
given in (16)—(18).

Thus we rewrite the cost function (12) as

3
J=0"23 (CAD; +d;)* + H (up +v;)  (19)

i=1

where AD; denote the differences between the first-
guess clustered data D; and observed clustered data
Db d; is the desired modification of the model first-
guess, o is the rms error of the wave observations, and
(up,vp) is the wind correction vector. According to
the usual data quality criteria, the error of the wave
data observations is set proportional to the wave en-
ergy itself. The weights C; assigned to these different
deviations will be adjusted in the calibration process
described in section 6.

The three corresponding modifications of the model
data are of the general form (see 10)

d; = Bi'up + B vp. (20)
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Substitution of (16)—(18) and (20) into the cost func-
tion (19) yields as minimum solution for the wind cor-
rection vector (omitting the index p)

PuRu - PvRuv
= 21
“ RuRv - (Ruv)2 ( )
P,Ry — Py Ry,
= —_— 22
Y RuRv - (Ruv)2 ( )
where
3
R, = o’H+)» (B! (23)
=1
3
R, = o®H+) (B})? (24)
i=1
3
Ry = Y (B!BY) (25)
=1
3
P, = =) CAD;B} (26)
i=1
3
P, = =) CAD:BY. (27)

=1

The outputs of the wave data assimilation scheme are
wind vector modifications which are distributed in space
and time in accordance with their effective impact on
the wave spectra at the various measurement points.
Each measured spectrum produces a large number of
wind vectors. The introduction of clustered spectral
data in place of the original spectral values does not
yet lead to a reduction of this number, since the central
bin (m, n) of a cluster runs through all spectral bins for
those where the cluster lies within the definition domain
of the spectrum. However, one should clearly not regard
single spectral wave measurements as independent mea-
surements but as coherent ensembles. Thus one needs
to gather and appropriately average all wind correction
vectors which belong to a common influence region. In
general, this represents a data assimilation task in which
the wind corrections derived from the wave data should
be combined with first-guess information from an atmo-
spheric model forecast and conventional meteorological
data to reconstruct an optimum, dynamically consis-
tent wind field. This is beyond the scope of the present
paper, however, and we shall apply a simpler averaging
method.

Once the wind field has been corrected, the wave
field can be recomputed using the modified wind field
to drive the wave model. Should the wave corrections
computed from the wind corrections, as inferred from
the linearized wave model, turn out to be inadequate,
the recomputed “second-guess” wave data can be used
as a starting point for a second wave data assimilation
cycle. If necessary, the iteration can be repeated several
times. In this manner one can, in principle, overcome
the limitations of the linearization (in the same way as
in the adjoint technique, although there, several itera-
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tions are always necessary to find the cost minimum,
which in our method is computed explicitly). However,
since our method involves other unavoidable approx-
imations in the computation of the impulse response
function of the wave model, in most cases the approxi-
mations incurred by the linearization will be acceptable.

4. The é-Function Approximation of the
Wind Impact Function

To justify the é-function approximation of the im-
pact functions W*(k) and W (k) appearing in (7) and
to determine the region of maximum impact (i.e., the
wave age), we need to investigate now the properties of
the functional derivative A = 65, /6 E and the derivative
dS;/dU in (4). The total source function in (3) gener-
ally consists of the sum of the input, nonlinear transfer,
and dissipation source functions

St = Sin + Sni + Sas- (28)

The exact form of the matrix A is rather complicated,
since Sys and, in particular, S,; are complex nonlinear
functions of E. In the implicit integration scheme of the
WAM model an approximation of A is used in which
only the diagonal part of the operator is retained. In
this case the operator is reduced to the form A = AI,
where I is the identity matrix and A is a scalar feed-
back coefficient. We shall use this approximation in the
following, with a modification discussed below.

In the source functions of the WAM model the depen-
dence on the wind velocity U appears explicitly only in
the input source function S;,, which is proportional to
the spectrum, so that

05S;
ou

where the vector a is a nondimensional function of U.
This yields a linearized wave transport equation of the

form D
(Ht-—)\) e=a-ukF.

The limitation to a diagonal feedback term, however,
has some basic physical shortcomings. Although not
serious when used in the implicit integration scheme of
the model, these lead to unrealistic results in the present
application. The nondiagonal elements in the functional
derivative of S,,; result from the nonlinear coupling com-
binations which are responsible for the transfer of en-
ergy across the spectrum. If only the diagonal elements
are retained, a perturbation of the spectrum e at a given
wavenumber induced by a perturbation of the wind
(which is proportional to the unperturbed spectrum F;
see (30)) simply relaxes back exponentially at a rate
governed by the (generally negative) feedback factor A,
without changing other regions of the spectrum.

In reality, however, a perturbation in the wind forcing
induces an energy transfer between the various interact-
ing spectral quadruplets in a process which maintains
a quasi-similar shape of the spectrum. Small perturba-

=akF

(29)

(30)
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tions in the spectrum disappear rapidly through this
shape-stabilizing effect of the nonlinear transfer S,;,
while at the same time the peak of the spectrum (for
positive wind perturbations) is shifted to lower frequen-
cies [Hasselmann et al., 1973]. Numerical experiments
by Hasselmann and Hasselmann [1985], Resio and Per-
rie [1991], and Young and Van Vledder [1993] have
demonstrated that negative and positive energy pertur-
bations at frequencies larger than the peak frequency
are quickly compensated by an energy flux from and
to neighboring spectral components, respectively, to re-
cover an approximate f~* distribution corresponding
to the constant-flux cascade [Zakharov and Filonenko,
1967]. A change of only the wind direction causes
positive and negative energy changes which are largest
for the propagation directions whose spectral spreading
function is changing most rapidly. The resulting rota-
tion of the spectrum is again controlled largely by Sy
[Young et al., 1987; Young and Van Vledder, 1993].

To account for these nondiagonal energy transfers,
we replace the source function appearing on the right-
hand side of (30) by an effective driving source function
which is expressed as a linear combination of the source
functions S;, and S,;. Experiments with a number of
different forms yield optimal results for the following
parameterization. For a wind perturbation ' parallel
to the first-guess wind U we describe the evolution of
the spectral perturbation by

(5-2)=xe
where

3l _{ a1%(0.55in + Sn1) cos(29)
“ 10

(31)

9] < w/4
|9] > /4.
(32)

U

Y = (0 — 0y) where 6 and 6,, are the directions of the
wave component and of the local wind, respectively.
Thus a change of the wind speed is assumed to cause
a maximum energy change for wave components propa-
gating in the direction of the wind, the energy changes
decreasing to zero at +45° from the wind direction.

For a wind perturbation v’ orthogonal to the first-
guess wind direction we assume the solution

D
<E - )\> et =g (33)
where
g = a2E B (Sin + 0.55)|sin(29)|  |9| < 7/4
v 0 |9 > /4.
(34)

The directional gradient produces an antisymmetric
pattern. The pattern has extreme values in the neigh-
borhood of +45° from the spectral peak. The values
of the free coefficients a; and a; were estimated by the
calibration process described in section 6.

For unit wind field perturbations in the x and the
y directions, evolution equations were inferred for the
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spectral impact functions W* and W", respectively

D
<E - )\) W% = ,Bu,v (35)
where
Bu = B, sin by, — B, cos by, (36)
By = B, cos by + B, sinb,,. (37)

The source functions in (35) are obtained by transform-
ing the source functions in (31) and (33) from the (', v’)
system oriented with respect to the local wind direction
into the standard (u,v) system of the WAM model in
which the wind direction 6,, and the wave propagation
direction @ are defined clockwise from north.

Equations (31) and (33) describing the linear re-
sponse of the wave spectrum to perturbations in the
wind field do not yet contain the §-function approxima-
tion. This we deduce now from the properties of the
damping factor A and the wind impact factors 8, , in
(35). Consider the application of a uniform wind field
perturbation to a nonuniform background wind field,
with an accompanying background wave field consist-
ing of the usual admixture of wind sea and swell. The
combination of the forcing and damping terms in (31)
and (33) have the effect that for each energy-containing
spectral component there is only a limited region of the
perturbed wind field which has a significant influence on
the spectral response. This is the region in which the
wave component last experienced a significant forcing
from the effective driving source functions expressed in
(32) and (34). Before this last forcing, the impact of
the wind field perturbation is largely lost through the
nonlinear interactions which continuously restore the
balance with the rest of the spectrum. This is asso-
ciated with a large nonlinear damping factor A. Once
the wind sea has been converted to swell, the exponen-
tial damping vanishes, but the driving source function
is then also zero.

Hence the most effective region for modifying the
spectral swell energy is the narrow transition area be-
tween wind sea and swell. This region of effective wind
impact can be determined from the wave age 7,(k), the
time of travel from the impact region to the measure-
ment point. If the wave component is a wind sea com-
ponent, rather than swell, the most sensitive region is
close to, but upwind from, the measurement point, the
effective distance upwind depending on the fetch or du-
ration and the wind speed.

To specify the different regions of origin for the spec-
tral wave components, we compute the spectral wave
age Tp(k) in a manner similar to the method of Booij
and Holthuijsen [1987]. From the time ¢ and the posi-
tion @ of the spectral measurement each wave compo-
nent can be traced back along its great circle path to
its effective point of origin (#,,1,), where (in simplified
Cartesian notation)

tp(k) =
zy(k) =

t = 1p(k)
z — 7y (k)ey

(38)
(39)

and ¢, is the group velocity.
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Booij and Holthuijsen [1987] defined the time of ori-
gin t, of a wave component k as the average time
weighted with the integrated “active source function”
for that component. For our application we define ¢, as
a weighted average time through the relation

tp(k) = T /W* (40)
where T, W* are determined by integrating the prop-
agation equations

D * . —
<“D¥ —,\> T*(k;2,t) = pt

(% - A) W (ks 2, 1)

where 3 denotes the modulus 8 = (8,% + 8,2)1/2 of the
wind impact coefficients 3, 8, in (31) and (33). Equa-
tion (41) clearly has the desired property of weighting
those time periods for which f is large and the damp-
ing A small. The second equation, (42), supplies the
normalizing factor W* for this calculation.

In summary, in order to derive the influence point
(zp,t,) and the wind impact functions W* W¥, we
need to integrate the four propagation equations for the
spectral variables 7%, W*  W*, and W¥. This can be
done efficiently in the course of the basic wave model in-
tegration. Since no additional source functions need to
be computed and, in the case of the WAM model, the
propagation computation is less time-consuming than
the evaluation of the total source function, the com-
putational overhead remains acceptable. However, the
storage requirements are increased by a factor of ap-
proximately 4.

(41)

B (42)

5. Numerical Implementation

As in the numerical scheme of the WAM model, the
propagation for the additional impact variables T, W*,
W4, and WV is performed by an upwind-flux scheme. -
However, instead of the implicit integration method
used to integrate the full source function S; in the WAM
model, an alternative, more efficient analytical tech-
nique is applied which makes use of the property that
the additional transport equations are linear in the im-
pact variables.

The integration of one forcing time step for the im-
pact variables requires the integration of an equation of

the form

dy
-(—i?_a+/\y.

As both @ and X can be regarded as constant over the
integration time step At, a local analytical solution of
(43) can be found [Sobey and Young, 1986]

(43)

Nl ynAAL o [e)\m _ 1]

: (44

Y
where n and n+ 1 refer to the time level of the solution,
a =a” and A = A". For the case of no damping, i.e.,
A = 0, a series expansion of the exponential function in
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(44) yields the expected result of an unlimited growth

Yyt =y + aAt. (45)
Tests have shown that this scheme maintains numerical
stability at the source function time step of the WAM
model (which is an order of magnitude larger than the
time step required for an explicit scheme).

As mentioned earlier, the feedback A is strongly nega-
tive in the wind sea portion of the spectrum. However,
in some regions, normally close to the high-frequency
side of the spectral peak, A may become slightly pos-
itive. Since ) is intended to act as a damping term,
the positive feedback is suppressed by setting A equal
to zero in these regions.

We note that the form of the forcing terms (32) and
(34) was chosen to capture both the wind input forcing
and the energy transfer between spectral components
which appear in the nondiagonal elements of the source
term derivative A. Since the form should relate directly
to the local wind, spectral regions of the source terms
which are not closely coupled to the local wind have
been excluded by setting By, 3, = 0 for f < 0.8fpMm or
|6, — 0] > 7/2, where fpm is the Pierson-Moskowitz
frequency and 6, 6, denote the wave propagation and
wind direction, respectively. The calculations are per-
formed using the standard WAM model cycle 4, with
25 logarithmically spaced frequencies f, of resolution
Afn/fa = 0.1 and a directional resolution of 15°.

6. Calibration of the Assimilation
System

The forms (32) and (34) for the wind impact fac-
tors B!, B/ in the perturbation equations (31) and (33),
respectively, were tuned to reproduce as closely as pos-
sible the spectral perturbations induced by small wind
field changes for the simplest geometry of fetch-limited
wave growth. The properties of the wind impact func-
tions are shown for a fully developed (600-km fetch, 5.5-
day integration time) reference spectrum in Figure 1.
This spectrum is generated by a homogeneous, station-
ary, northward blowing, 10-m wind (U, V) = (0,10 m/s),
yielding a significant wave height of 2.10 m.

The pattern of the impact function W@(k) corre-
sponding to wind changes in the y direction (Figure
2a) compares well with the energy differences between
a perturbed and the reference spectrum computed with
the WAM model (Figure 2b). The perturbed spec-
trum was obtained by adding a homogeneous wind field
change of (u,v) = (0,1 m/s), i.e., by increasing the wind
speed by 10%. This leads to an increase in the wave
height of about 20% (0.5 m).

The second impact function W*(k) corresponding to
wind changes in the z direction is shown in Figure 3a,
and the corresponding change in the spectrum for a 10%
wind perturbation orthogonal to the initial wind is pre-
sented in Figure 3b. The perturbation yields a spectrum
rotated by about 6°, with essentially no change in to-
tal energy. The computed spectral differences between
the rotated and the reference spectrum exhibit a plus—
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Figure 1. Polar plot of fetch-limited (essentially fully
developed) first-guess spectrum E(f,0) at 6°N, 23°E
generated by a homogeneous, stationary wind field with
(U,V)=(0,10) m/s and an upwind boundary at the
equator. The significant wave height is 2.10 m, the peak
frequency is 0.13 Hz, and the peak direction is 0°. Iso-
lines of the spectral energy are scaled logarithmically.
Dashed circles are frequency isolines in steps of 0.05 Hz.

minus pattern centered at 445° off the initial spectral
peak, which is similar to the distribution of W*.

In agreement with the energy changes derived di-
rectly from the WAM model, the sensitivity of the wind
impact functions W* and W@ is largest for frequen-
cies in the vicinity of the peak frequency and falls off
rapidly toward higher frequencies. The high-frequency
falloff, due to the exponential decay factor A in (31)
and (33), does not imply that the higher-frequency com-
ponents do not respond to a perturbation of the wind
but, rather, that the response information is lost due to
the rapid readjustment of the spectrum toward a quasi-
universal form.

Despite the overall agreement of the distribution of
the spectral changes computed by the Green’s function
method and directly by the WAM model, the ratios of
the impact functions W* and W? and the correspond-
ing energy differences from the WAM model calcula-
tions, respectively, are not constant (Figures 2¢ and 3c).
Thus wind field corrections computed by the Green’s
function method from different components of the spec-
trum vary. To overcome such variations, the spectral
wind corrections corresponding to a given region of in-
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fluence are collected into clusters to form appropriately
weighted mean wind correction vectors.

Various methods can be devised to collect and aver-
age the wind correction vectors associated with a com-
mon region of influence. The most satisfactory tech-
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nique is presumably to base the clustering criterion on
the wave ages and the resulting locations and times of
origin (@p,t,) of each spectral component. However,
here a simpler method is used which enables the present
wave data assimilation scheme to be related to an al-
ternative wave data assimilation method which corrects
only the local wind. The latter method, designed for
the assimilation of SAR-retrieved wave spectral data, is
currently in a preoperational testing phase at the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF). The method is based on an extension of
the current ECMWF operational optimum interpola-
tion method for assimilating ERS-1 radar altimeter data
in the WAM model and involves a decomposition of
the wave spectrum into principal wave systems E;(f, 6),
with E(f,0)=3_, E;(f,0) using a modified form of Ger-
ling’s [1992] partitioning method [Brining et al., 1994].
The wave systems E;(f,0) are assigned to a separate,
nonoverlapping region ; of the (f,6) plane in accor-
dance with a simple “inverted catchment area” algo-
rithm.

We use this partioning scheme to define an average
wind field correction (uj,v;) for a given wave system E;

through
(i

<3):/(mmm

M,(f,9)
where u(f,8),v(f,8) denote the wind field correction
for each frequency-direction bin of the wave system E;.
A masking factor

0 u(f,0),0(f,0) =0
A““””*‘{l u(f,0).v(F.6) #0

has been introduced to filter out spectral components
in the normalizing integrals those wind field corrections
vanish. (The impact factors W* W are set to zero
when they fall below a model noise limit of 1% of the
maximum value of W* or W* for the given spectrum.)
The effective location (w;,t;) of the mean wind field
correction for a given wave system £} is computed from
the mean wave age 7;, mean frequency fj, and mean
direction 6; (defined as tan=![(sin 6); /(cos 8);]), where

) E;(f,0)dfdo

(46)
) E;(f,0)dfdo

(47)

Figure 2. (a) Wind impact function W?(f,6) for the
first-guess spectrum of Figure 1, showing the response
of the spectrum to a unit change of the wind in the y
direction. (b) Difference e(f,8) between a perturbed
spectrum generated by a homogeneous wind field with
(U,V)=(0,11) m/s and the first-guess spectrum of Fig-
ure 1 with (U,V)=(0,10) m/s. The difference in sig-
nificant wave height is 0.48 m. (c¢) Ratio between the
wind impact function W* and the computed spectral
perturbation e. Isolines represent the percentage of the
maximum of each distribution in 30% intervals.
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Figure 3. Same as Figure 2, but for the wind input
function W¥(f,6) and a wind field (U, V)=(1,10) m/s
perturbed in the cross-wind direction z. The differ-
ence in significant wave height for the reference and per-
turbed runs is 0.02 m. Shaded areas represent positive
values, dotted isolines correspond to negative values.
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(sin6);, (cos B); are averages defined in accordance with
(46)) using the relations (38) and (39).

To calibrate the procedure, the magnitudes of the
computed wind changes were adjusted through a suit-
able choice of the free scaling coefficients a1, a2, and
Ci(i = 1,3) in (32), (34), and (19). The calibration
was performed for the case of an almost fully devel-
oped, fetch-limited (500-km fetch, 5.5-day duration) ref-
erence “first-guess” spectrum generated by a homoge-
neous wind field with (U, V) = (0,14 m/s). The wind
field was then perturbed by 10% in the z and the y
directions to produce two so-called “observed” spectra.
The wind field errors were then inferred from the assim-
ilation of the observed spectra. The five coefficients of
the wind correction algorithm were determined simulta-
neously by minimizing the sum, from both assimilation
cases, of the differences between the prescribed errors in
the first-guess wind field and the wind correction vec-
tors inferred from the assimilation algorithm. Precal-
culated first estimates of the coefficients were used as
starting values for the minimization procedure using an
unconstrained conjugate gradient scheme. To obtain a
stable solution it was found advantageous to smooth the
effective driving functions in (32) and (34) by a three-
point running mean. The optimal scaling coefficients
for the wind impact functions (32) and (34) were found
to be a; = 33.6,as = 8.2, while the optimal weights in
the cost function (19) were C; = 9.92,C, = 4.66, and
C3 = 0.1. The weight of the side condition penalizing
excessively large wind corrections was set as H = 10.

7. Verification of the Wind Field
Corrections

In the following the performance of the calibrated
Green’s function assimilation scheme is tested under
three different sea state conditions. To yield a con-
trolled experiment, synthetic, rather than true, ob-
served data were used. For each test case the WAM
model was run twice, once for the reference wind, yield-
ing the first-guess wave spectrum, and once for a per-
turbed wind field, yielding the observed spectrum. The
test area was taken again as the 40x25 longitude, lati-
tude rectangular box, with a resolution of 1° x 1° and
the equator as the southern boundary.

The first sea state condition represents a generaliza-
tion of the fetch-limited, fixed-fetch case which was used
to calibrate the assimilation scheme. The first-guess
wave spectrum was computed, as in the calibration case,
for a homogeneous, northward directed wind field, but
the wind speed was now taken as 18.45 m/s instead of
14 m/s. The wind was then changed by 10% in the y
and the x directions to produce two sets of observed
spectra. From the assimilation of these observed spec-
tra, mean wind correction vectors directed to the north
and east, respectively, were obtained. The magnitudes
of the wind corrections are presented as a function of
latitude (corresponding to nondimensional fetch values
gz /U? between about 2.5 x 103 and 6 x 10*) in Figures
4a and 4b, respectively. Both prescribed wind field per-
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Figure 4. Computed wind corrections for the fetch-
limited case with 18.45 m/s winds blowing northward.
(a) Homogeneous wind speed change of 10% in y (north-
ward) direction. (b) Homogeneous wind speed change
of 10% in z (eastward) direction. In Figure 4a the
computed wind corrections (solid line) fluctuate weakly
about the prescribed wind change of 1.85 m/s, the dif-
ferences in total energy between the perturbed and the
first-guess spectra (dashed line) increasing, as expected,
with fetch. In Figure 4b the computed wind corrections
(solid line) are also close to the prescribed wind change,
while the differences in total energy (dashed line) are
negligible. '

turbations, causing an increase and a rotation of the
spectra, respectively, could be retrieved reasonably ac-
curately, with some variation about the expected mean
value of 1.85 m/s. As predicted theoretically, the dif-
ferences in total energy between the first-guess spec-
tra (U = 18.45 m/s) and the spectra with enhanced
wind speeds (U = 20.3 m/s) increase with fetch (Figure
4a), while the change in the wind direction causes no
significant change in energy (Figure 4b). As a test of
the nondimensional fetch scaling laws, the experiment
was repeated using winds of 14 and 10 m/s instead of
18.45 m/s, with essentially the same results.

The second synthetic sea state condition was devised
to test the applicability of Green’s function assimila-
tion scheme for swell, where the magnitude, direction,
and location of the wind correction vector are far from
the measurement location. The same grid was used as
before, with a uniform wind of (U, V)=(0,10 m/s) blow-
ing northward. However, now a small region, 17°N —
19°N, 28°E — 29°E, of intense winds, represented by six

BAUER ET AL.: WAVE DATA ASSIMILATION BY GREEN’S FUNCTION METHOD

grid points, was introduced in the northeast of the ex-
perimental area. The wind velocity was set to 30 and
33 m/s in the direction of 220° for the first-guess and ob-
served data runs, respectively. The first-guess wind field
and the resulting wave heights in the central part of the
grid are shown in Figures ba and 5b, respectively. The
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Figure 5. (a) Wind field of (U, V) =(0,10 m/s) with
an inset region of strong winds with (U, V) = (30 m/s,
220°) in the northeast of the model area that produced
(b) a wave field. The waves consist of wind sea and
swell, attaining a maximum significant wave height of
more than 13 m.
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Figure 6. Mean wind correction vectors for the case
shown in Figure 5 obtained by the assimilation of five
observed spectra located at positions marked by circles.
The observed spectra differ from the first-guess spectra
through a stronger swell. This was generated by a 10%
increase in the wind from 30 m/s, 220° to 33 m/s, 220°
at the positions marked by crosses. All five wind cor-
rection vectors reproduce the prescribed wind change of
approximately 3 m/s, 220° at the correct location (lings
connecting the circles and crosses indicate the great cir-
cle propagation paths of the swell).

waves leaving this strong local wind field propagated
into the rest of the region as swell. As the swell gen-
eration region approximates a spatial é-function, this
configuration provides a useful test for validating the
computation of the spectral wave age needed to locate
the swell source region. In addition, it tests the mag-
nitude and direction of the computed wind vector cor-
rections under conditions which differ significantly from
the fetch-limited case used to calibrate the wind correc-
tion algorithm.

The mean wind correction vectors were inferred from
wave measurements downwind of the swell source re-
gion at 11°N — 15°N along 23°E. The values lie close
to the expected value of (3 m/s, 220°) (Figure 6). The
locations of the wind correction vectors were computed
from the mean wave age 7; of the swell, which was rep-
resented as a partitioned wave system with mean fre-
quency f;, mean direction 6;, and mean group veloc-
ity egj. Tracing back from the observation point along
the great circle path of the swell, the computed wave
age yields exactly the swell source region as the loca-
tion of the wind correction (Figure 6). No corrections
of the wind field are obtained outside the swell source
region, since no differences are found between model
and observed data for the wind sea wave components.
In a complementary experiment in which observed and
first-guess spectra were interchanged, the wind speed
reduction could also be retrieved and located correctly.
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(To exclude wave ages computed for spectral compo-
nents with very little energy, which are contaminated
by numerical model noise, all wave ages for which W*
is less than 1% of the maximum value of W* for the
given spectrum were again excluded.)

In a third test case the focus was placed on the
retrieval of the wind corrections from more complex
spectra consisting of a superposition of wind sea and
swell with different propagation directions. The first-
guess wave field was generated by relatively strong cy-
clonic winds representing an idealized atmospheric low-
pressure system. The cyclonic wind system of about
18.3 m/s was embedded in the center of the experimen-

a) \WIND VELOCITY u 4o [mis]
240N

18°

120

6°

b) SIGNIFICANT WAVE HEIGHT H g [m]
24°N

18°

120

60

250 300 350E
Figure 7. (a) Cyclone with wind speeds of
|U]=18.3 m/s embedded in a northward wind of 2 m/s
producing a (b) wave field. The cyclonally traveling
waves attain significant wave heights of the order of
6 m and propagate out of the generation region into
the model area as swell.
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Figure 8. Mean wind correction vectors derived from
the assimilation of 36 observed spectra at locations (cir-
cles) corresponding to typical ERS-1 and ERS-2 syn-
thetic aperture radar wave mode sampling. The ob-
served spectra are generated by a cyclone with winds
which are increased by 10% relative to the first-guess
cyclone in Figure 7a. Most of the spectral energy devia-
tions represent swell observed outside the generation re-
gion. The magnitudes of the computed wind correction
vectors are about 2 m/s, while the directions reproduce
the circular storm pattern, in general agreement with
the prescribed errors of the first-guess cyclonic wind

field.

tal area with a very weak northward blowing homoge-
neous wind field of 2 m/s (Figure 7a). The maximum
significant wave heights are approximately 6 m (Figure
7b).

The observed spectra were computed by increasing
the cyclonic wind field by 10%. The locations of the ob-
servation were chosen in accordance with the geometry
of the wave spectral data which could be retrieved from
the SAR wave mode of the European Remote Sensing
Satellites ERS-1 and ERS-2. The locations were spaced
about 200 km apart along descending and ascending or-
bits which were assumed to bracket the cyclonic wind
system. From the assimilation of these observed spec-
tra the errors in the swell components of the spectra
were clearly shown to originate from the cyclone and to
be caused by an underestimation of the cyclonic wind
by about 2 m/s (Figure 8). However, four of the wind
corrections are seen to be overpredicted by about 50%.
They originate from either 12° latitude or 25° longitude,
where several wind vectors are aligned with spectral di-
rection bins (note the corresponding distortion of the
isolines of the significant wave heights in Figure 7b).
This suggests that the overestimated wind correction
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can be partly attributed to the garden sprinkler effect
of the numerical propagation scheme. In time-varying
situations this effect will presumably be negligible. Sim-
ilar analyses for a 14 m/s cyclonic wind system or with
an increase in the strength of the background wind field
from 2 to 5 m/s yielded essentially the same results.
The results of these tests clearly demonstrate that it
is possible to deduce both the wind correction vectors
and the locations and times of the wind corrections from
spectral energy measurements at distant locations and
later times.

8. Conclusions

The Green’s function assimilation method presented
here represents the first step toward a comprehensive
data assimilation system for atmospheric and wave data
using both atmospheric and wind wave models, ideally
in a coupled mode. The technique uses observed wave
data to derive corrected wind fields which are dynami-
cally consistent, in an optimal least square sense, with
the WAM wave model. The corrected wind data can
then be used to recompute a corrected wave field (al-

though this subsequent step was not performed in the

present paper).

The method should prove particularly useful in ex-
treme wind situations, which are often inadequately re-
solved or missed in operational forecasts. This is impor-
tant mainly for the Southern Ocean, where data cov-
erage is sparse; but severe events can also be poorly
captured in the northern hemisphere. A specific case
was Hurricane Andrew, which occurred in the tropical
Atlantic in August 1992 and produced serious damage
in eastern North America. The storm was not ade-
quately resolved in the model predictions, although it
was clearly visible in Meteosat images. The assimilation
of remote-sensed wave data with the present scheme
should lead to improved wind analyses and forecasts in
such situations.

In addition to forecasting and hindcasting applica-
tions, wave data assimilation provides an important
tool for investigating the dynamics and improving the
modeling of the coupled atmosphere-wave-ocean sys-
tem. Continuous observations of waves from satellites
such as ERS-1 and ERS-2 with altimeters and SARs
provide information both on the locally generated wind
waves and on swell generated by distant wind systems.
While the assimilation of altimeter wave height data
requires rather ad hoc assumptions regarding the dis-
tribution of the measured total wave energy over the
wave spectrum, SAR image spectra yield information on
the full two-dimensional wave spectrum. The Green’s
function assimilation method presented here is particu-
larly useful for the assimilation of two-dimensional wave
spectra retrieved from SAR image spectra [Hasselmann
and Hasselmann, 1991; Brining et al., 1994; Bauer,
1994]. It enables the systematic study of the interrela-
tionship between global wind and wave fields.

The partitioning of the wave spectrum into separate
wave systems, together with the computation of the
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wave ages defining the location and time of the max-
imum impact of the wind on the individual wave sys-
tems, yields separate wind corrections for each of the
wave systems emanating from different generation re-
gions. Combined with analyses of the change in en-
ergy of the wave systems as they propagate over large
distances in the oceans, the Green’s function assimila-
tion method therefore should provide an important tool
for distinguishing between wind field errors and model
errors in comparisons between predicted and observed
wave spectra.

The computation of the impulse response function
by inversion of the linearized wave model equations
was feasible only through the introduction of several
approximations. Foremost among these was the as-
sumption that the region of wind impact can be ap-
proximated by a é-function. Although only physically,
rather than mathematically justified, the assumptions
were validated in a number of tests with synthetic wind
fields. The locations, times, magnitudes, and directions
of prescribed wind field errors could be recovered for a
variety of wind fields of different geometry. The robust-
ness of the Green’s function technique has been demon-
strated also in an analysis of ERS-1 SAR wave mode
data in the Atlantic [Bauer, 1994] and will be further
tested in ongoing studies using ERS-1 and ERS-2 data.
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