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Abstract

Wave height distributions on shallow foreshores deviate from those in deep water due to the
effects of the restricted depth-to-height ratio and of wave breaking. Laboratory data of wave
heights on shallow foreshores of different slopes have been analysed to determine these effects
and to derive generalised empirical parameterisations. A model distribution is proposed consisting
of a Rayleigh distribution, or a Weibull distribution with exponent equal to 2, for the lower
heights and a Weibull with a higher exponent for the higher wave heights. The parameters of this
distribution have been estimated from the data and expressed in terms of local wave energy, depth
and bottom slope, yielding a predictive model that is found to be significantly more accurate than
existing expressions. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Wave characteristics in shallow water are frequently calculated from deep-water data
Žwith a wave energy model. Such models give the local wave energy and, depending on

.the model chosen, its spectral distribution but not wave height distributions, although
these can play a role in design and evaluation of coastal structures.

In deep water, the approximately linear behaviour of the waves allows for a
theoretically sound statistical description of the wave characteristics, based on a
Gaussian distribution of instantaneous values of surface elevation, resulting in a

Ž .Rayleigh distribution of crest-to-trough wave heights that is fully determined by the
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local wave energy. In shallow water, the wave behaviour is more complicated and the
knowledge of the statistical description of wave field characteristics is more limited. A
situation of engineering significance occurs when waves propagate over a gently sloping
shallow part of the coast seaward of a sea-defence work, a so-called shallow foreshore,
where depth-induced breaking can cause the distribution of wave heights to differ
considerably from the Rayleigh distribution, in a manner that at present is not well
known.

Design criteria for coastal structures with respect to wave forces, cover layer stability,
wave run-up or wave overtopping, involve one or another characteristic wave height of

Žthe incident waves, typically the significant wave height H either H , the average ofs 1r3

the highest 1r3 of the wave heights, or H , defined as 46m , four times the standardm 00

.deviation of the surface elevation , or a wave height with some low exceedance
Ž .probability e.g. 1%, 0.1%, etc. . If the wave heights are Rayleigh-distributed, these

heights can all be converted one into another through known constants, but if the
distribution is distorted, e.g. due to shallow-water breaking as in the situations consid-
ered here, these ratios are not constants and not known.

The purpose of this paper is to present, analyse and parameterise laboratory data of
wave height distributions on shallow foreshores. The parameterisation is based on the
assumption of slow evolution, such that the distribution depends on local parameters

Ž .only, regardless of the history of the waves in deeper water a so-called point model .
This assumption proves to be valid for shallow water with a reasonably simple bottom

Ž .topography, although some slope dependence is apparent see below . The parameterisa-
tion of the data utilises a combination of two Weibull distributions, calibrated and
validated with laboratory data. The result is a predictive point model for the local wave
height distribution, which uses as input only the local wave energy, depth and bottom
slope, which are assumed to be known from given input data and from state-of-the-art

Ž .shallow-water spectral wave energy models, respectively.

2. Existing models

2.1. Rayleigh waÕe height distribution

ŽThe short-term statistics of waves in deep water are well known see Ochi, 1998 for a
.review . Based on the linear model of waves with a narrow energy spectrum, Longuet-
Ž .Higgins 1952 showed that the heights of these waves obey the Rayleigh distribution,

here written as

2H
F 'Pr H-H s1yexp y 1� 4 Ž .H ž /Hrms

Ž .in which H is the root-mean-square rms wave height. Since the Rayleigh distribu-rms

tion has only one scale parameter and no shape parameter, fixed ratios exist between
characteristic wave heights, i.e. H rH f1.416, m rH s1r26pf0.886 etc.,1r3 rms H rms
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where H is the mean of the highest 1r3-part of the wave heights or the significant1r3

wave height and m is the mean of all wave heights.H

When a narrow frequency spectrum is assumed, all characteristic wave heights are
theoretically proportional to the standard deviation of the water surface elevation with

Ž .known proportionality constants, for example H s6 8m and H f46m . Forrms 0 1r3 0

wind-driven sea waves, the assumption of a narrow-banded frequency spectrum is no
Ž .longer valid. In deep water, the Rayleigh distribution as defined in Eq. 1 still holds to a

Žvery good approximation for the zero-crossing wave heights Longuet-Higgins, 1980;
.Tayfun, 1990 , but the ratios of wave height to standard deviation 6m have to be0

Ž .reduced to account for the finite frequency bandwidth. Goda 1979 analysed field data
and found that for wind-driven waves in deep water, the ratio H r6m is approxi-1r3 0

mately 3.8 instead of the narrow-band value of 4.0, a reduction of 5%. The heights are
still Rayleigh-distributed, so this means that for wind-driven waves in deep water, all
ratios of wave height to 6m are 5% less than those given above, e.g. H r6m f0.950 rms 0

=68f2.69f2.7.

2.2. Distributions of depth-limited breaking waÕe heights

In shallow water, the situation changes considerably. Shoaling, triad interactions and
depth-induced breaking become relevant. Shoaling enhances the triad interactions, which

Ž .cause profile distortion bound spectral components with an excess of crest height and
shallow troughs, in contrast to the Gaussian waves in deep water. Thus, the surface
elevation in shallow water can no longer be considered a narrow-banded linear Gaussian
process. This poses a problem for the description of wave statistics in shallow water.
Wave breaking only aggravates this situation. Two approaches have been advanced to
deal with this situation.

Ž . Ž . Ž .Collins 1970 , Mase and Iwagaki 1982 and Dally and Dean 1986 have presented
a method for the calculation of the distribution of the heights of waves breaking in

Žshallow water. Given a sequence of wave heights and periods between zero up-or
.down-crossings and directions at some offshore location, or a joint probability distribu-

tion of those variables, they apply a monochromatic wave model for shoaling and
breaking to each class of them to calculate the onshore transformation of that monochro-
matic wave class. Combining the results at any given inshore location, taking the
probability of each class at the offshore location into account, allows the construction of

Ž . Ž .the local, inshore wave height distribution. Dally 1990, 1992 and Kuriyama 1996
have elaborated on this approach. These methods are algorithmic and do not result in
explicit expressions for further analyses or extrapolation to low probabilities of ex-
ceedance.

Ž .Another approach, which is also pursued in this paper, consists of making semi -em-
pirical adaptations to the Rayleigh distribution of the wave heights to allow for the
effects of shallow water and breaking, resulting in explicit analytical expressions

Ž .suitable for further mathematical manipulations. Glukhovskiy 1966 proposed a distri-
bution that takes the influence of depth-limited breaking into account by making the

Ž .exponent in the right-hand side of Eq. 1 an increasing function of the wave height-to-
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depth ratio, thus modifying the shape of the distribution. We present here only the
Ž .modified Glukhovskiy distribution as given by Klopman 1996 :

k
H

F H 'Pr HFH s1yexp yA 2� 4Ž . Ž .H ž /ž /Hrms

To assure consistency, the second moment of the modified Glukhovskiy probability
Ž .2density function has to equal H . This yields the following relation between therms

coefficient A and the exponent k :
k

2 2
As G q1 3Ž .ž /k

The exponent k is assumed to be a function of the ratio of rms wave height to water
depth, H ) 'H rd:rms

2
ks 4Ž .

)1ybH

For sufficiently low wave height-to-water depth ratio, H )

™0 and k™2, in which
case the Rayleigh distribution is recovered.

Klopman assumes the relation between H and m to be as for a narrow-bandedrms 0
Ž . Ž .Gaussian process: H s6 8m . Eq. 4 has been fitted to laboratory data, yieldingrms 0
Ž .bs0.7 as the optimal value Klopman, 1996 .

Just as the Rayleigh distribution, the Glukhovskiy distribution is actually a special
case of the more general Weibull distribution, which allows for an arbitrary exponent in

Ž Ž ..the expression for the exceedance probability right-hand side in Eq. 1 .
Ž .Tayfun 1981 has presented a theoretical model for the distribution of wave heights,

including the effect of wave breaking, based on a narrow-band random phase model
Ž .with a finite number of spectral components N such that there is a maximum

obtainable wave height, with a value estimated on the basis of the expression of Miche
Ž .1944 for the highest periodic wave of permanent form. However, the expression in

Ž .Tayfun 1981 for the maximum possible normalised amplitude in terms of N is too
Ž .large by a factor 62, as acknowledged by Tayfun 1999 , which also renders the

expressions for the probability distribution of the normalised wave heights invalid.
Moreover, for waves breaking in shallow water, as occurs in many of the data to be used
below, the required value of N becomes so low that the theoretical probability of the
wave heights takes on an unrealistic, jagged appearance. For these reasons, this
theoretical distribution is not included in the model-data comparison to be given below.

The distributions given by Glukhovskiy and by Tayfun are both point models,
yielding a local wave height distribution for given local depth d and wave parameters
Ž .lowest two spectral moments .

2.3. EÕaluation of existing models

To give some insight in the performance of existing analytical models on a shallow
foreshore, Fig. 1 shows a typical empirical cumulative distribution of wave heights,



( )J.A. Battjes, H.W. GroenendijkrCoastal Engineering 40 2000 161–182 165

Fig. 1. Example of calculated wave height distributions; slope 1:100, H s0.13 m and ds0.27 m.m0

Žmeasured in a wave flume over a plane shallow foreshore with a slope of 1:100 Van der
.Meer, 1988 at a location where the measured water surface elevation variance equals

2 Ž .m s1.1 Ey3 m and the water depth ds0.27 m thus, H f0.13 mf0.5 d . The0 m0

straight, dotted line is the Rayleigh distribution and the solid line represents the modified
Ž .Glukhovskiy distribution, both with H s6 8m .rms 0

Ž .Fig. 1 shows that the Rayleigh distribution, with H s6 8m , gives a poorrms 0

description of the measured wave height distribution. In particular, it significantly
underestimates the lower wave heights and overestimates the higher ones, for given
probability of exceedance. The modified Glukhovskiy distribution, taking depth-induced
breaking into account, yields a better approximation of the measured wave heights.
However, in general, this distribution still overestimates the extreme wave heights and
underestimates the lower wave heights on shallow foreshores. That is why a better
description of the observed data is sought.

3. Composite Weibull wave height distribution

3.1. Definition

Inspection of numerous empirical wave height distributions on shallow foreshores,
plotted on Rayleigh paper, showed a marked transition between a linear trend for the
lower heights and a downward curved relation for the higher waves. Such abrupt
transition does not lend itself to a distribution with a single expression and one shape
parameter. Therefore, as a working hypothesis, a combination of two Weibull distribu-
tions was assumed, each having a different exponent, matched at the transition wave
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Žheight H , the so-called Composite Weibull distribution to be referred to as CWDtr
.hereafter :

k1° H
F H s1yexp y HFHŽ .1 trž /H1~F H 'Pr HFH s 5� 4Ž . Ž .

k 2H
F H s1yexp y HGHŽ .2 trž /¢ H2

Ž . Ž .In order to obtain continuity of the distribution function, the constraint F H sF H1 tr 2 tr

is imposed. The exponents k and k are shape parameters of the distribution. They1 2

determine the curvature of the corresponding part of the distribution. H and H are1 2

scale parameters.
Because the values of k and k do not match at the transition point, the probability1 2

density is discontinuous there. This is physically not realistic but it is nevertheless
accepted because all integral statistical properties of the wave heights are well behaved.

In the following section, we present data sets that have been used to calibrate and
validate the assumed model distribution.

4. Data

In order to relate the independent parameters of the CWD to a certain wave field,
measured wave height distributions, corresponding local water depths and spectral
moments are required for different foreshore slopes. These were obtained from experi-
ments performed by WLrDelft hydraulics in the context of other studies in a 50-m long,
1.0-m wide and 1.2-m deep wave flume equipped with a wave maker capable of
generating random waves and absorbing incoming wave energy. At the back of the wave

Fig. 2. Shallow foreshore test set-up; slope 1:100.
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Table 1
Available shallow foreshore data
Sixth column: ratio of local significant wave height to the value at deep water. Eighth column: deep water steepness based on significant wave height and spectral
peak frequency. Note: for the 1:20 and 1:50 slopes, the data were used both for calibration and validation; no data for the 1:30 slope were used in the calibration,
whereas for the 1:100 as well as for the 1:250 slope, two non-overlapping sets of data were used, one for calibration and another one for validation

Slope Project Number Number Range of Range of Range of Range of Number
author of tests of gauges H rd H rH c s6m rd S of waves1r3 1r3 1r3,0 0 op

1:20 H1874 22 4 0.3–0.83 1.1–0.75 0.044–0.137 0.01–0.04 1000
Ž .Gerding, 1993

1:30 H3356 21 7 0.1–0.6 1.1–0.8 0.025–0.15 0.015–0.05 500
Ž .Bhageloe, 1998

1:50 H1874r50 16 4 0.2–0.65 1.1–0.72 0.035–0.154 0.017–0.04 200
Ž .Gerding, 1993

1:100 H1256 17 18 0.13–0.6 1.1–0.51 0.04–0.16 0.01–0.04 1100
Ž .Van der Meer, 1993

1:250 H0462.25 72 19 0.3–0.6 1.15–0.35 0.03–0.15 0.008–0.03 1000
Ž .Van der Meer, 1988
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flume, a spending beach provides passive wave damping. An overview of a typical test
set-up for a shallow foreshore is given in Fig. 2.

Tests have been performed for shallow foreshores with slopes 1:20, 1:30, 1:50, 1:100
Žand 1:250. Table 1 gives an overview including references see Groenendijk and Van

Ž . .Gent 1998 for more details . During a test, a number of waves was generated by the
Ž .wave maker, with a standard JONSWAP spectrum gs3.3 as a target. Wave gauges

were placed along the shallow foreshore to measure the surface elevation at locations of
different still water depths, d. From the measured surface elevations, statistical measures
of wave height like H , H etc., wave height distributions and spectral moments haverms 1%

Žbeen determined. The filed spectral moments, used below, include contributions from
.the low-frequency waves; the raw data were not available for filtering these out.

From the available data, two sets were selected, one set for calibration and another,
Ž .partially overlapping set for validation see Table 1 .

5. Calibration and parameterisation of model parameters

5.1. Approach

Ž .In all, the CWD as formulated in Eq. 5 has five parameters, of which four are
Ž .independent because of the imposed continuity of F H at H . These will be estimatedtr

from the records of the data set for calibration and subsequently be parameterised in
terms of controlling external variables like wave energy and water depth.

Ž .The scale parameters H and H are convenient in the formulation in Eq. 5 , but1 2

they have no direct clear physical meaning. Therefore, one of them is abandoned as an
independent parameter, which is possible in view of the continuity constraint, and the
other is replaced in the set of independent parameters by the rms value of all the wave

Ž .heights H , leaving the independent set of parameters k , k , H and H as therms 1 2 tr rms

unknowns to be estimated and parameterised. Together with the continuity constraint,
Ž .they determine H and H and so the entire distribution as formulated in Eq. 5 .1 2

In the following, we first make estimates of the exponents k and k . Once these are1 2

known, only two independent parameters remain, H and H . By normalising alltr rms
Ž .wave heights with H , one of these is temporarily eliminated, leaving the location ofrms

Ž .the transition point as the only independent shape parameter of the distribution of the
normalised wave heights. This allows us to consider the intrinsic properties of the wave
height distribution, i.e. the relations among the wave heights as such.

Secondly, we determine relations between the parameters of the distribution and
Ž .external parameters like the local depth, bottom slope and wave energy spectrum . The

ratio c'6m rd is a measure of the relative wave intensity, or degree of saturation. We0
Žuse that as the most important independent normalised variable in the present context. It

may be more customary to use a wave height-to-depth ratio for this, such as H rd, buts

we want to avoid confusion or misunderstanding that can easily arise as a result of the
varying definitions and, more importantly, unknown ratios between different characteris-

.tic wave heights, which is exactly the subject of the present paper. The bottom slope is
also taken into account but that is rather of a secondary nature.
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For operational use, a distribution with four variable independent parameters is
unwanted, both because the use of so many parameters would be unwieldy and because

Ž .the empirical parameter relations to be used may not be sufficiently robust. Therefore,
in the following, we have opted at a few places to forsake more exact fits to the

Ž .available data in favor of fewer free parameters and supposedly enhanced model
robustness.

5.2. Exponents of the CWD

We first make estimates of the exponents k and k . The observations showed that1 2

the cumulative distribution plots on Rayleigh paper are approximately straight lines for
the lower wave heights, i.e. those less than H . This means that these heights can betr

considered Rayleigh-distributed, implying k s2.1

Using k s2, initial estimates of the exponent k were made based on visual fitting1 2

of the CWD to individual observed wave height distributions. Fig. 3 presents the results,
Ž .showing k -values versus the degree of saturation c'6m rd . The plot shows no2 0

significant slope dependence, and a scatter in k -values that decreases as the degree of2

saturation increases.
High scatter for low c-values is understandable, because for low degrees of satura-

tion, the distribution should hardly deviate from the Rayleigh distribution. This results in
fitting of the upper part of the CWD to only a few measured wave heights, which
explains the scatter. At the same time, it implies that the value of k is not important for2

low c-values. In the higher range of c-values, the scatter is considerably lower. Since
these higher degrees of saturation represent the range of interest, an assumption of a
constant exponent k appears acceptable, also in view of the wish for few free2

parameters and a robust model.
Using a common value k s2 and a common, unknown value of k , a CWD was1 2

least-squares fitted to each of the individual observed wave height distributions of the
Žset selected for calibration, so as to estimate the optimal value in the least squares

. Žsense of k , common to the entire data set as well as the optimal values, one per2
.record, of H , H and H . This yielded k s3.6, the value that is used in the1 2 tr 2

Fig. 3. Exponent k versus degree of saturation, for different foreshore slopes.2
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Table 2
˜ ˜Characteristic normalised wave heights H as a function of Hx tr

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜H H H H H H H Ht r 1 2 1r3 1r10 2% 1% 0.1%

0.05 12.193 1.060 1.279 1.466 1.548 1.620 1.813
0.1 7.003 1.060 1.279 1.466 1.548 1.620 1.813
0.15 5.063 1.060 1.279 1.466 1.548 1.620 1.813
0.2 4.022 1.060 1.279 1.466 1.548 1.620 1.813
0.25 3.365 1.060 1.279 1.466 1.548 1.620 1.813
0.3 2.908 1.060 1.279 1.466 1.548 1.620 1.813
0.35 2.571 1.060 1.279 1.466 1.548 1.620 1.813
0.4 2.311 1.060 1.279 1.466 1.548 1.620 1.813
0.45 2.104 1.060 1.279 1.466 1.549 1.620 1.813
0.5 1.936 1.061 1.280 1.467 1.549 1.621 1.814
0.55 1.796 1.061 1.281 1.468 1.550 1.622 1.815
0.6 1.678 1.062 1.282 1.469 1.552 1.624 1.817
0.65 1.578 1.064 1.284 1.471 1.554 1.626 1.820
0.7 1.492 1.066 1.286 1.474 1.557 1.629 1.823
0.75 1.419 1.069 1.290 1.478 1.561 1.634 1.828
0.8 1.356 1.073 1.294 1.483 1.567 1.639 1.835
0.85 1.302 1.077 1.300 1.490 1.573 1.646 1.843
0.9 1.256 1.083 1.307 1.498 1.582 1.655 1.852
0.95 1.216 1.090 1.315 1.507 1.591 1.665 1.864
1 1.182 1.097 1.324 1.518 1.603 1.677 1.877
1.05 1.153 1.106 1.335 1.530 1.616 1.690 1.892
1.1 1.128 1.116 1.346 1.543 1.630 1.705 1.909
1.15 1.108 1.126 1.359 1.558 1.645 1.721 1.927
1.2 1.090 1.138 1.371 1.573 1.662 1.739 1.946
1.25 1.075 1.150 1.381 1.590 1.679 1.757 1.967
1.3 1.063 1.162 1.389 1.607 1.698 1.776 1.988
1.35 1.052 1.175 1.395 1.626 1.717 1.796 2.011
1.4 1.043 1.189 1.399 1.644 1.737 1.817 2.034
1.45 1.036 1.203 1.403 1.664 1.757 1.838 2.058
1.5 1.030 1.217 1.406 1.683 1.778 1.860 2.082
1.55 1.024 1.231 1.408 1.703 1.799 1.882 2.106
1.6 1.020 1.246 1.410 1.721 1.820 1.904 2.131
1.65 1.016 1.261 1.411 1.736 1.841 1.927 2.156
1.7 1.013 1.275 1.412 1.749 1.863 1.949 2.182
1.75 1.011 1.290 1.413 1.759 1.884 1.972 2.207
1.8 1.009 1.305 1.413 1.767 1.906 1.994 2.232
1.85 1.007 1.320 1.414 1.773 1.927 2.017 2.257
1.9 1.006 1.334 1.414 1.779 1.949 2.039 2.282
1.95 1.004 1.349 1.415 1.783 1.970 2.062 2.307
2 1.004 1.363 1.415 1.786 1.985 2.084 2.332
2.05 1.003 1.378 1.415 1.789 1.983 2.106 2.357
2.1 1.002 1.392 1.415 1.791 1.982 2.128 2.382
2.15 1.002 1.407 1.415 1.793 1.981 2.150 2.406
2.2 1.001 1.421 1.415 1.795 1.981 2.149 2.430
2.25 1.001 1.435 1.415 1.796 1.980 2.148 2.454
2.3 1.001 1.449 1.415 1.797 1.979 2.148 2.478
2.35 1.001 1.462 1.415 1.797 1.979 2.147 2.502
2.4 1.000 1.476 1.416 1.798 1.979 2.147 2.525
2.45 1.000 1.490 1.416 1.798 1.979 2.147 2.548
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Ž .Table 2 continued

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜H H H H H H H Ht r 1 2 1r3 1r10 2% 1% 0.1%

2.5 1.000 1.503 1.416 1.799 1.978 2.147 2.571
2.55 1.000 1.516 1.416 1.799 1.978 2.146 2.593
2.6 1.000 1.529 1.416 1.799 1.978 2.146 2.616
2.65 1.000 1.542 1.416 1.799 1.978 2.146 2.629
2.7 1.000 1.555 1.416 1.799 1.978 2.146 2.629
2.75 1.000 1.568 1.416 1.800 1.978 2.146 2.628
2.8 1.000 1.580 1.416 1.800 1.978 2.146 2.628
2.85 1.000 1.593 1.416 1.800 1.978 2.146 2.628
2.9 1.000 1.605 1.416 1.800 1.978 2.146 2.628
2.95 1.000 1.617 1.416 1.800 1.978 2.146 2.628
3 1.000 1.630 1.416 1.800 1.978 2.146 2.628

following and also shown in Fig. 3. With the values of k and k fixed, the CWD has1 2

only two independent parameters left.

5.3. Normalised waÕe height distribution

We normalise all wave heights with H , to be indicated with a tilde:rms

Hx
H̃ s 6Ž .x Hrms

The mean square normalised wave height, or the second moment of the pdf of the CWD
of the normalised wave heights, has to equal unity. This moment can be calculated from

Ž .Eq. 5 in a straightforward manner, resulting in the following expression in terms of
Ž . Ž . Žincomplete gamma functions g a, x and G a, x Abramowitz and Stegun, 1964, Eqs.

.6.5.2. and 6.5.3 :

k k1 2˜ ˜2 H 2 Htr tr2 2˜ ˜ ˜H s H g q1, qH G q1, s1 7Ž .rms 1 2) ˜ ˜ž / ž /k kH H1 21 2

Because of this constraint, and in view of the fixed numerical values of the exponents k1
Ž .and k , the CWD of the normalised heights has only one independent shape parameter,2

˜the normalised transition height H . This means that all conceivable normalisedtr
˜characteristic wave heights are a function of H only. Analytical expressions for thesetr

Ž .values ratios can be derived in a straightforward manner, with the results expressed in
Ž . Žterms of incomplete gamma functions similar to Eq. 7 see Groenendijk, 1998 for

.details . Also, the wave height exceedance probability at the transition point is a
˜function of H only. Table 2 presents the results for the normalised values of the scaletr

Ž .parameters H and H introduced in Eq. 5 , H and H , the average of the1 2 1r3 1r10

highest 1r3 and 1r10 of the wave heights, and the heights with probabilities of
˜ ˜exceedance equal to 2%, 1% and 0.1%, as a function of H . For H ™`, the valuestr tr

approach those of the Rayleigh distribution. Convergence to this limit is reached to
˜within four significant figures for values of H greater than 2.75, as can be seen intr

Table 2.



( )J.A. Battjes, H.W. GroenendijkrCoastal Engineering 40 2000 161–182172

It should be noted that the results above including those in Table 2 are independent of
the actual values of H and H or their parameterisations, but for practical use, wetr rms

need to know their values. This is addressed in the following.

5.4. Transitional waÕe height

In the philosophy of a point model, we relate H and H to the local depth, bottomtr rms
Ž .slope and wave energy spectrum .

At the transitional wave height, the wave height distribution abruptly changes its
shape. This change in shape is ascribed to depth-induced breaking. Therefore, we
assume that H can be expressed as a kind of limiting wave height for nonbreakingtr

waves. To do this, we first scale H with d, as for purely depth-limited breaking.tr

Thereafter, we consider the effect of wave steepness through a Miche-type breaker
criterion.

5.4.1. Depth-limited transitional waÕe height
As mentioned above, values of the transitional wave height have been determined by

least-squares fitting of the CWD to each of the wave height distributions in the data set
selected for calibration, covering four different foreshore slopes. The estimated transi-
tional wave heights, nondimensionalised with the water depth, are plotted as a function
of the degree of saturation in Fig. 4. The ratio H rd can be seen to be roughlytr

Ž .independent of the degree of saturation c except for the relatively low waves
Ž .approximately c-0.06 , with some scatter that increases with increasing bottom slope.
For simplicity, the scatter and the deviating behaviour for low relative heights are
ignored and the transitional wave height is assumed to be proportional to the depth with

Ž .a slope-dependent coefficient, g a :tr

H sg a d 8Ž . Ž .tr tr

For each slope, a representative value of g is determined as the average of thetr

estimated values of H rd, represented by the solid lines in Fig. 4, based on only thetr

values of H rd for c)0.06. Fig. 5 gives a plot of g so obtained versus the foreshoretr tr
Ž .slope tan a , showing that a steeper bottom slope leads to a higher g and therefore totr

a higher transitional wave height. This means that on a steeper slope, fewer waves
deviate from the Rayleigh distribution than on a milder slope, other things being the
same. This is consistent with a spatial lag in the process of breaking compared to depth
changes.

Assuming a linear variation of g with the foreshore slope as in g sc qc tan a ,tr tr 1 2

we obtain c s0.35 and c s5.8 from the data in Fig. 5. With this slope-dependent g ,1 2 tr

local transitional wave heights in the CWD can be determined for given local depth and
Žforeshore slope. This parameterisation is part of the overall model and does not

constitute a proposal for yet another breaker criterion to be used outside the present
.context.

5.4.2. Depth- and steepness-limited transitional waÕe height
Fig. 4 shows that the assumption of a constant ratio of transitional wave height to

Ž .water depth for given slope overestimates the nondimensional transitional wave height
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Fig. 4. Nondimensional transitional wave height versus the degree of saturation for different foreshore slopes.

for c-0.06. The lower values of c represent relatively low waves compared to the
depth. In those circumstances, the waves are more limited by the maximum wave
steepness than by a limited water depth. By taking the wave steepness into account, a
better approximation of the measured transitional wave height might be achieved.
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Fig. 5. Coefficient g versus foreshore slope.tr

Ž .Miche 1944 determined an approximate expression for the maximum height of a
periodic wave of constant form in which limiting effects of both depth and steepness are
included. Assuming that the transitional wave height behaves similar to Miche’s
maximum wave height, we pose the following relation for H :tr

2p d
H sb 0.14 L tanh 9Ž .tr tr c ž /Lc

in which b denotes a slope-dependent coefficient and L is a characteristic local wavetr c

length defined by

gT 2 2p dc
L s tanh 10Ž .c ž /2p Lc

Ž .1r2in which T is a characteristic wave period. Here, the wave period T s m rm isc 0,2 0 2
Ž .used for T m and m are the local zero-th and second spectral moments . For each ofc 0 2

the bottom slopes in the calibration data set, a single value of b has been estimatedtr

using a least squares optimisation method. Fig. 6 shows the results. Assuming b to betr

linearly dependent on the bottom slope as in b sc qc tan a , we obtain c s0.46tr 3 4 3

and c s9.25, based on the data in Fig. 6. With this slope-dependent b , the4 tr

transitional wave height of the CWD can be determined for given depth, foreshore slope
and wave period T .0,2

Including a wave steepness effect in the estimation of the transitional wave height
Ž .gives a slightly improved model performance in the end results as will be shown , at the

expense of an additional parameter, viz. a characteristic wave period. The choice of
Ž .using T in Eq. 10 is somewhat arbitrary. Whether another choice of characteristic0,2

period is more satisfactory has not been investigated, mainly for the reason that the
Ž .effect of inclusion of period influence instead of the simpler Eq. 8 is rather weak

anyway. In the end, we recommend not to use the steepness dependence at all.
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Fig. 6. Coefficients b versus foreshore slope.tr

5.5. Root-mean square waÕe height

The fourth and last parameter to be estimated and parameterised is the rms wave
height. Its estimation is trivial: we simply use the rms value of the sampled zero-cross-
ing wave heights per record.

For a sequence of sine waves, the ratio H r6m equals 68f2.83. It is well knownrms 0
Žthat for nonlinear waves with narrow peaks and flat troughs Stokes waves, cnoidal

.waves , this ratio is larger. Finite spectral bandwidth on the other hand tends to decrease
Ž Ž .this ratio. For sea waves in deep water c™0 , with a broad banded frequency

.spectrum, H r6m f2.69, as mentioned above. To investigate empirically the rela-rms 0

tion between H and the total wave energy on shallow foreshores, where the waves arerms

Fig. 7. Ratio H r6m measured on shallow foreshores versus the degree of saturation.rms 0
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not sinusoidal and not necessarily narrow-banded, measured values of H r6m haverms 0

been plotted versus the degree of saturation c for all slopes in Fig. 7. It is observed that
in shallow water, the values of H r6m exceed the sine-wave value of 68, suggestingrms 0

Žthat here, the nonlinear effect outweighs that of the spectral bandwidth. See Kuriyama,
1996 for an empirical parametric expression for a similar increase of the ratio H r6m1r3 0

.with increasing nonlinearity. Using the deep-water ratio for broad-banded sea men-
Ž .tioned above 2.69 as a constraint, we assume

Hrms
s2.69qb c 11Ž .rmsm( 0

A least squares fit to the data in Fig. 7 yields b s3.24.rms

In the following, we refer to the CWD model with the above parameterisation of Hrms
Ž .and with H based on depth and bottom slope as point model m , d, a ; with Htr 0 tr

Žbased on wave period, water depth and bottom slope, we refer to point model m , d, a ,0
.T .0,2

6. Validation of the model

The validation of the proposed point models is carried out by comparing predicted
Ž .wave height distributions to the set of measured data selected for validation Table 1 .

For comparison, this is also done for the Rayleigh distribution and the modified
Glukhovskiy distribution.

An overall indicator of the approximation of the measured wave height distribution
by a model is the relative rms error ´ , defined as:rms

2K1 HN , comp
´ s y1 12Ž .Ý)rms ž /K HN , measks1

in which K denotes the number of records used and H denotes a wave height withN

probability of exceedance equal to N. Values of ´ have been determined for H ,rms 50%

H , H , H , and H . Fig. 8 presents the results. Since the tests on shallow10% 2% 1% 0.1%

foreshores with slopes 1:30 and 1:50 were performed with 500 waves or less, no reliable
H is obtained for these. Therefore, no rms error for H is presented in Fig. 8 for0.1% 0.1%

these slopes.
By averaging the rms errors of each model over the five selected wave heights, for a

given slope, an overall insight in the approximation of measured wave height distribu-
tions by the three models is obtained. The results are shown in Fig. 9, for each slope
separately. They show that the CWD point models yield the best approximation of the
measured wave height distributions. The average reduction in rms error for both of them
is about 60% compared to the conventional Rayleigh distribution and about 40%

Ž Ž . .compared to the modified Glukhovskiy distribution with H s6 8m in both .rms 0
Ž .As stated before, the Miche-like transitional wave height parameterisation Eq. 9 has

the disadvantage of a fourth input parameter T . Furthermore, Fig. 9 shows that the0,2
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Fig. 8. Root-mean-square errors in characteristic wave heights for various foreshore slopes, for the Rayleigh,
Ž . Ž .Glukhovskiy and the CWD point models m , d, a and m , d, a , T , respectively.0 0 0,2

Fig. 9. Average root-mean-square error versus foreshore slope for the same models as in Fig. 8.
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improvements obtained thereby are insignificant compared to those from the point
model using a transitional wave height depending on the depth and bottom slope only,
which does not require the definition and input information of a characteristic wave

Ž Ž ..period. Therefore, the simpler parameterisation of the transitional wave height Eq. 8
Ž .is proposed, giving the point model m , d, a . Its properties are summarised below for0

easy reference in applications.

( )7. Summary of point model m , d, a0

Ž .Ø cumulative distribution function: Eq. 5
Ž . Ž .Ø continuity constraint: F H sF H1 tr 2 tr

Ø exponents: k s2 and k s3.61 2
Ž .Ø transitional wave height: H s 0.35q5.8 tan a dtr

Ž .Ø rms wave height: H s 2.69q3.246m rd 6mrms 0 0
˜Ø normalised transitional wave height: H sH rHtr tr rms

H̃ can be used to enter Table 2 in order to find desired statistical properties. If othertr

properties are needed than those listed in Table 2, one should revert to the distribution
Ž . Ž .function given in Eq. 5 . The required normalised values of H and H can either be1 2

read from Table 2, if needed with some interpolation, or they can be calculated by
˜ ˜ 2Ž . Ž .solving the algebraic Eq. 7 together with the continuity constraint H rH str 1

˜ ˜ 3.6 ˜Ž .H rH , for given values of k , k and H .tr 2 1 2 tr

7.1. Example

Ž .As an example of the application of the proposed point model m , d, a , and to0

illustrate its performance, we present here the calculation for the case shown in Fig. 1.
Calculate H , H and H at a location on a shallow foreshore with slope1r3 1% 0.1%

2 Ž1:100, still water depth ds0.27 m, m s1.1Ey3 m so 6m s0.033 m and0 0
.cs6m rds0.123 .0

Ž .1. H s 0.35q5.8 tan a ds0.408ds0.110 mtr
Ž .2. H s 2.69q3.246m rd 6m s0.102 mrms 0 0

˜3. H sH rH s1.074tr tr rms
˜ ˜ ˜4. Table 2 yields H f1.340, H f1.697 and H f1.9001r3 1% 0.1%

˜5. H sH H s0.137 m1r3 1r3 rms
˜6. H sH H s0.174 m1% 1% rms
˜7. H sH H s0.195 m0.1% 0.1% rms

The data points and the graph of the CWD for this case are shown in Fig. 10. The
measured values of H and H can be read directly in this figure. The calculated1% 0.1%

values agree closely with these. Note that the results according to the classical Rayleigh
Ž 2 .distribution would be H s46m s0.132 m, H s6 8 ln 10 6m s0.200 m and1r3 0 1% 0
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Ž . Ž .Fig. 10. Measured solid triangles and calculated drawn line wave height distribution on slope 1:100,
m s1.1Ey3 m2 and ds0.27 m.0

Ž 3. Ž .H s6 8 ln 10 6m s0.247 m see Fig. 1 , or approximately 3% less, 15% more0.1% 0
Žand 27% more than the values according to the proposed distribution and approxi-

.mately the data.

8. Discussion

The material presented above indicates the variations that can occur in numerous
relations that conventionally are considered as ‘‘universal’’. This concerns ratios
between characteristic wave heights on the one hand and between those and 6m on the0

other hand. It implies the need to be very specific in each case in the definitions of the
quantities being considered.

The effect of wave breaking on the wave height distribution, for a given value of the
Ž .local wave energy given m , is to reduce the higher waves but at the same time to0

enhance the lower ones. However, nonlinearity of the wave profile tends to enhance the
Žratio of the wave heights to 6m the leaner the waves, the higher they must be to carry0

.the same potential energy , as can be seen for the rms wave height in Fig. 7. The effects
cancel out to some extent for the intermediate wave heights, thus minimising the overall
effect in such range. This is visible in the error plots in Fig. 8, which particularly for the
Rayleigh distribution show the best performance in a range of intermediate wave
heights, worsening both towards smaller and towards larger wave heights. The example

Ž .given above also illustrates this: the Rayleigh distribution with H s6 8m signifi-rms 0
Ž .cantly overestimates wave heights with low exceedance probability 1% or 0.1% ,

Ž .whereas it makes only a relatively minor error in fact a small underprediction in
estimating H .1r3
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Properties of the CWD are given in Table 2, for a range of the normalised transitional
wave height from near-zero values to values sufficiently large for the Rayleigh distribu-
tion to be applicable for practical purposes. The minimal value that can actually be
expected to occur is more restricted, however, because of the limited height-to-depth
ratio. For a rough estimate of that minimum, we note that the degree of saturation
Ž . Ž .c'6m rd has a maximum in our data of about 0.16, which roughly corresponds to0

Ža maximum H of about 0.5d. The transitional wave height is of the same order seerms
˜.Fig. 4 , from which it follows that only the range of H in excess of about 1 is realistic.tr

9. Conclusions

Waves on shallow foreshores are subject to depth-induced breaking, particularly the
higher ones. This results in a profound change in the shape of the wave height
distribution. A Composite Weibull distribution is proposed to describe the wave height
distributions on shallow foreshores. Its parameters have been estimated and parame-
terised. This yields a model that predicts the local wave height distribution on shallow
foreshores for a given local water depth, bottom slope and total wave energy with
significantly greater accuracy than existing models.

List of symbols
Roman letters
A coefficient in the Glukhovskiy distribution
d still water depth
H wave height
H significant wave height; the mean of the highest 1r3-part of the wave heights1r3

H scale wave height of the CWD; is1,2i

H spectral significant wave height, H s46mm m 00 0

H wave height with exceedance probability 1rNN

H rms wave heightrms

H transitional wave height of the CWDtr
˜ ˜H normalised characteristic wave height, H sH rHx x x rms

H ) ratio of rms wave height to water depth, H rdrms

k exponent in the CWD; is1,2i

L characteristic wave lengthc

L deep water wave length based on peak period Top op

m nth moment of the surface elevation frequency spectrumn

m variance of the surface elevation0

T wave period based on zero-th and second spectral moment, T s m rm(0,2 0,2 0 2

T characteristic wave periodc

Greek letters
a slope of the foreshore
b coefficient in the modified Glukhovskiy distribution
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b empirical coefficient in the rms wave height parameterisationrms

b empirical coefficient in the transitional wave height parameterisationtr

´ rms errorrms

g empirical coefficient in the transitional wave height parameterisationtr

k exponent in the modified Glukhovskiy distribution
m mean wave heightH

c degree of saturation, cs m rd( 0
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