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[1] The present work reports the development of a
nonlinear technique based on genetic algorithm (GA) for
the prediction of wave heights in the north Indian Ocean.
Time series observations of surface wind speed and
significant wave height at three locations in the Arabian
Sea (AS) and the Bay of Bengal (BOB) have been used for
developing and testing the technique. The predictions have
been compared with persistence forecasts and it has been
found that the prediction by GA is always superior to
persistence forecast and thus represents a net information
gain. The predicted wave heights have been found to be
consistent with the results obtained with autocorrelation
analysis applied on the respective time series of wave
heights. Citation: Basu, S., A. Sarkar, K. Satheesan, and C. M.

Kishtawal (2005), Predicting wave heights in the north Indian

Ocean using genetic algorithm, Geophys. Res. Lett., 32, L17608,

doi:10.1029/2005GL023697.

1. Introduction

[2] Prediction of the future state of a fluid system is the
central problem in fluid dynamics. Traditionally, prediction
is carried out using numerical models, which use equations
of motion derived from first principles. However, such an
approach is not always possible in practice. One may not
have access to required computing resources for carrying
out numerical wave modeling or may not have access to the
required initial and forcing data. Also, the requirement may
be to forecast the wave height only at a single location, e.g.,
at a buoy location. In such a case, approximate equations
governing the time evolution of the local system (e.g., buoy
observed wave heights) can be obtained by model-fitting
approaches based on the observed variability of the system
evolution. Forecast thus can be achieved by deterministic
models directly built from the observations. One such
powerful modern approach is based on GA, which is
programmed to approximate the equation, in symbolic form,
that describes the time series [Szpiro, 1997; Álvarez et al.,
2001]. A detailed description of the algorithm has recently
been provided by Kishtawal et al. [2003, 2005]. For the
sake of self-consistency of this paper, we sketch the salient
features of the algorithm. The GA considers an initial
population of potential solutions, which is subjected to
an evolutionary process, by selecting from the initial
population those equations (individuals) that best fit the
data. The strongest strings choose a mate for reproduction
whereas the weaker strings become extinct. The newly
generated population is subjected to mutations that change

fractions of information. Mutation is applied to the individ-
uals of the population, except to the top ranked equation
strings in order to avoid inadvertent loss of information. The
evolutionary steps are repeated with the new generation.
Once the desired fitness strength (defined later in the paper)
is reached, the iterations are stopped.
[3] The works of Takens [1981], Casdagli [1989] and

many others have established the methodology for nonlinear
modeling of chaotic time series. Explicitly, Takens’ theorem
[Takens, 1981] establishes that given a deterministic time
series {x (tk)}, tk = kDt, k = 1. . .N, there exists a smooth
map P satisfying:

x tð Þ ¼ P x t� Dtð Þ; x t� 2Dtð Þ; . . . x t� mDtð Þ½ � ð1Þ

where m is called the embedding dimension obtained from a
state-space reconstruction of the time series [Abarbanel et
al., 1993] and Dt is the sampling time interval, 1 day, in our
case. A GA basically tries to obtain the function P(.) in
equation (1) that best represents the amplitude function of a
chaotic time series, which can then be used to predict the
future state of the system. Generally the evolution of a
natural dynamical system is not restricted to a single
variable, and a nonlinear interaction among several
variables is quite common. Such a situation demands the
use of multivariate or vectorial time series to obtain the
fittest model that can explain a process. The model of
connection between different variables, e.g. x, y, and z can
be written as:

x tð Þ ¼ P y t� Dtð Þ; y t� 2Dtð Þ; . . . y t� mDtð Þ . . .½
� z t� Dtð Þ; z t� 2Dtð Þ . . . z t� mDtð Þ� ð2Þ

where m + 1 � t � T, where T is the length of vector time
series.
[4] The GA works in the following manner. First, for an

amplitude function x(t), a set of candidate equations for P(.)
is randomly generated. An equation is stored in the com-
puter as a set of characters that define the independent
variables, y(t � Dt), y(t � 2Dt). . .z(t � Dt), z(t � 2Dt), etc.
in equation (2), and four elementary arithmetic operators
(+, � , 	, and /). A criterion that measures how well the
equation strings perform on a training set of the data is its
fitness to the data, defined in equation (3). The strongest
individuals (equations with best fits) are then selected to
exchange parts of the character strings between them
(reproduction and crossover) while individuals poorly fitted
to the data are discarded. Finally, a small percentage of the
equation strings’ most basic elements, single operators and
variables, are mutated at random. The process is repeated a
large number of times to improve the fitness of the evolving
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population of equations. The fitness strength of the best
scoring equation is defined as:

R2 ¼ 1� D
2=S xo � hxoið Þ2

h i
ð3Þ

where D2 = S(xc – xo)
2, xc is parameter value estimated by

the best scoring equation, xo is the corresponding ‘‘true’’
value, hxoi is the mean of the ‘‘true’’ values of x.
[5] Szpiro [1997] showed the robustness of GA to fore-

cast the behavior of one-dimensional chaotic dynamical
system. Later, Álvarez et al. [2000] applied the GA to real
physical systems and used this algorithm for the prediction
of space-time variability of the sea surface temperature
(SST) in the Alboran Sea. Kishtawal et al. [2003] used this
algorithm for forecasting summer rainfall over India, where-
as, Álvarez et al. [2004] used this algorithm to forecast Sea
Surface Temperature (SST) and Sea Level Anomaly (SLA)
of the Ligurian Sea. Very recently, Kishtawal et al. [2005]
used the same algorithm to estimate tropical cyclone inten-
sity from satellite observations. In the present study we
applied the GA to predict wave heights at different buoy
locations in the north Indian Ocean one, two and three days
in advance.

2. Data

[6] Several deep-sea and shallow water moored buoys
have been functional in the north Indian Ocean since 1997
[Premkumar et al., 2000] under the National Data Buoy
Program. We have selected data from three of the buoys
(DS1, DS3 and SW3) in the years 2001, 2004 and 2003
representing different oceanic conditions. The DS1 and
SW3 are in the AS while DS3 is in the BOB. Location
details, depth and period covered are provided in Table 1.
The number of observations for the DS1, DS3 and SW3
buoys are 136, 146 and 158 respectively. The reported wind
magnitudes and wave heights are available at 3 hour
intervals. It is clear that the number of observations in each
time series is very few (of the order of 100–150). This
number may not be adequate for training other nonlinear
data-fitting algorithms like artificial neural network. How-

ever, the beauty of the GA lies in the fact that it is able to
generate prediction equations from only a few observations
as will be shown in this study.

3. Results

[7] GA was first applied to the univariate time series at
the DS3 buoy location. It is well known that skill of any
prediction method can be judged by comparing its perfor-
mance with the performance of persistence model [Álvarez
et al., 2004] defined by the equation A(t + 1) = A(t). A
predictor system showing better performance than persis-
tence indicates a net information gain versus the hypothesis
that the best forecast is provided by the present state. In our
case, however, it was found that the GAwas able to improve
upon the performance of the persistence model only
marginally in spite of various combinations of parameters
employed by the algorithm, like time lag, maximum number
of symbols allowed. etc. It was thus thought that it would
probably be better to predict the fluctuation after subtracting
a nonlinear trend. Accordingly, a nonlinear trend was fitted
to the data using a 1-2-1 recursive filter [Hartmann and
Michelson, 1989]. This trend was subtracted from the data
time series to obtain the time series of fluctuations to which
the GA was applied. It was found that GA applied to
the univariate time series of fluctuations is unable to
significantly improve upon the persistence forecast either.
Hence, GA was applied to the multivariate time series. The
predictors employed were past values of winds and past
values of wave fluctuations. This was found to lead to a
substantial improvement of the forecast. The trend was also
forecast using the same algorithm. This time, however, it
was sufficient to apply the algorithm to the univariate time
series of nonlinear trend. This is probably due to the fact
that the time series of trend is very smooth unlike the time
series of fluctuations. The two forecasts (of the fluctuation
and the trend) were added to provide forecasts of SWH with
various time leads like one day, two days and three days. It
was found that the forecasts were significantly better than
the persistence forecast in each of the cases studied. This
was found out by computing the root mean square errors of
forecast by persistence model and by GA (Table 2).
[8] We now digress a bit and comment about the GA

parameters employed by us. We used 200 numbers of
individuals in each population in majority of the cases
studied. In a few individual cases 120 numbers of individ-
uals in the population were used. Total number of argu-
ments and operators allowed was 24 in each of the cases
studied. These parameters were largely selected by trial and
error. Of course we were also guided by the works of
previous researchers, mostly by Álvarez et al. [2001]. The

Table 1. Location Details and Observation Duration of the Three

Buoys

Buoy Depth (m) Latitude Longitude Observation Duration

DS1 3800 15.5�N 69.2�E 10 Feb 2001–25 June 2001
SW3 22 15.4�N 73.8�E 11 Mar 2003–15 Aug 2003
DS3 3170 12.1�N 90.8�E 05 Jul 2004–27 Nov 2004

Table 2. Comparison of Forecast by GA With Persistence Forecasta

Buoy

Forecast (Days in Advance)
1 Day 2 Days 3 Days

RMS in m
(Persistence)

RMS in m
(Genetic) R2

RMS in m
(Persistence)

RMS in m
(Genetic) R2

RMS in m
(Persistence)

RMS in m
(Genetic) R2

DS1 0.38 0.19 0.99 0.72 0.36 0.94 1.02 0.70 0.80
DS3 0.22 0.09 0.98 0.36 0.09 0.96 0.41 0.22 0.89
SW3 0.21 0.08 0.99 0.33 0.17 0.96 0.35 0.14 0.92

aRMS means root mean square error of forecast in meters. R2 is the square of the coefficient of correlation between forecasts
and observations. This is shown only for the case with GA.
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selection criterion used was the achievement of optimum
fitness strength which was fixed at 0.9 for the trend part and
0.35 � 0.4 for the fluctuation part. These choices reflect the
fact that trends are smooth functions of time whereas
fluctuations are noisier and hence more difficult to predict.
The number of generations employed was governed by a
simple criterion. Originally this number was assigned the
value of 5000. However, iterations were stopped as soon as
the optimum fitness strength was reached. This number
varied from case to case, but mostly it was of the order of
1000 to 1500. The only parameter that could be theoreti-
cally fixed was the number of lags, which is actually equal
to the embedding dimension m in equation (3). Estimation
of m is possible if a large amount of data is available using a
specific algorithm [Grassberger and Procaccia, 1983].
Unfortunately in our case, the lengths of the buoy observed
wave height time series are too short. Hence the value of m
must be fixed ad-hoc. It is known [Álvarez et al., 2004] that
small values of m would avoid the system from getting
enough information from the past, while big values would
degrade the performance of the GA due to dimensional
increasing of the searching space [Álvarez et al., 2004]. In
our work, m has been fixed mainly by trial and error. It has
been seen that m varies from 8 to 12 for the time series of
trends while it is as large as 24 or 36 in individual cases of
fluctuation time series. This is probably due to the fact that
time series of trend is quite smooth, requiring small m for
reasonably good prediction, while large values of m are

required for predicting fluctuating part, which is not as
smooth as the trend.
[9] We repeated the procedure for DS1 and SW3. The

result was similar to the case of DS3 buoy. The results are
summarized in Table 2. It can be seen that the GA always
performs better than the persistence model. In Figure 1, we
demonstrate the performance of the method by showing the
time series of observations, 1-day ahead predictions (top
panel) and the scatter plots of observations and 1-day ahead
predictions (bottom panel). In Figure 1, data used for the
training process is shown with black dots while data used
for the validation process with unfilled dots. For the DS1
and DS3 buoys, the training period consists of first 100
observations, and the remaining observations are used for
the validation. For the SW3 buoy, the training period
consists of 120 observations. For the sake of economy of
space, we are not showing the 2 days and 3 days ahead
predictions. The detailed statistics is given in Table 2. It is
also quite interesting to see that the validation data cover the
entire range of wave heights (high in DS1, medium in SW3
and low in DS3). This points to the capability of GA to
predict wave heights of all range.
[10] We further computed the autocorrelation of wave

height time series for all the three buoys. As seen in
Figure 2, the autocorrelation values for all the cases are
falling with increasing lag but are displaying temporal
coherence characteristics differing in nature. The fall in
autocorrelation is most pronounced in DS1. The shallow AS

Figure 1. The upper panels show the time series of observed and predicted SWH in meters at the three buoy locations.
The predictions are one day ahead forecast. Lower panels show the scatter diagrams of predicted and observed SWH at the
corresponding locations.
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location displays the longest lag. This is possibly due to the
fact that shallow water dynamics is very different from deep
water dynamics. The shallow water waves are nondisper-
sive, whereas deep water waves are dispersive. Deep water
waves are also exposed to winds, swells and currents from
all around. In contrast, shallow water waves are somewhat
protected from the coastal side. Perhaps, this explains the
steadier trend of the autocorrelation of the shallow buoy
waves. It is thus not surprising that autocorrelation in the
shallow water exhibits different characteristics than deep
water. We also computed the autocorrelation after removing
the nonlinear trends from the data. This time the shapes of
autocorrelation functions were similar at the various buoy
locations. The autocorrelation pattern partly explains the
results obtained by GA proposed in this work. The R2

values at SW3 are found to maintain a relatively high
magnitude (0.92) even in the prediction of 3rd day and
the RMS is the lowest among the three. The buoy DS1,
which has a sharper autocorrelation fall, shows a larger
degradation in terms of R2 on the third day. The number of
cases discussed in this work is limited and is being reported
only to demonstrate the potential of the new method in
predicting ocean wave heights.

4. Conclusion

[11] An empirical technique has been developed using
GA that allows the prediction of significant wave heights at
different buoy locations in the north Indian Ocean, a few
days in advance. The algorithm uses past values of winds
and waves at various buoy locations. The major advantage
of using GA over other nonlinear forecasting techniques
such as artificial neural networks is that an explicit analyt-
ical expression for the dynamic evolution of the parameter
concerned (wave height in our case) is obtained. Another
advantage is that the algorithm is based on actual observa-
tions and does not depend on any numerical model and
hence does not require auxiliary initial and forcing fields.
The proposed method is expected to have direct practical
applications in offshore stations engaged in oil and gas
resource generation and processing. The method is also
expected to be useful for coastal stations, such as ports and
harbors used by the incoming and outgoing ships. For the
benefit of the readers, we provide in Appendix A the

analytical equations of the GA model for one-day forecast
of wave heights at the DS1 and SW3 buoy locations.
[12] We have analyzed the sensitivity of GA equations at

the two locations to the observations of wave and wind. We
define the sensitivity in terms of the ratio of the change in
predicted wave height to the change in input variables (past
observations of wave height and wind). The sensitivity was
analyzed only for the fluctuation part, and the magnitude of
mean perturbation introduced in each input field was taken
as half of the standard deviation of that particular field.
Perturbations were introduced randomly at each point. We
observed that the sensitivity of GA solution to wind fields is
almost twice as large as that to the wave height fields in
deep water. In shallow water, the GA solution is even more
sensitive to winds, where the sensitivity to winds was found
to be more than 5 times the sensitivity to wave height. This
points to the fact that the GA is indeed able to differentiate
between the deep and shallow water dynamics.

Appendix A: Equation for Wave Height Forecast

[13] Analytical Equation for 1-day forecast of wave
height at the DS1 buoy location

fit tð Þ ¼ x2 t� 2ð Þ= �0:35ð Þð Þ þ x2 t� 1ð Þ þ x2 t� 1ð Þð Þð Þð
= 8:24ð Þ=ððx2ðt� 8ð Þ=ðx2ðt� 1Þ þ x2 t� 1ð Þð Þð Þ
þ 7:98ð ÞÞÞ þ x1 t� 4ð ÞÞ þ x2ðt� 8ð Þ*x1 t� 6ð ÞÞÞÞ

trendfit tð Þ ¼ tr t� 1ð Þ � tr t� 2ð Þ þ tr t� 8ð Þ � tr t� 8ð Þððððð
þ tr t� 1ð ÞÞÞÞ=ð trðt� 2ð Þ � ðtr t� 4ð Þ=ð �4:29ð Þ
= tr t� 5ð Þ=tr t� 1ð Þð Þ=tr t� 1ð Þð ÞÞÞÞ=tr t� 4ð ÞÞÞÞ

wave height(t) = fit(t) + trendfit(t)
waveheight (t) = waveheight at t-th day

t = day for which prediction of wave height
is made.

fit(t) = fluctuation of wave height for t-th day
x2(t � 1) = wave height fluctuation at day (t �1)
x1(t � 1) = wind at day (t � 1)
trendfit (t) = nonlinear trend for t-th day

tr(t-1) = trend at day (t � 1)
Similar notations hold good for other time steps.
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