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Abstract. In this paper we describe higher order discontinuous Galerkin (DG)
methods for application in subsurface transport. Based on a scheme developed by
Oden, Babuška and Baumann we present a method for the solution of the elliptic
flow equation and describe a multigrid method for the fast solution of the arising
algebraic equations. For the solution of the transport equation we combine the
DG space discretization with higher order explicit Runge-Kutta schemes in the
convection-dominated case and with diagonally implicit Runge-Kutta schemes in
the diffusion-dominated case. Numerical results are presented for single-phase flow
in heterogeneous media, solute transport and two-phase flow.

1 Introduction

In this paper we are interested in the accurate numerical solution of the equa-
tions describing the flow of fluids and dissolved components in the subsurface.

Let Ω be a domain in R
d, d = 2, 3, with outward unit normal n. The

equation for groundwater flow in head-based formulation is given by

∇ · u = f in Ω, u = −K∇H, (1)

with Dirichlet boundary conditions H = H0 on ΓH and flux boundary con-
ditions u · n = U on boundary ΓU . H is the hydraulic head, u is the Darcy
velocity and K is the permeability tensor.

The challenge for numerical methods solving (1) is to achieve high ac-
curacy for the flow velocity u subsequently entering the transport equation.
Moreover, the permeability tensor may vary over many orders of magnitude.

The generic transport equation including convective and dispersive trans-
port, radioactive decay and a reaction term reads

RΦ

(

∂C

∂t
+ λC

)

+ ∇ · j = q(C) in Ω, j = uC − D(u)∇C (2)

with Dirichlet boundary conditions C = C0 on ΓC , flux boundary conditions
j · n = J on boundary ΓJ and outflow boundary conditions j · n = (uC −
D(u)∇C) · n on ΓO . We assume that u · n ≥ 0 on ΓO . R is the retardation
factor, Φ the effective porosity, λ = log 2/T with T the half life time of the
element and D the diffusion/dispersion tensor.



The flow equation (1) is of elliptic type while the transport equation (2)
is of hyperbolic type if D = 0 and parabolic otherwise.

A nonlinear extension of the equations above describes the flow of two
incompressible and immiscible fluids, e. g. water (the wetting phase w) and
oil (the non-wetting phase n), in a porous medium. The primary unknowns
are the pressure of the water phase pw and the saturation of the non-wetting
phase Sn. For details of the modeling we refer to [28,4,24].
The phase pressure equation is given by

∇ · u = q in Ω, u = −λK(∇pw − G) − λnK∇pc (3)

with boundary conditions

pw = pwd on Γwd, u · n = U on Γwn, (4)

and the total velocity u = uw + un being the sum of the phase velocities,
K the absolute permeability, q the source term, krw(1 − Sn), krn(Sn) the
relative permeabilities, pc(1−Sn) the capillary pressure function, µw, µn the
dynamic viscosities of the two fluids, λw = krw(1−Sn)/µw, λn = krn(Sn)/µn

the phase mobilities, λ = λw + λn the total mobility, %w, %n the densities of
the two fluids and G = g(λw%w +λn%n)/λ, where g is a vector that points in
the direction of gravity and has the length of the gravitational acceleration.

The phase pressure equation (3) is coupled to the saturation equation

Φ
∂Sn

∂t
+ ∇ · jn = qn in Ω, jn = fn(Sn)w(u, Sn) − hK∇pc (5)

with boundary and initial conditions

Sn = Snd on Γnd, jn · n = φn/%n on Γnn, Sn(t = 0) = Sn0, (6)

and coefficients

fn = λn/λ, w(u, Sn) = u − λw(%w − %n)Kg, h = λwλn/λ. (7)

For a given function Sn(x, t) the phase pressure equation is elliptic, while
for a given total velocity field u(x, t) the saturation equation is either non-
linear hyperbolic if pc ≡ 0 and nonlinear parabolic else.

In this paper we present the application of higher order discontinuous
Galerkin (DG) methods to the equations given above. Due to their flexibil-
ity, DG methods have been popular among the finite element community
and they have been applied to a wide range of computational fluid prob-
lems. Since the first DG method introduced in [29] the methods have been
developed for hyperbolic problems known as the Runge-Kutta DG method
[15,14,11,12,17] and for elliptic problems in [38,27,16,33,34]. A unified analy-
sis for many DG methods for elliptic problems has been given recently in [3].
A general overview is available in [13].



Advantages of DG methods are their higher order convergence property,
local conservation of mass and flexibility with respect to meshing and hp-
adaptive refinement. Their uniform applicability to hyperbolic, elliptic and
parabolic problems as well as their robustness with respect to strongly discon-
tinuous coefficients renders them very attractive for porous medium flow and
transport calculations [32,1]. The application of DG methods to a benchmark
problem in atomic waste repository simulation is given in [8]. DG methods
for elliptic problems are comparable in quality with mixed finite element
methods, as will be shown below.

In this work we use a DG formulation due to Oden, Babuška, and Bau-
mann [27] for elliptic problems and combine it with either the explicit Runge-
Kutta DG methods from [12,17] or with diagonally implicit Runge-Kutta time
discretizations.

This paper is organized as follows: Section 2 introduces the necessary no-
tation, Section 3 presents the DG scheme for the eliptic flow equation while
Section 4 describes the DG scheme for hyperbolic and parabolic transport
equations. Numerical results for single and two-phase flow problems are pre-
sented in Section 5. Finally, conclusions are given in Section 6.

2 Notation

Let Eh = {e1, . . . , enh
} be a non-degenerate quasi-uniform subdivision of Ω

where e ∈ Eh is a triangle or quadrilateral if d = 2 and e is a tetrahedron,
pyramid, prism or hexahedron with planar faces if d = 3. Let h denote the
maximum diameter of the elements in Eh. The domain covered by e ∈ Eh

is denoted by Ωe and the outward unit normal to Ωe is ne. The subdivision
does not have to match up at element boundaries (although this is not yet
implemented in the code).

The space of polynomial functions of degree r on element e ∈ Eh is defined
by

Pr(Ωe) = {w : Ωe → R | w(x, y) =
∑

0≤a+b≤r

cab xayb}. (8)

The extension to three space dimensions is obvious. Note that Pr can be
used on triangles (tetrahedra) and quadrilaterals (hexahedra). In the imple-
mentation Pr is generated from basis polynomials on the reference element.
Moreover, we use basis polynomials that are L2-orthogonal on the reference
elements. This improves the conditioning of the arising matrices and leads to
diagonal mass matrices.

The finite element space used in the DG method is defined as

V r(Eh) =
∏

e∈Eh

Pr(Ωe). (9)



Note that functions in V r(Eh) are discontinuous on the so-called internal
skeleton Γint which is defined as

Γint = {γe,f | γe,f = ∂Ωe ∩ ∂Ωf ∀e, f ∈ Eh, e 6= f}. (10)

Correspondingly, the external skeleton is defined as

Γext = {γe | γe = ∂Ωe ∩ ∂Ω ∀e ∈ Eh}. (11)

With each γe,f ∈ Γint we associate a unit normal n. The orientation can
be selected arbitrarily. With any γe ∈ Γext we associate the unit normal n
oriented outward to Ω.
For any x ∈ γ ∈ Γint we denote the jump of a function v ∈ V r(Eh) by

[v](x) = lim
ε→0+

v(x + εn) − lim
ε→0+

v(x − εn). (12)

In addition to the jump we also define the average of a function v ∈ V r(Eh)
at x ∈ γ ∈ Γint:

〈v〉(x) =
1

2

(

lim
ε→0+

v(x + εn) + lim
ε→0+

v(x − εn)

)

. (13)

3 DG Method for Flow Equation

3.1 Scheme

The DG method due to Oden, Babuška, and Baumann [27] for solving the
elliptic problem (1) is given as follows: Find Hh ∈ V r(Eh) such that for all
v ∈ V r(Eh)

∑

e∈Eh

∫

Ωe

(K∇Hh) · ∇v dx

+
∑

γ∈Γint

∫

γ

〈K∇v · n〉 [Hh] − [v] 〈K∇Hh · n〉 ds

+
∑

γ∈Γext∩ΓH

∫

γ

(K∇v · n)Hh − v K∇Hh · n ds (14)

=
∑

e∈Eh

∫

Ωe

fv dx −
∑

γ∈Γext∩ΓU

∫

γ

Uv ds +
∑

γ∈Γext∩ΓH

∫

γ

(K∇v · n)H0 ds

which will be abbreviated as

ah(Hh, v) = fh(v) ∀v ∈ V r(Eh). (15)

Note that the Dirichlet boundary condition is approximated weakly. Assum-
ing that the solution is sufficiently regular the convergence rate of the scheme



in the energy norm (and thus for the velocity u = −K∇H) is O(hr) and the
convergence rate in L2 is O(hr) if r is even and O(hr+1) if r is odd. This
anomaly can can be remedied with other stabilizations such as the nonsym-
metric interior penalty DG method [30,34] or the local DG method [16,3].

The local conservation property of the DG scheme becomes obvious when
a test function v ∈ V r(Eh) is inserted which is constant on each element.
Then the scheme reduces to

∑

γ∈Γint

∫

γ

[v] 〈u · n〉ds +
∑

γ∈∂Ω

∫

γ

u · n v ds =
∑

e∈Eh

∫

Ωe

fv dx (16)

which shows that the conserved flux is the average 〈u · n〉.

3.2 Variational Multigrid Formulation

Insertion of a basis representation into (14) results into a large system of
linear equations. Since the underlying problem is elliptic it should be possible
to construct optimal order multigrid solvers. Such an algorithm has been
presented in [9]. For an introduction to multigrid methods we refer to [21,22]

Here, we will derive the coarse grid correction of a two-grid method in
variational form. Let E0, E1, . . . , EJ be a nested mesh hierarchy. Let Hold

l ∈
V r(El) be an approximate solution of (14) on mesh level l. We seek a coarse
grid correction cl−1 ∈ V r(El−1) that removes the low frequency errors from
Hold

l . The subspace correction approach [39] results in the following procedure
for the coarse grid correction: Solve

al−1(cl−1, vl−1) = fh(vl−1) − al−1(H
old
l , vl−1) ∀vl−1 ∈ V r(El−1) (17)

and correct
Hnew

l = Hold
l + cl−1. (18)

Note that polynomials of degree r are used also on the coarse grid. This
should not be necessary since low frequency errors can be represented with
low-order polynomials but on the other hand it does not harm the overall
complexity and eases implementation.

In the multigrid algorithm, the exact coarse grid correction (17) is re-
placed by a recursive application of the same procedure. The entries of
the restriction and prolongation matrices are obtained from the equation
ϕi,l−1 =

∑

j ωi,jϕj,l stating that every coarse grid basis function ϕi,l−1 can
be represented by a linear combination of fine grid basis functions ϕj,l. This
follows from the fact that the DG spaces are nested: V r(El−1) ⊂ V r(El).
The factors ωi,j are the entries of the prolongation matrix, see [9] for details.

It remains to specify the smoothing iteration. There, we use a zero order
incomplete LU decomposition applied to a blocked matrix where all degrees
of freedom associated with one element are collected in a block. Blockwise
Jacobi and Gauß-Seidel methods (with respect to the same blocking) are



not effective as smoothers since errors on the internal skeleton Γint are not
removed.

Numerical results for this multigrid algorithm are presented below.

3.3 BDM Projection

The Darcy velocity uDG = −K∇Hh computed from Hh ∈ V r(Eh) is discon-
tinuous at element boundaries and does not have continuous normal com-
ponent uDG · n. Thus, the average flux 〈u · n〉 is inconsistent with the fluxes
evaluated from left and right. Mathematically we have uDG 6∈ H(div; Ω). A
velocity field with continuous normal component is, however, required by
most transport simulations such as the scheme described below. In [10] we

describe a simple projection scheme Π : (V r(Eh))
d
→ H(div; Ω) and prove

that this projection does not reduce the accuracy of the DG scheme. This
projected velocity u∗ = Π(uDG) will be used in the transport simulation.

4 DG for Transport Equation

4.1 Scheme

The semi-discrete DG scheme for solving the transport equation (2) in either
its hyperbolic or parabolic form is given as follows: Find Ch : [0, T ] → V r(Eh)
such that for all v ∈ V r(Eh)

∂

∂t

∑

e∈Eh

∫

Ωe

RΦChv dx +
∑

e∈Eh

∫

Ωe

RΦλChv dx

−
∑

e∈Eh

∫

Ωe

(uCh − D∇Ch) · ∇v dx +
∑

γ∈Γint

∫

γ

[v]C∗
h〈u · n〉 ds

+
∑

γ∈Γint

∫

γ

〈D∇v · n〉[Ch] − [v]〈D∇Ch · n〉 ds

+
∑

γ∈Γext∩ΓC

∫

γ

D∇v · nCh − vD∇Ch · n ds +
∑

γ∈Γext∩Γ out

C

∫

γ

vChu · n ds

+
∑

γ∈Γext∩ΓO

∫

γ

vChu · n − vD∇Ch · n ds + Jσ,β
0 (Ch, v) (19)

=
∑

e∈Eh

∫

Ωe

qv dx −
∑

γ∈Γext∩ΓJ

∫

γ

Jv ds −
∑

γ∈Γext∩Γ in

C

∫

γ

vC0u · n ds

+
∑

γ∈Γext∩ΓC

∫

γ

D∇v · n C0 ds +
∑

γ∈Γext∩ΓC

σ

|γ|β

∫

γ

C0v ds



where we have used the refined decomposition of the boundary into Dirichlet
outflow

Γ out
C = {x ∈ ΓC | u(x) · n > 0} (20)

and Dirichlet inflow

Γ in
C = {x ∈ ΓC | u(x) · n ≤ 0} (21)

and the interior penalty term [38,30]

Jσ,β
0 (C, v) =

∑

γ∈Γint

σ

|γ|β

∫

γ

[C][v] ds +
∑

γ∈Γext∩ΓC

σ

|γ|β

∫

γ

Cv ds (22)

with user-defined parameters σ and β. This additional penalty term can be
used to improve continuity of the solution at internal boundaries.

The concentration in the convective term for x ∈ γ ∈ Γint is upwinded
via

C∗
h(x) =

{

lim
ε→0+

Ch(x − εn) if 〈u · n〉 ≥ 0

lim
ε→0+

Ch(x + εn) else
. (23)

In the scheme (19) we use the projected velocity u∗ defined in Subs. 3.3.
The spatial error of this formulation is O(hr+1) in L2 in the hyperbolic case
(D = 0) for a sufficiently regular solution. Error estimates are provided in
[31].

A nice property of the DG method is the correct treatment of Dirichlet
boundary conditions in the transition from the hyperbolic to the parabolic
case at outflow boundaries. In the hyperbolic case no boundary condition
can be prescribed at outflow boundaries and the numerical method treats
the value at the outflow boundary as unknown. If a diffusion term is present
a Dirichlet boundary condition is obeyed for h → 0.

4.2 Runge-Kutta Time Discretizations

Eq. (19) can be rewritten in ODE form after inserting a basis and inverting
the mass matrix. The mass matrix is diagonal if an orthogonal basis is chosen
(otherwise it is block diagonal). We denote the ODE system by

d

dt
Ch = Lh(t, Ch(t)). (24)

This ODE system is discretized by Runge-Kutta methods. The time inter-
val (0, T ) is subdivided into 0 = t0 < t1 < . . . < tM = T with ∆tn = tn+1−tn.
The approximation of Ch(t) to be computed is denoted by Cn

h .
All Runge-Kutta methods used here can be written in the following form

which computes Cn+1
h from Cn

h :

1. C
(0)
h = Cn

h ;



2. C
(i)
h =

i
∑

k=0

[

aikC
(k)
h + bik∆tnLh(tn + dk∆tn, C

(k)
h )

]

i = 1(1)s ;

3. Cn+1
h = C

(s)
h ;

The number of stages of the scheme is s. Note that schemes with bii = 0 are
explicit. Otherwise they are implicit and a large system of nonlinear algebraic
equations has to be solved per stage.

For hyperbolic and convection-dominated parabolic problems [35,15] de-
velop explicit schemes with the total variation diminishing (TVD) property.
Diagonally implicit Runge-Kutta schemes with favourable stability charac-
teristics are presented in [2,23].

Table 1 displays the coefficients of all schemes used in this work. These
are the second and third order explicit TVD methods of [35], the second and
third order strongly S-stable methods of [2] and the fourth order L-stable
method of [23]. The coefficients are written in the form

a10 . . . a1s b10 . . . b1s d1

...
...

...
...

...
as0 . . . ass bs0 . . . bss d1

, d0 = 0.

The CFL constraint for the explicit schemes is 1/3 for the second order scheme
and 1/5 for the third order scheme.

Table 1. Coefficients for various explicit and diagonally implicit Runge-Kutta
methods.

Reference Ord. /s Coefficients

[35] 2/2
1 0 0 1 0 0 1
1

2

1

2
0 0 1

2
0 1

[35] 3/3
1 0 0 0 1 0 0 0 1
3

4

1

4
0 0 0 1

2
0 0 1

2
1

3
0 2

3
0 0 0 2

3
0 1

[2] 2/2
1 0 0 0 α 0 α
1 0 0 0 1 − α α 1

, α = 1 −

√

2

2

[2] 3/3
1 0 0 0 0 α 0 0 α
1 0 0 0 0 τ2 − α α 0 τ2

1 0 0 0 0 β1 β2 α 1
,

α = 0.4358665215
τ2 = (1 + α)/2

β1 = −

6α
2
−16α+1

4

β2 = 6α
2
−20α+5

4

[23] 4/5

1 0 0 0 0 0 0 1

4
0 0 0 0 1

4

1 0 0 0 0 0 0 1

2

1

4
0 0 0 3

4

1 0 0 0 0 0 0 17

50
−

1

25

1

4
0 0 11

20

1 0 0 0 0 0 0 371

1360
−

137

2720

15

544

1

4
0 1

2

1 0 0 0 0 0 0 25

24
−

49

48

125

16
−

85

12

1

4
1



4.3 Slope Limiters

According to Godunov’s theorem [25] there are no monotone linear schemes
of order greater than one. Unphysical oscillations in higher order schemes
are suppressed by slope limiters. Slope limiters applicable to discontinuous
Galerkin space discretizations have been presented in [12,17]. They are in-
corporated into the Runge-Kutta time-stepping procedure as follows:

1. C
(0)
h = Cn

h ;

2. C
(i)
h = ΛΠ

(

i
∑

k=0

[

aikC
(k)
h + bik∆tnLh(tn + dk∆tn, C

(k)
h )

]

)

i = 1(1)s ;

3. Cn+1
h = C

(s)
h ;

This scheme is called the RKΛΠP time-stepping method. ΛΠ : V r(Eh) →
V r(Eh) is a projection that is used to postprocess the solution after each stage
such that the TVD property is maintained, for details we refer to [12,17].
ΛΠ is local in the sense that on an element it only uses the solution on that
element and in neighboring elements.

We now describe the construction of ΛΠ applied to a function v ∈ V r(Eh).
Fix a particular element e ∈ Eh. The first step is to extract the linear part
v1

e on Ωe through L2-projection, i. e.

(v1
e , w)Ωe

= (v, w)Ωe
∀w ∈ P1(Ωe). (25)

ΛΠ relies on the assumption that spurious oscillations in v already show up
in its linear part. This is theoretically not proven [17].

In the following we restrict the presentation to the one-dimensional case.
The elements are then given by Ωei

= (xi−1/2, xi+1/2), the center of element
ei is at xi, i = 1, . . . , K. The functions vei

in P1(Ωei
) can be written in the

orthonormal basis

v1
ei

(x) = v̄iφi,0(x) + ṽiφi,1(x)

with

φi,0(x) = 1 and φi,1(x) =
x − xi

∆xi/2
where ∆xi = xi+1/2 − xi−1/2.

The two coefficients v̄i and ṽi can be computed from a given v1
ei

by

v̄i = v1
ei

(xi), ṽi = v1
ei

(xi+1/2) − v1
ei

(xi). (26)

Obviously, v̄i is the average cell value and ṽi measures the slope of the
linear function. The slope limiter, as the name implies, will possibliy modify
the slope of the function but not its average value (conservation of mass).
The limited slope ṽ∗

i on element ei is computed by

ṽ∗i = m (ṽi, q(v̄i+1 − v̄i), q(v̄i − v̄i−1)) (27)



where m is the so-called minmod function

m(a1, a2, a3) =

{

s mini |ai| if s = sign(a1) = sign(a2) = sign(a3),
0 otherwise,

and q ∈ (0, 1]. In (27) the slope on element ei is compared with the slopes
computed from neighboring cell averages. If all slopes have the same sign the
slope with the smallest absolute value is selected. Otherwise a local minimum
or maximum has been detected and the slope is set to zero. The parameter
q is taken as 1 for linear convection and 1/2 for nonlinear convective terms.

In quadrilateral elements two opposite edges define a coordinate direc-
tion and the same procedure is applied accordingly. The limiting in case of
triangular elements is more complicated and is described in [12,17].
It remains to specify the ΛΠ-projection:

ΛΠ(v)|Ωei
=

{

v̄iφi,0(x) + ṽ∗
i φi,1(x) if ṽ∗i 6= ṽi,

v|Ωei
else.

(28)

5 Numerical Results

The schemes described in this paper have been implemented in the software
framework “Unstructured Grids” [6] for the numerical solution of partial
differential equations. The implementation covers two- and three-dimensional
unstructured meshes and polynomials up to degree 6.

5.1 Multigrid Performance

The convergence of the multigrid solver is illustrated in Tables 2 and 3. For
comparison we also list the iteration numbers for regular multigrid applied
to a vertex centered finite volume discretization. We use a multigrid V-cycle
with one ILU pre- and postsmoothing step and list iteration numbers for a
10−8 reduction of the initial residual.

Table 2 shows the iteration numbers for a full regularity model problem
−∆p = f in (0, 1)2, p = p0 on ∂Ω. A structured quadrilateral mesh with
coarse mesh size h0 = 1/2 has been used. Obviously the method is robust in
mesh size h and the polynomial degree r.

Multigrid convergence is independent of the regularity of the problem as
is shown by Table 3 where a reentrant corner problem with solution in Hs,
s = 1 + 4/7, has been solved.

5.2 Single Phase Flow in Heterogeneous Media

The second example explores the quality of the DG solutions for elliptic
problems with highly discontinuous coefficients. We solve −∇·{K∇p} in the
unit square with p = 1 for x = 0, p = 0 for x = 1 and no flow boundary



Table 2. Number of multigrid iterations for full regularity model problem.

h−1 FV r = 2 r = 3 r = 4 r = 5 r = 6

4 3 5 5 5 5 4
8 4 7 6 6 5 6

16 4 7 6 6 5 6
32 4 7 6 6 5 6
64 4 7 6 6 5 6

128 4 6 6 6
256 4
512 4

Table 3. Number of multigrid iterations for reentrant corner problem.

Triangles FV r = 2 r = 3 r = 4 r = 5 r = 6

20 4 7 8 7 7 8
80 6 8 7 7 8 8

320 6 8 8 7 8 8
1280 6 9 8 7 8 8
5120 7 9 8 7

20480 7 9
81920 7

Fig. 1. Permeability and flow field for the discontinuous coefficient example com-
puted with DG(3). Permeability 1 shown in light gray and 10−6 in black. Vectors
not drawn to scale are indicated by gray color in the vector plot.



conditions for y = 0 and y = 1. The permeability field is defined on a regular
20×20 mesh and is shown in Fig. 1 on the left. In dark areas the permeability
is K = 10−6 · I , elsewhere it is K = I . The example is taken from [19].

The unit square is discretized with 20 × 20 × 2 triangular elements such
that the permeability field is resolved with coarse grid elements. Finer grids
are obtained through regular refinement. The right plot in Fig. 1 shows the
flow field computed with degree r = 3 on the coarsest mesh.

Table 4. Total flux through the system for discontinuous coefficent example.

h−1 FV r = 2 r = 3 r = 4 r = 5 r = 6 MFE

20 0.6991 0.5094 0.5152 0.5174 0.5232 0.5152 0.4508
40 0.6466 0.5179 0.5181 0.5208 0.5206
80 0.6170 0.5194 0.5192 0.5201

160 0.5998 0.5199 0.5198
320 0.5890
640 0.5816

Table 5. Number of multigrid cycles in the discontinuous coefficient example.

l h−1 FV r = 2 r = 3 r = 4

1 40 6 14 14 16
2 80 7 14 12 15
3 160 7 13 12
4 320 8
5 640 9

In Table 4 we show results for the unknown total flux through the system.
We compare the vertex centered finite volume method (which in this case is
identical to P1 conforming finite elements), DG with r = 2 up to r = 6
and the lowest order mixed finite element method. The value for the mixed
method is taken from [19]. The “exact” value has been given in [19] as 0.5205
which was obtained by computing approximations on a sequence of meshes
up to 200×200 with a cell centered finite volume scheme and extrapolation to
h = 0. The results clearly show the unsuitability of the standard finite element
method for this type of problem. Moreover, the error in the mixed finite
element solution on the coarsest mesh is about a factor six larger than the
error in the DG result on the same mesh. However, the number of unknowns
is also about 2.5 times larger for DG (4800 vs. 2000 in the non-hybridized
version). This result clearly shows the suitability of the DG method since the
MFE is considered optimal for this type of problem.

The performance of the multigrid method is shown in Table 5. For the
discontinuous coefficent example we used a multigrid V-cycle with ν1 = ν2 =



2 ILU smoothing steps as a preconditioner in the BiCGSTAB-method [36].
The table shows the number of preconditioner evaluations needed to reduce
the norm of the defect by 10−8. Again the iteration numbers seem to be
independent of h and r.

5.3 Rotating Pulse Problem

In this example we consider the transport of a Gaussian pulse in a rotating
flow field. We solve

∂C

∂t
+ ∇ · {uC − D∇C} = 0 in Ω = (−0.5, 0.5)2 (29)

with Dirichlet boundary and initial condition taken from the exact solution

C(x, y, t) =
2σ2

2σ2 + 4Dt
exp

(

−
(x̄ − xc)

2 + (ȳ − yc)
2

2σ2 + 4Dt

)

(30)

which is available for u = (−4y, 4x)T and x̄ = x cos(4t) + y sin(4t), ȳ =
−x sin(4t) + y cos(4t). The exact solution is taken from [37] where many
methods are compared for this model problem (unfortunately not in the L2

norm, only maxima and minima are listed). We use the same parameters as
in their paper: D = 10−4, xc = −0.25, yc = 0 and 2σ2 = 0.004. The time
interval for the simulation is [0, π/4], which is the time for a half rotation.
Fig. 2 shows the initial condition and final solution.

Fig. 2. Rotating pulse problem. Initial solution (left) and solution after half rotation
(right).

For comparison we list the L2 error of the solution at t = π/4 for different
methods in Tables 6 and 7. T denotes the number of elements and TS de-
notes the number of time steps used. Table 6 containes the rates for several



schemes using continuous and piecewise linear trial functions. Spatial and
temporal mesh are refined such that h/∆t is constant. The backward Euler
/ full upwinding vertex centered finite volume scheme (column FV BE/FU)
is formally of first order. However, the results show that this asymptotic rate
is achieved only for very fine meshes requiring huge computational effort.
Comparison with the other schemes shows that the asymptotic convergence
rate is reached for an absolute error smaller than about 5 · 10−3. Above that
absolute error the observed convergence rate may be much worse than the ex-
pected rate. The modified method of characteristic (MMOC) [18] is formally
first order convergent but has a small error constant. Asymptotic conver-
gence is achieved already on coarse meshes. The finite volume scheme with
Crank-Nicolson time-stepping and central evaluation of convective terms is
second-order accurate which is confirmed by the table. It should be noted that
the solution is smooth but convection-dominated. The second order scheme
shows negligible oscillations on the finer meshes.

Table 7 reports the results for discontinuous Galerkin methods using
polynomials of degree 1, 2 and 3 and the corresponding diagonally implicit
Runge-Kutta time integrators of order 2, 3 and 4 (see Table 1). The theoret-
ical asymptotic convergence rates are fully confirmed by the table. Since the
problem is smooth, no slope limiters are necessary. With respect to efficiency
one can state the following: For an accuracy of 5 ·10−4 even the second order
DG scheme is faster than the second order finite volume scheme. The third
order DG scheme is about five times faster than the second order scheme,
the fourth order scheme is about 12 times faster for a more accurate solu-
tion. Computation times in the table are always for the finest mesh using a
Pentium III/850 MHz computer.

Table 8 shows results where the DG space discretization is combined with
a DG time discretization resulting in a space-time finite element formulation.
In this scheme time is treated as a fourth dimension. Upwinding in time
naturally leads to a sequential solution of the equation on time slabs, see [20].
This scheme is very competitive with respect to accuracy per computation
time. However, it requires more computer memory than the higher order
Runge-Kutta schemes which may be prohibitive in practice.

Table 6. Rotating pulse problem. L2 error after half rotation for some simpler
schemes.

MMOC FV BE/FU FV CN/CEN

h
−1 T TS Rate L2-Norm TS Rate L2-Norm Rate L2-Norm

8 256 10 7.24 · 10−2 8.87 · 10−2

16 1K 2 5.13 · 10−2 20 0.07 6.90 · 10−2 0.22 7.60 · 10−2

32 4K 4 0.77 3.01 · 10−2 40 0.12 6.35 · 10−2 0.47 5.47 · 10−2

64 16K 8 0.90 1.61 · 10−2 80 0.19 5.55 · 10−2 1.11 2.53 · 10−2

128 64K 16 0.92 8.51 · 10−3 160 0.30 4.52 · 10−2 1.74 7.56 · 10−3

256 256K 32 0.86 4.69 · 10−3 320 0.43 3.36 · 10−2 1.96 1.94 · 10−3

512 1M 640 0.57 2.26 · 10−2 2.00 4.86 · 10−4

comp. time 565 min 384 min



Table 7. Rotating pulse problem. L2 error after half rotation for the DG schemes.

Order 2 Order 3 Order 4
h−1 T TS Rate L2-Norm Rate L2-Norm Rate L2-Norm

8 256 10 4.37 · 10−2 3.56 · 10−2 1.73 · 10−2

16 1K 20 0.75 2.59 · 10−2 1.09 1.67 · 10−2 2.69 2.68 · 10−3

32 4K 40 1.31 1.04 · 10−2 1.86 4.60 · 10−3 3.70 2.05 · 10−4

64 16K 80 1.83 2.92 · 10−3 2.53 7.91 · 10−4 3.92 1.35 · 10−5

comp. time 21 min 67 min 265 min

Table 8. Rotating pulse problem. L2 error after half rotation for space-time DG
schemes.

p = q = 1 p = q = 2 p = q = 3
h−1 T TS Rate L2-Norm Rate L2-Norm Rate L2-Norm

8 256 10 5.53 · 10−2 3.29 · 10−2 1.61 · 10−2

16 1K 20 0.65 3.52 · 10−2 1.90 8.77 · 10−3 3.52 1.40 · 10−3

32 4K 40 1.37 1.36 · 10−2 3.40 8.27 · 10−4 4.80 5.02 · 10−5

64 16K 80 2.23 2.88 · 10−3 2.51 7.22 · 10−5 4.09 2.94 · 10−6

comp. time 14 min 42 min 232 min

5.4 Buckley-Leverett Problem

The Buckley-Leverett problem is an often used test example for two-phase
flow without capillary pressure effects in a one-dimensional porous medium.
The corresponding equation

∂Sw

∂t
+

u

Φ

∂

∂x
fw(Sw) = 0 in (0, 300[m]) (31)

for the wetting phase saturation is nonlinear hyperbolic. The fractional flow
function

fw(Sw) =
krw(Sw)

krw(Sw) + µw

µn
krn(1 − Sw)

(32)

is S-shaped for typical applications. Here we use Brooks-Corey relative per-
meabilities [24]

krw(Sw) = S
2+3λ

λ

w , krn(Sn) = S2
n

(

1 − (1 − Sn)
2+λ

λ

)

(33)

with λ = 2. The velocity was set to u = 3 ·10−7[m/s], the porosity to Φ = 1/5
and the viscosity ratio was µw/µn = 1. The following boundary and initial
conditions are imposed:

Sw(0, t) = 1, Sw(x, 0) = 0. (34)

The analytical solution of this problem can be constructed with the method
of characteristics [25,24].



Figure 3 shows the results at the final time T = 1500[d] for polynomial
degree 1 and 2 using the explicit TVD Runge-Kutta methods of order 2 and
3 (see Table 1). The CFL number was 0.3 for the second order scheme and
0.18 for the third order scheme. The shock is resolved sharply within about
three mesh cells. Experimental orders of convergence in the L1 and L2 norm
are shown in Table 9. Due to the low regularity of the problem the higher
order does not pay off in the shock region. A comparison with standard
finite volume methods from [5,7] exhibits that two levels of mesh refinement
are needed with the finite volume scheme to match the accuracy of the DG
solution.

Table 9. Error and experimental order of convergence of RKDG applied to the
Buckley-Leverett problem.

Method elements L1-error L1-rate L2-error L2-rate

DG(1) 32 4.41 · 10+0 1.06 · 10+0

TVD RK(2) 64 2.40 · 10+0 0.88 6.48 · 10−1 0.71
Cr = 0.3 128 1.37 · 10+0 0.81 5.29 · 10−1 0.29
minmod 256 7.76 · 10−1 0.82 4.38 · 10−1 0.27

512 4.06 · 10−1 0.93 2.98 · 10−1 0.56

DG(2) 32 3.96 · 10+0 9.83 · 10−1

TVD RK(3) 64 2.03 · 10+0 0.96 5.89 · 10−1 0.74
Cr = 0.18 128 1.19 · 10+0 0.77 5.02 · 10−1 0.23
minmod 256 6.94 · 10−1 0.78 4.27 · 10−1 0.23

512 3.58 · 10−1 0.95 2.68 · 10−1 0.67

5.5 McWhorter Problem

For a one-dimensional counter–current two-phase flow the wetting phase sat-
uration Sw can be described by the following doubly degenerate parabolic
equation:

Φ
∂Sw

∂t
+

∂

∂x

(

λnλw

λw + λn
p′cK

∂Sw

∂x

)

= 0 in (0, 1.6[m]) (35)

where we recall λw(Sw) = krw(Sw)/µw, λn(Sn) = krn(Sn)/µn. The following
boundary and initial conditions are imposed:

Sw(0, t) = 1, Sw(1.6, t) = 0, Sw(x, 0) = 0. (36)

A quasi-analytical solution for this problem has been presented in [26]. Here
we use the following parameters: Φ = 0.3, K = 10−10[m2], µn = µw =
10−3[Pa s], Brooks–Corey relative permeability functions with λ = 2 and
Brooks-Corey capillary pressure function

pc(Sw) = pdS
− 1

λ

w (37)
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Fig. 3. DG for the Buckley-Leverett problem.



where λ = 2 and pd = 5000[Pa].

Solution plots are shown in Figure 4. Because the problem is parabolic we
use diagonally implicit Runge-Kutta methods of corresponding order. This
problem requires the use of the J0 penalty term in the saturation equation,
otherwise the method does not converge with the initial condition Sw = 0
in Ω. The reason for this is that the Oden-Babuška-Baumann stabilization
term vanishes for extreme values of saturation. In the J0 penalty term we use
σ = 10−3 and β = 1.

The solution of the McWhorter problem does not have enough regular-
ity to realize higher order convergence rates. Nevertheless the much smaller
error constant of the higher order schemes renders them very attractive. A
comparison of Table 10 with the finite volume method used in [7] shows that
the mesh used for the finite volume scheme must be refined three times in
space and time to match the accuracy of the DG method.

We observe that the solution for polynomials of degree 2 lies below the
exact solution and that for polynomial degree 3 lies above the exact solution.

Table 10. Error and experimental order of convergence of DG applied to the
McWhorter problem using implicit Runge-Kutta time discretizations.

Method elements steps L1-error L1-rate L2-error L2-rate

DG(2) 16 6 1.96 · 10−2 2.63 · 10−2

DIRK(2) 32 12 1.42 · 10−2 0.46 1.98 · 10−2 0.41
64 24 8.98 · 10−3 0.66 1.37 · 10−2 0.53

128 48 5.02 · 10−3 0.84 8.78 · 10−3 0.64

DG(3) 16 6 1.22 · 10−2 1.49 · 10−2

DIRK(3) 32 12 7.66 · 10−3 0.67 9.37 · 10−3 0.67
64 24 4.79 · 10−3 0.68 5.67 · 10−3 0.72

128 48 3.15 · 10−3 0.60 3.43 · 10−3 0.73

6 Conclusion

In this paper we formulated higher order discontinuous Galerkin methods
for elliptic, hyperbolic and parabolic equations which describe single-phase
and two-phase flow in porous media. For smooth problems the higher-order
convergence is fully confirmed. For problems with low regularity it is shown
consistently over several examples that the solutions of the presented schemes
are very competitive in comparison to other well established methods such as
the mixed finite element and finite volume methods. In contrast to the previ-
ous approaches with discontinuous elements the new methods allow efficient
solution of the arising linear systems with multigrid methods.
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