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Abstract. Ocean waves entering the near-shore zone undergo nonlinear and dispersive pro-
cesses. This paper reviews nonlinear models, focusing on the so-called Serre equations.
Techniques to overcome their limitations with respect to the phase speed are presented.

Nonlinear behaviours are compared with theoretical results concerning the properties of
Stokes waves. In addition, the models are tested against experiments concerning periodic
wave transformation over a bar topography and of the shoaling of solitary waves on a

beach.
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1. Introduction

Water waves propagating from deep water regions into water (of depth
much less than their wavelength) experience significant transformations.
Rapid changes in height, speed and direction produce considerable changes
in free surface profiles. These profiles, initially almost sinusoidal, become
characterized by long flat troughs, with crests appearing as isolated peaks.
This change in shape is the so-called asymmetry. As depth decreases, waves
become skewed about their crest with marked steepening of the forward
face. Wave shoaling is the process that starts at the time when the waves
first adapt to the bottom, progressing until they break.

Shallow water conditions are characterized by the water depth h0 being
much smaller than the horizontal wave length scale LðL � 1=kÞ, where k is
the wave number and is usually expressed by r ¼ kh0 � 1: Within the linear
approximation of water wave theory, the amplitude A is required to tend to 0
as L ! 1. Obviously this implies that the scaling used in this linear approxi-
mation does not allow for shallow water waves of finite amplitude. Nonethe-
less the linear approximation indicates a quasi-uniform velocity with depth
which is used in a number of approximate theories for long waves.

A widely accepted approach, starting with Boussineq (1872) and Ray-
leigh (1876), is a perturbation method based on two nondimensional
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parameters r, assumed small, and � ¼ A=h0. The smallness of r is used to
work out equations that do not depend on the vertical coordinate y. More-
over, the nonlinear free-surface conditions are absorbed in the resulting
equations. These are usually easier to solve and, in simple cases, tractable
analytically. Historically, these equations have been mostly dedicated to
the study of solitary wave propagation.

The scalings generally adopted may severely restrict applicability to real
world wave propagation problems. Indeed, shoaling waves start to trans-
form when the wavelength is comparable with the depth ðkh0 � 1Þ: More-
over, waves will break when their amplitude is comparable with the depth
ð� � 1Þ: Thus, it is expected that classical scalings are unsuitable in large
parts of the near-shore region. Deriving higher order equations to over-
come such shortcomings will in most cases yield complex equations only
amenable to numerical methods. These limitations have motivated the
development of relatively simple methods encompassing waves of both
short wavelength and of large amplitude.

In Section 2 the main steps of the derivation of a Boussinesq-like set of
equations, incorporating high order nonlinear and dispersive terms, are
presented. This set was originally obtained by Serre (1953). Section 3 pre-
sents a method to enhance dispersive behaviours of this set of equations.
Finally, Section 4 is devoted to experimental test cases that were performed
within the G8M-MAST II project of the European Commission.

2. A strongly nonlinear approximation: Serre equations for horizontal bed

2.1. Nondimensionalisation

The basic scales are the wave characteristic amplitude A, the wave charac-
teristic horizontal length scale L, and the mean water depth h0. Assuming
that the waves’ geometrical characteristic only depend on these scales, non-
dimensional independent variables are naturally defined as follows:

x� ¼ x

L
and y� ¼ y

h0
: ð1Þ

y is the vertical coordinate and x is along the horizontal bottom. We know
from the linear theory that the horizontal velocity uðx; y; tÞ has the follow-
ing order of magnitude:

u � �C0 with C0 ¼
ffiffiffiffiffiffiffi
gh0

p
; ð2Þ
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then the nondimensional horizontal velocity is,

u� ¼ u

�C0
; ð3Þ

where C0 is the long wave phase velocity. The order of magnitude of the
vertical velocity is obtained using the continuity relation:

v � r � C0; thus v� ¼ v

r �C0
ð4Þ

Because we are dealing with long waves, the pressure is scaled by the static
pressure,

p � q g h0; thus p� ¼ p

q g h0
: ð5Þ

The dimensionless form of continuity, irrotationality and, momentum
equations and boundary conditions now read (* dropped, for convenience):

ux þ vy ¼ 0 ð6Þ
uy � r2vx ¼ 0 ð7Þ
� ut þ �2ðu2Þx þ �2ðu vÞy ¼ �px ð8Þ
� r2 vt þ �2r2 uvx þ �2r2 vvy ¼ �py � 1 ð9Þ
v ¼ 0 at the horizontal bottom: y ¼ 0 ð10Þ
v ¼ gt þ � ugx at the free-surface: y ¼ hðx; tÞ ¼ 1þ � g ð11Þ
p ¼ 0 at the free-surface: y ¼ hðx; tÞ ð12Þ

2.2. DEPTH INTEGRATED EQUATIONS

Because in shallow water the horizontal component of the velocity is
quasi-uniform over the depth, the depth averaged velocity is expected to be
close to it. Depth averaged values are defined by

�f ¼ 1

h

Z h

0

f dy ð13Þ

where hðx; tÞ is the total depth defined in Equation (11). The continuity
Equation (6) integrated over depth gives

gt þ ½h u�x ¼ 0: ð14Þ
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The momentum Equation (8) in the x direction is also depth averaged.
Terms are simplified using the Leibnitz rule, the continuity Equation (14)
and boundary conditions (10)–(12). After some manipulations Equation (8)
reduces to:

� h ut þ �2h u ux þ �2
o

ox

Z h

0

ðu2 � ðuÞ2Þ dy ¼ �
Z h

0

px dy: ð15Þ

The derivation so far is similar to that of Roseau (1976). The dispersion
characteristic of the resulting equations will depend on the simplifying
assumptions introduced for the pressure term of the right-hand side of
Equation (15). If the pressure is assumed to be hydrostatic, then Equa-
tion (15) will result in the classical dispersionless shallow-water hyperbolic
equations. Taking ‘‘on-board’’ dynamic pressure contributions gives dis-
persive behaviours. The Leibnitz rule applied to the right-hand term of
(15) yields:

Z h

0

px dy ¼ o

ox
ðhpÞ � hx pðhÞ ¼

o

ox
ðhpÞ ð16Þ

in which p is computed as follows. The y momentum Equation (9) is
rewritten as

�py ¼ 1þ � r2 Cðx; y; tÞ ð17Þ

Cðx; y; tÞ ¼ vt þ � uvx þ � vvy; ð18Þ

where C is interpreted as the fluid particle vertical acceleration. Integrating
(17) from y to h results in

�pðx; y; tÞ ¼ ðy� hÞ � � r2
Z h

y

Cðx; n; tÞ dn: ð19Þ

Then,

�hp ¼ � 1

2
h2 � � r2

Z h

0

dy

Z h

y

Cðx; n; tÞ dn: ð20Þ

The integral in the last term on the right-hand side is integrated by parts.
Then Equation (15) reads
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ut þ � u ux þ gx þ
r2

h

o

ox

Z h

0

yCðx; y; tÞ dy ¼ � �

h

o

ox

Z h

0

ðu2 � ðuÞ2Þ dy:

ð21Þ

Notice that Equation (21) is still exact. Hereafter approximations are intro-
duced.

Using the fact that rO1 in shallow water conditions, Rayleigh (1876),
cited by Lamb (1932), expands the velocity potential in a Taylor series of y.
The velocity potential is harmonic and because of the bottom kinematic con-
dition (10), this expansion only contains even powers of y. Consequently the
power series expansions of u and v (using irrotationality Equation (7)) are

uðx; y; tÞ ¼ ubðx; tÞ � 1

2
r2 y2

o2ub

ox2
þOðr4Þ ð22Þ

vðx; y; tÞ ¼ �y
oub

ox
þ 1

3!
r2 y3

o3ub

ox3
þOðr4Þ; ð23Þ

where ub is the horizontal bottom velocity. This is the starting point to
compute u;C and ðu2 � ðuÞ2Þ. Depth averaging (22) results in

ub ¼ uþ 1

6
r2 h2

o2u

ox2
þOðr4; � r4Þ ð24Þ

uðx; y; tÞ ¼ uþ 1

6
r2 h2

o2u

ox2
� 1

2
r2y2

o2u

ox2
þOðr4; � r4Þ: ð25Þ

The vertical velocity is

vðx; y; tÞ ¼ �y
ou

ox
þOðr2Þ; ð26Þ

which substituted in (18) yields:

C ¼ �y ½uxt þ � u uxx � � ðuxÞ2�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Gðx;tÞ

þ Oðr2; � r2Þ: ð27Þ

Note that hGðx; tÞ is the free surface fluid particle vertical acceleration.
Finally, it is straightforward to find that
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Z h

0

ðu2 � ðu 2ÞÞ dy ¼ Oðr4; �r4Þ: ð28Þ

The resulting evolution equations for u and g are

gt þ ½h u�x ¼ 0 ð29Þ

ut þ � u ux þ gx �
r2

3h

o

ox
ðh3GÞ ¼ Oðr4; �r4Þ: ð30Þ

This set was originally derived by Serre (1953) by a very different proce-
dure and, more than 10 years later, by Su and Gardner (1969). Extension
to uneven bathymetries is given by Seabra-Santos et al. (1987), and used to
predict free surface solitary waves passing a step, in comparison with
experimental data. The range of validity of this set has been compared
with the range of other nonlinear equations by Seabra-Santos et al. (1988).
For a generalization to wave-current interactions and a very extensive
review, the reader is refered to Dingemans (1997).

2.3. The Airy, Boussinesq and KdV approximations

Depending on the order of magnitude of � compared with that of r, differ-
ent sets of equations can be deduced from (29) to (30). Ursell (1953) intro-
duced a nondimensional parameter, the so-called Ursell number, that
measures the relative strength of nonlinearity to dispersion. It is defined by

Ur ¼ �

r2
¼ AL2

h30
: ð31Þ

2.3.1. Airy’s long wave theory
The simplest model retrieved, the Airy model, also known as the 1D shal-
low-water equations. It is often applied to the description of barotropic
tides in coastal zones. Indeed the characteristic scales for tides are
L ¼ 103 km, A ¼ 1 m and h0 ¼ 1 km, implying that

r2 ¼ 10�6 � � ¼ 10�3 � 1 or Ur � 1: ð32Þ

Retaining terms up to order � in (29) and (30) gives

gt þ ½hu�x ¼ 0 ð33Þ
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ut þ � u ux þ gx ¼ 0 ð34Þ

The pressure distribution as given by Equation (19) reduces at the lowest
order to a hydrostatic pressure distribution.

The set (33) and (34) is hyperbolic in nature and possess so-called weak
solutions, such as shocks. This property can be used to describe the evolu-
tion of breakers inside the surf-zone (Keller et al., 1960; Ho and Meyer,
1962; Shen and Meyer, 1963a,b; Ho et al., 1963; Bonneten, 2001). The
bore/shock induces an energy jump (dissipation). Other models of breaker
evolution rely on an analogy with a hydraulic jump (Svendsen, 1984).
Because the underlying assumptions in both approaches are identical
(hydrostatic pressure, long waves), the predicted dissipated energy and the
breaker evolution are comparable.

2.3.2. Boussinesq-like equations
Boussinesq equations can be derived in numerous ways. Whitham (1974),
following the original derivation by Boussinesq (1872), uses a procedure
involving the velocity potential. The approach given above based on the
Euler equations is similar to that of Peregrine (1967). Let us suppose
that

r2 � 1 but r2 � � or Ur � 1: ð35Þ

Thus, we retain in Equations (29) and (30) all terms of order � and r2, and
neglect terms of order �r2 � r4. Most terms in the last term on the left-
hand side of Equation (30) are discarded, and the set of equations written
in dimensional form reduces to

gt þ ½h u�x ¼ 0 ð36Þ

ut þ u ux þ ggx ¼
h20
3
uxxt: ð37Þ

The left-hand side is exactly the nonlinear nondispersive Airy long wave set.
A dispersion term, however, appears on the right-hand side. The set (36) and
(37) allows for waves propagating to the left and to the right. The most
famous one-way propagation equation is the Korteweg–de Vries (KdV)
equation proposed by Korteweg and de Vries (1895). Recasting the Boussi-
nesq-like set (36) and (37) in a reference frame moving at C0, and imposing
slowly varying wave features, yields the KdV equation (Zauderer, 1989; Din-
gemans, 1997). A comparison of the evolution of a sinusoidal wave com-
puted by Airy’s theory with a computation based on the KdV equation is

NONLINEAR SHALLOW WATER THEORIES FOR COASTAL WAVES 321



given in Figure 1. It clearly emphasises that Airy’s theory is only valid on
short time scales. Detailed analysis of the time range validity can be found in
Seabra-Santos et al. (1988) and Mei (1992). This numerical simulation shows
the well known contribution of the dispersive term on the right-hand side in
Equation (37). The initial steepening generates high harmonics, while the
Airy equation tends to propagate these at the same speed, the KdV equation
introduces a dispersion effect that produces undulating wave profiles. The
higher the frequency the slower is the phase speed. Dispersion is known to
balance nonlinearity to produce solitary waves.

2.3.3. The Serre equations (1953)
The Serre equations are simply the set (29) and (30). Keeping all terms
implies that the amplitude of the waves is not small, that is � � O(1). These
equations, termed strongly nonlinear equations, contain all nonlinear

Figure 1. Evolution of a surface wave, sinusoidal at the start, from Airy’s theory. (- -) and the KdV

equation (–); plots if the surface displacement with time for various X locations are shown. Initial

amplitude: A ¼ 1:24 cm; wavelength: LAMBDA=3.96 m; water depth: ho ¼ 10:0 cm; initial Ursell

number Ur0 ¼ 39 (Seabra-Santos, 1985).
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terms, including the convective vertical acceleration terms, and therefore
can model highly nonlinear waves. This set written in dimensional form
reads:

gt þ ½h u �x ¼ 0 ð38Þ

ut þ u ux þ ggx �
1

3h

o

ox
½h3ðuxt þ u uxx � ðuxÞ2Þ� ¼ 0: ð39Þ

Apart from the leading nonlinearity, uux, these equations contain a wealth
of other nonlinear terms. In contrast with the Boussinesq equation, the
Serre equations have a solitary wave solution in closed form,

hðx; tÞ ¼ h0 þ A sech2½Kðx� CtÞ� ð40Þ

u ¼ C 1� h0
h

� �
ð41Þ

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3A

4h20ðh0 þ AÞ

s
and C ¼ C0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A

h0

r
: ð42Þ

C is the phase speed of this steady, propagating wave whose shape does
not change. K is the outskirt decay parameter (Shields and Webster, 1988).
This solution is also known as the Rayleigh solitary wave solution. It
reduces to the KdV solitary wave for small A=h0. Guizien and Barthélemy
(2002) use this solution to generate very stable solitary waves in flume
experiments. Solitary waves (highly nonlinear) are used to assess nonlinear
behaviours of different sets of equations. The increasing number of equa-
tions modelling nonlinear waves are found in the literature (Madsen and
Schäffer, 1999; Wu, 2001) most of which are based on perturbation
approaches developed here. Alternative methods, called direct approxima-
tions of the fluid motion with a free surface, have been derived by Green
and Naghdi (1976) and Sheilds and Webster (1988). These are variational
methods based on the reduction to ordinary differential equations, as given
by Kantorovich and Krylov (1958).

3. Improving dispersion and nonlinear characteristics

Free surface motions containing a frequency spectrum result in ever chan-
ging free surface profiles in space and time. An inaccurate model for the
phase speed (or dispersion characteristics) will produce shape distortion of
the wave profiles. Phase speeds are given by dispersion relations which are
investigated in the following on the basis of the linearised versions of the
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sets derived above. Linearising Equations (36) and (37) and eliminating g,
results in

utt � C2
0uxx ¼

h20
3
uxxtt: ð43Þ

In seeking solutions for u of the form u0 exp iðkx� xtÞ, one obtains:

x2 ¼ k2C2
0

1þ 1
3 ðkh0Þ

2
: ð44Þ

Recalling the exact water wave dispersion relation (Airy–Stokes),

x2 ¼ gk tanh kh0; ð45Þ

dispersion relations (44) and (45) and that obtained using the KdV equa-
tion are plotted in Figure 2. It appears that, at high frequency, the waves
tend to propogate at the wrong phase velocity. The higher the frequency
the shorter are the waves, and consequently the larger r2 ’ ðkh0Þ2.

In the remainder of this Section a method for improving the dispersion
behaviour of the long wave equations is presented. The method was

0 2 4 6
0

0.2

0.4

0.6

0.8

1

C
2 /C

2 0

kh
0

Figure 2. Dispersion relation: C2=C2
0 as a function of kh0 (—): exact (45); (- - ): Boussinesq (44); (��):

KdV; (–�): improved Serre equations (50) with b ¼ 1=15. Note that KdV even gives meaningless nega-

tive values of C2.
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initially suggested by Madsen et al. (1991). More recent developments can
be found in Agnon et al. (1999), Madsen and Schäffer (1999) and Madsen
et al. (2000).

Basically, the ideas are as follows. Because Equation (30) also reads

ut þ gx þ � u ux ¼ Oðr2; �r2Þ; ð46Þ

it implies that

Bðx; tÞ ¼ bh20½uxxt þ ggxxx þ ðu uxÞxx� ð47Þ

is a small quantity of Oðr4; �r4Þ. This term B is added (without any justifi-
cation) to the right-hand side of either Equation (37) or (39), depending on
which set one wishes to improve. It should be noted that the new set does
not yield solitary wave solutions anymore. This new set reads:

gt þ ½h u�x ¼ 0 ð48Þ

ut þ u ux þ ggx ¼ 1

3h

o

ox
h3 uxt þ u uxx � ðuxÞ2
� �h i

þ Bðx; tÞ: ð49Þ

The dispersion behaviour of the linearized equation is investigated as pre-
viously to give

C2

C2
0

¼ 1þ bðkh0Þ2

1þ bþ 1
3

� �
ðkh0Þ2

: ð50Þ

Going back to the exact linear dispersion relation, it is possible to write
a [1/1] Padé approximation of it, which can be formally written as

C2

C2
0

¼ 1þmðkh0Þ2

1þ qðkh0Þ2
: ð51Þ

Comparing the Taylor expansions in kh0 of both Equations (45) and (51),
at order ðkh0Þ4, leads to

m ¼ 1

15
and q ¼ 2

5
: ð52Þ

The dispersion relation (50) is made close to the exact linear ones by
choosing
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b ¼ 1

15
: ð53Þ

In Figure 2 the relation (50) is plotted. An important improvement is
noted. Mismatch with the exact relation at kh0 ¼ 6 is roughly 10% . Once
the value of b is chosen, the full equations can be integrated numerically.
However, because of numerically induced dispersion it may be interesting
to adjust b so that the linear dispersion behaviour of the numerical solu-
tion matches the exact linear one. Alternative corrections to the linear dis-
persion relation are presented by Whitman (1974, pp. 367–368 and 476–
478) or Chester (1968). These are based on replacing the dispersive terms
in the equation by a convolution integral that yields the exact Airy–Stokes
dispersion relation (45).

As waves shoal when propogating towards the coast, the wave ampli-
tudes increase; waves tend to become nonlinear. A precise prediction of the
amplitude relies on accurate nonlinear properties of the models. Investigat-
ing the ability of models to propagate a weakly nonlinear Stokes waves is
a straightforward test. A Stokes wave is a self-interacting wave with bound
harmonics. Stokes analysis of nonlinear equations was initiated by Whi-
tham (1974) on the KdV equation. It is easily generalized to other sets of
equations (Madsen and Sorensen, 1993; Madsen and Schäffer, 1999). This
type of analysis is related to the more general theory of polysinoidal waves

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

kh
0

Figure 3. Stokes expansion analysis of the Serre equations. Amplitudes of the bound harmonics. (—):

a2=a
Stokes
2 ; (- -): a3=a

Stokes
3 ; (- �): dx=dxStokes. b ¼ 1=15.
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(Boyd, 1990). The solution u and g of the nonlinear equations are looked
for as harmonic expansions of the following form:

u ¼ u1 cos hþ � u2 cos 2hþ �2 ðu3 cos 3hþ du cos hÞ
g ¼ a1 cos hþ � a2 cos 2hþ �2 a3 cos 3h

x ¼ xþ �2 dx

h ¼ kx� xt

Substituting these expressions into Equations (48) and (49) results in a
hierarchy of algebraic problems with respect to �. The angular frequency
x0 is naturally found to be given by Equation (51). The amplitudes of the
harmonics are then

a2 ¼
3

4

a21
h0

1

ðkh0Þ2
1þ 1

3
þ 5b

� �
ðkh0Þ2 þ

1

3
bþ 4b2

� �
ðkh0Þ4 þ � � �

	 

ð54Þ

a3 ¼
27

64

a31
h20

1

ðkh0Þ4
1þ 2

3
þ 15b

� �
ðkh0Þ2 þ

1

9
þ 35

9
bþ 63b2

� �
ðkh0Þ4 þ � � �

	 

ð55Þ

dx ¼ 9

16

a21
h0

1

ðkh0Þ2
1þ 5b� 1

9

� �
ðkh0Þ2 þ

8

27
þ 1

3
bþ 4b2

� �
ðkh0Þ4 þ � � �

	 

:

ð56Þ

These expressions are plotted in Figure 3 in comparison with the Stokes
solution as given by Whitham (1974, pp. 473–475). The latter reads:

a2 ¼
3

4

a21
h0

1

ðkh0Þ2
ð57Þ

a3 ¼
27

64

a31
h20

1

ðkh0Þ4
ð58Þ

dx ¼ 9

16

a21
h0

1

ðkh0Þ2
: ð59Þ

It appears that the accuracy on the amplitude of the third harmonic
decreases rapidly with kh0, and the error exceeds 50% for kh0 > 1:5: It
should be noted that if the choice of b ¼ 1=15 is an optimum for the dis-
persion characteristics it is not necessarily one for the nonlinear beha-
viour.
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4. Experimental test cases

4.1. SHOALING OF PERIODIC WAVES OVER BARRED-BEACHES

Submerged bars on beaches (breaking point sand bars, submerged break-
waters, coral reefs, etc.) are wide-spread bathymetric features. These induce
wave modulations and transformations. While the waves shoal on the
upstream slope of the bar, the amplitude increases, resulting in bound har-
monic generation. This generation is an example of a triad interaction pro-
ducing phase-locked harmonics. Passing the top, the waves encounter a
sudden increase of water depth. In order to adjust, the bound harmonics
are released as free waves. In turn triad interactions take place after the
bar with the possiblity of profile recurrence. Such decompositions have
been also observed in the field (Byrne, 1969, Young, 1989).
Within the G8M-MAST II project, a blind test of models against experi-

mental data (Luth et al., 1994) of wave interaction with a bar topography
has been organised. The experiments were performed with an active wave
absorber, also with compensation for bound long waves. These experi-
ments had already been done by Beji and Battjes (1993), but on a linear
scale of 1:2. The set up is shown in Figure 4. The experimental data used
here are challenging since kh0 can be larger than 1 for the harmonics. An
incorrect phase speed prediction in the models results in inaccurate free
surface displacements. The LEGI model is run in comparison with these
experimental data. The model includes improved frequency dispersion, but
no nonlinear improvement (no ðu uxÞxx in B). These equations are numeri-
cally integrated using the implicit finite difference scheme proposed by
Mirie and Su (1982). The overall behaviour of the LEGI model against
data can be evaluated in Figure 5. Measurements on the wave guage at

0 5 10 15 20
–0.4

–0.3

–0.2

–0.1

0

X (m)

de
pt

h 
(m

)

1:2
0 1:10

Figure 4. Layout the experimental bottom geometry. The depth 0 is the mean free surface position.

Wave maker at X ¼ 0 m and active absorbing device at X = 25 m (Dingemans, 1994; Luth et al.,

1994).
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(a
)

(b
)

Figure 5. Surface displacements (in mm) with time (in seconds) at various locations along the flume. (a)

LEGI Serre model with b = 1/15. (b) Flume experiments of Beji and Battjes (1993). Test case A:

T = 2.02 s, A ¼ 1 cm.
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x ¼ 5:7m show that the wave is quasi sinusoidal. Secondary crests in the
free surface elevation is also a pre-eminent feature due to the presence of
higher harmonics.
The performance of the LEGI model (extension of (48) and (49) to

uneven bottom), is given for three different test cases in Figures 6–8.
Notice that only the recordings for the probes located after the bar are
plotted. (In the shoaling process (before the top of the bar) the discrepan-
cies between models and data are much less than after).
The LEGI model improved dispersion characteristics behaves reasonably

well for test case A, for which a1 ’ 0:0175 m, a2 ’ 0:025 m and
a3 ’ 0:0125 m after the bar (values from Madsen and Schäffer, 1999). These
plots also clearly emphasise that, with b=0, the profiles bear little resem-
blance with measurements. Performance of the model against test case B is
not as good since it is a more nonlinear case than A even though the har-
monics are of similar wavelength. For case B, the amplitudes are overesti-
mated and free surface profiles not at all alike. Test case C is a strong

Figure 6. Enlargements of the surface displacements (in cm) with time (in seconds) at various locations

after the bar. Test case A:T = 2.02 s, A = 1cm. In the deeper parts of the flume: � ¼ 0:025 and

kh0 ¼ 0:67: Left-hand column: simulations without dispersion enhancement (b = 0). Central column:

flume measurements. Right-hand column: simulations with dispersion enhancement (b = 1/20).
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nonlinear case for shorter waves than A and B (half the wave period). This
test case combines both a high value kh0 and large amplitudes, a1 ’ 0:05 m,
a2 ’ 0:0125 m and a3 ’ 0:00251 m. According to Figure 3 the error on the
amplitude of the second harmonic is roughly 40% smaller than it should be
and even 90% for the third harmonic. Consequently, the numerics tend to
predict a quasi-sinusoidal wave. Incorporation of higher order Oð�r4Þ non-
linear terms in the equations improves the prediction (Madsen and Schäffer,
1999) but the draw back is numerically cumbersome equations.

4.2. Solitary wave shoaling

It has long been observed (Munk, 1949) that waves running up a beach
become narrower and that the crests behave as dynamically independent
waves. Crests are very sharp and their spacing large, so they look like soli-
tons. Shoaling waves interact very weakly as shown by Stiassnie and

Figure 7. Enlargements of the surface displacements (in cm) with time (in seconds) at various locations

after the bar. Test cast B:T = 2.525 s, A = 1.45 cm. In the deeper parts of the flume: � ¼ 0:036 and

kh0 ¼ 0:52: Left-hand column: simulations without dispersion enhancement (b = 0). Central column:

flume measurements. Right-hand column: simulations with dispersion enhancement (b = 1/20).
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Peregrine (1980). Consequently, the shoaling of solitary waves is a good test
of model nonlinear capability. Shoaling of finite amplitude waves inevitably
results in breaking. The prediction of the crest amplitude evolution is of
importance in coastal morphodynamics, since crest velocity determines the
magnitude of sand transport and therefore eventually the underwater sand
bar formation.

Experiments were performed in the LEGI 36 m long linear glass flume
(Guibourg and Barthélemy, 1994). It is equipped with a piston wavemaker.
Free surface displacements are measured with resistive type probes (resolu-
tion of 0.1 mm). Data on solitons shoaling on plane beaches of slopes 1/
7.6, 1/11.43, 1/14.92, 1/30 and 1/60 were collected. We focus here on how
the Serre equations perform in comparison with the Boussinesq equations
in terms of wave profiles and crest amplitude prediction on the 1/60 beach
slope experiments. The models used are extensions of the Serre equations
(Seabra-Santos et al., 1987) and the Boussinesq equations (36) and (37) to
uneven topographies and without improved dispersion.

Figure 8. Enlargements of the surface displacements (in cm) with time (in seconds) at various locations

after the bar. Test case C:T = 1.01 s, A = 2.05 cm. In the deeper parts of the flume: � ¼ 0:050 and

kh0 ¼ 1:69: Left-hand column: simulations without dispersion enhancement (b = 0). Central column:

flume measurements. Right-hand column: simulations with dispersion enhancement (b = 1/20).
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In Figure 9 wave profiles are reproduced in a satisfactory way by the
Serre equations, with respect to both the skewness and the crest amplitude.

Close inspection of Figure 10, however, shows that the Boussinesq equa-
tions tend to overestimate crest amplitude evolution A=A0 by up to 15% .
In Figure 10 the classical Green’s law derived from energy conservation for
linear long waves is also plotted. This law is

A

A0
¼ h

h0

� ��1
4

: ð60Þ

As expected, for large initial amplitudes, this linear approximation is highly
inaccurate.

5. Conclusions

We have presented a series of one-dimensional nonlinear models ranging
from weakly nonlinear to strongly nonlinear for the study of water waves
in near-shore environments. Amongst those the Serre equations are more

Figure 9. Free surface displacements against time (in seconds) for a shoaling solitary wave at various

locations. Beach slope of 1/60. (—) flume measurements; (- -) numerical simulations by the Serre equa-

tions. A0 is the amplitude of the solitary wave at the toe of the beach and the h0 the uniform depth

before the beach.
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deeply discussed. In principle, the latter set of equations contains more
nonlinear ‘‘information’’ than the standard Boussinesq sets. Improvements
of the dispersion characteristics in the range of shorter waves kh0 � 1 are
also discussed. Comparisons with theoretical solutions, such as the exact
dispersion relation or the nonlinear Stokes waves (third order), are pre-
sented. Serious limitations in this latter case are pointed out. Numerical
phase speeds can be adjusted without much effort to match closely the
exact dispersion relation for a wide range of kh0, but this is not so for the
nonlinear characteristics such as the first and second harmonic amplitude.
However, tests on long wave shoaling in comparison with experiments
show that the Serre equations are able to predict reliable peak amplitudes.
This is a crucial point to locate correctly the breaking point of the waves
and the sediment transport in the shoaling zone.

Dispersion behaviour may also be improved by rewriting the Serre equa-
tions (38) and (39) in terms of the velocity u at an arbitrary level, chosen
in order to match as well as possible the exact dispersion relation (see Wit-
ting, 1984). Moreover, the nonlinearity can be further improved by incor-
porationg terms of Oð� r4Þ neglected in eq. (30), as achieved by Madsen
and Schäffer, (1999) or by reconsidering the nonlinear problem as a time
marching problem (Agnon et al., 1999, Madsen et al., 2000). Extensions to

Figure 10. Wave peak amplitude A evolution along the beach. h is the depth at a given position on the

beach. (o) Flume measurements; (–) numerical simulations by the Serre equations; (-�) numerical simu-

lations by the Boussinesq equations; ð� � �Þ Green’s law, equation (60).
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two-dimensional flows to allow for wave refraction on beaches are of prac-
tical importance, but have not been discussed here. For the incorporation
of wave breaking and breaker evolution into models, the reader is referred
to Madsen et al. (1997a,b).
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Madsen, P. A., Sorensen, O. R. and Schäffer, H. A.: 1997a, ‘Surf Zone Dynamics Simu-

lated by a Boussinesq Type Model. Part I. Model Description and Cross-Shore Motion

of Regular Waves’, Coastal Eng. 32, 255–288.
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eau peu profonde. Ph.D. Thesis, Institut National Polytechnique de Grenoble et Univer-
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