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ABSTRACT

In a previous paper (Weber and Barrick, 1977), a generalization of Stokes’ perturbational technique
permitted us to obtain solutions to higher orders for gravity-wave parameters for an arbitrary, two-dimen-
sional periodic surface. In particular, the second-order wave-height correction and the third-order dis-
persion relation correction were derived there. In this paper, we interpret and apply those solutions in a
variety of ways. First of all, we interpret the dispersion relation (and its higher order corrections) physically,
as they relate to the phase velocity of individual ocean wave trains. Second, the validity of the two results
derived previously is established by comparisons in the appropriate limiting cases with classical results
available from the literature. It is shown how the solutions—derived for periodic surface profiles—can be
generalized to include random wave fields whose average properties are to be specified. Then a number of
examples of averaged higher order wave parameters are given, and in certain cases a Phillips’ one-dimen-
sional wave-height spectral model is employed to yield a quantitative feel for the magnitudes of these higher
order effects. Both the derivations and the examples have direct application to the sea echo observed with
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high-frequency radars, and relationships with the radar observables are established and discussed.

1. Introduction

In a previous paper (Weber and Barrick, 1977) a
generalization of Stokes’ (1847) perturbation tech-
nique was presented which permitted the derivation of
higher order corrections to the linear solution of the
(nonlinear) hydrodynamic equations describing waves
near the air-water interface. The generalization con-
sisted in assuming a Fourier series expansion for the
wave height for deep-water gravity waves. The method
ignores the dynamics of energy transfer between waves,
between the atmosphere and ocean and viscous damping
effects. Hence the solution is expected to be valid over
space and time scales less in extent than those over
which energy transfer variations are important.

While the overall method was general, that paper
concentrated upon the derivation of two results: 1) the
second-order correction to the wave height (and
velocity potential), and 2) the first nonzero correction
to the lowest order dispersion relation obtained by
carrying the perturbation analysis to third order. Bits
and pieces of these derived quantities have appeared
from time to time in the literature (e.g., height correc-
tions for two waves at a time, dispersion-relation
correction for colinear waves), but this is the first time
to our knowledge that Stokes’ techniques have been
generalized to an infinite field of two-dimensional waves
in such a way that both wave height and dispersion-
relation corrections can be derived in the same analysis
in a self-consistent manner.

It is the purpose of this paper to interpret and apply

the solutions derived in the previous paper. In partic-
ular: 1) the dispersion relation will be interpreted
physically ; 2) the validity of the results for second-order
wave height and the third-order dispersion-relation
correction will be established by comparisons with
classical solutions in the appropriate limits; 3) it will
be shown how the results for periodic waves can be
generalized to include random wave fields whose
average properties are desired; and 4) specific sample
applications for the average wave-height directional
spectrum and dispersion relation mean and variances
will be given. The rationale for wanting to know these
latter two quantities derives from the interpretation
of high-frequency radar echoes from the sea surface,
and this application will be discussed briefly.

2. Interpretation of the dispersion relationship
a. Series simplification

The basic Fourier series expansion of the wave-height
as given in Eq. (4) of W-B! shows the summation
indices over k and » (two-dimensional space and time)
as seemingly independent. They are wof, however.
Having chosen k and mi(kw) as the independent
variables of the problem, all other quantities are
dependent upon these variables. Thus to the lowest
order w=w,, where wo was derived in Eq. (15) of W-B,
and is seen to be a function of 2(=|k|) only. If one
wishes to include the first nonzero correction to w (i.e.,

! Hereafter, W-B refers to Weber and Barrick (1977), Part I.
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wy since w;=0), this was shown in Eq. (29) of W-B to
be a function of both k and |7, (k,w)|% Hence having
specified k and 7;, one is no longer free to choose w
independently. Therefore, 71 is actually only a function
of k. Furthermore, the Fourier representation of wave
height is no longer a triple series over k (=k£.2+%,9)
and w, but is reduced to an explicit double series over k,
where £ and 4 are unit vectors.

This dependence of  on k can be used to simplify the
series by the use of Kronecker-delta indicators. For
example, suppose that the dispersion relation to the
lowest order is adequate for a given purpose. Then the
series Eq. (4) of W-B can be rewritten to first order as

)= T mkwo)sE " explik-1—wot)]

k,w0

=§ {m (k) exp[i(k-r—Vgkt) 4+ n* (K)

Xexp[—i(k-r—gk)J}, (1)
where we have defined and used the fact? that #:(k)
= (k, Vgk) and n:*(k)=ns*(k, Vgb)=ni(—k, —Vgh).
A similar application of Kronecker deltas can be used
to extend w to its next nonvanishing order (i.e., o=y
~+ws), except that now w, is a function of wave heights
n1(k), and hence a series in the exponential argument
must be evaluated before the main series is summed.
In a like manner, Kronecker-delta relationships between
wy (or ') and #/, as well as »'’ and k”, can be used to
simplify the series for the second-order wave height
[Eq. (22) of W-BJ]. Hence one of the three summations
can be dropped, with a single Kronecker-delta remaining
in the double series. Finally, note that a single Kro-
necker-delta appears in the series for the second-order
frequency correction, w» [Eq. (29) of W-B]; this
reduces the triple summation over k/, ' to a double
summation over k', with the wave-height coefficients

nm(k’,’), as before now only functions of K/, ie.,
ﬂl(k’)- :

b. Interpretation

The gravity-wave dispersion relations have a simple
interpretation in terms of the phase velocity of a wave
train of wave vector k. This quantity is the speed with
which the crests of waves of length 27/ |k| pass a given
point, i.e., v,s=w(k)/% (where k= | k|). Since successive
terms in the perturbation expansion for  are small,
we can write (to second order)

w(k)=wo+w2=wo(1+‘f)= @(Hﬁ), @

wo. wo.

2 While we required that u:*(k,w)=7;(—k, —w) we make no
similar requirement on #,(k). Therefore, k is taken to lie in the
direction of travel, and |m (k)| [n:(—k)|, since in general we
want to allow waves traveling in opposite directions to have
different amplitudes. Note, however, that the fotal spatial coeffi-
cient (dropping time), i.e., ni(k)-+n*(—k) does satisfy the
complex conjugate relationship required for real wave fields.
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and hence

g ws g ’
v,,h<k>=\E(l+w—o)=\/£[1+Avphgk)J. 3)

Therefore, the correction term ws/wo to the dispersion
equation derived as (29) of W-B represents the correc-
tion to the phase velocity of an ocean wave of length
2w/k. The general form of Eq. (29) indicates that this
change in phase velocity comes about not only as a
result of the existence of that wave alone, but as a
result of the presence of all the other waves. Stokes
(1847) showed that the phase velocity of a solitary
wave train tended to increase slightly as its height
increased. Longuet-Higgins and Phillips (1962) showed
that a wave of length 2x/k whose own amplitude is
infinitesimally small is affected by a second wave
moving parallel to it. Our solution contains both of
these two results as limiting cases, but also applies
to an arbitrary number of waves moving in arbitrary
directions.

In order to understand this effect physically, let us
specialize (29) to the following two cases. We shall
study the normalized phase velocity correction of a
sinusoidal wave of length 2x/k due to both itself and a
second wave of wavelength 2x/k’ moveing 1) parallel
to the first wave and 2) perpendicular to the first wave.
Thus (29) becomes?

Parallel waves
wo'k
Avpp (k) =w2/wo= 2k2| 1]1(1() ‘ 2:!:4—| ﬂl(k') I 2
wo
E for B>k
X { @)
B for k'<k

Perpendicular waves

E2wo’
. ATE

Wo Wy

Avgn (k) =wz/wo=2%| m (k) |+

In the first equation, the upper/lower sign is used if
the second wave (with period 27/k’) is traveling in the
same/opposite direction as the first wave (with period
2m/k), respectively. In the second equation,

Fi=wl+wo2—2w,?
2 (weHwo'? —w,2) (wekwo'? — 2we* — 2a¢"%)
]

[ws2— (wo—we') J[w— (@otw)?]

(6a)

where (6b)

wJ,zE '\/wo4+ wol4.

3 Note that because of the complex Fourier series representa‘tio_n
used here for wave height, the actual amplitude of the sinusoid is

a(k)=2{m(k)|.
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Examining (4) and (5), we can represent the phase
speed change as two separate effects: the self effect
(first term) and the mutual effect (second term). Thus
the nonzero height of the original wave tends to
increase its speed slightly (just as predicted by Stokes,
1847). The second wave acting on the first may increase
or decrease its speed, depending upon its direction with
respect to the first wave. To obtain some feel for this
“mutual” interaction effect, let us consider two lengths
and three directions for the second wave (with wave-
number £’). First we rewrite the second wave in
terms of its slope [i.e., s'=2k’|n1(k’)| ], since in a fully
developed sea it is the slope which is more nearly
maintained at a constant value than the wave height.
In Table 1 we present the change in the phase velocity
of the first wave with wave vector k due to the second
wave with wave vector k' when the second wave is 1)
twice as long (k' =3k), and ii) half as lang (' =2k), and
traveling in i) the same direction, ii) the perpendicular
direction, and iii) the opposite direction with respect to
the first wave.

As a simple summary of these interaction effects
(expressed in terms of constant wave slope), the longer,
higher second wave produces a greater phase velocity
change on the first wave (by a factor of 4) than the
shorter, lower second wave; when the wave trains are
parallel, the velocity change is the same in magnitude,
but its sign depends on whether the waves are moving
in the same or opposite directions, entirely as one
would expect. (Had the result been expressed in terms
of the height of the second wave 2|7, (k’)|, the magni-
tude of the phase velocity change would %ot have
depended upon the wavelength of the second wave train
for any of the directions considered.).

It is interesting to note that there is a mutual
interaction even when the second wavetrain is moving
orthogonally to the first wave train, and this interaction
is such as to increase the speed of the first wave train.
However, this interaction velocity change is small
compared with cases when they are aligned or colinear
(i.e., it is only 2.789, of the value for colinear align-
ment), and hence for many purposes the perpendicular
interaction might be considered negligible.

3. Comparison with Stokes (1847) and Longuet-
Higgins and Phillips (1962)

As discussed previously; Stokes (1847) employed a
technique—valid only for a solitary periodic wavetrain
—which permitted him to obtain the second-order
Fourier correction to the wave-height profile and the
higher order correction to the dispersion equation. He
showed that the second spatial harmonic (traveling at
the same phase speed as the fundamental cosine wave)
is also a cosine wave with amplitude a;=3%ka,?, where
a1 is the amplitude of the fundamental cosine wave.
If we reduce the exponential series (1) to two terms
representing a cosine wave [where n*(k)=7.(k)],
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TasLE 1. Phase velocity change in wave with wave vector k
due to wave with wave vector k'

K =2k K =%k
(Second (Second
wavelength= wavelength=
3 X first 2 X first
wavelength) wavelength)
. )
Same directions +ZS,2 +V2s52
5— 52
Perpendicular directions + (—@24—2).?'2 + (1/—56—)3’2
Opposite directions — V%s’ 2 — V25"

we obtain from Eq. (22) of W-B 72(2k,2w)=kn:? (k).
Since a;=2n; and @;= 29,, we see that the two results
are identical. Furthermore, our second-order wave is
seen to move with a phase velocity Q/K=2w/2k=w/k,
which is exactly the phase velocity of the fundamental
or first-order wave; hence the total wave-train profile
“stays together.” However, the frequency @=2w and
wavenumber K=2% of the second-order wave do not
satisfy the first-order dispersion relation (15) of W-B.
That is, Q=4w=4gk=2gK, rather than Qg@=gK;
hence the second-order component is nof freely propa-
gating, but is tied to or trapped by the fundamental,
which is all consistent with Stokes’ analyses.

The first term of (4) represents the normalized
correction to the dispersion relation when only one
wave is present. This should agree with the normalized
phase-velocity increase derived by Stokes (1847) for a
single periodic wave train. His normalized phase
velocity correction is given as 3%%a,2, which is seen to be
identical to the first term when one notes that
a=2|m)|.

The second term of (4) is the normalized phase
velocity (or dispersion-relation) correction to the first
wave of wavenumber k due to a second periodic wave
which is colinear with the first and having wavenumber
k’. Longuet-Higgins and Phillips (1962) specifically
analyzed this case, and found the actual phase velocity
correction to be wy'k’a)? for B'<k and wo'ka,? for
k'>k; they also note that the phase velocity correction
has a negative sign if the waves are traveling opposite
to each other. By using the identity a,'=2|n (k)| in
the second term of (4) and multiplying by Vg/k to
convert from a normalized to an actual phase velocity
correction, we see that the two results are identical.

A curious but important fact should be noted about
the two terms in (4): if one attempts to make the
second wave (with wavenumber k') merge into and
replace the first [i.e., let 91(k) — 0, but allow k' — k]
so that only the second term remains, it is fwice as
large as the first. In other words, mutual and self
effects on the phase velocity are different, and one
cannot predict one effect starting from the other. Thus
Stokes analysis gave only the self-effect term, while
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Longuet-Higgins and Phillips’ (1962) analysis gave
only the mutual interaction term. Our generalized
analysis, however, gives both terms, and each agrees
properly with its respective classical predecessor. One
point in common between all three analyses is the
initial formulation of the problem in terms of periodic
waves (i.e., Fourier series). We note in passing that
Huang and Tung (1976), using instead a Fourier-
Stieltjes approach, obtained a general expression for
the phase velocity correction due to mutual interaction
effects for colinear waves [the second term of their
Eq. (22)] that does not agree with either our result
[Eq. (4)] or Longuet-Higgins and Phillips’ (1962)
solution. Both of the latter results show that one must
switch factors from k to %’ depending upon whether
ESE.

4. Generalization to random surfaces

This section will show how the Fourier series represen-
tation can be converted to describe a random surface in
which averages rather than deterministic descriptions
are desired ; in the process summations become integrals
(in the Riemann sense).

In any practical experiment, one is interested in a
description of the sea surface only over some finite
area of space, L,X L, and a finite interval of time, T.
We assume here that the sea surface is statistically
stationary over these intervals. If we are permitted the
further assumption that these intervals are much
larger than the dominant gravity-wave spatial and
temporal periods of interest in the analysis, then Rice
has shown (Davenport and Root, 1958) that the real
and imaginary parts of the Fourier series coefficients,
n(k,w), describing the sea can be taken to be random
variables which become mutually uncorrelated when
the spatial/temporal intervals greatly exceed the
spatial/temporal wavelengths of the dominant waves.
Since we are interested in describing the surface only
within these limits, we can take L, L,, T to be the
fundamental periods of the Fourier series and allow the
surface to be periodic (i.e., repeat itself) for other areas
and times. Finally, it has been shown in many places
(Kinsman, 1963) that the first-order sea-surface height
coefficients can be allowed to be zero mean Gawussian
random variables for most practical purposes.

With these assumptions, we can define the surface
wave-height spectrum in terms of the height coefficients
(for each order) as '

(Mn (kfw)ﬂn* (k,)'w,) )

" (2m)?
S.(kw) for k'=k and w'=w
=<L,L,T (7

0 for other k%,

where (f) denotes an ensemble average of f, and
S, (k,w) is the nth order directional wave-height spatial/
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temporal spectrum for arbitrary spatial wave vector k
and arbitrary temporal wavenumber w. By the zero
mean assumption of the preceding paragraph, we have
(m(k,w))=0 for all k.

If one is interested in the first-order wave-height
spatial/temporal spectrum evaluated using the disper-
sion equation to lowest order, the following relation can
be used:

| Ol @) for K=k
(m(k)n1*(k')>= 2L.L, (8)

0 for other K/,

along with the last form of (1) to establish the following
identity: .

S1(k,w0) = 551 (k)3 (wo— Vgk)+3S1(—K)s (wot-Vgk), (9)

where §(x) is the Dirac-delta function.

Finally, if one is concerned with only one-dimensional
(colinear) ocean waves so that (1) is a function of only
x and ¢, then we have

(nalk,w)na* (k' w"))
(2m)?
Sn(kaw) for k' =k, w'=w
=< L, (10)
0 for other * '
and
2r
Sa(k) for k' =k
("In(k)nn*(kl)>= 2L, (11)

0 for other %’

with identity (9) holding here also.

These wave-height spectra are defined with the
following normalization* with respect to root-mean-
square (rms) wave height &:

= (n2(r,0)) = /: /: &k /: dws (k,w)

= /: /:o dkS(k). (12)

One can also define a temporal (only), nondirectional
wave-height spectrum, a quantity which is readily
measured with buoys and/or wave staffs as

S@w)= L /_w kS (kw),

h2='/‘u° dwS (w).

where

(13)

4 Attention is again called to the fact that, as per our definitions
after (1) and (8), S(k) is nonsymmetric so that it can represent
wave fields traveling over 360° of space with arbitrary amplitudes.



Janvary 1977 D.

One further identity will be used in subsequent
higher order averaging processes ; this identity, valid for
Gaussian random variables such as 73, is established in

elementary statistics texts (e.g., Davenport and Root,
1958)

(’71 (kl)m* (kz)"ll (ka)‘ﬂ ¥ (k4))
= (171 (kl)‘rll* (kz)) ("11 (ka)ﬂl* (k4)>+ (771 (kl)"ll (k3)>
X (n* (Ko)na* (k)4 (mu (ka)na™ (Ka) Yna* (o) (k). (14)

By employing (8), one can see that the first term on
the right side can be nonzero only when k,=k; and
ki=k;. The second term can never be nonzero. The
third term is nonzero only when ky=k; and k. =ks.
Under these conditions the right side of (14) becomes
[SX (21!')4/ (L,L,,)ﬂSl(kl)Sl(ka).

We will now apply these definitions and identities to
show how the results derived in W-B for periodic,
nonrandom, Fourier series descriptions of waves can
be converted to integrals representing average spectra,
etc. In this process, we form products, take ensemble
averages [in the sense of (7) or (8)], interchange
averaging and summation processes and finally convert
remaining Fourier sums to integrals. This latter
process is done in a Riemann sense, where, for example,
(27)/L,Ly=dk and 2r/T=dw, L,, L, and T being the
observation periods. Let us illustrate this process on
(22) of W-B, where our purpose is to derive an expres-
sion for the second-order wave-height spatial/temporal
spectrum S:(K,2) in terms of first-order wave-height
spectra. First, we express the second-order wave height
as follows [using (4) and (22) of W-B and the lowest-
order dispersion relation]:

12 (0,t) =X n2(K) exp{i[K-r— (wotwi)t]}, (15a)
K
where
72K)=3% X A(kwok w)ni(kwo)n (k')
k,wo k’,w’'0
X S GEVIR 52V (15h)

Therefore, we perform averaging on the spatial second-
order coefficient, convert these sums to integrals, and
then take the temporal Fourier integral of the result:

1 2Ly
= 2 K o* K

~ f_ﬂm i 1) (- W)
X exp[ —i(wotwo )i+ (wo" +wd”) ¢+ 7) —iﬂr]d‘r.(

S:(K,Q)

16)

By employing (14) along with the Kronecker-delta
functions, we can show that all of the summations
contained in (16) reduce to a single vector wavenumber
sum, which is then converted to an integral in the
Riemann sense. Finally, the integral in (16) over 7
becomes a Dirac-delta function, leaving as the final
result (written in symmetrical form)
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1 0 00
5:(K, )=~ / f e TS Ak, £VgE, K, £ \gF)

u,l u,l

X S1(£K)S1 (kN3 (QFVgkFVgE), (17)

where k=1K+x, k'={K—«x, and the summation
indices refer to the upper and lower signs in the equa-
tion. The quantity A (kwe,k,ws’) is as derived and
given in (23) of W-B. The Dirac-delta function per-
mits one of the two integrations to be performed, leaving
one which must (in general) be done numerically for a
given form of the wave-height spatial spectrum.

An identical expression holds for one-dimensional
spatial spectra due to colinear wave trains, where the
double integral is replaced by a single integral (i.e., d«
instead of d%), and where the spatial wavenumber in
all spectra is a scalar rather than a vector quantity;
this case will be treated separately later.

Next we apply these statistical techniques to calcula-
tions of the mean and variance of the correction to the
dispersion relation (or phase velocity), ws/wo, as ngen
by Eq. (29) of W-B. So that the algebraic expressmns
will not be so cumbersome as to detract from the main
points to be illustrated by the example, we restrict our
attention here to colinear waves. Then the C(k,w,k’ o)
of (29) of W-B reduces to the factor multiplying the
second term of (4), i.e., we have

w®_ 4 5 ot - (b for K<k
wo(k) o { for B>k

wo k>0

where, as before, wo="Vg|%| and wy/=Vg|k' |. The
upper sign is used except when the wave whose desired
phase velocity correction (with wavenumber k) is
moving opposite to the direction of the waves with
wavenumbers %’. Note that this expression is valid for
all waves except the one at wavenumber k; at this
wavenumber the corresponding term in (18) must be
divided by two, as discussed after (4). Where many
waves are present, however, this “self-induced” phase
velocity correction is negligible compared to the mutual
interaction effects; hence it will be ignored here as we
proceed to a spectrum of many waves.

The average value of (18) is readily taken using the
techniques discussed above:

(18)

wa (k) B 2r (k' for R'<k
< =+— 3 wO'Sl(k')'—"[
wo(k) Wo k/=—x L.\t for k>Ek

or

<::Z;> =iz§ /o oSV

2

:{:'——f wo’Sl(k')dk’. (19)
k

wo

This agrees with the expression given by Longuet-
Higgins and Phillips (1962) in their Eq. (4.1).
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Finally, we take the variance of wy/w, inasmuch as
this is a measure of the expected spread in the fre-
quencies or phase velocities of first-order waves with
wavenumber 4. Of the three terms resulting from the use
of (14), one cancels with the square of the mean. Here
we initially allow the sums to run over negative
wavenumbers and divide by 2:

w2 ]-(C-CH)

W ow w B (B
z w°'w°u{k}

w02 P N Y k

X (ma(kyna* B na (B yna* (k7))

i s = R k) (R AV T2 %4
_;;2‘ i kug_“, wo Wo {k } p {(mENm*E))
2k2 0 k' 2 21I' 2
sumewn=-— £ [ tse](F)
w02 k! =—c0 k Lx

or

() 81rk2 k
Var[— (k)]=—-[ / wo2k2S2(R)dk
wp wotlaiJo

+42 / wo’lez(k’)dk’:l. (20)
k

It is curious that in (20) one of the 2w/L, factors is
not used up as an integration increment d&’, as in all
other cases considered. Recall that initially we described
L, as the spatial increment over which the Fourier
series with random coefficients was valid. Qutside of
this increment of space the surface profile repeats
itself. Hence L, physically corresponds to the region
of space over which observations relating to this

particular statistic of the sea are either made or desired.

As one can see, the larger this observation window, the
smaller the variance.

5. Examples of the second-order wave height and
its spectrum

a. Two-wave interactions and diffraction grating analogies

Eq. (22) of W-B shows that the spatial wavenumber
of the second-order wave, K, is the vector sum of the
wavenumbers of the first-order waves present. The
same holds true for the temporal wavenumbers. In
other words

K=k+k' and Qo=wo+wol (21)

(to lowest order, wherevw():\/gk’ and wo =\/gk’).
These relationships have been referred to as represent-
ing second-order Bragg ‘‘scatter” or a second-order
Feynman interaction (Hasselmann, 1966; Barrick,
1972).
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To obtain a clearer physical picture of this interac-
tion, let us consider the case of two first-order sinusoidal
wave trains, where kk’==+k,, &-k,. Eq. (22) of W-B
shows that there will be several sinusoidal second-order
wave trains whose Fourier coefficients 7,(KQ,) are
determined by the products of terms in the sum.
Neglecting the second-order coefficients at zero wave-
number (which only redefine the mean sea level), we
have four sets of second-order waves:

1) The self-generating second-harmonic waves:

Wavenumbers K,o=2k,; Kss=2k, (22a)
Frequencies  Qgas=2w0a; Qo5 = 2005 (22b)
Phase Speeds Voo =Q00a/Ko=woe/ka=1s;
v5p =006/ Ko =wos/ks=2s. (22c)
2) The mutual cross-coupling waves:

Wavenumbers K, =k, +k; (23a)

F reqﬁencies Q05,0 =woazwob . (23b)
Phase Speeds  v,,0=0s,0/Ks,a= (\lg_f_lc:,:l:\/g/;)/Ks,d. .

(23¢)

The first set (second harmonics) originates from the
analysis of Stokes (1847) where one periodic wave train
alone is considered. The second set originates because of
the nonlinear (square-law) interaction between two
separate sets of first-order waves, and cannot arise from
Stokes analysis by mere superposition of his results.

An interesting interpretation of these second-order
waves is obtained by analogy with Moiré patterns in
diffraction gratings. Let us represent the peaks (+)
and troughs (—) of two sets of first-order, arbitrarily
oriented sinusoidal waves (k,k;) as shown at the top
of Fig. 1. Where the peaks of one set reinforce with the
peaks of the other set, we have a linear superposition
(or “piling up”) of water as shown by the circles with
the plus signs (with a similar situation for negative
reinforcement). These line ‘intersections” would
appear as a separateé dense pattern, known as the Moiré
effect, if two diffraction gratings were overlain. Now, if
each first-order wave train moves with its own char-
acteristic phase velocity, these dense spots (circles)
will also move as a solid pattern, but in a different
direction than either of the two first-order gratings.

The second-harmonic waves are easy to describe:
they lie parallel to the first-order wavesets, have half
the spatial period of the fundamental, but move at the
same phase velocity as the fundamental; they are
shown at the lower left of Fig. 1. The “cross-coupling”
waves, however (shown at the lower right), have their
crests aligned along lines joining the dense spots at the
corner of a triangle, the two sides of which lie along
the first-order crestlines, one full period on each side.
These second-order crestlines appear to stay attached
to the dense spots or circles as they move, carried along
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Fic. 1. Sketch showing crest ('-l—)/trough (~) patterns for two sets of first-order sinusoidal wave trains (upper figure) and the
seconfi-order wave trains they produce. Lower left shows the “second-harmonic” wave trains, while the lower right shows the “cross-
coupling” wave trains. Relative scales on wave vector wave trains reinforce positively @ and negatively ©.

by the first-order waves. Their wavelengths and
directions of propagation are of course predicted by
the vector triads, coming from (21). Their phase
speeds can be predicted trigonometrically by following
the Moiré pattern temporally, and this identically
corresponds to those derived rigorously and given in
(23c). If Fig. 1 were indeed a double diffraction grating
in which each grating moved in the direction and at the
speed indicated, one would in fact noticé these second-
order “mutual” waves (when viewed from a distance),
due to second-order optical nonlinearities (i.e., the
abrupt change from transparent to opaque).

For the wavepatterns shown (and also in general),
the heights of the “‘second-harmonic” second-order
waves are of the same order as the heights of the
“mutual” second-harmonic waves. For the example
shown [letting 2,=1 and k3=2, we have 7s(Ku,Q0aa)
=101 (Ka), n2(Kss,Q000) = 2n1(ks), but n2(K,,Q0,) =0.324
m(Ka)ni(ks) and 72(Ka004) =2.637 71(k.)71(ks)]. The
actual heights of these second-order waves are small
compared to the first-order waveheights. Since the
half-heights of the first-order waves at maximum (i.e.,
when breaking occurs) must be such that |n:(k)]
<w/(14k), we have (upon using the equality and
allowing 71 to be pure real) ni(k,)=0.2244, 7:(k;)

=0.1122, 72(Ky,Q00s) =0.0504, 52(Kss,Q065) =0.0252,
72(K4,Q0,) =0.00816, and n5(K4,Q04) = 0.0664. Therefore,
even with the maximum possible first-order wave
heights, the second-order wave heights are small.in
terms of them, and the perturbation analysis of W-B
used to derive these results is justified.

As one generalizes from the case of two first-order
waves to a spectrum of very many waves (say N), it
is obvious that the number of second-order “cross-
coupling” waves far exceeds the number of “second-
harmonic” waves; the latter goes as N whereas the
former goes as N (N —1)~ N2 Hence, the total second-
order sea waveheight for many first-order waves for all
practical purposes consists only of the “cross-coupling”
waves; this becomes especially true in the limit of an
infinite spectrum of first-order waves, as seen from

).

b. Average second-order spectrum for colinear waves

Following (17), it was mentioned that in the case of
colinear waves, that equation has vector wavenumbers
replaced by scalar wavenumbers, and the double
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integral becomes a single integral. This permits us to
evaluate the integral exactly because of the Dirac-
delta function. One must transform variables in order
to employ the delta function, however. Let us assume
that all of the waves are propagating along the -+x
direction. Then we can break k space into two regions:
—1K<k<iK, and k< —3%K, «>3K. Note first that
A%(kwo, k' wo') =K?/4. Now, considering the region
0<x<1iK, transform variables first to u= V(3K ++),
and to w=u+", gK—u?. The upper signs in the delta-
function argument must be used within the first region.
Using the limits of the integral to define required
inequalities for @, we arrive at the following expression
(for K>0 and for the total region —3K <x<3K):
sz (—¢K)

e L)

ol o)

for \/g7(<ﬂ<\/2g__K
0 for 0> V%K.

-92('[{79)2< (24)

Likewise, the transformations required for «>3K are
u=v g(AK+«) and w=u—Vu?—gK. Opposite signs in
the delta-function argument must be used in this
reglon Adding in the contribution from the region

—1K, we obtain (for K>0)

(K2 (gK)2—Qt 1
LK) ]Sl[ (gK_m)z]
8g0® 4gQ?
S2(K’Q)=T 1
xsl[ (gK—Qz)Z] for 0<Q<VgK
402
10 for Q<O0. (25)

Hence (24) and (25) define the second-order one-
dimensional spatial-temporal spectrum in terms of the
one-sided first-order spatial spectrum. It is seen that,
for positive K, the region over @ in which the spectrum
exists is bounded between 0 and V2gK; a square-root-
type singularity occurs at @— V2gK, but the area is
finite under this singularity. Since the waves are
required to be real quantities, half the energy in the
first and second-order spectra lies in the region K <Q.

Hence (24) and (25) also apply, when K<O0, and in _

this case @ lies in the region —V2g| K| <2<0.

Tick (1959) used a Fourier integral approach and
statistical methods on colinear wave trains to obtain
expressions involving second-order wave heights. While
he never specifically derived an expression for the
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second-order wave-height spatial-temporal spectrum,
one can obtain this quantity by Fourier transforming
his Eq: (36) over the spatial distance variable £; this
involves Dirac-delta functions and nonlinear trans-
formations such as those used in obtaining (24) and
(25). Furthermore, he works with first-order wave-
height temporal spectra instead of our spatial spectra,
which necessitates another transformation. Nonetheless,
if one performs the required algebraic steps and trans-
formations on his result, one obtains identically our
(24) and (25) for S:(K,Q2). Hence the agreement of the
two results lends credence to our claims that 1) the
techniques we demonstrated for going from periodic
wave trains, representable by Fourier series to random
wave fields whose average properties are sought, are
generally valid; 2) our higher order expressions involv-
ing two-dimensional wave fields are also valid because
they agree with Tick’s (1959) and Longuet-Higgins
and Phillips (1962) results in the limit of one-dimen-
sional (colinear) wave fields.

c. Example of spatial spectra for colinear Phﬂlips model

To show an example of how (22), (24) and (25) can
be applied to indicate the shape, magnitude and
distribution of second-order wave-height spectral
energy, we employ the commonly used Phillips (1969)
spectral model for fully developed seas, converted to a
one-dimensional spatial form

S1(k)=< 2k
0 for

for Ea<k<hy

(26)
- w<k<kco

where k,=g/#* (v=wind speed in m s~!, g=gravita-
tional constant =9.81 m s~%), and where k,=Vpg/y
is the upper cutoff at the capillary wave region, with
p=water density (=10 kg/m™?) and vy =surface tension
(=0.073 N m™). B is a dimensionless constant whose
equilibrium value has been determined experimentally
to be ~0.005. This spectrum is normalized such that
the rms slope of the colinear waves is the same as that
for a two-dimensional semi-isotropic spectrum (Phillips,
1969). This yields a first-order two-sided spatial-
temporal spectrum whose temporal frequency wo (to
lowest order) is uniquely related to the spatial wave-
number as follows:

-

B _—
36(«)0—{-\/g|k|) for —k,<k<—ke,

S1(kw0) =10 for —ka<k<ke, (27)

for ko<k<k,.

B
—8(wo—Vgk)
4k3
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FicG. 2. Spatial wave-height spectra using Phillips’ one-dimensional (colinear) first-order model.

This form defines waves traveling in the 4x direction
(where £ is positive).

Upon substituting (26) into (24) and (25), simplifying
and converting the inequalities in (26) into appropriate
temporal form, we arrive at the following result for the
second-order spatial-temporal wave-height spectrum
for K>0:

QrS2(K,Q)

( 2TB%S 3
—_ 21— . 2
KAy for 0<pu2<1—2p.0V1—peo

= 2252 L

———————— for 14 2uVl—pl2<pu?<2
K32— 2(u2—1)5

L0 for other p J
and 2u.2>1 (28)

where u is a normalized temporal frequency u=Q/Qr,

QFE\/E; 1e0=R0/Qr and Q,=g/v; the spectrum is
identical for negative X and Q.

Whereas the first-order spatial-temporal spectrum

appears at a discrete temporal frequency (wo=" gk),
the second-order spectrum is distributed over a con-
tinuum of frequencies around v gK between @=0 and
Q=Vv2 X\/gK; an integrable singularity occurs at the
latter limit.

The one-sided second-order spatial spectrum Sy(K)
can be found by integrating (28) over positive @, the
temporal wavenumber and dividing by two. This can
be done from the tables, and the result expressed in
closed form; it is not given here for lack of space.
Rather, we give curves showing S1(k) and S:(K) over
the gravity wave region for the above Phillips model
and two different values of wind speed (v=>5 and
15 m s7?) in Fig. 2. Also, the first-order and second-order
rms wave heights %4, and A, corresponding to these
spectra are given

[i.e., hl,zzE/ 51,2(K)d":|-
0

Note that even though the mean-square second-order
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wave height (i.e., the area under the curve) is always
less than the mean-square first-order wave height (as
required in the perturbation theory), the second-order
spectral power can exceed the first-order power at
certain higher wavenumbers. This may at first appear
strange, for the Phillips model measured by ocean-
ographers (following a «* or ™ law) should more
realistically be thought of as the fofal spectrum, includ-
ing all perturbation orders. Thus it may have been more
meaningful in calculating the curves of Fig. 2 if we had
“iterated” until the sum of the first and second-order
curves satisfied the model given in (26). Our purpose
here was only to provide an illustrative example of a
second-order spectrum, given a first-order spectrum. In
addition, Fig. 2 illustrates that the second-order
portion does not begin to dominate until one has gone
over four orders of magnitude down from the first-order
spectral peak. Nearly all wave-height spectral mea-
surements reported in the literature cover a dynamic
range of only two orders of magnitude. An exception
to this are very precise measurements by Mitsuyasu
and Honda (as reported by Pierson, 1976), which in
fact do show a departure from w™® law some three orders
of magnitude down from .the spectral peak; this
departure is an increase from the inverse fifth-power
law, commonly assumed to hold everywhere in the
gravity-wave region.

6. Examples of first-order phase velocity mean and
variances

Becatise Section 2 showed that the greatest correction
to the dispersion equations occurs for parallel (colinear)
rather than perpendicular wave trains, we will employ
as an example the Phillips colinear spectral model (26)
in (19) and (20). Using this model, we obtain for the
mean

ws (k) -
< > =2B(Nk/ko—%)(assuming k> ko), (29)
wo(k)
where k.o=g/+%.
The phase-velocity standard deviation (assuming an
average over an infinite ensemble) using (20) is

\/ Var[‘-"-z(k)] = Br/ L) NBkd =%, (30)

Note again that this result depends upon L,, the length
of the area under observation ; as this quantity becomes
very large compared to the water wavelength 2x/k, the
above standard deviation for an infinite ensemble
average approaches zero.

A more sensible quantity than the infinite ensemble
variance of phase velocity is the variance for a finite
sample size. If, for example, one formed a sample
average of ws?* (consisting of the sum of NV independent

samples of ws? divided by N) and called it N:w?, one
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can show that the sample phase velocity standard
deviation correction is given by

\/vm[‘i’f@)}i[«zv:E)2>—<N:c¥2>ﬂ*

Wo

() Cap @ o

To illustrate the magnitudes of these various quanti-
ties, let us consider an HF radar application and assume
the following parameters: wind speed v=15 m s
2r/k=5 m (e.g., 5 m long ocean waves would be
observed with an HF backscatter radar at 30 MHz
having a wavelength of 10 m); the number of indepen-
dent samples N=12; the length of observed ocean
patch L.=3 km; 8=0.005. For 5 m ocean waves, the
phase velocity (to lowest order) is 2.794 m s~ The
normalized phase velocity correction mean, standard
deviation and 12-sample standard deviation for this
example are then 0.04702, 0.00045345 and 0.03004,
respectively. The actual phase velocity correction mean,
standard deviation and 12-sample standard deviation
corresponding to these numbers for the 5 m long ocean
wave. component are then 13.14, 0.13 and 8.9 ¢cm s7,
respectively.

7. Discussion and conclusions

In this series of two papers, we have presented a
general perturbational formulation in which all desired
higher order corrections to deep-water gravity wave
parameters can be obtained at the same time; the
approach is valid over temporal and spatial scales
sufficiently small that energy exchange processes can
be neglected. In particular, the technique was used to
obtain the second-order wave height, velocity potential,
and the first nonzero correction to the dispersion
relationship (a third-order quantity). These results
were interpreted physically and shown to agree with
special limiting cases treated in the classical literature.
It was shown how the solutions—based upon periodic
two-dimensional wave trains—are readily converted to
a form suited to random descriptions of the sea wave
height. Finally, several examples were presented,
primarily based upon colinear (one-dimensional) ran-
dom wave fields and a Phillips spectral model for fully
developed seas; these two simplifications led to closed-
form solutions which are not possible in the general
two-dimensional case, permitting one to obtain an in-

sight into these higher order quantities.

The basic techniques leading to the derivation of
these quantities were outlined in the literature over a
decade ago (Tick, 1959; Phillips, 1960; Hasselmann,
1962, 1963a, b). In certain cases these authors indicated
solutions in a formalistic manner, but did not complete
the details of the algebra. Possibly this failure to
complete and expand upon these solutions at that time
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was due to the fact that experimental techniques were
neither available nor of sufficient accuracy to permit
confirmation of these higher order wave parameters.
Two prospects in recent years have altered this picture,
however: 1) the interest in energy transfer between
different regions of the wave-height spectrum via
nonlinear wave-wave interactions (Hasselmann et af.,
1973); and 2) the application of high-frequency radars
(as a remote sensing tool) to the measurement of
ocean-wave statistics and near-surface currents (along
with the concomitant verification of theoretical models
explaining this interaction; Barrick ef al., 1974 ; Stewart
and Joy, 1974). Tt is the latter application which has
led us to formulate and complete the steady-state
derivations presented here.

In particular, the second-order wave-height spectrum
and the higher order phase velocity correction for
first-order waves are directly observable with HF
radar systems. Theory (Barrick, 1972) and experiment
(Barrick et al., 1974) have shown that the average
signal power spectral density (expressed as an average
radar backscattering cross section per unit area per
radian per second bandwidth for vertical polarization
at grazing incidence) can be written

(32)

where wy is the radar carrier frequency (rad s™), ko is
the magnitude of the incident and scattered radio
wavenumbers (i.e., kp=wo/c, ¢ being the radiowave
free-space velocity); x,=ki—k, or x,=2k,=2kok; for
backscatter, since k,= —k;. Thus w—wo, the radian
frequency at which the ocean wave-height spectrum is
being observed, appears in the radar receiver as the
Doppler shift of the sea-scattered signal from the carrier.
The spatial vector wavenumber x, indicates that the
Bragg (or diffraction-grating) effect is giving rise to
the scatter.

We saw that Si(k,w) is an impulse function from the
lowest order dispersion equation (centered at w=wo

£V, gk). Any finite width to this normal infinitesimally
narrow impulse function in the (Doppler) frequency
domain is therefore a measure of the variance of the
dispersion equation for first-order waves (neglecting
any frequency broadening due to system limitations,
nonscatter-related mechanisms, current shears within
the scattering patch). Hence the variance of ws, as
discussed earlier, manifests itself here as the width of
the first-order sea echo Doppler peak.

The second-order portion of the sea echo Doppler
spectrum is related in its magnitude and shape to the
wave-height spatial spectrum in a nonlinear manner via
the integral (17). The fact that this second-order echo

01,2 (w) =2"7k"S1,2 (%, 0 —w0),

8 To second order, there is another term proportional to the
second-order waveheight spectrum which originates from double
radio-wave scatter (from two sets of ocean waves). This term—
neglected here—is generally smaller than the “hydrodynamic”
contribution considered here; it is derived elsewhere (Barrick,
1972) and given there.
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energy is more sensitive to the longer, higher ocean
waves than is the first-order echo energy at useful HF
radar frequencies is generating considerable interest in
utilizing this portion of the echo to remotely sense sea
state. While the simple colinear wave models examined
in detail here can provide some feeling for the general
distribution of sea-echo energy, the complete solution
to the two-dimensional model (17) must be pursued in
order to study the effect of wave directionality on the
echo spectral shape. Because of the complexity of
solving (17) numerically for two-dimensional wave-
height spectra, this topic must be undertaken separately.
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