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1. INTRODUCTION 

Short-pulse altimetry from space was first suggested in the mid-1960s in a 
study supported by NASA at Woods Hole, Massachusetts(Ewing, 1965). This 
study drew on the state of the art of airborne remote sensing as the basis for 
satellite techniques and applications. Microwave altimeters were proposed 
for the measurement of sea level, sea state, and tsunamis. Further develop- 
ment of specific sensors for oceanic physics evolved during what has become 
known as the “Wil1iamstown”study (held at Williams College 5 years after the 
Woods Hole gathering), Here a strong case was made for microwave satellite 
altimetry (Kaula, 1970) that provided impetus for the altimeters flown on 
Skylab and GEOS-3. 

In contrast with other microwave instruments (e.g., the scatterometer, 
radiometer, and synthetic aperture radar), the altimeter is supported by a 
mathematical model relating the echo to the sea surface interaction that is 
both noncontroversial and useful for designing algorithms to extract in- 
formation. Since the backscatter seen by the altimeter in space is restricted to 
a fraction of a degree around the nadir position, the scattering mechanism is 
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essentially optics-type reflection from thousands of specular points randomly 
distributed across the rough, moving sea surface. The mathematical model 
describing the altimetric echo waveform was derived by Barrick (1972a) using 
physical optics to represent the scatter from the rough surface. This model is a 
double integral, and can be written in a convolutional form. It shows that the 
sea surface response to a short pulse is a ramp starting at zero and rising 
sharply in time to a plateau, after which it falls off slowly. Sea surface mean 
position and wave-height information is contained in the ramp portion, called 
the leading edge. Wind-speed information is extracted from the backscatter 
signal intensity on the plateau. Models have been devised that are fitted to the 
leading edge directly to extract mean surface position and wave height, both 
on board the satellite [for Seasat, see MacArthur (1978) and Townsend 
(1980)], as well as on earth, post facto (Hayne, 1981). 

In this chapter is discussed the physics behind and use of Barrick’s model in 
information extraction and data interpretation. In particular, in Section 2 is 
presented the convolutional form of the model, demonstrating a much simpler 
but more illuminating method for its inversion than those used in the above 
references; it is based on deconvolution by straightforward fast Fourier 
transform (FFT) algorithms. In the subsequent section the recovered quantity 
is then interpreted, namely, the sea surface wave-height probability density 
function in terms of models that allow maximum-likelihood parameter 
extraction and uncertainty estimation. In Section 4 we develop and employ 
models to study various factors (both instrumental and near-surface effects) 
that bias or distort the altimeter echo, and use Seasat to demonstrate their 
application. In Section 5 we discuss the important and interesting phenom- 
enon called electromagnetic bias, i.e., where the altimeter reckons the mean 
sea surface position to be, compared with its actual position (with all other 
errors/biases removed). Finally, in Section 6 a double-deconvolutional-based 
algorithm for altimeter echo analysis is discussed that can handle various 
antenna error and rain biases, is computationally efficient, and outputs 
parameter uncertainties along with the parameters themselves. 

2. THE CONVOLUTIONAL REPRESENTATION OF THE SIGNAL AND ITS USE 

2.1. Derivation of Convolutional Form 

Scatter from a Gaussian, random distribution of rough-surface specular 
points contained in a downward-propagating spherical altimeter pulse was 
derived by Barrick (1972a,b) using physical optics, and is repeated here. The 
result gives the average radar cross section for backscatter, polarized in the 
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same sense as was transmitted, as a function of time t ,  while the altimeter 
receiver is responding to the interaction of its pulse with the rough sea or earth 
surface. For the coordinate geometry, see Fig. 1. 

o(t )=  2 n ' a 2 1 ~ ( 0 ) 1 ' ~ ~ g ( ~ ) s e c 4 ~ s i n ~ [ j ~  -m ~ ( t  - ~ P j ( t ) d t  1 d 4  (1) 

where II/ is the angle at  the antenna from nadir to a point ( on the ocean 
surface; 4 is the angle at earth center from the satellite to a point 5 on the ocean 
surface;&) is the two-way antenna gain pattern, normalized so that it is unity 
at its maximum (accounts for pointing error); P(x)  is the effective pulse shape 
at the receiver output, normalized to unity at its maximum, versus spatial 
propagation distance x = c t / 2 ;  a is the earth's radius; R(0) is the Fresnel 
reflection coefficient of sea surface at  normal incidence; 6 is the angle between 
the local normal to the surface at [ and the satellite; and pj([) is the joint 
height-slope probability density function of the surface height i (positive 
upward) of the waves above a mean local surface, and wave slopes 
corresponding to specular angle 0. The above expression is thus far exact; the 
only approximations implied are those inherent in the specular-point 
explanation of scatter. For backscatter very near vertical, two decades of 
experimental data have shown the specular-point model to be totally adequate 
for the microwave radar echo. 

Operation from a satellite such as Seasat requires the use of a narrow-beam 
antenna, which restricts backscatter to a region very near nadir, i.e., 
backscatter near the normal or vertical to the mean surface. It is this condition 
that permits considerable simplification of Eq. (1) to obtain linearization and 
reduction to a convolutional form. We employ the parameters of Seasat to 
demonstrate this process. Although exaggerated in Fig. 1, theangles t+b, 4, and 
8 are very small. The angle IC/ at Seasat's two-way antenna pattern half-power 
point is 1.6"/(2fi) 'Y 0.57". The last sampling gate at which data are taken 

Satelliten 

b Earth Center 

FIG. 1 .  Coordinate geometry for satellite altimeter; ( is height of surface point above the mean 
(spherical) earth/sea, and 0 is slope angle (from vertical) seen from altimeter to the mean sea. 
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and preserved on Seasat (i.e., gate 60) restricts $ even further; at its altitude of 
800 km, $ at the last gate is 0.3”. Therefore, small-angle trigonometric 
simplification of the exact law of cosines (see Fig. 1) relating the height ( of the 
roughness above the mean spherical earth of radius a to time t and satellite 
height H, i.e., 

(2)  

( = -  4 2  + H’($2/2)  (3) 

(C + = ( H  + Ct/2)2 + (a + H)2  - 2(H + c t /2 ) (a  + H)cos  JI 
yields 

where time t measured at the receiver is taken to be zero when the radar cell 
center intercepts the mean spherical earth. We also employ the fact that 

<< H < a (for Seasat and the sea, ( c 2 )  < 5 m; H = 800 km; a = 6370 km), 
and define an “extended” satellite height as H’ 3 H(l + H/a) .  We also em- 
ploy the facts that $ =(a/H)4 and 8 = ( a / H “ ) 4 ,  where we define a 
“reduced satellite height as H” = H/( 1 + H/a). 

In obtaining the final convolutional form for Eq. (l), we change variables 
of integration from 4 to u = a 2 4 2 / 2 H ” ,  and replace ct/2 by x. The units 
of the problem are now distance x traversed by the radar cell (measured 
downward from mean sea level). We also define a normalized radar cross 
section as as@) = ~ ( ~ X / C ) / ( ~ Z ~ H ” I R ( O ) ~ ~ ) ,  and new antenna gain factor as 
C(u) = g ( , / m ) ,  where $ = Making these substitutions and 
simplifications to Eq. (l), we obtain 

J Q  LJ-a J 

The double-convolutional form of Eq. (4a) is written in concise mathematics 
as 

a,(x) = &(-X) 0 P ( - x )  0 G(-x)(U -x) (4b) 

where the symbol 0 denotes convolution. This is precisely the form used by 
Brown (1977), Walsh (1979), and Hayne (1981). Hayne refers to G(x)U(x)  as 
the “flat-sea impulse response, including antenna pattern and off-nadir 
effects.” 
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Let us now examine Eq. (4). The altimeter measures a,(x), on the left side 
of the equation. P(x)  is the pulse shape at the receiver output when the 
transmitted pulse is sent directly through the receiver; for Seasat, this is 
measured on board and transmitted to earth, and hence it is known. G(x) is the 
antenna pattern, and it too is known (when the antenna points toward nadir) 
from prelaunch calibration measurements. Therefore, all of the desired 
information about the surface statistics and position is contained in the 
function pj(x) .  We must therefore solve a double, linear integral equation to 
obtain this function. The measured quantity will have some random noise 
added to it. This seemingly formidable problem is made quite simple, however, 
by its convolutional nature, Such convolutional integral equations are most 
readily solved by Fourier transform procedures. When all of the factors 
appearing in Eq. (4) are Fourier transformed, the convolutional operator 0 
appearing in Eq. (4b) becomes merely a multiplication sign in the other 
domain. This procedure is demonstrated in the next section. 

2.2. Recovery of Joint Probability Density from Seasat Data 

As has been mentioned previously, the usual methods of extracting surface 
information from altimeter echo data have involved essentially the fitting of a 
model directly to the echo as a function of time. In this approach, one employs 
a model for the pulse shape, a model for the antenna gain, and a model for the 
surface probability density. These are substituted into Eq. (4a) and the 
integrations are performed,to obtain a model for the echo, a,(x). Since several 
undetermined parameters appear in the model functions under the integral 
(e.g., antenna pointing error, tracker error), this integral is usually not 
soluble in closed form (Hayne, 1981).' Then various methods have been used 
to obtain the best fit possible for the model a,(x) to the data by varying the 
parameters of the models under the integral (including least squares, estimates 
of echo leading-edge slope, etc.) 

We are suggesting that a more straightforward and illuminating alternative 
to these echo/model fits (and less time-consuming numerically) is to solve for 
the desired functions in Eq. (4) directly by using the unique properties of 
convolutional integrals and their Fourier transforms. This approach also 
gives estimates of statistical uncertainties in the derived quantities as an 
important by-product. Separate models can then be fitted to the recovered 
functions (if desired), a procedure that is much less time consuming than trying 
to recover six parameters all at once by the methods mentioned in the 
preceding paragraph. 

In subsequent sections, this integral will be solved in closed form for certain models and 
assumptions in order to study various biases in altimeter operation. 
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By restricting attention to the “leading-edge” portion of the echo, Lipa and 
Barrick (1981) obtained pj(x) by deconvolution. That method and the results 
are briefly reviewed here to facilitate understanding of the method and its 
proposed extension in subsequent sections. The double convolution of Eq. (4) 
reduces to a single convolution valid on the echo leading edge (where 1x1 and 
1111 are small) by differentiating Eq. (4a) with respect to x. Also assumed there is 
the fact that there is no antenna pointing error, in which case G(u) ‘v 1 on the 
leading edge. Then the expression for the leading-edge derivative or slope is 
given by 

ci(x) = J’lk ~ ( t  + x ) p j ( t ) d t  = p(-x) o p j ( - x )  (5) 

Knowing the pulse shape P(x) from samples transmitted to earth during 
Seasat’s Internal Calibration Mode I, one would theoretically solve this 
equation for the surface probability density p j ( x )  by taking the FFT of a:(x), 
dividing by the FFT of P( -x), and inverse Fourier transforming the quotient 
back to obtain pi( -x). Because additive noise is present along with a,(x), as 
well as statistical fluctuation in o,(x) itself (due to the random nature of sea 
echo), and because the instrument was subject to several observed mal- 
functions, the procedure was not that simple. Below is a summary of the steps 
used by Lipa and Barrick in the extraction of ~ ~ ( x ) ~ :  

1. Each waveform (every 0.1 sec) is numerically renormalized. This is 
necessary because the Seasat automatic gain control (AGC) system somehow 
malfunctions for moderate-to-low sea states, causing approximately every 
third waveform to be too large (or sometimes too small) by as much as 50%. 
The renormalization procedure simply divides all gates by the average power 
level in the last 15 plateau gates (e.g., 45-60). 

2. A predetermined number of waveforms are then averaged together, In 
our case we used both 60 waveforms (over 6 sec or -40-km groundtrack) and 
240 waveforms (over 24 sec or - 160-km groundtrack). 

3. The average waveform is broken into its three distinctive regions: pre- 
leading-edge noise, the leading edge, and the plateau. This is very easily 

* Seasat samples the region around x = t = 0 as a series of 60 time/range gates 3.125 nsec apart. 
If the tracker worked perfectly and no other biases were present, t = 0 would fall halfway between 
gates 30 and 31. One hundred power pulses corresponding to u(t) are averaged on the satellite for 
each gate (each pulse is 1 msec apart) and the 100-sample averages are therefore spaced 0.1 sex 
apart in time. Three additional “tracking gates” are sampled and transmitted on Seasat; labeled 
gates 61,62, and 63, these fall on the leading edge precisely between gates 29 and 30,30 and 3 I ,  31 
and 32. Because of this, these tracking gates are referred to here and elsewhere as gates 29.5,30.5, 
and 31.5. 
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FIG. 2. Leading edges of the returned Seasat altimeter echoes for averages over the samples 
from orbit 280 shown in Fig. 3. Samples 1 and 4 represent the lowest sea states; sample 2, being 
closest to the hurricane eye, is the highest. 

accomplished by noting changes in slope. (See Fig. 2 for typical, measured 
altimeter echoes to locate the regions being discussed.) 

4. The pre-leading-edge average noise level No is determined and sub- 
tracted from the remainder of the waveform. [The pre-leading-edge noise is 
one of the six parameters determined also by Hayne (1981).] 

5. Each waveform gate amplitude is multiplied by an appropriate gain bias 
correction. For gates 1-60, these were determined and supplied by NASA- 
Wallops; for tracking gates 61 -63, we estimated these corrections ourselves. 

6. The derivative of the leading edge, CT;(X), is then taken using a three-point 
numerical difference. 

7. When deconvolution is used, the FFT of oi(x) is taken; the result is then 
divided by the FFT of the pulse shape, and the inverse FFT is taken again to 
yield pj([), the joint height/zero-slope probability density function. The actual 
pulse shape determined from the Seasat Internal Calibration Mode I is used 
rather than a model for the pulse. Because this pulse is so narrow, and 
therefore measured at a half-gate sampling rate (i.e., every 3.125/2 nsec), and 
also because the important middle of the leading edge is sampled at this same 
higher rate, we use a uniform digitization interval of 3.125/2 nsec for the entire 
leading edge. Hence, waveform regions not sampled at this rate are 
interpolated to give values at these points. The maximum FFT length 
required, therefore, to cover the leading edge even in high seas was N = 64 
points. 

8. As a check, and to demonstrate an alternative technique, standard 
integral inversion was employed on Eq. ( 5 )  to give p j ( [ ) .  This method also 
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gives statistical uncertainties in a standard fashion. Theoretically the two 
techniques give equivalent results. Practically, however, integral inversion (in 
matrix form) is lengthier timewise, requiring - N 2  steps compared to - N 
log,(N) steps for deconvolution. (This assumes the inverse matrix for the 
pulse shape P ( x )  has been obtained and stored as a two-dimensional array 
earlier.) Time differences between the two methods become significant only 
for N considerably bigger than 32. 

9. Standard covariance techniques (Brandt, 1976) are then used to estimate 
statistical uncertainties in p j ( c i )  at each height point ci. Here, the covariance 
matrix of the actual observed echo, oS(xi) at consecutive points x i ,  is employed 
rather than theoretical models for these covariances. Lipa and Barrick (1981) 
found that-for unexplained reasons- the Seasat echo data had a normal- 
ized variance that varied with position on the leading edge, and that echo data 
between consecutive range gates are correlated. Neither of these findings 
agree with idealized echo theory; therefore, the actual data statistics were used 
in uncertainty estimates. 

Results for four 24-sec samples during a Hurricane Fico overpass (orbit 280; 
see Fig. 3 for locations) are shown in Fig. 4. Significant wave heights at the 
four locations are approximately 2.5, 7, 4.4, and 2.6 m. Figure 2 shows the 
Seasat waveform leading-edge averages for the four times. 

In Fig. 4, two curves are shown in each case: one obtained from decon- 
volution and the other from matrix inversion. In most cases the two curves 
are so close as to be indistinguishable. This consistency check is one mea- 
sure of the accuracy of these techniques (no “ground truth” was available be- 
neath the hurricane). Error bars are also shown, representing f4 standard 
deviations. The uncertainties are lower near the wavecrests than toward the 
wavetroughs, a result of the unexpected variation of normalized echo variance 
with position on the leading edge. 

In the next section we will show how this probability density retrieved from 
the echo data can be interpreted in terms of ocean surface parameters, both 
with and without the use of models. 

3. MODEL FITS OF RECOVERED SEA SURFACE PROBABILITY DENSITY 

As defined after Eq. (l), the probability density function pi(() arising from 
specular-point scattering theory that appears in Eqs. (1) and (4), and that was 
derived from Seasat data in the preceding section, is a joint sea surface height- 
slope density. Define p(c ,  [,, (,) as the joint probability density function 
between the random sea surface wave height c(x, y) and wave slopes 5, = 
a[(x, y)/& and c, = dc(x, y)/dy,  where the x and y lie in the horizontal 
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East Lonaitude 

225 230 235 

FIG. 3. Location of the four data samples used from Seasat orbit 280, over Hurricane Fico, 
whose center (the dot) is about 100 km from the altimeter nadir track. Times are as follows: 
sample 1,1412:OO-1412:24 GMT; sample 2,1414:42-141S:M GMT; sample 3, 1415:30-141S:54 
GMT; sample 4,1417:30-141754 GMT. Each sample shown is 24 sec long, covering 160 km of 
ground path. 

plane tangent to the spherical earth at the nadir point. Used in relationships 
for specular-point scatter (Barrick, 1968, 1972a), the slopes in this expression 
are those required for facets on the waves that can reflect specularly, i.e., whose 
normals point in the backscatter direction. Since the satellite antenna 
beamwidth and range gating restrict the slope angle 8 [see Fig. 1 and the 
discussion after Eq. (l)] to be very small, (, and cy are effectively zero in 
p ( [ ,  c,, c,) for satellite altimeters; therefore, the axis directions x, y in the 
horizontal plane are arbitrary. Hence the required expression in Eqs. (1) 
and (4), and which we derived above, is pi(() = p ( c , O ,  0). 
To lowest order, the sea surface height [ and slopes [,, Ly are zero-mean, 

Gaussian, uncorrelated random variables. Higher order effects, including 
correlations between heights and slopes as well as skewnesses (e.g., nonzero 
wave-height skewness proportional to (c3), where ( a  - .) denotes infinite 
ensemble average) are definitely noticeable, indicating that the sea surface 
heights and slopes are not strictly Gaussian. The non-Gaussian nature of 
these quantities can be explained by higher order nonlinearities in the 
hydrodynamic boundary conditions for gravity waves ( Longuet-Higgins, 
1963). Because of the prospect of extracting additional information about sea 
state and wave processes from the altimetric echo, it would seem desirable in 
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Height (m) 

FIG. 4. Surface height-slope probability densities versus surface height for the data samples 
(1-4) of Figs. 2 and 3, obtained both by matrix inversion and Fourier deconvolution. Averaged 
over 24 sec, the echo yielded probability density error bars of f4a shown above, for the curve 
obtained from matrix inversion. 

future examination of altimeter algorithms to avoid reducing p(C, 0,O) to the 
simple Gaussian height probability (no correlation between height and slopes) 
with only one parameter (mean-square wave height h2 E (c ’ ) ) .  

We examine here the fitting of a Gram-Charlier expansion of p ( ( ,  0,O) to 
the quantity pi(&) measured in the preceding section. This model takes the 
following form: 

FjN(C) = (1/&h){l + A , c ( c / ~ ) ~ I  + A , ( C / ~ ) ) ~ X P ( - C ~ / ~ ~ ~ )  (6) 

which contains three unknown parameters, to be determined by fitting Eq. (6) 
to the functions extracted from Seasat data and shown in Fig. 4. These 
parameters are h, A l ,  and A,, As mentioned above, h is the RMS wave height. 
A, = A1/6, where 1, is the height skewness defined as I, = ( C 3 > / h 3 .  For 
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ocean waves, the fact that this quantity is nonzero and positive is explained by 
the pointiness near the crests and flatness near the troughs. A2h includes any 
shifts of the waveform from its “perfect” location (with gate 30.5 centered 
halfway up the echo leading edge), normally due to the on-board tracker bias. 
The quantity A,h would normally be included in the exponential [i.e., instead 
of cz we would have (5 - A2h)’3, but since Seasat error A,h is known to be 
small in terms of RMS wave height h, this quantity is brought outside by a 
Taylor series expansion about zero bias, retaining only the first and second 
terms in A2h. The resulting model, Eq. (6), is therefore linear in two unknown 
parameters, A ,  and A,, while it is nonlinear only in h. This fact will make least- 
squares estimation of these three quantities very easy. Finally, we “normalize” 
the data, p j N ( l i ) ,  such that the area under it is unity [i.e., p j N ( l i )  = 
p j ( c i ) / Z i p j ( l i ) ] .  We then do a least-squares fit of measured data p j N ( l i )  to 
the model pjN(li) by minimizing E i [ p j N ( l i )  - j j j N ( l i ) 1 2  with respect to h, A , ,  
and A,.  Because the model Eq. (6) is linear in A ,  and A,, but nonlinear in h, 
Lipa and Barrick (1981) show that this leads to a simple one-dimensional grid 
search in h, requiring approximately N 2  steps to find the minimum, with a final 
interpolation between the three lowest points h j - , ,  h j ,  and h j + , ,  to give the 
RMS wave-height estimate h: 

There is another obvious way of determining A,  that does not involve use of 
a model: direct calculation of the first moment from the retrieved probability 
density, i.e., 

J --oo I J - m  

This would be identically equal to A,h if the data fit the model of Eq. (6 )  
perfectly. Theoretically, one can also determine hZ in this way from the second 
moment and A ,  or 1, from the third moment. There is a problem with higher 
moments, however. The numerical integration to obtain the moment runs 
theoretically from - co to + co; practically, one must truncate at some point. 
Because of noise and statistical fluctuation in the original data, the tails of the 
retrieved probability p j N ( ( )  never become identically zero, but fluctuate about 
a low but constant “noise” level. Multiplication of these tails by c” enhances 
this noise for larger values of n. Therefore, one must truncate the numerical 
integration at some upper limit to keep this enhanced “tail noise” low. We 
have found, however, that for larger values of n (e.g., for moments equal to 
or greater than the second, where n 2 2), the result then becomes quite sensi- 
tive to the limit chosen. Hence, our experience with the Seasat data has 
shown that moments higher than the first cannot be computed stably, and 
the model-fitting procedure described above must be applied. 

In Table I we present values of mean sea-level difference (from gate 30.5) f, 
using both the first-moment and model-fit techniques (along with standard 



72 DONALD E. BARRICK AND BELINDA J. LIPA 

TABLE I. PARAMETERS OF HEIGHT-SLOPE PROBABILITY DENSITIES 
FOR SEASAT ORBIT 280 

Mean sea level 
difference (an) 

Time (GMT) RMS wave Height skewness 
(hr:min:secl First moment Model fit height (cm) parameter 

Csec averages 
14: 12:00-14:12:06 
14:12:06-14:12:12 
14: 12:12-14:12:18 
14: 12: 18-14: 12:24 

14: 14:42-14:14:48 
14: 14:48-14:14:54 
14: 1454-14: 15:OO 
14: 15:00-14:15:06 

14: 15:30-14:15:36 
14:15:36-14:15:42 
14: 15:42-14:15:48 
14: 15:48-14:15:54 

14: 17:30-14: 17:36 
14: 17:36-14: 17~42 
14: 17~42-14: 17:48 
14:17:48-1417:54 

Wsec averages 
14: 12:00-14:12:24 
14: 14:42-14:15:06 
14: 15~30- 14: 1554 
14: 17:30-14:17:54 

10.4 f 1 
10.6 f 1 
11.4 f 1 
11.4 & 1 

35.4 f 7 
37.4 f 6 
38.2 f 6 
35.9f 5 

16.4 f 3 
18.3 f 3’ 
14.7 f 3 
18.2 f 3 

10.5 f 2 
9.4 f 2 

11.7 f 2 
11.5 f 2 

10.8 f 0.4 
41.6 f 2 
17.0 f 0.7 
11.1 f 0.4 

11.0 f 2 
11.1 f 2 
11.8 f 2 
11.9 f 2 

5 1 f 8  
47 f 9 
39 f 8 
36 f 8 

17 f 5 
19 f 4 
16 f 5 
1 8 5 4  

12 f 3 
11 f 2  
12 f 2 
1 3 5 2  

11.4f 0.5 
47.2 f 2 
17.0 f 1 
11.3 f 0.6 

56.3 f 2 
59.5 f 2 
59.5 f 2 
60.5 f 2 

166 f 5 
177 f 5 
169 f 4 
164 f 4 

112 f 3 
110 f 3 
110 f 3 
1 0 0 f 3  

65.5 f 2 
64.5 f 2 
64.5 f 2 
62.4 f 2 

59.7 f 0.4 
167 f 1 
108 f 0.8 
64.2 f 0.5 

0.22 f 0.1 
0.29 f 0.1 
0.25 f 0.1 
0.30 f 0.1 

0.23 f 0.2 
0.32 f 0.2 
0.08 f 0.2 
0.15 f 0.1 

0.03.* 0.2 
0.13 f 0.2 
0.01 f 0.2 
0.21 f 0.2 

0.26 f 0.1 
0.20 f 0.1 
0.20 f 0.1 
0.45 f 0.1 

0.27 f 0.03 
0.27 f 0.04 
0.10 f 0.04 
0.29 f 0.03 

deviations or errors in these quantities); positive numbers mean the actual shift 
from gate 30.5 is upward, The third and fourth columns are RMS wave-height 
6 and height skewness A,, retrieved using the model-fit method. In the top 
section of this table, each of these is done over 60 total wave forms, comprising 
6 sec (-40-km path distance). The bottom section is for a 24-sec average. 
Table I1 shows comparisons of RMS wave height 6 from our method for 
Hurricane Fico (24-sec averages), compared with the on-board wave-height 
estimator, as well as algorithms of Fedor and Hayne. (Hayne’s data were 
available for only two of the four periods we analyzed.) These results are 
taken from Lipa and Barrick (1981). 

It is possible to linearize Eq. (6) completely by expanding about an initial 
estimate of wave height ho (obtained either from the on-board wave-height 
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TABLE 11. WAVE-HEIGHT COMPARISONS 

Present analysis Fedor Hayne On board 
Time period (cm) (4 (4 (cm) 

1412:00-14:12:24 59.7 58.8 - 60.5 
14: 14:42-14 15~06 167 188 128 206 
14: 15130-14: 1554 108 117 74 116 
14: 17:30-14: 1754 64.2 64.1 - 63.7 

estimator or from the leading-edge slope). This leads to an iterative search for 
the true value of h. However, we have found no savings in computer time over 
the one-dimensional grid search. In addition if ho is a poor estimate, the 
iterative method may converge to an incorrect value. Hence we do not 
recommend this method. 

4. THE STUDY OF ALTIMETRIC BIASES USING MODELS 

Thus far, in our convolutional representation for the altimeter echo 
waveform Eq. (4) we avoided using models for any of the three functions in the 
integrals that produce the echo: the antenna pattern function, the pulse-shape 
function, and the surface probability density function. Since the first two 
should be known from calibration tests of the instruments, the third is 
obtainable exactly using deconvolution. This method was then tested on 
Seasat data and the actual probability density was in fact accurately 
measured. Only in the last section, then, did we fit a model to the surface- 
height probability density in order to relate its most important descriptors 
(RMS wave height and wave-height skewness) to the same parameters 
obtained by other investigators. 

There are situations or reasons in which models for all three functions are 
illuminating. These have to do with how various departures of the system, 
propagation medium, or scattering process from the ideal affect the echo. Said 
another way, one can insert biases into the models one at a time and see how 
the system performs and/or how candidate algorithms will misinterpret the 
output. 

4.1. Echo Model with Gaussian BeamlPulse Shapes and Gram-Charlier 
Surface Probability Density 

Here we assume a Gaussian shape for the compressed altimeter pulse P(x) ,  
with z being the half-power width of the pulse. Likewise, we assume a 
Gaussian shape for the antenna beam near its boresight (i.e., the last range gate 



74 DONALD E. BARRICK AND BELINDA J. LIPA 

taken on Seasat subtends 0.3" from boresight, while the two-way half-power 
antenna beamwidth extends 0.57" from boresight). At this time we assume the 
antenna points directly at nadir; pointing-error biases and models will be 
examined later. The total two-way half-power antenna beamwidth is $,, 
(1.13" for Seasat), from which we define +b = I,b,,/,,/KiiZ and u b  = H'I,bi/2. 
Finally, we define a joint height-slope probability density after the fashion of 
Eq. (6) that includes height skewness as 

P i ( < )  = P(<,O,O)  

- - (271) 312h~,~y 1 ,/- {l + %[(:)'- 3(;)]]e~p(-<~/2h~) (7) 

where h is the RMS wave height (related to significant wave height as 
H1/3 2: 4h), s, and sy are the RMS wave slopes along any two orthogonal 
axes tangent to the mean sphere, pxy is the correlation coefficient of the 
wave slopes along these axes, and 2, is the wave-height skewness coefficient 
defined after Eq. (6). 

Upon substitution of these models into Eq. (4a), the resulting integration 
can be done in closed form to give 

where 0, is the average backscattering cross section per unit area at normal 
incidence, from which the nadir wind speed is derived (Brown, 1979; Fedor 
and Brown, 1982); specular-point theory gives the following form: 

We also define the following terms 

at = c t / 4 4 % - 5  

h = (C2) = RMS wave height 

0, = ,/- = (ct,/2)/$ 

t+, = H ' ~ t / 2  -N (Ct,/2)/2 

[ t ,  as defined in Barrick (1972a)l 

[ t ,  as defined in Barrick (1972a)l 

and @(y) is the error function of argument y. 
Implicit in the above derivation are Seasat altimeter parameters, such 

that z = 3.074 nsec (from Seasat internal calibration mode), t, = 832 nsec, 
#b = 3120 cm. For h = 0, t ,  = 1.846 nsec and ap = 19.58 cm; while for 
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h = 200 cm (i.e., significant wave height is 8 m, representing an extremely 
high sea state), t ,  = 9.473 nsec, and a, = 201 cm. Hence, all terms of order 
a,/w, and higher have been neglected in deriving Eq. (E), since ap/ub is less 
than 0.03 at even the highest sea states. 

The constants in Eq. (8) that determine the model altimeter echo waveform 
have meaningful physical interpretations. a, defines the spatial width of the 
effective receiver pulse. The quantity ap = d G :  defines the amount (in 
space) to which the pulse is stretched by scattering from the waves of RMS 
height h; therefore, this quantity determines the shape of the leading edge. 
Finally, the quantity ub,  which depends on the antenna beamwidth, is the 
distance downward the altimeter pulse travels as it expands over the spherical 
earth until the finite beamwidth attenuates the energy. Hence, t ,  and uH 
determine the shape of the waveform in the plateau region, as seen from the 
factor e-'/"b. 

Note at  this point that if we take the spatial derivative of Eq. (8) and restrict 
ourselves to the leading edge (so that x << ub), we obtain 

where if RMS wave height h significantly exceeds pulse width of, we have 
a, = h; therefore Eq. (10) is identical in form to Eq. (7) except that distance is 
now turned around [i.e., wave height in Eq. (7) was upward, whereas x is in 
the direction of pulse delay time, namely downward]. Therefore, for higher 
wave heights, the shape of the leading-edge derivative is identically the shape 
of the Gaussian height density function with the Gram-Charlier correc- 
tion added to include height skewness. On the other hand, when pulse 
stretching is small ( h  < a,) the skewness of wave heights has negligible 
effect on the altimeter waveform. 

The simple, direct relationship between the leading-edge derivative, given 
by Eq. (lo), and wave statistics is attractive, and forms the basis for Fedor's 
algorithms for extracting wave height (Fedor and Barrick, 1978; Fedor and 
Brown, 1982). 

4.2. Semiempirical Seasat Model, Neglecting Pointing Error 

In the preceding section we presented an exact solution for a short-pulse 
altimeter waveform based on assumed models for the various convolutional 
factors' constants, as observed in the waveform. Thus system gain, aa, and 
AGC factors are all lumped as one. When this is done, the empirically derived 
constants truly appear to be independent of sea state, as will be shown 
subsequently. Therefore, the AGC and height tracker indeed accomplish their 
functions quite well. 
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The observed Seasat mean waveform is therefore 

aS(2x/c) = No + K - 1 + Q, - e-x'ub (:[ (&)I 
If the theory that produced the model Eq. (8) that we adapted to Eq. (1 1) is 

valid, we should be able to use the nominal constants for op and #,for Seasat- 
as measured by the instrument designers and internal calibration mode; this 
we will do. The remaining constants, No and K, we determine from the 
analysis of several data sets over the widely varying sea conditions of orbit 280 
(the pass over Hurricane Fico analyzed previously). Doing this, we find No N 

5.4 and K = 92, in terms of the units transmitted by the satellite. Because 
of the AGC and other constants constituting K, we can write K = Ano, where 
as before, Q, is the normalized nadir backscattering cross section; A is pro- 
portional to( 1) AGC gain, (2) a multiplicative factor due to antenna pointing 
error (to be discussed subsequently), and (3) path attenuation, due in part to 
rain (to be discussed subsequently). Since the data show that K remains 
constant, decreases in 0: for higher winds and seas are compensated by 
increases in AGC gain A. Therefore, measurement of A gives an uncor- 
rected estimate of a,. 

The nominal relationship between gate number N (1 I N I 60 for Seasat) 
and x appearing in Eq. (11) (in the absence of any height biases) is therefore 

(12) x = XN = ( N  - 30.5)Ax 

where Ax = 46.875 cm based on the sampling time gate At = 3.125 nsec. 
To verify the general validity of the empirical model Eq. (11) for the four 

constants, No, K, a,,, and L(b (the first two empirically measured and the second 
two determined from hardware calibration), we plot the model values and 
measured values in Fig. 5. These two curves represent the lowest and high- 
est sea states in the orbit-280 pass near the hurricane. Significant wave 
heights for these cases are 2 and - 7m; each sample is an average ovEr 24 sec, 
consisting of 240 waveforms. The model was plotted using values of h and X I ,  
and bias [ measured by deconvolution from the data, as described previously 
and shown at the bottom of Table I. The fit shown in Fig. 5 is reasonably 
good; the major area of difference between model and data is the plateau, 
where the actual Seasat echo falls off at a slightly slower rate with time than 
does the model. The model up to now ignores a number of degradations to 
both the altimeter return and the system itself. Any or all of these 
degradations in some combination will cause the measured plateau to droop 
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FIG. 5. Data points from Seasat orbit 280 2 4 s  echo average at sample 1 and sample 2 and fit 
of model, Eq. ( 1  1). Parameter values used in model for h, A,, and height bias are those derived and 
listed at bottom of Table I, with nominal design values for pulse and beamwidths given for Seasat. 
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less than the model representing perfect operation. These degradations 
include the following effects. (1) The actual antenna beamwidth in space could 
be slightly greater than the nominal value obtained from prelaunch analyses. 
(2) Very small off-nadir pointing of the antenna boresight will decrease the 
droop in the plateau. An average pointing error of only 0.3" can explain the 
observed droop differences, which is not unreasonable to expect. (3) Rain 
partially filling the altimeter footprint can cause less droop. Both of the latter 
effects are examined quantitatively in subsequent sections using models for the 
altimeter return. 

4.3. Tracker-Bias Study Using the Semiempirical Model 

As mentioned previously, if the Seasat height tracker and AGC circuitry 
worked perfectly, gate 30.5 would always be centered halfway up the echo 
waveform leading edge, at the point t = 0 and x = 0. Therefore, gate 30.5 
would itself be an accurate measure of the distance between the satellite and 
the electromagnetic mean sea surface. Our results (Lipa and Barrick, 1981)- 
obtained by deconvolution and presented in Table I-show that this is not 
the case. Others have also found similar differences (Hayne and Hancock, 
1982). There is definitely a bias, or difference, between gate 30.5 and the 
electromagnetic mean surface. Whether deconvolution is employed (as done 
here), or a model is fitted directly to the actual waveform [as done by Hayne 
(1981)], the same bias should appear. Either technique, therefore, will be able 
to measure and remove this bias. 

The bias is such that the true electromagnetic mean surface is higher 
(upward) than gate 30.5. In other words, gate 30.5 is too low, i.e., toward the 
troughs. Furthermore, this effect is definitely related to sea state, as seen in 
Table I. It might be suspected that it is also related to wave-height skewness, 
but since this dependence would be weak, many data sets with accurate 
independent measurements of skewness would be required to establish this 
empirically. 

To understand this important effect, we have simulated the Seasat 
tradker/AGC theoretically to study these dependences in greater detail. If our 
tracker simulation is correct, it should produce results that agree with 
observations. Such a simulation could then be used ( 1 )  to analyze parameter 
dependences, (2) to establish variations in tracker constants, and (3) for 
decisions and/or design criteria for future altimeter systems. 

The works of MacArthur (1978) and Townsend (1980) detail a simple 
tracker principle: a feedback system positions gate 30.5 laterally until its 
amplitude is equal to the average amplitude of all 60 waveform gates. Since 
gate 30.5 corresponds to x = 0 in our altimeter model waveform Eq. (1 1 ), we 
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can express this balance condition mathematically as 
1 60 - 

o,(Ax(i - 30.5) - C )  
531=1 

Goo,( - f) = - 

where f represents the difference or error (measured upward) in centimeters 
from gate 30.5. If the tracker performs perfectly, twill be zero. 

The number 1/53 was chosen by MacArthur (1978) and fixed in the hard- 
ware rather than 1/60 in the averaging process to account for the expected 
waveform droop in the plateau region. We have performed independent 
numerical checks on whether 53 is the optimal number by using our model 
waveform Eq. (1 l), and found it indeed to be the closest integer to the true 
factor. 

The factor Go accounts for any amplitude bias on gate 30.5. Ideally it should 
be unity, but we have found from carefully examining many data sets that 
Go N 0.9614, i.e., gate 30.5 is too high and hence the balance is such that it 
rides toward the troughs. 

The balance condition, Eq. (13), is solved numerically, employing the model 
Eq. (11) with the nominal Seasat constants given there, and Go above; a 
Newton root finder solves for height bias r a s  a function of RMS wave height h 
and wave-height skewness ,Il. This height-tracker difference t is given in 
Table 111; values in parentheses present t as a percentage of RMS wave 
height h. 

As can be seen, the relation between height bias and wave height is not 
linear. Rather, the percentage bias increases with both increasing wave height 
and height skewness. To compare these percentages with observations from 
Lipa and Barrick (1981), which are repeated in Table I, we employ the same 
wave-height and skewness parameters as extracted there, and display the 
results in Table IV. 

Table IV shows that observations have a slightly greater bias than do the 
simulations. The numbers can be made to agree exactly by varying the 
multiplicative constant Go in Eq. (1 3), to reflect additional unknown gain 
factors in the circuitry that may have changed after launch. In fact, forcing 
agreement between simulated and observed values might be used to estimate 
this gain. Both simulations and observations show greater percentage errors 
for increasing wave height and skewness. Therefore the general behavior of 
the simulator algorithm appears correct. 

4.4 Antenna Pointing-Error Effects- Model for Echo Plateau 

Brown (1977) derived general expressions for the altimeter echo waveform 
that included the effects of antenna off-nadir pointing errors. We have 
independently reconfirmed those results. For the Gaussian representation of 



TABLE 111. SIMULATED VALUES OF MEAN HEIGHT ~ R R E C T I O N  DUE TO TRACKER PERFORMANCE AS A FUNCTION 
OF RMS WAVE HEIGHT (h) AND WAVE-HEIGHT SKEWNESS (11) 

h 
(cm) 0 0.05 0.10 0.15 0.20 0.25 0.30 

0 
25 
50 
75 

100 
125 
150 
175 
200 
225 
250 
275 
300 

1.92 
3.17 (12.7)” 
5.51 (11.0) 
8.19 (10.9) 

11.12 (11.1) 
14.29 (11.4) 
17.73 (11.8) 
21.46 (12.3) 
25.52 (12.8) 
29.96 (13.3) 
34.82 (13.9) 
40.17 (14.6) 
46.09 (1 5.4) 

1.92 
3.30 (13.2) 
5.88 (1 1.8) 
8.82 (1 1.8) 

12.01 (12.0) 
15.45 (12.4) 
19.17 (128) 
23.20 (13.3) 
27.58 (13.8) 
3236 (14.4) 
37.59 (15.0) 
43.33 (15.8) 
49.66 (16.6) 

1.92 
3.44 (13.8) 
6.26 (12.5) 
9.44 (12.6) 

12.89 (12.9) 
16.60 (13.3) 
20.60 (13.7) 
24.93 (14.2) 
29.63 (14.8) 
34.74 (15.4) 
40.33 (16.1) 
46.46 (16.9) 
53.21 (17.7) 

192 
3.57 (14.3) 
6.64 (13.3) 

10.07 (13.4) 
13.77 (13.8) 
17.74 (14.2) 
2203 (14.7) 
26.65 (15.2) 
31.66 (15.8) 
37.11 (16.5) 
43.05 (17.2) 
49.56 (18.0) 
56.71 (18.9) 

1.92 
3.70 (14.8) 
7.01 (14.0) 

10.69 (14.3) 
14.64 (14.6) 
18.88 (15.1) 
23.44 (15.6) 
28.36 (16.2) 
33.68 (16.8) 
39.45 (17.5) 
45.74 (18.3) 
52.63 (19.1) 
60.18 (20.1) 

1.92 
3.83 (15.3) 
7.38 (14.8) 

11.30 (15.1) 
15.50 (15.5) 
20.01 (16.0) 
24.84 (16.6) 
30.04 (1 7.2) 
35.67 (17.8) 
41.77 (18.6) 
48.41 (19.4) 
55.66 (20.2) 
63.61 (21.0) 

1.92 
3.96 (15.8) 
7.75 (15.5) 

11.91 (15.9) 
16.36 (16.4) 
21.12 (16.9) 
26.23 (17.5) 
31.72 (18.1) 
37.65 (18.8) 
44.07 (19.6) 
51.05 (20.4) 
58.66 (21.3) 
66.99 (22.3) 

Values in parentheses are as a percentage of RMS wave height h. 
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TABLE Iv. COMPARISON OF OBSERVED TRACKER HEIGHT BIASES (AS A PERCENTAGE 
OF SIGNIFICANT WAVE HEIGHT) WITH THOSE OBTAINED FROM SIMULATIONS USING 

MODELS AND EQ. ( 13)” 

RMS Observations (%) 
Sample wave height Simulations 

no. (4 First moment Model fit (%I 

1 59.7 18.1 19.1 15.3 
2 167 24.9 28.3 17.5 
3 108 15.7 15.7 13.0 
4 64.2 17.3 17.6 15.7 

a Nominal Seasat constants were employed in the models, along with retrieved sea 
surface parameters for the four samples of orbit 280 over Hurricane Fico. 

the antenna beam pattern very near boresight, we previously used G(u) = 1, 
which is valid (1) when no pointing error is present, and (2) on the echo leading 
edge only. A general expression for G(u) that includes angular pointing error p 
from nadir is obtained by integrating out the azimuthal dependence of the 
actual antenna pattern around a circular range cell on the surface to obtain 

V(u)G(u) = e - a z / ~ b - Y I U b l g [ 2 ( P / ~ b ) ~ ]  for u > 0 (14) 

where l,(z) is the zero-order modified Bessel function of the first kind with 
argument 2. 

Here, we will employ the Gaussian pulse-shape model and Gaussian height 
probability density (neglecting skewness) in the general echo-waveform 
double integral, Eq. (4a), to study specifically and separately the effect of 
pointing error p. Therefore, substituting Eq. (14) into Eq. (4a), along with 
Gaussian models for the other two functions, and integrating out <, we obtain 

(15) 

where all of the parameters appearing here have been defined following 
Eqs. (1) and (8). 

Unfortunately, Eq. (15) is not integrable in closed form. Therefore, we 
have integrated it numerically, normalizing the expression by dividing by 
(211)3/2H”aob, (such that the plateau becomes unity when p + 0 and J / b  + m). 
Results for RMS wave height, h = 100 cm, are shown in Fig. 6 for values of 
antenna pointing error between 0 and lo, in steps of 0.25’. This is done for the 
Seasat system, with 60 waveform gates spaced 3.125 nsec (46.875 cm) apart in 
time (space). In addition, nominal Seasat values for t ,  and z used previously 
are employed here; a value for zb that is larger than Seasat’s by f l  was used 
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1.00 , I I I I I I I 1 I 1 I I 

Range Gate Number 

FIG. 6. Model Seasat altimeter echo using Eq. (15), showing effect of antenna pointing error p 
(in degrees) away from nadir. Nominal Seasat altimeter constants have been used, along with 
RMS ocean wave height h = 100 cm. 

for this study. (It is highly unlikely that pointing errors exceeding 1” could 
occur without track being lost.) 

Two effects are evident. As pointing error increases, the overall echo level 
decreases. This results primarily from the exp( -f12/$t) factor multiplying the 
integral. The obvious impact of this error will be to give a false value for 6, as 
the AGC compensates for this drop. The second effect is the change of the 
normal plateau “droop” to a “rise.” This occurs because of the I, factor in the 
integrand, and is explained physically by the fact the largest power level no 
longer intercepts the earth at nadir (i.e., zero time), but later as the beam 
points off nadir. Both of these effects, in addition to producing false values of 
Q,, will give erroneous mean surface-height values because of combined AGC 
and height-tracker responses. Fedor has shown that this height error can be 
several tens of centimeters for a pointing error of only a degree. Therefore, 
when tilt occurs, it must be identified and taken into account if the parameters 
obtained from the altimeter are to be meaningful. A simple way to do this 
follows. 

From Fig. 6, it is apparent that-for the 60 waveform gates retained by 
the Seasat altimeter-the plateau region is very nearly linear. Furthermore, 
the inclusion of pointing error does not make this region less linear; it 
merely changes the slope of the plateau. This has led us to derive a very 
simple, closed-form expression for the plateau. Interpretation of the plateau 
in terms of this expression can then be used to estimate pointing-angle 
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error by measuring the slope. Then with the straightforward double FFT 
deconvolution process discussed subsequently, all pointing errors can be 
easily and quickly removed. 

We define the plateau as the region for which x > 20, .  The integral in 
Eq. (16) can be solved by the saddle-point method: it is determined by the 
shape of exp[ -(u - ~ ) ~ / 2 a ; ]  for u z x. Since x is significantly greater than 
zero in the plateau, the lower integration limit may be taken to be - 03. Then 
we do a saddle-point expansion of the exponential argument and integrate, 
approximating I ,  by its value at the saddle. Then, normalizing by 
( ~ ~ C ) ~ / ~ H ” C T , ( T ~ ,  we obtain 

Since the plateau for Seasat has t << t ,  (e.g., t = 89 nsec for the final gate, gate 
60, while t ,  N 425 nsec), we can express the exponential in 2 t / t ,  by its first two 
terms. Furthermore, the modified Bessel function argument is also small in 
the plateau as long as pointing error pis less than, say, 3$b; hence it also can be 
represented by the first two terms of its series expansion. We then obtain the 
following linear form for the Seasat plateau: 

(17)  o,,(t) = e - p z ’ ~ i [ l  - (2t / t , ) (1  - p Z / $ : ) ]  

It can be seen from Eq. (17) that the slope of the plateau increases with p/$b, 

coming positive when p / $ b  > 1 .  A very straightforward method of measuring 
pointing error is obvious from Eq. (17). One simply isolates the plateau region 
(there are always at least 20 gates that define the plateau) and fits a linear 
regression line to it. The slope of this line is then a direct measure of pointing- 
angle error p. This method avoids fitting the complicated nonlinear Bessel 
function convolution to the leading edge (Hayne, 1981). 

4.5. Rain Eflects on Altimeter Echo 

Anomalously high winds obtained from unusually low values of CT on the 
altimeter echo plateau when Seasat passed over storms has led to examination 
of rain effects on the echo. A uniform rainfall over the entire altimeter 
footprint (which has a maximum diameter of 10 km corresponding to the last 
range gate on Seasat) can in principle produce at least three physical effects: (1) 
attenuation of the signal as it passes through the rain, (2)  change in signal 
phase-path distance due to the slight modification of the refractive index of the 
rain region, and (3) direct backscatter from the raindrops themselves that fill 
regions of the altimeter range cells above the sea surface. 

The first effect will reduce the absolute level of the entire altimeter echo 
strength, including the plateau. If ignored, a lower value of CT, will be deduced, 
and hence an erroneously high value of wind speed. In Chapter 10 of this 
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volume, Fedor and Griffith show how this attenuation can be estimated and 
removed using data from the Seasat Visible and InfraRed Radiometer (VIRR). 
The second effect-if uncorrected-produces an error in altimeter-derived 
mean sea level; the VIRR rain estimates are also used subsequently to remove 
this height bias. When the rainfall is uniform across the cell, however, these 
two effects do not change the shape of the altimeter echo, only its amplitude 
and time position. The third effect, namely the rain echo itself, can be shown to 
be sufficiently small as to be negligible for the short-pulse altimeters flown on 
Seasat and GEOS; within the cell subtended by Seasat, for example, rain echo 
is four orders of magnitude lower than sea surface echo, even in a heavy 
rainfall. Hence, direct raindrop echoes cannot compete with sea echo.3 

Examination of rainstorm geometries and their statistics reveals, however, 
that rain often will not uniformly fill a horizontal cell equivalent to that seen by 
Seasat (at gate 60, the footprint diameter is -9 km). The more intense the 
rainfall, the smaller the rain cell on the average (Walsh, 1981). Hence, using 
models, we examine here the question of whether a typical-size rain cell at an 
arbitrary location with respect to satellite nadir (either fully or partially filling 
the altimeter footprint) will produce distortion of the echo because of 
increased attenuation within the rain region. Referring to Fig. 7, we assume a 
circularly cylindrical rain cell of height H,, half-power diameter d, and 
displacement xo from the satellite nadir. Furthermore, for ease of calculation 
we assume that the rain density-and hence attenuation-falls off in a 
Gaussian fashion from the ceI1 center at xo. Neglecting height skewness here, 
we then arrive at the following expression for the (normalized) sea surface 
radar echo as modified by rain attenuation: 

where 

ub u; = 
1 + 2 U b H / 9  

and 
r = d/2m 

’ Goldhirsh and Walsh (1982) propose a modification to the Seasat design that would 
purposely measure rain echo above the sea with a future altimeter; however, the rain cell is 
considerably larger so as to increase the total rain echo. 
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FIG. 7. Geometry for rainstorm model used, which partially fills the Seasat altimeter footprint; 

the maximum footprint diameter for Seasat is -9 km. 

Here, k, is the one-way signal attenuation rate at 13.5 GHz (in decibels per 
kilometer) due to rain and H, is the height of the rain cell. The first term of 
Eq. (18) is the idealized altimeter sea echo in the absence of rain; the second 
term therefore represents the correction accounting for rain attenuation. 

We employ the above model to calculate numerically altimeter echo curves, 
assuming an RMS wave height of 100 cm. The echo is plotted as a function 
of Seasat range gate, with the same altimeter model parameters used for 
Fig. 6. For the rain;we use the Marshall-Palmer relationship for k ,  = 
aRb (dB km-I), where a = 2.038 x b = 1.023, and R is rainfall rate in 
mm hr-' (Goldhirsh and Walsh, 1982). Walsh (1981) employs rainstorm 
statistics reported by others to establish an inverse relationship between rain- 
fall rate R and storm cell size d; for example, at R = 5 mm hr-' (relatively 
light rain), the average cell diameter is d = 36 km; for R = 10 mm hr-*, d = 
23 km; for R = 20 mm hr-' (heavy storm), d = 13 km. Using these values, 
we plot normalized altimeter echoes in Fig. 8 with Seasat values for Ub (corre- 
sponding to t, = 650 nsec) and H (800 km), with RMS wave height h = 
100 cm. We take H,, the effective height of the rain cell column, to be .5 km. 

The curves of Fig. 8 show interesting effects and explain some of the strange 
echo shapes seen by Seasat when it occasionally passed over identified rain 
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cells. As expected, the severest attenuation and plateau distortion occur when 
xo = 0, i.e., when the storm is centered directly beneath the satellite. For light 
rainfall (Fig. 8a), the attenuation is small; in addition there is almost no 
distortion (change in slope) to the plateau. The latter is true because with the 
cell half-power width of 36 km, the 9-km Seasat footprint (out to gate 60) is 
essentially uniformly filled with rain, no matter where the storm center is 
located. On the other hand, when rain is heavy (Fig. 8c), plateau distortion is 
severe when xo = 0 (i.e., the storm is centered on nadir) because the storm cell 
width of only 13 km causes an added echo-signal taper across the 10-km 
footprint. With the rain being severe at nadir, the echo is attenuated greatest 
on the leading edge, while the echo attenuation becomes less near gate 60 
where the annular altimeter cell is out at - 9 km. 

Even in moderate or light rain, the echo distortion will produce three errors 
or biases: (1) no on the plateau will be lower, and hence wind speed derived 
therefrom will be overestimated; and (2) mean sea surface height will be in 
error by as much as tens of centimeters, depending on how the on-board or 
post facto algorithms respond to the distorted waveforms. Significant wave 
height will not be appreciably biased by the presence of rain, however. 

Although further study and analysis of these and other rain models could be 
attempted [for example, we could derive a simplified, closed-form expression 
from Eq. (18) for the line describing the plateau, as we did in Eqs. (16) and (17) 
for pointing-error effects], such efforts appear rather pointless. This is because 
the rain models above (and other models) contain too many parameters 
(unlike pointing error, which has only one parameter). Hence, a confident, 
unique determination of these parameters and separation from other possible 
effects (e.g., actual change in om pointing error) is impossible without 
additional outside information. Therefore, there is considerable support for 
both (1) an altimeter modification that would create a special “rain cell” at 
some distance above the surface to identify rain and parameterize it as much as 
possible (Goldhirsh and Walsh, 1982); and (2) using other instruments such as 
infrared and/or microwave radiometers to identify and quantify rain effects 
(Fedor and Griffith, Chapter 10, this volume). 

5.  ELECTROMAGNETIC BIAS 

Over a decade ago, very short-pulse altimetric measurements of the ocean 
surface from a tower (Yaplee et al., 1971) uncovered a very interesting 
phenomenon. When the altimeter beam is so narrow that it essentially profiles 
the longer waves in height (like a laser), the centroid of the surface echo power 
is lower in position than the mean sea level as determined by the time-gated 
echo returns. Said another way, ocean waves are stronger reflectors near their 
troughs than near their crests. This is not surprising, for the specular-point 
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FIG. 8. Model Seasat altimeter echo using Eq. (18), showing effect of rain in distorting the 
waveform. Here, xo is the distance of the rain cell center from nadir, d is the cell diameter [which 
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the model, along with an RMS wave height h = 100 cm. The three plots represent (a) light, 
(b) medium, and (c) heavy rainfall. 
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result for the average backscatter cross section (per unit area) of a rough 
surface at normal incidence-as given in Eq. (9)-is inversely proportional to 
surface slopes. Since it is readily observed that ocean waves are pointier at the 
crests, this inverse relationship between slopes and echo strength confirms that 
the crest regions should be poorer reflectors than the trough regions. Water 
waves exhibit this unsymmetrical appearance about the vertical because of the 
slightly nonlinear hydrodynamic boundary conditions at the air-water 
interface. 

For a typical satellite altimeter (such as Seasat or GEOS), this means that 
the recovered “mean” sea level extracted from the echo will not coincide with 
the true mean sea level at that point (the latter defined as the surface within the 
footprint if all waves came to rest). This altimetric shift downward from the 
desired, true position has been termed “electromagnetic” (EM) bias. Unlike 
some of the biases considered in the preceding section, EM bias cannot be 
easily removed from the apparent height measurement. Although the 
nonlinear boundary conditions at the sea surface are known exactly, the 
mathematical methods for solving them have heretofore been too intractable 
to permit an adequate, quantitative, theoretical investigation of this bias. 
Therefore, a number of experimental investigations have been undertaken 
from aircraft over the past years to quantify this effect empirically (Walsh et al., 
1983; Choy et al., 1983). 

We examine here the theoretical expression-and source-for EM bias in 
the altimeter echo. Although we have not yet been able to solve the theoretical 
expression exactly, we obtain bounds for this bias using models in the 
expression. We interpret these EM bias bounds and compare them with the 
experimentally observed values cited above. 

Longuet-Higgins (1963) showed that a generalization of the Gram- 
Charlier extension of the Gaussian joint probability density is adequate when 
the random variables appearing therein are weakly correlated. This gen- 
eralization can be applied to the joint height-slope probability density 
function p j ( ( )  = p(C, c,, C,) at C, = C, = 0, that appears in the altimeter echo of 
Eqs. (1) and (4), by the simple addition of another term to Eq. (7), giving 

x exp( - C2/2h2) (19) 
where for a two-dimensionally rough surface, 1, is defined in terms of 
moments as 

with the moments plnn defined as p,,,,,, = ([‘{FC;). 
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For example, the second moments take the following familiar forms: 

P200  = ( C 2 >  = h2 

Po02 = ( C ; )  = s,” 

Po20 = <r:> = s: 

Poll = < 5 x L y )  = SxSyPxy 

where we have taken our local coordinate system such that all first moments 
are zero, i.e., 

If we restrict ourselves to a one-dimensional (collinear) sea with waves 
propagating in the x direction, the expression Eq. (19) for the Gram-Charlier 
model is modified by changing the constant before the braces to 1/2xhs,, and 
we have 2, = ~ 1 2 0 / ( ~ ~ ~ ~ ~ 0 2 0 )  = ( c c ; ) / ( h s ; ) ,  a result derived by Longuet- 
Higgins (1963) and Jackson (1979). We see in this much simpler, collinear form 
for A, that it is directly proportional to ( ( C ; ) ,  the correlation between height 
and the square of the slope. This quantity is obviously nonzero and positive 
for a surface like the sea that is pointier near the crests (5 > 0), where the mean- 
square slopes will be greater. 

Therefore, the term -(A2/2)(C/h) appearing in Eq. (19) represents a bias 
downward by an amount 

in terms of RMS or signifidant wave height. It has been observed in many of 
the previously cited experimental investigations that EM bias is definitely 
proportional to wave height, and those investigators present their results as a 
percentage of significant wave height H1,3 . 

To pursue the theoretical expressions and their interpretation a bit further, 
we employ perturbation theory to find expressions for the third moments 
required in A,, as done in Longuet-Higgins (1963), Weber and Barrick (1977), 
and Barrick and Weber (1977): 

c” c c  
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P P  P P  

where S(k i )  is the wave-height directional spectrum at wavenumber 
& = ki$ + kiyy^. The “coupling coefficient” A is obtained from the 
perturbational solution to the nonlinear surface boundary conditions for 
gravity waves, and correcting a factor of 2 in the Longuet-Higgins (1963) and 
Jackson (1979) expressions, is given by Weber and Barrick (1977): 

where 

and g is the acceleration of gravity. 
Second moments needed are easier: 

As long as one is willing to specify the form of a model for the wave-height 
directional spectrum S(E), the preceding expressions show that in principle the 
integrals of Eqs. (22) and (25) should be solvable at least numerically and 
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should produce results for EM bias, as represented by I,. Obviously the 
factor A ,  depends in a very complicated way on the nature of the directional 
spectrum and its parameters, and hence EM bias would be expected to be a 
function of more variables than merely significant wave height. 

Jackson (1979) solved for A ,  and A2 in closed form for the simpler case of 
collinear wave fields (5, = 0), but obtained values for EM bias that were 
considerably larger than those observed experimentally. This is now known 
to be due to the breakdown of the perturbation theory basis for Eq. (22) at 
large wavenumbers, k ,  and k, .  This breakdown manifests itself in the fact that 
A given in Eq. (23) “saturates,” i.e., no longer continues to increase in 
proportion to k ,  and/or k ,  beyond a certain point. This saturation effect is 
only important in Eqs. (22b)-(22d) because the overall integral is quite 
sensitive to short waves, i.e., large k ,  and k , .  It would be ideal to have an 
expression for A that accounts for this “saturation effect” but such an 
expression has not yet been calculated. 

The point at which perturbation theory breaks down and A saturates occurs 
when the perturbational parameters k,h  and k2h are near unity. Since A no 
longer increases beyond that point, an approximation that can give bounds to 
EM bias is obtained here by truncating the integrals in Eqs. (22b)-(22d) at 
upper limits defined by kl,, kzU = f / h ,  where f is near unity. We employ a 
JONSWAP (Joint North Sea Wave Project) model for the wave spectrum S(k) 
(Hasselmann et al., 1973,1976,1980), which is presently believed to provide the 
best parametric representation of waves versus wind, fetch, and duration; 
empirically “tuned,” this model incorporates features predicted by nonlinear 
wave-wave energy transfer. It is adapted from the above references and 
transformed to wavenumber variables in the appendix to this chapter. 

Whereas the third moments defined in Eqs. (22b)-(22d) have their upper 
limits defined as described above to approximate the saturation effect, the 
integrals for the second moments defined in Eq. (25) are truncated in another 
way. Again, only Eqs. (25b)-(25d) are sensitive to the choice for the upper limit 
because the appearance of wavenumber squared in the integrand enhances the 
effect of the smaller scale roughness (at larger wavenumbers) in contributing to 
the slopes. Truncation at some point is necessary, for if we assume the usual 
equilibrium-range spectral behavior (i.e., f - 5  frequency dependence) used in 
Phillips, Pierson-Moskowitz, and JONSWAP models, these slope integrals 
diverge as the upper limit goes to infinity. On physical grounds, therefore, we 
take the upper limit to be k, N k0/20, where k ,  is the radar wavenumber. For 
sea surface gravity waves, it is approximately at this point beyond which (in 
wavenumber) specular points no longer contribute to the scattering process. 
For the f - 5  equilibrium-range wave spectral behavior, however, this exact 
upper-limit value is not that critical; for example, the use of ko/10 would have 
produced a change in the second-moment (mean-square slope) integrals of 
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- 14%, or 0.5 dB. We therefore will employ k ,  = k,/20 N 30 m-l as an upper 
limit in ensuing examples, corresponding to the Seasat altimeter operating 
frequency of 13.9 GHz. 

Using the JONSWAP wind-wave spectral model adapted in the appendix 
to this chapter and the upper limits defined for Eqs. (22) and (25), we 
numerically evalute these integrals, understanding that they are only approxi- 
mations. (More exact evaluations await the derivation of a correct theory 
explaining saturation.) If we evaluate I ,  defined in Eq. (20), then EM bias 
given by Eq. (21) in terms of Az bears an explicit direct proportionality to RMS 
or significant wave height. We find, however, that %z evaluated in the above 
approximate manner still retains a weak, inverse power-law dependence on 
significant wave height, independent of the JONSWAP spectral development 
parameter v (the latter is taken to be -0.14 for fully developed seas, increasing 
to possibly 0.3 for newly arising or fetch-limited seas). A regression, power-law 
fit to the numerical results for f = 1 gives 

A2 I+I 0.25H;$20 (26) 

Individual scatter in the theoretical model results for Az from the above best- 
fit model does not exceed k0.06 when significant wave height is greater 
than 0.2 m. A change of &50% in the upper integration limit on third 
moments-as represented by the factor f-results in corresponding changes 
of & 20% in Az. 

Recent experimental determinations of EM bias have been undertaken 
using a contouring radar from an aircraft at 36 GHz (Walsh et al., 1983), 
and using a microwave altimeter from an aircraft at 10 GHz (Choy et al., 
1983). Walsh’s results at the higher frequency show an EM bias of - 1.1% of 
significant wave height, with a scatter between -0.5 and - 2.0%; no obvious 
trend of EM bias (expressed as a percentage of significant wave +eight) versus 
significant wave height is seen from Walsh’s data. Choy, on the other hand, 
finds an EM bias of -3.5% of significant wave height. at the lower radar 
frequency, with a scatter between -2.0 and -5.0%. The significant 
difference versus radar frequency is surprising and as yet unexplained 
quantitatively. Using the crudely estimated theoretical expression for A, 
of Eq. (26) in Eq. (21), we find at 13.9 GHz that EM bias varies between 
-3.0 and -2.0% for significant wave heights between 1.0 and 5.0 m, respec- 
tively. With k 20% uncertainty (at least) because of the upper-limit approx- 
imation, our values fall between those of Walsh and Choy. The scatter in 
the measurements, as well as the approximations employed in the theoreti- 
cal predictions, preclude serious attempts at more detailed quantitative 
comparisons. 

The reason for the considerable experimental investigations of EM bias- 
and also more exact theoretical studies-is to understand this effect by noting 
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which surface parameters (in addition to significant wave height) cause 
variation in ,I2. The above experimental studies attempt to correlate EM bias 
to such things as surface wind speed, wave-height skewness, dominant wave 
period, and wave-height kurtosis. The correlations obtained by the two 
investigators appear in some cases to be at odds with each other. The number 
of data points employed in the analyses is too meager to pinpoint the source 
of these correlation differences. Needless to say, additional studies (both 
theoretical and experimental) will be required to quantize the dependences of 
EM bias more accurately. 

In summary, both the experimental and theoretical results show that-at 
Seasat operating frequencies-EM bias can be - 15 cm at 5 m significant 
wave height, with actual variations about this mean value between - 10 and 
-25 cm (at the same wave height). Such a bias, and particularly its 
uncertainty, lies well beyond the desired accuracy limits for satellite altimetric 
sea surface height measurement applications. The present inability to remove 
it from the data (in contrast, for example, with tracker bias) further encourages 
attempts to correlate EM bias to other sea surface parameters that can be 
measured by independent satellite techniques, so that this source of con- 
siderable error can be eliminated and/or reduced. 

6. A GENERAL, IMPROVED DECONVOLUTION ALGORITHM 

Lipa and Barrick (1981) developed and demonstrated a simple, efficient 
algorithm that can be applied to the echo leading edge involving a single 
deconvolution: we summarized that investigation previously. That method 
will not work for the plateau region, however. More important, when antenna 
pointing-error effects are present, that method will fail for both the plateau and 
leading edge. Therefore, we introduce here a general double-deconvolutional 
algorithm that can be used when pointing error contaminates the echo. 

The algorithm proposed is efficient, in that it does not attempt to determine 
six parameters all at once from a least-squares model fit to the entire echo 
waveform. It identifies and analyzes separately the three easily recognizable 
portions of the sea echo: (1) the pre-leading-edge noise level No, (2) the leading 
edge, and (3) the plateau. From the plateau, we do a linear regression fit based 
on Eq. (17) to determine the pointing error 8, if any. Then we know two of 
the three quantities occurring in the double convolution on the right side 
of Eq. (4): (1) the pulse shape P(u), obtained from the internal calibration 
mode, and (2) the antenna gain factor G(u)U(u), with G(u) given by Eq. (14) 
when pointing error is present. The unknown but desired quantity is the 
third factor in the double convolution: the surface height-slope probability 
density p j ( ( ) .  
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The latter is obtained by divisions of the Fourier transforms of known 
quantities. Define 

F(P(u))  = Q(q)  = P(u)e-iq" du (27) 

~(0Ax)) Ss(q) F(pj(C>) qj (q)  F(G(u)U(u)) H(v)  (28) 

with 

being Fourier transforms of the other quantities defined similarly. Then, 
because of Eq. (4), the Fourier transform of the desired quantity, qj(q),  is 
given by 

qj (q )  = S s ( - q ) / Q ( q W ( q )  (29) 

Then the desired quantity is obtained by an inverse FFT, i.e., 
m 

p i ( [ )  = F-'(qj(q))  = (1/2a) 1 qj(q)eic"q (30) 
- m  

It is important to note that it is necessary to actually do FFTs only twice: once 
on a&) and once again on qj(q). The Fourier transform of P(u), namely Q(q), 
is done once for the pulse obtained from the calibrate mode and stored as a 
table. (The pulse shape does not appear to change over many orbits.) 

The Fourier transform of the antenna gain factor is known in closed form. 
Substituting Eq. (14) into Eq. (27), we find from integral tables that 

As a check on Eq. (31), note that as ub+ 00 (i.e., the antenna becomes 
omnidirectional in its gain pattern), we obtain H ( q )  -+ l / i q ,  which is the 
Fourier transform for the unit step function. This is as it should be, as one sees 
from Eq. (14), where the unit step is all that is left in this limit. In other words, 
if the beamwidth is large enough, pointing error obviously does not matter. 

Therefore, a general, double-deconvolutional algorithm incorporating 
these effects and producing real-time uncertainties in desired output param- 
eters is summarized here, based on the Seasat altimeter: 

1. Renormalize each waveform (every 0.1 sec) to correct occasional high 
and low waveforms caused by AGC malfunction. This is done by dividing 
each waveform by the average energy in gates 45-60. 

2. Average a desired, predetermined number of waveforms together. 
3. Multiply all range-gate amplitudes by predetermined gain bias 

corrections. 
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4. Identify and separate the three characteristic portions of the waveform: 
pre-leading-edge noise, the leading edge, and the plateau. Store the gate 
positions representing the beginnings and ends of these three segments. This 
separation is easily done by noting the maximum slope for the three middle 
gates, and using a simple predetermined criterion for these gate positions 
based on this slope. 

5. Fit a straight, horizontal line to the pre-leading-edge portion. Determine 
the mean and standard deviation of this constant. 

6. Subtract the constant determined in (5) from each gate amplitude 
constituting the remaining two waveform regions. 

7. Fit a linear regression line to the plateau segment. Determine from 
Eq. (17) the amplitude constant for the plateau, the pointing-angle error fl from 
the slope, and the standard deviations in these quantities. 

8. Use the constant and /3 to do a first correction to the o0 value obtained 
from the AGC gain. Rain corrections, if applicable and desired, can then be 
applied to no. 

9. Deconvolve the leading-edge waveform segment using Eqs. (27)-(31) to 
obtain the joint height-slope probability density for the sea. Lookup tables of 
the Fourier transform of the pulse (obtained from the internal calibration 
mode) are divided into the Fourier transform of the leading edge. Likewise, 
the Fourier transform of the antenna beam factor including the tilt /3 is simply 
calculated from Eq. (31) and divided into the leading-edge Fourier transform 
also. Then the inverse FFT of this quantity [i.e., Eq. (3011 gives the desired 
probability density. 

10. Renormalize the probability density so that the area under it is unity; 
this is simply done by dividing the probability density at each gate position by 
the sum over all gate positions. 

11. Using matrix covariance techniques employed in Lipa and Barrick 
(1981), determine uncertainties in the probability density at each gate position. 

12. Fit the three-parameter model of Eq. (6) (linear in two parameters: 
height skewness and height bias) to the recovered probability density. Do a 
one-dimensional grid search to determine wave height. These techniques are 
tested and described in Section 3. 

13. Use linear error propagation theory and covariance matrix methods (as 
done in Lipa and Barrick, 1981) to determine the statistical uncertainties in 
waveheight, skewness, and height bias. 

14. Determine nadir wind speed from co using the best, empirically 
supported model function available at the time. 

This method has the following advantages over versions that attempt to fit a 
model with six parameters to the entire leading edge by least-squares methods 
(Hayne, 1981): 
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1. It provides the complete joint height probability density function for the 
sea surface, rather than a two-parameter description of it. This additional 
information will prove useful for future research and applications involving 
ocean surface processes. If the same two parameters are desired, they have 
been shown in Lipa and Barrick (1981) to be easily obtainable from this 
probability density function. 

2. Because of the natural segmentation of the waveform into its three 
constituent regions, our method is much more efficient in terms of computer 
operations and time. 

3. The method here, not involving multiparameter grid searches and/or 
matrix inversions, is’ stable. If one attempts to get around a time-consuming, 
multidimensional grid search, the usual procedures are (a) to linearize the 
model about initial guesses for the several parameters and then solve the least- 
squares problem by matrix inversion; (b) to “home in” on the minimum in an 
iterative fashion, starting with an initial guess and using a variation of a root- 
finding scheme. One hopes these will converge to the solution. When noise is 
present, however, a poor initial guess can cause either no convergence, or 
worse yet, convergence to parameters that represent the least-squares solution 
for a local minimum rather than the global minimum. The present algorithm 
involves no initial guess or repeated iterations, and hence cannot be unstable. 

4. The present approach uses standard matrix covariance and linear error 
propagation techniques to output statistical uncertainties (or confidence 
limits) for all derived quantities continuously; no other existing algorithm does 
this. 

7. CONCLUSIONS 

Much is ,known about the interaction of the altimeter pulse with the ocean 
surface. Solutions based on specular-point scatter theory show that the echo 
waveform is a double convolution. This special form of a double-integral 
equation has been inverted-or deconvolved-using FFT methods, yielding 
the surface wave-height and slope probability density in a very efficient 
algorithm. A straightforward least-squares model fit to this probability 
density (nonlinear in only one parameter) then yields wave height, mean 
surface position, and wave-height skewness. Uncertainties in these three 
parameters are routinely provided by the algorithm. Tested with Seasat data 
for a pass over Hurricane Fico (orbit 280), these uncertainties for a 160-km 
section of path data are 0.7, 4, and 15% (RMS) of the mean values, 
respectively. 

Models for the sea surface probability density are used to study and 
interpret other biases quantitatively. For example, the Seasat height tracker 
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outputs a mean height position that is biased downward by an amount 
between 3.5 and 6.5% of significant wave height. This bias is sea-state 
dependent, but can be removed by an algorithm that fits a model to the 
inverted echo waveform. 

Both antenna beam pointing error and moderate rain within the radar cell 
can distort the echo severely, and if uncorrected will produce values for height 
and wind speed (deduced from the plateau backscatter cross section, a,) that 
are grossly in error. Pointing error is easily removed when it occurs by a 
double-deconvolutional algorithm described here; its magnitude is first 
measured by either (1) using an independent attitude sensor or (2) measuring 
the slope of the echo plateau. Rain distortion is not easily removed. The best 
hope appears to be to identify those situations when rain is present (either from 
independent measurements or from the distorted altimeter signal itself) and 
throw out those samples whose distortion exceeds a certain amount. 

Electromagnetic bias is a height error not easily removed. Although it 
varies with sea state, it is seen to depend significantly on other factors also. 
Quantitative estimates of these dependences from both theoretical and 
experimental investigations are as yet incomplete. Since altimeter-measured 
surface heights can be in error by as much as 15-25 cm because of EM bias, 
further investigations are necessary if accurate sea surface topography is to be 
realized from future altimeters. 

We present a brief outline of an efficient, alternative algorithm for the 
altimeter echo, different from those presently being employed. It incorporates 
most of the techniques studied in this manuscript for interpreting biases and 
the echo waveform statis‘tics. Furthermore, it can provide uncertainties in all 
of the extracted parameters-along with the parameters-so that the user 
can decide how or whether to apply each geophysical data record. 

APPENDIX 

A definitive series of experiments done over a decade ago resulted in the 
synthesis of a new model-called the JONSWAP spectrum-for the wave- 
height directional spectrum that supports the theoretical concepts of non- 
linear energy transfer to the longer ocean waves developed by Hasselmann in 
the early 1960s. The first studies (Hasselmann et al., 1973, 1976) developed a 
parametric representation for the nondirectional temporal wave-height 
spectrum. The term “parametric” refers to the fact that this spectrum has the 
same shape regardless of the physical conditions producing it. For the user, 
only two parameters are needed to produce the final, absolute spectrum: the 
wind velocity ii = (u, 0,) and the development factor v. The latter is shown 
experimentally to be a function of fetch (i.e., the distance over which the wind 
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has blown at a more or less constant velocity), and is known to depend on the 
duration (i.e., the time during which the wind has blown at a constant 
velocity). For “fully developed” seas (where the fetch and duration are very 
large), v z 0.14, whereas it increases to 0.25-0.4 for seas that are less than fully 
developed. 

Recently the nondirectional spectrum has been extended (Hasselmann et al., 
1980), based on the same measurements, to include a directional factor, 
resulting in a complete model for the wave-height directional spectrum. The 
directional factor is parametric also, being a function of the same two 
parameters as the nondirectional factor. The spectrum peaks azimuthally, of 
course, along the wind direction 6,; it is narrowest in angular spread at 
frequencies or wavenumbers near the most energetic waves, and tends to 
isotropic in angle toward the shorter waves. 

Here, we put both the nondirectional and directional factors together, and 
convert to wavenumber k [k = (k ,  O ) ]  rather than wave frequency f. The 
resulting model is then defined as 

normalized such that 
S A ~ )  = W, 6 )  = f ( k ) g ( k ,  e) (All  

(A21 h Z  = c ( ~ ~ ~  = j: k dk do $(k,  6 )  = j: f ( k ) k  dk 
- z  

where 

j ; K g ( k , 6 ) d 6  = 1 

The nondirectional spectral factor is given by 

where 

cra = 0.07 for k I k ,  
c,, = 0.09 for k 2 k ,  

r J = {  

y = 3.3 

k ,  = ( 2 ~ v ) ~ g / u ’  = position of spectrum maximum 

a = 0 . 0 3 2 5 ~ ~ ‘ ~  

h Z  N (u4/g2)(5.2 x 10-6v-10/3) = mean-square wave height 

u = wind speed (m sec- ’) 

g = 9.806 m sec-’ = gravitational constant 



3. ALTIMETER SEA ECHO 99 

This factor peaks at wavenumber k,, and has the same equilibrium-range k-4 
dependence as the Phillips and Pierson-Moskowitz models (corresponding to 
an f-’ frequency dependence). The JONSWAP spectrum has a sharper peak 
than previous models, as represented by the second term in the exponential 
argument. By setting that second term to zero and letting a = 0.0081, one 
recovers the Pierson-Moskowitz (1964) model for fully developed seas that 
has been accepted over the previous decade. 

The directional factor is given by 

s(k@ = C~/A(s)lIcosC(~ - ~,)/21IS (A5) 
where 

s = 20(k/k,)” for k > l.lk,,, 

and 

while 

= -2.33 - 1 . 4 5 ( 2 ~ ~  - 1.17) 

2 

s = 14(&) 
for k c l.lk,,, 
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