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[1] Turbulent oscillatory flow over sand ripples is examined using three-dimensional
numerical simulations. The model solves the time-dependent Navier-Stokes equations on a
curvilinear grid in a horizontally periodic domain. The flow transitions to turbulence and
the presence of sand ripples increases the rate of dissipation of shoaling wave energy
compared to flow over a smooth boundary. The influence of the ripple shape is shown to
alter the mean flow field and affect the induced drag and dissipation rates. Shear
instabilities near the boundary during phases of flow reversal resulting in vortex shedding
from the ripple crest produce a continuously turbulent boundary layer, differing from
results obtained in simulations over smooth boundaries. INDEX TERMS: 4546 Oceanography:

Physical: Nearshore processes; 4558 Oceanography: Physical: Sediment transport; 4568 Oceanography:

Physical: Turbulence, diffusion, and mixing processes; KEYWORDS: turbulent boundary layer, drag coefficient,

dissipation rate
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1. Introduction

[2] Fluid stresses on the seabed and turbulent mixing in the
wave bottom boundary layer play major roles in the suspen-
sion and transport of sediment and contribute significantly to
wave energy dissipation. We employ computational fluid
dynamics (CFD) to simulate turbulent flows in the wave
bottom boundary layer utilizing nonlinear, finite difference
solutions to the unsteady, three-dimensional Navier-Stokes
equations. The focus of the study is to simulate turbulent
flows due to steady and monochromatic wave forcing over
sand ripples of various shapes and to compare the results with
flows over smooth beds to determine how the flow dynamics
and statistics adjust in the presence of rippled topography.We
employ natural relationships between ripple dimensions and
wave-induced flow parameters to consider how the boundary
layer may behave at different stages of ripple formation. The
main motivation is to quantify wave energy dissipation rates
and to develop an improved understanding of oscillatory flow
over sand ripples.
[3] The wave bottom boundary layer (WBBL) refers to

the thin area of fluid that lies closest to the seabed. On a
broad shelf it can dissipate significant energy from
shoaling surface waves [Mei, 1989]. Throughout most
of the water column, oceanic hydrodynamics may be
reasonably well described by inviscid, irrotational fluid
theory. These assumptions, however, do not hold within

the bottom boundary layer. Here complex nonlinear
relationships exist between fluid and sediment in a layer
of high vorticity, where the shear stresses associated with
turbulence and viscosity are significant. The fluid may
burst into turbulence near the seabed due to shear
instabilities, dissipating energy from surface waves and
large-scale currents, and driving the suspension and
transportation of bottom sediments. The motion in the
WBBL interacts with the seabed and produces a coupled
system. The seafloor provides a sink of wave energy, and
the wave field liberates sand particles from the seabed.
The particles may become entrained in the water column,
reducing water clarity and transporting sediment to new
locations, leading to erosion or bed form adjustments.
Under conditions of oscillatory flow, sand ripples can be
formed locally as a result of particle redistribution and
positive feedback in the coupled system. As ripples grow,
their presence influences the dynamics of the turbulent
boundary layer. As a result of the increase in wall
roughness, the net turbulent wave energy dissipation rate
may increase. For quasi-stationary wave fields, the cou-
pling between fluid motion and particle redistribution may
continue to alter the seabed until a quasi-steady state is
achieved and the ripples maintain their shape or migrate
slowly. Net effects such as beach erosion, increased
bottom drag on mean currents, and wave damping may
become more significant as the ripples influence the flow,
and the combined effect of surface waves, tides, and
currents in the nearshore environment [Voropayev et al.,
1999].
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[4] Previous researchers investigating waves, currents,
and bedforms have found that the flows can present highly
nonlinear and complex relationships. Studies as early as
that of Ayrton [1910] observed connections between ripple
evolution and vortex formation at the ripple crests in
oscillatory flows. Grant and Madsen [1979] presented an
empirically based theory to describe the combined motion
of oscillatory waves and steady mean currents in the
vicinity of a rough bottom. They showed that there is a
nonlinear interaction between waves and currents and that
even a weak current can be enough to initiate and maintain
a net sediment transport. An important prediction of their
eddy viscosity model was that the mean current within the
boundary layer may be distorted due to the presence of
ripples. Trowbridge and Agrawal [1995] validated these
observations with field measurements of the wave bottom
boundary layer using a profiling laser-Doppler velocimeter.
They noted that waves and currents over sandy beaches
experience an effective bottom roughness associated with
the existence of waveformed sand ripples. Trowbridge and
Madsen [1984] studied oscillatory turbulent flow near a
rough seabed from linearized surface waves and made an
analogy to steady turbulent flow. The analogy provides the
basis for a time-varying eddy viscosity model that was
used to obtain approximate closed-form solutions to the
one-dimensional boundary layer equations. Mathisen and
Madsen [1996a, 1996b] also employed an eddy viscosity
model to show that a single characteristic roughness may
be used to represent pure currents, pure waves, and
combined flows over identical topographies. In 1999, they
extended their work by introducing spectral waves and
showed that the random nature and superposition of these
waves has an important effect on eddy formation and
energy dissipation [Mathisen and Madsen, 1999].
[5] Ranasoma and Sleath [1994] conducted laboratory

studies of combined oscillatory and steady flow over
ripples and noted large-scale momentum exchanges pro-
duced by vortex formation associated with rippled topog-
raphy. Longuet-Higgins [1981] studied oscillating flow
over steep ripples numerically using the assumption that
the sand-water interface in the wave bottom boundary
layer is fixed. In this approximation, it was assumed that
flow separation takes place at the ripple crests as vortex
pairs are convected upward. Field experiments conducted
by Chang and Hanes [2004] and Hanes et al. [2001]
utilized acoustic instrumentation to measure the sus-
pended sediment concentration over low-amplitude wave
orbital ripples. The ripples possessed a low steepness and
exhibited well-rounded crests compared to classic vortex
ripples. Their studies indicated significant horizontal ad-
vection of clouds of suspended sediment entrained in the
boundary layer by the wave-induced orbital fluid motion.
Other investigations in sand ripple dynamics were made
by Voropayev et al. [1999], who showed that the bed
shape may not ever reach a true steady state and that
time instabilities allow for slow variations in ripple
position and subsequent migration. Trouw et al. [2000]
presented results from a numerical model describing
resuspension of sediment compared with data from full-
scale laboratory experiments and showed that the standard
k � � model may underpredict the velocity and shear
stress in oscillatory flows above a rippled bed.

[6] Numerical studies of oscillatory flow in connection
with wavy surfaces were performed by Ralph [1986, 1988]
and Sobey [1980, 1982, 1983], but mainly focused on
internal flows away from a wavy wall. In 1990, Blondeaux
and Vittori [1991] presented qualitative results of oscillatory
flow close to the sea bottom with a two-dimensional
numerical approach utilizing spectral methods and finite
difference approximations. Fredsoe et al. [1999] used the
k � w model of Wilcox [1988] to simulate waves plus a
current over sand ripples and noted that the shape and
steepness of the ripple were very important in obtaining a
strong separation bubble at the crest. Scandura et al. [2000]
numerically investigated three-dimensional flow over sand
ripples for Reynolds numbers in the range of 100 to 2000.
Calhoun and Street [2001] used large eddy simulations to
investigate neutrally stratified unidirectional steady flow
over a wavy bed and found that the area over the center
of the trough is highly turbulent. Furthermore, they con-
firmed the existence of a strong shear layer located in the lee
of the ripple crest that weakens considerably with the
lowering of the ripple amplitude. Recently, Moneris and
Slinn [2004] quantified wave energy dissipation in turbulent
boundary layers over a flat bed with direct numerical
simulations in three dimensions utilizing the model devel-
oped by Slinn and Riley [1988].
[7] The work presented in this study uses the model

developed by Winters et al. [2000], to investigate the
dynamics of the boundary layer with periodic topographic
features and to compare turbulence levels and dissipation
rates to those of a smooth seabed.

2. Methodology

[8] Our CFDmodel utilizes the pressure projectionmethod
to solve the three-dimensional, unsteady, Navier-Stokes
equations for an incompressible, homogeneous fluid on
curvilinear coordinates [Winters et al., 2000]. The model
employs a third-order Adams-Bashforth variable time step-
ping procedure that reduces the time step to maintain the
stability of the model in phases of particularly strong or
turbulent flows and increases the time step smoothly when
the flow is less energetic to maximize computational effi-
ciency. Other model features include fourth-order compact
spatial differences and filters for dealiasing [Lele, 1992], the
fourth-order multigrid method to solve for the pressure field
(MudPack [Adams, 1991]), the option of using the Smagor-
inski subgrid closure [Deardorff and Willis, 1967] for large
eddy simulations (LES), and the capability to simulate
complex bottom topographies.
[9] Figure 1 sketches the problem geometry and compu-

tational domain. Here h is the wave amplitude, l is the
wavelength, and h is the water depth. Since we are
concerned with the flows that arise in the wave bottom
boundary layer over periodic ripples, a small periodic
domain of approximately 250 cm3 is simulated. The bottom
boundary is a fixed rigid wall satisfying the ‘‘no-slip’’
boundary condition, while the top boundary is a fixed rigid
lid implementing ‘‘free-slip’’ conditions. The four side
boundaries of the domain are periodic in order to simulate
the flow conditions over a series of ripples in the direction
of the flow and to allow three-dimensional flow features to
develop in the direction normal to the mean flow.
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[10] The flow is forced with a depth uniform body force
in the x-direction. Five cases use a time-dependent forcing,
as would be felt in a small volume of fluid from the pressure
gradient caused by a larger-scale passing surface gravity
wave. The body force induces an oscillatory free-stream
velocity external to the boundary layer of the form U = Um

sin(wt), where Um is the maximum wave-induced near bed
velocity, w = 2p/T is the wave frequency, and T is the wave
period. Three cases use a steady unidirectional forcing.
[11] We pursue high-resolution numerical simulations,

utilizing grids up to 129 � 33 � 256 (1.08 million grid
points). The grid spacing near the boundary is on the order
of 0.2 mm normal to the wall and 0.8 mm along the wall to
optimize the balance between resolution and computational
efficiency. Hence with a domain size of 10 � 2.5 � 10 cm,
we resolve features of eddies with length scales between
about 5 cm and 0.5 mm. Figure 2 shows the grid layout in
an x–z plane with grid clustering for a typical simulation. At
this resolution, the compact filter or Smagorinski LES
model primarily contributes to the dissipation of turbulent
energy on length scales less than about a millimeter. Our
comparisons of the net effects on the flow using either
method showed little difference, and we focus our presen-
tation primarily on the results of the simulations that used a
constant viscosity (n = 10�6 m/s2) with the fourth-order
compact filter. Issues of model validation, domain size and
resolution are discussed in Appendix A.

2.1. Grid Transformation

[12] Our approach is to compute approximate solutions to
the governing equations on a non-uniform curvilinear mesh
in physical (x, y, z) space by transforming the problem to a
cubic lattice of regularly spaced grid points in computational
(x, h, z) or contravariant coordinates. The geometry is fitted
to curvilinear coordinates aligned with the topography.
[13] The three-dimensional computational geometry is

transformed using

x ¼ x x; zð Þ; y ¼ y hð Þ; z ¼ z x; zð Þ: ð1Þ

We note that the physical and contravariant variables in the
y- and h-directions differ by only a constant because the
topography is uniform in the direction normal to wave

propagation. To reduce the complexity, the model requires
that the coordinate system be orthogonal, satisfying

xxzz þ xzzx ¼ 0: ð2Þ

A function may be differentiated with respect to either set of
coordinates. In general,

fx

fz

2
4

3
5 ¼

xx zx

xz zz

2
4

3
5 fx

fz

2
4

3
5 ð3Þ

fx

fz

2
4

3
5 ¼ 1

Jj j

zz �zx

�xz xx

2
4

3
5 fx

fz

2
4

3
5; ð4Þ

where jJj = xxzz � xzzx is the Jacobian determinant of the
transformation.

2.2. Governing Equations

[14] The equations of motion for a horizontally forced,
three-dimensional, unsteady, incompressible, constant den-
sity flow are

@u

@t
þ~u � ru ¼ � 1

r
@p

@x
þ nr2uþ F xð Þ; ð5Þ

@v

@t
þ~u � rv ¼ � 1

r
@p

@y
þ nr2v; ð6Þ

@w

@t
þ~u � rw ¼ � 1

r
@p

@z
þ nr2w; ð7Þ

r �~u ¼ 0; ð8Þ

Figure 1. Sketch of the problem geometry with a
horizontally periodic domain and a sinusoidal bottom
boundary under a progressive gravity wave. Note that
Lx 
 l, not shown to scale.

Figure 2. Grid layout in the x–z plane for a sinusoidal
ripple 1.8 cm high and 10 cm long.
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where the fluid velocities u, v, and w and pressure p are the
unknowns. The Cartesian coordinates (x, y, z), as shown in
Figure 1, are respectively oriented shoreward, alongshore,
and vertically upward from the bottom boundary respec-
tively; t is time, g is the gravitational acceleration, r is a
constant fluid density, n is the kinematic viscosity, and F(x)

is the horizontal body force. The Navier-Stokes equations
(5)–(8), for the physical variables on a Cartesian grid (u, v,
w, p) are mapped to the contravariant variables on a
curvilinear grid (U, V, W, P) with the differentiation
formulas (3) and (4) and the following relations:

u

w

2
4

3
5 ¼

xx xz

zx zz

2
4

3
5 U

W

2
4

3
5; ð9Þ

U

W

2
4

3
5 ¼ 1

Jj j

zz �xz

�zx xx

2
4

3
5 u

w

2
4

3
5: ð10Þ

From here, the derivatives are formed as

@u

@x
¼ @u

@x

@x

@x
þ @u

@z

@z

@x
ð11Þ

@u

@z
¼ @u

@x

@x

@z
þ @u

@z

@z

@z
: ð12Þ

The contravariant velocity components (U, V, W) are
oriented along the (x, h, z) directions, respectively. The
transformation allows a simplified implementation of
the discretized boundary conditions, but complicates the
governing equations considerably. For example, the
x-momentum equation is transformed to computational
space x-momentum equation,

@U

@t
þ U

@U

@x
þ V

@U

@h
þW

@U

@z
þ 1

Jj j zzxxx � xzzxx
� �

U 2

þ 2

Jj j xxzzz � zxzxz
� �

UW þ 1

Jj j zzxzz � xzzzz
� �

W 2

¼ � 1

r

x2z þ z2z

� �
Jj j2

@P

@x
þ Fx

þ n zz
1

Jj j uxxzz � uxzzx þ uzzxx � uzxxz
� �

þ uhh

	 
�

�zx
1

Jj j wxxzz � wxzzx þ wzzxx � wzxxz
� �

þ whh

	 
�
:

ð13Þ

[15] Similarly, the momentum equations in the h and z-
directions are obtained and the flow is forced with a hori-
zontal pressure gradient, F(x) =Umw cos wt to produce a mean
free stream velocity field approximating U1 = Um sin wt.
Upon transformation to the computational domain, the forc-
ing becomes F(x) = xxUmw cos t and F(z) = xzUm cos wt. The
flows are started from rest. For the steady unidirectional flow
cases, the flow is ramped up to Um over the first T/4 seconds
in the same manner as experienced during the initial quarter
period of the oscillatory flows and then held constant with
U1 = Um. The transformed momentum equations are inte-

grated forward in time and the computational space solutions
are converted back to physical space for analysis.

3. Experiments

[16] The main goal of the experimental plan was to
examine the dependence of flow response on ripple topog-
raphy. To achieve this, several preliminary experiments
were performed over a range of Reynolds numbers, wave
periods, domain sizes, and bottom contours before the final
set of experiments was selected. Flow in the wave bottom
boundary layer may be characterized by the Reynolds
number, Rew = A2w/n, based on the wave orbital excursion
length A, defined by Um = Aw. To determine a relevant
range of Reynolds numbers and flow parameters that are
typical in nature, we reviewed previous studies.
[17] There are two common ways of generating sand

ripples in the laboratory [Toit and Sleath, 1981]. The first
method was used by Ranasoma and Sleath [1994], who
studied combined oscillatory and steady flow conditions
over sand ripples generated by oscillating a tray of sand in a
still water tank. After ripple formation, they sprinkled the
bed with a thin layer of cement to stabilize the ripples so
they would maintain their shape throughout the experi-
ments. They found that a stroke of 7.8 cm and a period of
2.45 s produced stable regular two-dimensional ripples
10 cm in length with a crest to trough height of 1.84 cm. From
these measurements and with the following relationship,

Um ¼ Aw ¼ A2p
T

; ð14Þ

it can be determined that the maximum velocity of
oscillation Um that produced these ripples was approxi-
mately 20 cm/s. The second method of ripple formation,
fluid oscillations over an initially flat sandy bed in a wave
tank, was used by Voropayev et al. [1999]. Owing to the
sand-water surface instability, they noted that a critical value
of 18 cm/s existed for the maximum velocity of oscillation
to induce ‘‘rolling grain sediment transport’’ and subsequent
ripple formation for their particular grain size. After about 1
hour of 21 cm/s flow oscillating at approximately 2.95 s,
regular two-dimensional vortex ripples, quite similar to
those seen by Ranasoma and Sleath [1994], existed in a
quasi-steady equilibrium state.
[18] By utilizing the natural combination of wave and

ripple parameters determined by the Ranasoma and Sleath
[1994] experiments, wave-induced oscillations with a
period of 2.45 s and maximum flows of 20 cm/s were
chosen for our simulations. Using the dispersion relation for
gravity waves and the linear solution for the maximum
horizontal particle velocity at the seafloor,

w2 ¼ gk tanh kh ð15Þ

Um ¼ H

2

gk

w
1

cosh kh
; ð16Þ

we can verify scenarios typical of the nearshore environ-
ment that would produce our free stream velocity condi-
tions. One such example is listed in Table 1.
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[19] The Reynolds number for this flow is approximately
Rew = 15,000. In our experiments, the sand-water interface
in the wave bottom boundary layer is assumed fixed and the
effect of sand in suspension is neglected. We adopted the
Ranasoma and Sleath [1994] ripple parameters for two-
dimensional ripples, 1.84 cm in height and 10 cm in length,
and selected eight test cases.
[20] Simulations were conducted over the three differ-

ent bed topographies shown in Figure 3. The primary
intent was to investigate the effects of ripple shape while
keeping the ripple amplitude and wavelength constant and
using either oscillatory flow or steady unidirectional flow
with the same peak velocity. Table 2 lists the ripple
shape, forcing, domain size, and grid resolution for the
simulations presented in this study. Simulations conducted
with dimension 10 � 2.5 � 20 cm on a higher resolution
grid showed that the eddies remained below z = 10 cm
and are not presented.
[21] Case 1 was a control case used for comparison. This

case simulated an oscillatory boundary layer over a flat
bottom and remained laminar throughout the simulation,
consistent with results of previous investigators. The grid
points were clustered near the wall to resolve the shear layer
near the bed.
[22] The bedform of the basic sinusoidal ripple of Cases 2

and 3 is described by

zo xð Þ ¼ 0:92þ 0:92 cos 0:2pxð Þ cm; ð17Þ

shown in Figure 2. The Gaussian ripple, used in Cases 4 and
5, is defined by

zo xð Þ ¼ 1:84 exp �9x2
� �

cm; ð18Þ

which has the same amplitude and wavelength as the sine
ripple, yet is steeper approaching the crest.
[23] Cases 6 and 7 use a steeper ripple shape, created to

approximate a more naturally occurring peaked sand ripple.
It is formed from a series of cosine functions of varying
amplitudes and frequencies,

zo xð Þ ¼ 0:5þ 0:7
X5
i¼1

cos 0:2pixð Þ
2i�1

cm: ð19Þ

[24] It was found in preliminary tests that the shape of the
ripple and grid resolution near the peak were very important
in adjusting and capturing the dynamics of the flow, as
turbulent eddies were shed from the boundary and con-
vected up into the water column. Case 8 repeated the
parameters of Case 2 with the Smagorinski LES subgrid
model implemented.

[25] We note that at the present grid resolution, and using
these combinations of mathematical techniques, we con-
structed sand ripples about as steep as possible to still obtain
flow simulations that we deemed reliable. Also, we note that
each simulation takes on the order of 20 days of CPU time
on the current generation of computers at these resolutions
when run on a single processor. Increased turnaround times
were achieved in some cases by running on parallel
computers.

4. Results

4.1. Velocity Vectors

[26] Samples of velocity vectors at times of maximum
flow and flow reversal for oscillatory flow over a sinusoidal
ripple are presented in Figure 4. For clarity, the vectors are
not shown at all grid points in the x-direction and the
reference vectors are adjusted at the top of every panel to
represent the size of a 20 cm/s vector in each frame.
[27] The evidence of three-dimensional effects is most

obvious in the top two panels of Figure 4. The first two
frames provide plan views (x–y plane) of velocity vectors
on a s-surface approximately 1 cm from the wall at
(Figure 4a) maximum onshore flow and (Figure 4b) flow
reversal. During maximum flow, occurrences of cross-shore
streaks and variability in the y-direction can be found
throughout the domain. Even though the y-dimension of
the domain is relatively narrow compared to the other
dimensions, complete small-scale eddies in the x–y plane
linked to structures noted in the x–z plane are observed near
the ripple crests during flow reversal. The absence of these
sorts of three-dimensional features in similar flows over
smooth beds (Case 1) indicates that the complexity of the
boundary layer is enhanced by the existence of ripples
under the forcing of a simple monochromatic wave field
at moderate Reynolds number.
[28] Figures 4c and 4d depict a cross section of the

domain for oscillatory flow over sinusoidal sand ripples.
Again, during times of maximum flow, multidirectional
variability is noted in the bottom half of the domain in
Figure 4c, while potential flow is maintained at the free-slip
upper surface, where @u/@z = 0. Figure 4d shows the
turnaround at t = 15.92 s. Turbulence due to shear or
centrifugal (as seen in the theoretical work of Hara and
Mei [1990]) instabilities is observed along the slopes of the
ripples and particularly near the crest where eddies are shed
from the bottom boundary.

Table 1. Typical Wave Characteristics Capable of Producing the

Oscillatory Forcing Experienced by the Sand Ripples

Characteristic Value

Wave height h = 0.54 m
Wave length l = 9.0 m
Water depth h = 2.8 m
Wave period T = 2.45 s
Maximum flow Um = 20 cm/s

Figure 3. Profiles of the three ripple shapes used in the
simulations.
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[29] We note that since the total water depth is larger over
the trough than the crest, the mean velocity is slightly less in
these regions, a consequence of our rigid free-slip upper
boundary and finite domain effects. Simulations with Lz =
20 cm were not significantly different quantitatively or
qualitatively, so the finite domain effects were considered
acceptable.

4.2. Instantaneous Velocity Profiles

[30] Instantaneous velocity profiles at the midpoint in the
y-dimension of the domain (Ly/2) for oscillatory flow over
sand ripples are shown in Figures 5, 6, and 7. Profiles are
shown at four different times during a wave cycle (flow
acceleration, maximum onshore flow, flow deceleration,
and flow reversal) at the (Figures 5a, 6a, and 7a) ripple
crest, (Figures 5b, 6b, and 7b) ripple down-slope, and
(Figures 5c, 6c, and 7c) ripple trough. Intercomparison of
the velocity profiles is hampered by the fact that they are
instantaneous, and not necessarily representative of any
statistical quantities calculated from the flows.

[31] It can be observed that the velocity near the bed
changes direction at flow reversal before the free-stream
velocity above the ripple crest and slope, but not in the
trough. This indicates that the strongest flow separation and
vortex shedding occur at or near the crest of the ripple.
Another typical feature observed in oscillatory boundary
layers is the velocity overshoot that occurs near the bed due
to the velocity defect U(t) � u(z, t), that alternately adds and
subtracts from the free stream at different heights during
different phases of the wave [Nielsen, 1992]. This character-
istic is most distinctly noted on the ripple slope where the
flow accelerates to almost twice that of the free stream
velocity.

4.3. Vorticity

[32] Slices of the horizontal vorticity component,

wy ¼
@u

@z
� @w

@x
; ð20Þ

at times of flow acceleration, maximum flow, flow
deceleration and flow reversal for oscillatory flow over
the sinusoidal ripple, Case 2, are shown in Figure 8. Figure 9
depicts the vorticity field at the same flow phases for the
steep ripple, Case 6. Figure 10 shows flow development for
Case 3, steady current over a sine ripple. In each figure, two
periodic domains are presented adjacent to each other (two
ripple wavelengths) to allow clear visualizations of flow
dynamics in the vicinity of ripple crests.
[33] Figure 8b depicts maximum flow over a sinusoidal

ripple at t = 17.76 s. Here the flow is to the right, and
positive values indicate vorticity with sign into the page. A

Table 2. Summary of the Cases Presented

Case Ripple Forcing L � W � H, cm (nx, ny, nz)

1 flat plate osc 10 � 2.5 � 5 129 � 33 � 65
2 sine osc 10 � 2.5 � 10 129 � 33 � 129
3 sine steady 10 � 2.5 � 10 129 � 33 � 129
4 Gaussian osc 10 � 2.5 � 10 129 � 33 � 129
5 Gaussian steady 10 � 2.5 � 10 129 � 33 � 129
6 steep osc 10 � 2.5 � 10 129 � 33 � 129
7 steep steady 10 � 2.5 � 10 129 � 33 � 129
8 sine osc 10 � 2.5 � 10 129 � 33 � 129
8 sine osc 10 � 5.0 � 10 129 � 65 � 129

Figure 4. Plan views (s-surfaces) and cross sections of velocity vectors for oscillatory flow over a
sinusoidal ripple at phases of maximum onshore flow (t = 15.31 s) and flow reversal (t = 15.92 s).
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Figure 5. Instantaneous velocity profiles over the sinusoidal ripple at Ly/2 for flow acceleration (t =
15.00 s), maximum flow (t = 15.31 s), flow deceleration (t = 15.61 s), and flow reversal (t = 15.92 s)
during a wave cycle for locations (a) above the ripple crest, (b) ripple downslope, and (c) ripple trough.

Figure 6. Instantaneous velocity profiles over the Gaussian ripple at Ly/2 for flow acceleration (t =
15.04 s) maximum flow (t = 15.31 s), flow deceleration (t = 15.61 s), and flow reversal (t = 15.92 s)
during a wave cycle for locations (a) above the ripple crest, (b) ripple downslope, and (c) ripple trough.
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strong shear layer is noted along the bottom boundary with
vortices being shed in the lee of the ripple crest. Small-scale
turbulent eddies can be found propagating up to about 5 cm
in the vertical direction of the domain with sustained
structures as they pass over the rippled topography. Flow
reversal at t = 18.36 s is shown in Figure 8d, and depicts the
breakdown of the shear layer as the flow separates from the
boundary due to shear instabilities. Rotating structures are
observed at the crest of the ripple upon flow reversal similar
to results presented by Blondeaux and Vittori [1991], using
2-D simulations. They demonstrated that well-organized
vortex pairs may be shed from the ripple crest every half
cycle. The importance of three-dimensional effects becomes
apparent in our results as other small-scale eddies interact
with these vortices and produce a variety of structure scales
throughout the water column. We note that flow visual-
izations of these cases can be seen at http://www.coastal.
ufl.edu/�barr/WBBL.
[34] For comparison, Figure 9 depicts the horizontal

vorticity field for flow over the steep ripple at the same
phases as the previous figure. It is evident that the near
bed shear layer is significantly larger during maximum
flow (Figure 9b) and that increasing the steepness of the
topography vastly enhances the existence of small-scale
turbulence throughout the domain (Figure 9a). Upon flow
reversal (Figure 9d), well-defined vortex pairs are shed
directly from the ripple crests with much less distortion
than observed over sinusoidal ripples, which suggests that
ripple shape is important in setting flow patterns in the
boundary layer. Three-dimensional effects are evident as
turbulent bursts are observed throughout the wave period

and turbulent structures circulate in random directions
within the domain.
[35] While sediment transport has not been examined in

our numerical experiments, our simulations suggest that the
mechanism by which sand ripples maintain their shape is a
form of dynamic equilibrium. Sediment may be scoured
from the face of the ripple, convected away in suspension
by the local velocity, and deposited over the crest and in the
lee of the ripples, only to be scoured away again during the
next half cycle. We intend to explore this process further,
including simulating sediment particles in an extension of
the present study.
[36] The last set of vorticity pictures deal with a uniform

current in the onshore direction over sinusoidal ripples and are
shown in Figure 10. Since there is no wave cycle associated
with this case, slices of the horizontal vorticity component are
shown for the process of transitioning to turbulence. The
major observation from this case is that the flow begins
laminar and transitions into a turbulent boundary layer quite
rapidly, which grows in thickness over time as turbulent
vortices are shed in the lee of the ripple crests until it fills
roughly half of the vertical domain. Thismechanism of vortex
shedding is more apparent in the transitioning flow of
Figure 10a, where evolving structures are prevalent in the
wake of the ripple. A more extensive investigation of steady
flow over sinusoidal topography using similar techniques for
a variety of flow speeds and ripple geometries was conducted
by Calhoun and Street [2001]. The shear layer at the bottom
boundary remains quite strong, but becomes detached behind
the ripple due to the associated pressure drop and interaction
with the turbulent eddies.

Figure 7. Instantaneous velocity profiles over the steep ripple at Ly/2 for flow acceleration (t = 15.00 s),
maximum flow (t = 15.31 s), flow deceleration (t = 15.61 s), and flow reversal (t = 15.92 s) during a wave
cycle for locations (a) above the ripple crest, (b) ripple downslope, and (c) ripple trough.
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[37] We note, for example in Figure 8, that some rela-
tively weak vorticity is present in the region 5 < z < 10 cm.
We repeated a number of simulations (for five wave
periods) using a taller domain extending to z = 20 cm. We
found again that the vast majority of the vorticity and
turbulence remained restricted to the region below about
z = 5 cm and chose to run the smaller domain simulations
out longer in time (10 wave periods). We feel that the finite
vertical domain effects are tolerable and do not change our
main conclusions and observations.

4.4. Turbulent Kinetic Energy

[38] We define the turbulent kinetic energy,

hTKEiy x; z; tð Þ ¼ hu02 þ v0
2 þ w02iy; ð21Þ

as the energy of the velocity fluctuations (u0, v0, w0) about the
instantaneous mean velocity averaged in the cross-stream
direction; that is, u = huiy + u0 where hu(x, z, t)iy is averaged
in y.
[39] Time- and volume-averaged values of the turbulent

kinetic energy, hhTKEii, as well as typical intensity
values during periods of increased turbulence (bursts)
are compared for each case in Table 3 over the period
(4.90 < t < 24.5 s). It was noted that the 20 cm/s
oscillatory flow over a flat bottom (Case 1) remained
laminar throughout the simulation and resulting turbulent
kinetic energy values were essentially zero. Note also that
average RMS velocity fluctuations of approximately
3 cm/s over the bottom half of the domain would give
values of hhTKEii of approximately 1 � 10�3 m2/s2.

Figure 8. Slices of the horizontal vorticity component, wy (s
�1), in an x–z plane at Ly/2 for a sinusoidal

ripple during phases of (a) flow acceleration, (b) maximum onshore flow, (c) flow deceleration, and
(d) flow reversal.
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[40] Time- and spanwise-averaged over the same time
period, Figure 11 presents turbulent kinetic energy levels of
the oscillatory flows over the three ripple shapes. The main
bulk of turbulence is located on either side of the crest,
indicating that the flow is relatively well balanced in
shedding turbulent vortices from the ripple crests in both
directions as the flow turns around every half cycle. Note,
however, that there is some asymmetry that may be asso-
ciated with the initial flow transients. Similar observations
were made for uniform flow. As shown in Figure 12, most
of the turbulence is concentrated downstream of the ripple
crest (since vortices are formed in the lee of the crest and
advected downstream). We note that even though the peak
velocities are the same, Um = 20 cm/s, for the oscillatory
and unidirectional flows, the RMS total energy in the

system is larger in the steady flow cases, making direct
quantitative comparisons imprecise.
[41] Upon increasing the steepness of the ripple, as shown

in Figures 11b and 11c, the concentration of turbulence on
the flanks of the peak decreases, as it becomes more detached
from the crest and distributed fairly uniformly in the trough.
Interestingly enough, Table 3 shows the volume-averaged
turbulence levels induced by the ripples to be independent of
either ripple topography, and only weakly dependent on
whether the flow was oscillatory or unidirectional.
[42] For the sinusoidal ripple, the boundary layer

becomes thinner over the crest, with a secondary thinning
at the trough. However, for the steeper ripples, the boundary
layer generally becomes thicker over the crests. The turbu-
lent boundary layer becomes thin again near the base of the

Figure 9. Slices of the horizontal vorticity component, wy (s
�1), in an x–z plane at Ly/2 for a steep

ripple during phases of (a) flow acceleration, (b) maximum onshore flow, (c) flow deceleration, and (d)
flow reversal.
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steeper ripples. There is also a somewhat more pronounced
spatial oscillation in the boundary layer thickness for the
steady flow, than for the oscillatory flow.
[43] Volume and phase averaged turbulent kinetic energy

for the oscillatory cases are shown as a function of phase in
Figure 13. Volume and time averaged values for the steady
cases are indicated as well. We note that for oscillatory
flow over the Gaussian ripple near t = 3.0 s the hhTKEii had
a maximum of approximately 3.5 � 10�3 m2/s2 that was
associated with the initial transition from 2-D to 3-D flow
that was atypical of turbulence levels achieved by the quasi-
steady flow during later wave periods; for this reason the
phase averaging was for the eight wave periods for 4.9 < t <
24.5.
[44] For oscillatory flow, the simulations show a double-

humped maximum centered around both phases of maxi-
mum flow. Ideally, the shape of the curves should be

perfectly symmetrical (the flow should not favor flow in
one direction over the other). However, with the limited
number of wave periods calculated, and the possibility of
transients associated with the initiation process, these phase-
averaged values should not be taken as converged statistics.
This is especially evident in the oscillatory flow over the
sine ripple and less evident for cases with higher turbulence
levels.
[45] Results for Case 8, oscillatory flow over the sine

ripple using the Smagorinski LES subgrid model, are
similar to Case 2 that used a spatially and temporally
constant kinematic viscosity (n = 10�6 m2/s) and the
compact filter for submillimeter scales of dissipation. Ad-
ditional analysis, not shown, indicated that the general flow
behavior and integral properties, such as the boundary layer
thickness, were similar, independent of the subgrid-scale
model. Because we used a clustered grid at the bottom

Figure 10. Slices of the horizontal vorticity component, wy (s
�1), in an x–z plane at Ly/2 for a sine

ripple during the onset, transition and fully turbulent state.
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boundary, we found that we were able to resolve nearly all
of the flow features in the 1-cm layer closest to the
boundary and the effects of the subgrid filter were felt
farther up in the water column as the eddies cascaded down
to smaller scales on the less refined grid. We therefore
preferred the constant viscosity model.

4.5. Kinetic Energy Dissipation

[46] The total kinetic energy dissipation rate in the model
is presented as

� ¼ �r þ �f ; ð22Þ

where �f represents the energy dissipated in the subgrid
scales through the fourth-order compact spatial filtering
technique and �r is the viscous dissipation due to friction in
the resolved scales defined by

�r ¼ m
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Typical peak values associated with turbulent bursts, or
phases of maximum flow, and time- and volume-averaged
total kinetic energy dissipation rates are compared for each
case in Table 4. The results are obtained by averaging over
eight wave periods (4.90 < t < 24.5) as was done with the
turbulent kinetic energy.
[47] Contours of the total energy dissipation rate averaged

horizontally (y-direction) and in time (4.90 < t < 24.5 s) (not
shown) for oscillatory flows showed that for these relatively
low Reynolds number flows, the largest energy dissipation
occurs immediately adjacent to the bottom boundary due to
viscous losses and friction at the no-slip wall over the

Figure 11. Turbulent kinetic energy (m2/s2) averaged both horizontally (y-direction) and in time for
oscillatory flow over (a) sine, (b) Gaussian, and (c) steep ripples.

Table 3. Time-Averaged and Typical Peak Levels of Volume-

Averaged Turbulent Kinetic Energy, m2/s2

Case hhTKEii Typical Burst

1 1.27 � 10�13 1.56 � 10�13

2 6.64 � 10�4 1.0 � 10�3

3 8.41 � 10�4 9.7 � 10�4

4 6.84 � 10�4 1.2 � 10�3

5 7.64 � 10�4 1.0 � 10�3

6 6.38 � 10�4 9.4 � 10�4

7 5.89 � 10�4 7.8 � 10�4
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ripple. Elevated rates of dissipation are also seen in the lee
of the ripple within about 1 cm from the wall, corresponding
to the higher levels of turbulent kinetic energy found in that
region.
[48] Figure 14 depicts the volume and phase-averaged

energy dissipation as a function of time for the oscillatory
cases. The dissipation function for Case 1 is indicative of
oscillatory flows over flat plates, yielding a smooth and
periodic response to the laminar flow. For all cases over
ripples, the flow becomes turbulent, with a large burst of
energy dissipation occurring just after one wave period.
[49] Peak dissipation rates are more than 3 times larger

over the ripples compared to the flat plate. Total dissipation
rates are higher during phases of strong onshore or offshore
flow, in phase with the turbulent kinetic energy. While the
average dissipation rates are comparable between the oscil-
latory and steady flows, the peak rates are higher for
oscillatory flows, a somewhat counterintuitive result since
the steady flows always have the same amount of mean
flow energy as the oscillatory flows do at their maxima.
Since dissipation rates and enstrophy are closely related
[Pope, 2000], the explanation may be related to the periodic
reattachment of the flow to the wall during flow reversal
episodes that could produce increased fluxes of vorticity of

Figure 12. Turbulent kinetic energy (m2/s2) averaged both horizontally (y-direction) and in time for
steady flow over (a) sine, (b) Gaussian, and (c) steep ripples.

Figure 13. Volume- and phase-averaged turbulent kinetic
energy hhTKEii (m2/s2) for oscillatory flows. Volume- and
time-averaged values for steady flows are also indicated.
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both signs into the flow in the oscillatory cases. In contrast,
the steady flow has a consistent sheltering effect by the
ripple crest on the trough that allows a progressive thick-
ening of the viscous sublayer that would lead to a somewhat
weaker flux of vorticity into the flow. The net effect could
be to allow a higher flux of vorticity and enstrophy into the
flow from the wall for the oscillatory cases that could then
be dissipated after undergoing the turbulent cascade.

4.6. Shear Stress at the Wall

[50] The wall shear component conventionally defined by

tw ¼ m
@ u �~t þ w �~t
� �

@n
ð24Þ

is evaluated in the physical coordinate system, where u and
w represent physical space velocities and ~t is the unit
tangential vector to the surface. In Figure 15, the shear
stress at the wall is shown in an x–y plane (s-surface) for
oscillatory flow over sinusoidal ripples during (Figure 15a)
maximum onshore flow and (Figure 15b) flow reversal. By
viewing the wall shear from a plan view, the three-
dimensionality of the model is apparent. The high spatial
variability is an important feature because the liberation of
particles from the seafloor is dependent on jtwj and is the
first step in sediment transport.
[51] In Figure 15a, the highest value of shear stress occurs

at or near the ripple crest during the phase of maximum
flow. The phase of flow reversal is shown in Figure 15b and
depicts a change in sign of the shear near the ripple crest
associated with the velocity defect and compares quite well
with the velocity profiles shown in Figure 5. Furthermore,
there is evidence in the ripple trough that the shear stress is
lagging the free-stream velocity, which is commonly ob-
served in oscillatory boundary layers. We note that critical
wall shear stresses of approximately 0.1 to 0.5 Pa are
typically sufficient to cause incipient motion of sandy
material with mean grain size diameters between about
0.05 and 1 mm, respectively [Julien, 1998]. Hence the
viscous wall stresses modeled here would be sufficient to
instigate sediment suspension.
[52] The RMS average magnitude of the wall shear

component for sinusoidal ripples time-averaged over eight
wave periods (4.9 < t < 24.5 s) is given in Figure 15c. It is
clear that the highest levels of skin friction occur on the
slopes of the ripples, indicating an area where drag forces
due to shear stress are maximized. As expected, the levels
are spread fairly evenly on either slope and are reasonably
uniform in the y-direction. It is suggested that with a longer
simulation (allowing for a greater period of time-averaging)

the degree of variability in the alongshore direction would
decrease and the maximum levels of shear stress would
occur between the crest and the midpoint of the slope (in
this case, x = 1.75 and 8.25 cm). This area of high stress
may play a major role in the development and migration of
sand ripples. The asymmetry in stress between the two sides
of the ripple is not so apparent in other simulations, and is
attributable to secondary circulation caused by the initial
transients.

4.7. Pressure Drag

[53] Form drag due to pressure variations over the length
of a sand ripple may be measured and quantified by
integrating the x-component of the pressure force on the
wall over the area of the bottom boundary. The resulting
integrated form drag or ‘‘pressure drag’’ is defined as

Dp ¼
Z Z

Pw sin q dy dx; ð25Þ

where Pw is the (gauge) pressure on the wall and q
represents the slope of the ripple at the point where the
pressure is applied. Hydrostatic contributions are symmetric
and have been removed. Pressure contours on the wall are
shown for two phases of the flow over a sinusoidal ripple in
Figure 16.
[54] Figure 16a depicts the dynamic pressure on the wall

(Pw) of a sinusoidal ripple during maximum flow where the
flow becomes detached in the lee of the ripple crest.
Pressure variations on the wall are found just beyond the
crest indicating circulation associated with vortex formation
in the wake of the ripple. Figure 16b shows that during flow
reversal the pressure forces on the wall are similar on the
upslope and downslope of the ripple, but in opposite
directions. As the pressure force is everywhere normal to
the boundary, this was an expected result during phases of
minimal flow and is consistent with the conclusion that
form drag is an important factor in flows over rippled
topographies.

Table 4. Time-Averaged and Typical Peak Levels of Volume-

Averaged Kinetic Energy Dissipation Rates, W/m3

Case Time Average Typical Peak

1 0.502 0.84
2 1.815 2.82
3 1.790 2.10
4 1.626 3.13
5 1.535 2.02
6 1.378 2.64
7 0.947 1.39

Figure 14. Volume- and phase-averaged dissipation rates
(W/m3) for oscillatory flow. Volume- and time-averaged
values for steady cases are indicated as well.
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[55] Figure 17 presents a phase averaged comparison of
the form drag, Dp, and viscous drag, Dv, for the oscillatory
cases. As expected, the flat bottom case presents no form
drag because the pressure is perpendicular to the flat

boundary and the x-component is identically zero every-
where. In this case, the drag is purely viscous and we recall
the previous result that the flat bottom case maintains the
highest average shear stress at the wall because the flow

Figure 15. Plan views of the wall shear stress (Pa) on the ripple surface for oscillatory flow over a
sinusoidal ripple showing (a) maximum flow at t = 15.3 s, (b) flow reversal at t = 15.9 s, and (c) time
averaged over eight wave periods (4.9 < t < 24.5).

Figure 16. Pressure contours (Pa) on the wall for flow over sinusoidal ripples at (a) maximum onshore
flow and (b) flow reversal.
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remains attached to the boundary. Table 5 provides a
summary of average values of the integrated pressure and
viscous drag for each of the seven cases, calculated over the
time period 4.90 < t < 25.0 s.
[56] With the introduction of ripples, the RMS viscous

drag decreases by approximately 25% in the oscillatory
cases. The form drag, however, increases.
[57] As the steepness of the ripples increases, the form

drag dominates the viscous drag. Even though the viscous
drag decreases due to blocking effects and flow separation
for steeper ripples, the total drag increases due to the
increased pressure force on the variable boundary. We also
note that the RMS drag in oscillatory flow exceeds the drag
for steady flow for the same peak free stream velocity. As a
corollary, the increased flow resistance by the bed forms
should cause increased energy dissipation from the shoaling
surface waves. Comparison of the total RMS drag from
Table 5 with typical peak dissipation rates from Table 4
supports this conclusion.

4.8. Friction Factors

[58] This section treats two applications of potential
interest: surface wave attenuation and sediment transport.
Wave attenuation will be most affected by the total drag.
This can be presented nondimensionally as a coefficient of
drag defined as

CD ¼ 2FD

rU 2
mA

; ð26Þ

where FD is the RMS total drag (combined viscous and
form drag), and A is the surface area of the ripple, with
values of 25.00, 27.00, 27.80, and 27.96 cm2, for the flat
plate, sine, Gaussian, and steep ripple, respectively.

[59] For sediment transport, the maximum shear experi-
enced by the ripple will be the driving factor. Similar to the
definition of the coefficient of drag, Jonsson [1966] defined
the dimensionless wave friction factor,

fw ¼ 2t̂w
rU2

m

; ð27Þ

in relation to the maximum shear stress at the wall, t̂w, and
the amplitude of oscillation Um = Aw. He also showed that
the friction factor could be adapted to boundary layers
developed under uniform currents by replacing Um with
the steady velocity of the current. Nielson [1992] points
out that there is a serious shortage of experimental data on
boundary layer structure in the turbulent regime. Further-
more, studies made by Bagnold [1946], Carstens et al.
[1969], and Loftquist [1986] all used different definitions
and terminology when referring to friction factors.
Comparing our numerical results to experimental data
becomes difficult, even without considering the differ-

Table 5. RMS Average of Integrated Viscous (Dv), Form (Dp),

and Total Drag, (N � 10�4)

Case RMS Dv RMS Dp RMS Total

1 5.18 0.00 5.18
2 4.00 6.45 8.93
3 1.36 5.02 6.16
4 3.99 7.94 10.67
5 1.08 4.86 5.74
6 3.32 7.07 9.27
7 1.00 4.07 4.87

Figure 17. Surface and phase-averaged form and viscous drag (N) for the oscillatory cases.
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ences in bed form shapes. Table 6 presents the results
from the simulations. Direct model comparison with field
data collected during the SHOWEX experiment are in
progress.

5. Summary

[60] Numerical investigations of the flow dynamics in the
wave bottom boundary layer over sand ripples have been
conducted employing a modification of the time-dependent,
three-dimensional, fourth-order curvilinear model devel-
oped by Winters et al. [2000]. At low to moderate Reynolds
number, the presence of sand ripples has been observed to
induce significantly higher turbulence levels and dissipation
rates in the boundary layer compared to flows over a
smooth boundary.
[61] The thickness of the wave bottom boundary layer

over rippled topography has also been shown to increase, as
flows became more complex and unsteady under simple
monochromatic forcing. Boundary layer thicknesses have
also been shown to be larger for oscillatory flows compared
to steady flows over the same topographic features.
[62] For rippled topographies, turbulent bursts originating

during flow reversal are not damped out during flow
acceleration as they are even at higher Reynolds number
(S. Moneris and D. N. Slinn, Numerical simulation of the
wave bottom boundary layer over a smooth surface: 1.
Three-dimensional simulations, submitted to Journal of
Geophysical Research, 2004) over flat beds, but remain
relatively strong throughout the wave period. The levels of
turbulence typically fluctuate over the wave period by about
a factor of 2. Separation at the ripple crests has been
observed to be a mechanism for the production of turbu-
lence in the boundary layer during phases of maximum flow
and has been associated with turbulent boundary layer
growth for a uniform current over steep ripples. As the
steepness of the ripples increase, the turbulence becomes
more focused in the trough and above the ripple crest. For
uniform currents over sand ripples, the boundary layer
thickness grows slowly in time but does not achieve the
same dimension as the oscillatory case during these 25-s
simulations.
[63] The simulations suggest that a dynamic equilibrium

of scour on the face and deposition in the lee and the
increased concentration of turbulent kinetic energy in the lee
of the ripple crests could be responsible for redistribution of
sediment in suspension to the peaks of the ripples.
[64] The simulations also demonstrate that the average

shear stress on the wall decreases with ripple steepness but
becomes more localized spatially near the ripple crest with

minima in the troughs. The average wall shear stress is
highest for flow over flat beds, suggesting that natural ripples
can exist in a state of equilibrium between scour by skin
friction and particle settlement due to gravity. The wave
friction factor due to shear stress is observed to increase with
the presence of ripples. The form drag and consequently the
total drag also increase with ripple steepness due to the
increasing pressure forces on the variable boundary. Several
lines of investigation invite continued work, including com-
parisons with more complex time series of wave forcing,
simulations that include sediment particles, comparison with
1-D WBBL models, and combinations of oscillatory and
steady currents in the wave bottom boundary layer.

Appendix A

A1. Domain Size

[65] Figure A1 shows the autocorrelation in time and
space along the span-wise direction at the ripple crest for the
v-velocity. This indicates that the width of the domain is
adequate to capture any instabilities inherent in the flow.
Note that this is in contrast to the low Reynolds number
numerical studies of Scandura et al. [2000], which required
a domain width 2.5 times the ripple wavelength. The higher
turbulence levels here lead to shorter correlation lengths.

A2. Grid Resolution

[66] Spectra of the velocities in computational space are
presented in Figure A2. While not directly comparable to
physical space spectra, it is necessary for the solution to be
well resolved in computational space. It is evident that there
is little ‘‘energy’’ contained in the highest wave numbers; in
the x-direction, kmax = 1/64.

A3. Model Validation

[67] In addition to the extensive model validation (detail-
ing the accuracy of scalar diffusion, time-dependent Couette

Table 6. Maximum Shear (N/m2), Friction Factors, and Coeffi-

cient of Drag for All Cases

Case Ripple Forcing t̂w fw CD

1 flat osc 0.293 0.0029 0.0101
2 sine osc 1.086 0.0106 0.0161
3 sine steady 0.622 0.0061 0.0111
4 Gaussian osc 1.020 0.0099 0.0187
5 Gaussian steady 0.652 0.0063 0.0100
6 steep osc 1.121 0.0109 0.0161
7 steep steady 0.716 0.0070 0.0085

Figure A1. Autocorrelations for the v-velocity at the
ripple crest.
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Figure A3. Time evolution of vorticity using parameters from Blondeaux and Vittori [1991] Case 13,
Rd = 100, h/l = 0.15, and s/l = 0.75.

Figure A2. Velocity spectra in the x-direction, at times of (a) flow acceleration, (b) maximum onshore
flow, (c) flow deceleration, and (d) flow reversal. Solid, dash-dotted, and dashed lines represent spectrum
for U, v, and W velocitiesin computational space, respectively.
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flow, and internal gravity waves) and sample applications
(ranging from solitary waves in a tilting tank to flow
through a contraction) presented by Winters et al. [2000],
results from duplicating a case from Blondeaux and Vittori
[1991] are presented in Figure A3. For this case, Rd = 100,
h/l = 0.15, and s/l = 0.75. This case represents the highest
Reynold number for which detailed data is presented.
[68] Qualitatively, there is good agreement between the

two models. The main difference derives from the forcing
applied in the model. Blondeaux and Vittori [1991] have use
a time-dependent stream function as a forcing mechanism.
The elliptic nature of the stream function gives a forcing
that more closely follows the ripple shape. Our model uses a
forcing based on the horizontal pressure gradient, as would
be found under a passing wave. This mechanism causes the
initial vortex pair to be shed from the trough, to be followed
subsequently by vortex shedding at the ripple crest. Quan-
titatively, our model also reproduces the bed shear stress as
calculated by Blondeaux and Vittori, when accounting for
the difference in forcing.
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