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The problem of constructing optimal linear prediction models by multivariance regression methods is 
reviewed. It is well known that as the number of predictors in a model is increased, the skill of the 
prediction grows, but the statistical significance generally decreases. For predictions using a large number 
of candidate predictors, strategies are therefore needed to determine optimal prediction models which 
properly balance the competing requirements of skill and significance. The popular methods of coefficient 
screening or stepwise regression represent a posterJori predictor selection methods and therefore cannot 
be used to recover statistically significant models by truncation if the complete model, including all pre- 
dictors, is statistically insignificant. Higher significance can be achieved only by a priori reduction of the 
predictor set. To determine the maximum number of predictors which may be meaningfully incorporated 
in a model, a model hierarchy can be used in which a series of best fit prediction models is constructed for 
a (prior defined) nested sequence of predictor sets, the sequence being terminated when the significance 
level either falls below a prescribed limit or reaches a maximum value. The method requires a reliable 
assessment of model significance. This is characterized by a quadratic statistic which is defined indepen- 
dently of the model skill or artificial skill, As an example, the method is applied to the prediction of sea 
surface temperature anomalies at Christmas Island (representative of sea surface temperatures in the 
central equatorial Pacific) and variations of the central and east Pacific Hadley circulation (characterized 
by the second empirical orthogonal function (EOF) of the meridional component of the trade wind 
anomaly field) using a general multiple-time-lag prediction matrix. The ordering of the predictors is based 
on an EOF sequence, defined formally as orthogonal variables in the composite space of all (normalized) 
predictors, irrespective of their different physical dimensions, time lag, and geographic position. The 
choice of a large set of 20 predictors at 12 time lags yields significant predictability only for forecast 
periods of 3 to 5 months. However, a prior reduction of the predictor set to 4 predictors at 10 time lags 
leads to 95% significant predictions with skill values of the order of 0.4 to 0.7 up to 6 or 8 months. For 
infinitely long time series the construction of optimal prediction models reduces essentially to the problem 
of linear system identification. However, the model hierarchies normally considered for the simulation of 
general linear systems differ in structure from the model hierarchies which appear to be most suitable for 
constructing pure prediction models. Thus the truncation imposed by statistical significance requirements 
can result in rather different models for the two cases. The relation between optimal prediction models 
and linear dynamical models is illustrated by the prediction of east-west sea level changes in the equatorial 
Pacific from wind field anomalies. It is shown that the optimal empirical prediction is statistically 
consistent in this case with both the first-order relaxation and damped oscillator models recently proposed 
by McWilliams and Gent (but with somewhat different model parameters than suggested by the authors). 
Thus the data do not allow a distinction between the two physical models; the simplest acceptable model 
is the first-order damped response. Finally, the problem of estimating forecast skill is discussed. It is 
usually stated that the forecast skill is smaller than the true skill, which in turn is smaller than the hindcast 
skill, by an amount which in both cases is approximately equal to the artificial skill. However, this result 
applies to the mean skills averaged over the ensemble of all possible hindcast data sets, given the true 
model. Under the more appropriate side condition of a given hindcast data set and an unknown true 
model, the estimation of the forecast skill represents a problem of statistical inference and is dependent on 
the assumed prior probability distribution of true models. The Bayesian hypothesis of a uniform prior 
distribution yields an average forecast skill equal to the hindcast skill, but other (equally acceptable) 
assumptions yield lower forecast skills more compatible with the usual hindcast-averaged expression. 

1. INTRODUCTION 

The prediction of short-time climate variations in the range 
from a month to a few years is a problem of great practical 
significance which has long challenged meteorologists and cli- 
matologists. Yet despite numerous studies and forecasting ap- 
proaches, the ability to predict on these time scales has re- 
mained, on the whole, marginal. The question arises whether 
this low predictability is an intrinsic property of the climate 
system, or whether at least some climate variables could be 
predicted with higher skill than presently achieved through the 
development of improved modeling techniques. We suggest in 
this paper that in many cases improved predictions can indeed 
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be obtained by the systematic application of a general mod- 
eling strategy designed to determine the optimal' model, •vithin 
a given model class, which maximizes the skill while satisfying 
the condition of statistical significance. Essential for the con- 
struction of an optimal model is the joint consideration of the 
competing requirements of skill and statistical significance (an 
aspect which has not always received sufficient attention in 
model construction). 

Various types of models have been considered for short-time 
climatic prediction. High-resolution general circulation mod- 
els of the atmosphere [cf. Garp, 1975], which are used routinely 
for l- to 4-day weather forecasts, should in principle also be 
able to describe the development of climate on longer time 
scales, if suitably extended to include the dynamics of the more 
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slowly varying components of the climatic system, such as the 
oceans and sea ice. However, these models become very ex- 
pensive if integrated for longer periods and are more difficult 
to calibrate with respect to the longer time scale processes. An 
alternative approach has therefore been to develop simpler, 
lower-resolution dynamical models [cf. Kurihara, 1970] or en- 
ergy balance models [cf. Adern, 1964, 1975; Vernekar, 1975; 
Sellers, 1976] which emphasize the dynamics of the slower 
parts of the system while parameterizing the more rapid 
weather scale processes which are of interest only statistically 
for climatic time scales (see reviews by Schneider and Dickinson 
[1974] and $altzrnan [1978]). The stronger the simplifications 

problem, the basic concepts needed for the construction of 
prediction models from data are reviewed and summarized in 
sections 2-3. The construction of optimal predictions should 
be distinguished here from the problem of linear system identi- 
fication and simulation [cf. Box and Jenkins, 1976; Kashyap 
and Rao, 1976]. if the data set is infinite, so that the linear 
characteristics of the system can be completely determined 
from the data, the two problems become essentially identical. 
However, for finite data sets the structure of the model will 
depend on whether the model is optimized with respect to 
prediction (for a given lead time) or with respect to some 
measure of the fidelity of the model in reproducing the ob- 

(parameterizations) introduced into these models, the heavier ' served overall statistics of the system. 
the reliance which must be placed on data to calibrate (tune) 
the models. Successive simplification then leads naturally to 
the empirical prediction model, in which only the general 
structure of the model is specified and all essential parameters 
of the model are determined from the data. Empirical short- 
time climate prediction models have generally been formulated 
as linear models on the assumption that for the time scales of 
interest the anomaly fields are normally sufficiently small to be 
treated as perturbations [cf. Lorenz, 1956, 1977; Davis, 1976, 
1977, 1978]. The construction of the model reduces in this case 
to a problem of linear regression. The limiting form of an 
empirical model, finally, is the analogue model [cf. Elliott, 
1951; Namias, 1951; Barnett and Preisendorfer, 1977, 1978], in 
which not even the model structure is specified; the prediction 
of the future evolution of the system is taken simply as the 
repetition of a past development selected from a longer series 
of observations on the basis of the resemblance between the 

initial states of the analogue and the prediction. 
We shall be concerned here only with models containing a 

number of adjustable coefficients, thereby excluding essentially 
high-resolution general circulation models and analogue meth- 
ods at the two ends of the model hierarchy. To simplify the 
analysis, we shall further restrict the discussion to the case of 
linear prediction models. The basic approach, however, can 
also be generalized without difficulty to nonlinear models [cf. 
Hasselmann, 1979a]. 

The main difficulty in empirical model construction is that 
the data set from which the model must be determined is finite. 

For a hypothetical infinite data set, the best fit empirical model 
is normally uniquely defined. However, for a finite data sample 
the basic indeterminacy of the estimates of ensemble-averaged 
quantities induces an unavoidable indeterminacy of the esti- 
mated optimal model. This indeterminacy generally increases 
with the number of model parameters used and sets a natural 
limit to the complexity of a model which can be constructed 
from a finite data set [cf. Lorenz, 1956; Davis, 1976]. Since the 
predictive skill, on the other hand, increases with the number 
of model parameters, the central problem in constructing em- 
pirical prediction models is to arrive at a proper balance 
between the competing requirements of skill and significance. 
Although the basic methods for treating this problem are well 
known and can be found distributed in the statistical literature 

[e.g., Kashyap and Rao, 1976], they do not appear to have 
found general application in the field of climate prediction. in 
fact, many short-time climatic prediction models derived by a 
posteriori screening and stepwise regression methods from 
large initial sets of predictors would probably fail the appro- 
priate multivariate significance test, if correctly applied to the 
complete predictor set (e.g., see the difficulties discussed by 
Harnack and Landsberg [1978] or the review by Jones [1977]). 

in view of their general relevance for the climate modeling 

Section 4 describes the construction of optimal prediction 
models from a model hierarchy. The method differs basically 
from the frequently used methods of screening, ranking, and 
stepwise regression by requiring a priori•definition of the pre- 
dictor sequence, as opposed to the a posterJori selection of 
principal predictors used in the latter techniques. 

Section 5 describes the application of the model hierarchy 
approach to the construction of linear predictions for anoma- 
lies in the tropical Pacific. Two examples are given: sea surface 
temperature (SST) anomaly at Christmas island and changes 
(primarily displacements) of the Hadley circulation, for which 
95% statistically significant predictions with skill values of the 
order of 0.5-0.7 are constructed for periods up to 8 and 6 
months respectively, into the future. A more comprehensive 
analysis of predictability in the tropical Pacific, including sta- 
tistically significant forecasts of El Nifio properties, will be 
presented in a later paper (T. P. Barnett, manuscript in prepa- 
ration, 1979). 

Section 6 discusses the problem of interpreting empirical 
linear prediction models in terms of linear dynamical models, 
as represented by linear systems of ordinary differential equa- 
tions. Since optimal prediction models and dynamic system 
simulations are normally constructed from different model 
hierarchies, a one-to-one correspondence between the finite- 
order truncations of the two types of model cannot generally 
be expected. Moreover, a basic asymmetry exists between the 
two modeling approaches: whereas a dynamical model at- 
tempts to reproduce the entire statistics of the data set in a 
single model, a prediction model is designed to filter out only 
those data properties which are most useful for prediction. 
These will generally depend on the prediction lead time cho- 
sen, so that a prediction model with variable lead time should 
be viewed as a series of models emphasizing different proper- 
ties of the predictors and the system response for different lead 
times. Thus although it is possible to define an associated 
prediction model for any given dynamical model (simply by 
determining the optimal prediction model for the simulated 
data set) the inverse transformation of a prediction model into 
an equivalent (low order) dynamical model is not generally 
feasible. The interpretation of an empirical linear prediction 
model in terms of a (simple) dynamical model can therefore be 
formulated only as a consistency test: if a dynamical model 
exists for which the associated prediction model lies within the 
confidence region of the empirical prediction model, the dy- 
namical model can be regarded as a statistically consistent 
physical interpretation of the empirical prediction model. 

This is illustrated in section 7, in which the empirical predic- 
tion of east-west sea level variations in the equatorial Pacific in 
response to wind variations is interpreted dynamically in terms 
of the simple first-order relaxation and second-order damped- 
oscillator models recently proposed by McWilliams and Gent 
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[1978]. The linear prediction solution is found to be statisti- Although the more general form (2) is probably necessary for 
cally consistent with both models, although the parameters of successful predictions of ocean-atmosphere anomalies at mid- 
the models differ to some extent from the values proposed by 
McWilliams and Gent. The second-order damped-oscillator 
model does not yielcb a significantly improved fit over the 
simpler first-order damped system, so that the added com- 
plexity of this model (oscillating response characteristics) can- 
not be justified by the data. 

Finally, section 8 addresses the problem of forecast skill. It 
is generally stated that the forecast skill, defined as the skill of 
the model when applied to a new independent data set, is lower 
on the average than the hindcast skill, defined as the skill of the 
model when tested against the data used to construct the 
model. The skill of the true model lies midway between the 
forecast skill and hindcast skill, differing from each by an 
amount approximately equal to the artificial skill. In a reanaly- 
sis of the problem it is noted that the usual form of ensemble 
averaging on which these relations are based does not in fact 
correspond to the given side conditions of the problem. It is 
normally assumed that the true model is given, and the aver- 
ages of the hindcast and forecast skill are then formed over the 

latitudes, where numerous studies indicate a seasonal depen- 
dence of the anomaly structures, in our later applications to 
tropical anomalies we shall consider only zero'th-order Fou- 
rier coefficient Dtno, i.e., the form (1), since at low latitudes the 
ratio of the anomaly signals to the annual signal is relatively 
high. In this case the interaction between the seasonal cycle 
and the anomalies may perhaps be neglected to first order. 

The form (1) includes the case in which the predictand y 
coincides with one of the predictor fields xt. The equation may 
also be generalized to a set of simultaneous equations for a 
number of predictands, and if these are identical with xt one 
obtains the problem of the autoprediction of a vector field xt. 
With the exception of the discussion in section 6, however, we 
shall consider here only a single predictand, since the simulta- 
neous prediction of a number of variables follows from the 
single-predictand problem by straightforward superposition 
(see, for example, Jenkins and Watts [1968]). 

For simplicity of notation it is convenient to rewrite (1) in 
the form 

ensemble of hindcast and independent data sets. In reality, the 

hindcast data set is given, whereas the true model is unknown. f(tj) = • atzt(tj) 
Under these side conditions, the estimation of the mean fore- •--• 

cast skill appears as a problem of statistical inference and where the I X m = n time series 
depends on the assumed prior distribution of possible true 
models [cf. Savage, 1962]. In particular, Bayes' hypothesis of a 
uniform prior distribution yields an (likelihood) averaged- 
forecast skill equal to the hindcast skill. However, equally 
acceptable alternative prior distributions are found to yield 
mean forecast skills which differ from the Bayesian estimates 
by amounts of the order of the artificial skill. It is therefore 
concluded that the deviation of the mean forecast skill from 

the hindcast skill cannot be meaningfully determined under 
the appropriate side conditions of a given estimated model and 
can only be estimated to be of the same order as the artificial 
skill. 

2. LINEAR PREDICTION 

We wish to predict the value of a discrete time series y(tj) 
(tj+• - tj = At = const) p time lags into the future from the 
past and present values of a set of n time series xt(tj) (i = l, 
ß .., 1) with the aid of a general linear relation of the form 

pat) = • Dt•xt(tj - kAt) (1) 
t--1 /•=o 

Here f denotes the predicted or estimated variable as distinct 
from the true value y. 

Equation (1), with constant coefficients Dtn, represents the 
general expression for a time-independent linear predictive 
system (the additional dependence of Dtn on p, which is re- 
garded as fixed, is not shown explicitly). The number of past 
lags, which theoretically may be infinite, is regarded as finite 
for practical purposes. 

The assumption of a time-dependent system may be ques- 
tioned in applications to the ocean-atmosphere system, since 
the anomalies of interest are often superimposed on large 
seasonal signals. More appropriate to this case would be the 
generalization to a physical system with an annual periodicity 
T. This is obtained by replacing the constant coefficient Di• in 
(1) by the Fourier series 

(3) 

z•(tj) = x•(tj - pat),..., z,,(tj) = x•(tj -- (p + m -- 1)At) 
(4) 

z,,+•(tj) = x2(tj - pat),..., z,•(tj) = xt(tj -- (p + rn -- 1)At) 

are defined such that the predictand and the new predictor 
series zt are all taken at the same time tj. 

The optimal linear prediction is defined in the usual least 
square sense as the set of coefficients a = (a•,..., a,•) which 
minimizes the mean square error 

= ((y - .0):) (5) 

where (...) denotes the average over a (hypothetical) statisti- 
cal ensemble of time series. The solution is given by 

at = • Zo-•(z•y) (6) 
J--1 

where Zo = (ztzj) is the predictor covariance matrix. 
In practice, it is usually convenient in evaluating (6) to 

redefine the predictors as the coefficients of a set of normalized 
empirical orthogonal functions (EOF's) or principal com- 
ponents [cf. Pearson, 1901; Hotelling, 1933; Lorenz, 1956; 
Davis, 1976; Kutzbach, 1967; Barnett and Preisendorfer, 1977, 
1978]. These are obtained by a rotation of the predictor space 
with subsequent scaling such that the transformed predictor 
set zi' is statistically orthonormal, (zt'z/) = bo. The prediction 
coefficients in this new system are simply at' = (yzt'). 

The quality of the prediction is generally characterized by 
the skill 

S = I - (½')/(v')) (7) 

which represents the fraction of the variance of y predicted by 
the model. For zero predictability, S = 0, while for zero 
prediction error e = 0, i.e., perfect predictability, S = 1. Using 
(3), (5), and (6) in (7)gives 

Dt•(tj) = • Dt•q exp (2,riqtj/T) (2) S= • atat(ztzt) tv') (8) 
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or for the z/predictor set 

S = • (9) 

3. MODEL SIGNIFICANCE 

a. The po. Statistic 

In practice, the hypothetical ensemble averages ("') must 
be estimated from averages [."] (normally time averages) 
taken over a finite data sample. The sampling errors bZo = 
[ztzt] - (z•zj) and bK• = [z•y] - (zty) incurred in the estimation 
of the covariance matrices will then induce errors bat = 6• - at ø 

of the estimated optimal coefficients & relative to the true 
optimal model a• ø. Normally, the indeterminacy of the model 
associated with the sampling errors increases with the number 
of predictors used. Thus attempts to increase the model skill 
by increasing the predictor number will generally be offset in 
practice by the accompanying reduction in significance of the 
higher-order models [Lorenz, 1956; Davis, 1977]. 

The central problem in model construction is therefore find- 
ing a satisfactory balance between the conflicting requirements 
of significance and skill. For this purpose a reliable measure of 
model significance is required. A statistic which has often been 
used in this context is the 'artificial skill' [cf. Davis, 1977, 
1978]. However, it will be shown below that this quantity does 
not provide a reliable measure of model significance, since it is 
not based directly on the probability density of the model 
variables. The appropriate statistic for significance tests fol- 
lows from consideration of the joint probability distribution of 
the estimated model coefficients. 

If the coefficients are estimated from averages over a fairly 
large number of quasi-independent samples, the errors will be 
small and, by the Central Limit Theorem, approximately 
Gaussian. Thus the probability distribution of estimated mod- 
els •I, given the true model a ø, is of the form 

p(•/a ø) d•I = exp (-0:/2) dfi (10) 

where 

p:= •. Mo-•(r•,- atø)(r•- af) (11) 
12) 

the forecast skill and its relation to the hindcast skill and true 

skill. For the purposes of this section, however, we need to 
recall only the well-known definitions of the confidence region 
and significance level of an estimated model. 

For a given (unknown) true model•a ø, the '? probability 
region' R(a ø) of estimated models •I around a ø is defined as a 
region such that 

f . t,(ala o) da = ? 
where ? < 1 represents some prescribed probability level. 
Conversely, for a given estimated model •I one can then in- 
troduce a '? confidence region'/•0I) around •I as the set of all 
true models a ø whose associated probability regions R(a ø) 
contain the given estimated model •t. In practice, it can be as- 
sumed that for sufficiently small sampling errors ba = •t - a ø, 
the probability distributions p(ba) for the relative errors re- 
main the same for different a ø so that the probability distribu- 
tions p0I/a ø) for different a ø differ only in the position a ø of 
the maximum. 

The shapes of the regions R and /• have not yet been 
specified. To complete the definitions, we require now that the 
region R is limited by a surface of constant probability density 
p = const or, equivalently, p" = const. This yields an ellipsoid 
for R, and/• is then the same ellipsoid with its center displaced 
to • (see Fig. 1). The definition is optimal in the sense that it 
yields the smallest regions R,/• for a given confidence level ?, 
and ensures that all regions within R have higher probability 
density than regions outside. Additionally, the definition is 
invariant with respect to linear transformations of the predic- 
tors. (This follows from the fact that p is a scalar invariant 
obtained by contracting tensor products, or more simply be- 
muse linear transformations affect probability densities only 
by a constant factor, the transformation Jacobian, so that 
surfaces of constant density remain invariant under such trans- 
formations.) The invariance property is clearly a necessary 
requirement for all linear models in which no distinction is 
made between different representations of the predictor set. 

The mean radius p, of the ellipsoid can be found by consid- 
ering the one-dimensional probability density associated with 
the n-dimensional distribution (10) with respect to the distance 
coordinate •. This is given by a x0' distribution with n degrees 
of freedom, 

and we have assumed (•) = 0 to first order. 
By Taylor expansion of (6), the covariance matrix Mo can 

be expressed in terms of the second moments of bZo and 
and these in turn can be estimated from the time-lagged covar- 
iance functions of the variables z• and y using standard results 
of covariance sampling theory [cf. Jenkins and Watts [1968] 
and appendix, this paper). An exact evaluation of Mr1 requires 
information on the fourth moments of zj and y, but these are 
normally expressed in terms of the second moments by assum- 
ing that the processes z• and y are approximately Gaussian. 

Equation (10) represents the theoretical probability distri- 
bution of models •, estimated from individual data realiza- 
tions, given the true ensemble-averaged moments and the asso- 
ciated true model a ø. In practice, one faces the inverse 
situation in which one has only a single data realization and 
would like to determine the set of possible true models which 
are compatible, within given statistical limits, with the esti- 
mated moments and the associated estimated model •I. This is 

a general problem of statistical inference which we shall return 

p(•:) d•: = (r(n/2)2"/:)-'(fy •/:'-' exp (-•:/2) d•: (13) 

and the 3' confidence radius p, defined by 

fo"'p(p •') dp' = 3' 
can be obtained from standard tables. For large n 

p.•=-• n + b.•(n) v= (14) 

where b, is independent of n. 
The confidence region/• is useful primarily for identifying 

acceptable true models in significance tests. In particular, if/• 
contains the trivial zero-prediction model a ø = 0, the esti- 
mated model is said to be statistically nonsignificant at the 3' 
confidence level (in other terminology: at the 1 - 3' confidence 
level). In the example shown in Figure la, the estimated model 
is therefore statistically significant at the 3' confidence level, 
since K does not include the point a ø = 0, whereas the esti- 
mated model in Figure lb cannot be distinguished statistically 

to in more detail in section 8 in the context of the estimation of from the zero-skill prediction model a ø = 0. Thus although the 
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o 2 

ß ' ' = =0 ] al 

a) b) 

Fig. 1. The 95% probability. region R and confidence region J• for 
true models a ø and estimated model •, respectively: (•) corresponds 
to a statistically significant model, (b) to a statistically insignificant 
model, for which the zero-prediction true model a ø = 0 lies within/•. 

second model can appear quite successful when evaluated in 
terms of skill, the skill values must be rejected as fictitious on 
the basis of the independent significance test. 

In applying (13) and (14) in practice it should be remarked 
that for a more rigorous analysis one should consider the 
significance levels of the variable b" = lJ•tj-xdtdj rather than 
o" = Mo-X&d•, where/fir o = [•ia•fia•] is the estimated rather 
than true covariance matrix of the model errors. The X" distri- 
bution (13) is then replaced by Hotelling's distribution, the 
multidimensional generalization of Student's distribution [cf. 
Kendall and Stuart, 1966]. However, for reasonably large n, 
which is the main case of interest here, the relations (13) and 
(14) represent adequate approximations. 

b. Hindcast Skill and Artificial Skill 

Sampling errors will also affect the estimates of skill. Re- 
placing the true moments and coefficients by the correspond- 
ing estimated values in the expression (8) for the true skill So 
one obtains the estimated or hindcast skill 

S, = • ...•,.] (15) 
Since $• is a positive definite expression, it will generally be 
positive even for a zero-prediction true model, a ø = 0. The 
hindcast skill in this case is termed the artificial skill 

Sa = Sn(a ø = O) = • ba'ba![z!z't..] • Z (16) 
For small skill values one readily finds [Lorenz, 1956; Davis, 
1976] - 

(Sn) • So + (Sa) (17) ., 

If the model is statistically significant, the estimated hindcast 
skill Sn may be expected to exceed the estimated average 
artificial skill (Sa) by a 'significant' factor. However, while a 
comparison of Sn against (Sa)provides a general indication of 
model significance, the quantities Sn and (Sa) can be mis- 
leading if used as a quantitative measure of significance in 
place of p".." 

Statistical significance tests based on the ratio of the quad- 
ratic forms Sn and (S a) are equivalent to defining probability 
regions Rs in the model parameter space boundexl by surfaces 
of constant S,t rather than constant 0 •. The difference between 
the two significance tests is indicated in Figure 2, which shows 
the corresponding 95% probability regions Rs and R for the 

ß 

null hypothesis of a zero-prediction model. Model A, although 
in a region of very small probability density well outside the 
95% probability region, and therefore highly significant, would 
fail the S a significance test, whereas the statistically in- 
significant model B within the 95% probability region would 
be accepted by this test. 

The difference between the probability ellipsoids bounded 
by constant Sa or constant 02 can be quite significant. In the 
cases considered in section 5, for example, differences in the 
ratios of the major axes of the quadratic forms S• and 02 by 
factors of 2 or 3, together with large changes in the axis 
orientations, were not uncommon. However, it should be 
noted that these differences are a characteristic property of 
time series with finite correlation lags, in which the ensemble 
averages are estimated by taking continuous time averages 
over a finite record length. If the ensemble averages are esti- 
mated from a finite number of statistically independent sam- 
ples (e.g., if the processes y and zt represent white noise) the 
artificial skill metric (ztzj)/(y') and the metric (•a•aj) -• of the 02 
statistic can be shown to coincide. This may explain in part 
why statistics characterizing model significance and model 
skill are not always clearly distinguished (e.g., in the definition 
of 'stopping rules' in the stepwise construction of models [cf. 
Mosteller and Tukey, 1977]). 

4. SIGNIFICANCE VERSUS SKILL: MODELING STRATEGIES 

In the discussion in the preceding sections it was assumed 
that the structure of the model, i.e., the set of predictors, was 
given. We turn now to the problem of choosing the predictors. 
As has been pointed out, the skill of a model increases, 
whereas the statistical significance generally decreases, as the 
number of predictors is increased. Thus a strategy is needed to 
determine the largest number of predictors which can be incor- 
porated in a model while still retaining a statistically signifi- 
cant solution. A number of such strategies have been sug- 
gested. Essential for a correct application of all methods is a 
careful distinction between the a priori and a posteriori selec- 
tion of predictors. A posteriori predictor selection, or screen- 
ing, is permissible only if the model has first passed a statistical 
significance test for the entire predictor set; both the skill and 
the statistical significance of the screened model are then al- 
ways lower than for the original model. This fact has often 
been overlooked in constructing prediction models and has 
resulted in erroneously optimistic estimates of the statistical 
significance of screened models. A statistically consistent or- 
dering strategy aimed at maintaining high statistical signifi- 

:i::':""'• Bt consta dens• ! 
surfaces 

Fig. 2. Relation between 95% probability regions R and Rs limited 
bY constant o 2 and Sa, respectively, for the zero-prediction model a ø = 
0. The model estimate A is statistically significant, but would fail a 
significance test based on the SA statistic. Conversely, the model 
estimate B is statistically insignificant but would pass the S A statistic 
test. 

ß 
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cance must therefore be based on a priori predictor selection. 
This requires, unavoidably, some a priori hypothesis regarding 
the relative importance of different predictors. In the present 
context the terms a posterJori and a priori simply denote, re- 
spectively, with and without use of correlation information be- 
tween predictand and predictors; a priori selection using corre- 
lation information between predictors only (e.g., by ordering 
in an EOF sequence) is permissible. 

a. Screening Strategies 

The common starting point of all screening (winnowing, 
ranking, and stepwise regression) techniques is the (at least 
conceptual) existence of a comprehensive optimal prediction 
model containing a large number of predictors. From this a 
truncated model is then derived by retaining only the most 
'important' components of the complete coefficient vector. 
The ordering of coefficients is generally based either on sepa- 
rate statistical significance tests for each coefficient (after 
transformation to a coefficient set with statistically orthogonal 
estimation errors) or on the individual contributions of the 
coefficients to the net skill (in the case of stepwise regression 

dominated by the noise, and the model will normally fail the 
significance test. According to the usual screening philosophy, 
one could now argue that the significant first predictor could 
nevertheless have been readily distinguished from the irrele- 
vant noise components simply by testing the statistical signifi- 
cance of each prediction coefficient individually. However, this 
technique is not invariant with respect to linear transforma- 
tions of the predictor coordinate system. An arbitrary rota- 
tion, for example, will generally immerse the first predictor in 
linear combinations containing a large number of noise com- 
ponents; in the new coordinate system all prediction coeffi- 
cients would then appear statistically insignificant. Conversely, 
given an unpredictable system, it is always possible to rotate 
the predictor space such that, for a particular realization, the 
new axis for the first predictor component lies in the direction 
of the estimated (spurious) coefficient vector •. In the new 
coordinate system only the first coefficient is then nonzero, 
and, if tested by itself, will normally appear highly significant. 
We conclude that individual coefficient screening is meaning- 
less in a system in which no significance is attached a priori to 
a particular coordinate system. 

techniques). Screening techniques have been applied widely in 
the construction of geophysical models [cf. Gilbert, 1971], b. 
medium- and extended-range weather predictions [cf. Jones, 
1977], and (implicitly) in the definition of the significant re- 
sponse regions in numerical atmospheric response experiments 
using general circulation models [cf. Garp, 1975; Hasselmann, 
1979]. 

The basic shortcoming of these techniques is that they are 
based on the a posteriori selected of predictors. To avoid 
biasing the statistics, however, the significance test of a model 
must be based on the complete predictor set, prior to trunca- 
tion. In the full predictor space the complete coefficient vector 
is statistically significant at the -• significance level if the end 
point of the vector lies outside the ellipsoidal -• probability 
region, centered at the origin, associated with the null hypoth- 
esis of zero predictability. Coefficient screening then defines a 
new coefficient vector in which the smallest components of the 
original vector, as determined with respect to some particular 
coordinate system, are set equal to zero. While the new vector 
may still be statistically consistent with the data, provided it 
lies within the confidence region/• of the original coefficient 
vector, both the skill and statistical significance of the new 

Nested-Model Hierarchies 

From the above example it is clear that in testing the statisti- 
cal significance of individual predictors or predictor sets the 
tested components must be specified a priori. Thus the first 
predictor could have been identified in this example as a statis- 
tically significant predictor in the presence of a large number 
of noise components if, and only if, the hypothesis had been 
made a priori that the first predictor, as opposed to some other 
linear combination of predictors, was statistically significant 
when tested for itself (i.e., in a prediction model containing 
only this component as predictor). 

The requirement of a priori predictor ordering leads natu- 
rally to a nested-model hierarchy. To determine the model 
with the highest skill which is still statistically significant at 
some prescribed confidence level one can consider a nested 
sequence of models of increasing order, in which each model 
of the sequence is constructed from the previous member of 
the sequence by the inclusion of one (or more) additional 
predictor(s). If the ordering of the predictors is chosen in 
accordance with the expected contribution of the predictors to 
the net skill, the statistical significance of the resultant se- 

model, defined with respect to the original predictor space, will quence of optimal models (as determined by a X 2 test on 0 2) 
necessarily be reduced. In terms of the subspace of predictors may be expected to decrease more or less monotonically with 
retained in the truncated model the apparent significance of the order of the model. 
the model is increased, but this is a statistically impermissible 
measure of significance, since it is based on a posteriori, i.e., 
biased data selection. 

To illustrate the inherent shortcomings of a posterJori 
screening from another viewpoint, consider the case of n 
orthogonal predictors zt, of which all except the first represent 
noise which is uncorrelated with y. The estimated prediction 
coefficients are accordingly of the form dx = ax ø + flax, dx = 
fiat for i _> 2. For simplicity, we assume that the error metric 
Mtj of the quadratic form p2 is unity. 

For a statistically significant model, the generalized distance 
p of the estimate • from the origin must satisfy the inequality 
(14) 

p2 = (axO + fa•)2 + • (faj)2 > p.r2 •. n + b.r(n) x/2 
j--2 

For large n the first term in the expression for •2 is small in 
comparison with the other terms in the equation, so that •2 is 

Beyond some order, the significance will then fall below the 
preselected confidence level, and the cutoff point then defines 
the highest-order model and thereby, since the skill increases 
monotonically with the model order, the highest-skill model, 
which is still statistically acceptable at the prescribed signifi- 
cance level. The success of the technique clearly depends 
strongly on the degree of a priori insight into the relative 
significance of candidate predictors. 'Incorrect' ordering can 
mask all potential predictors by noise, and the entire sequence 
of models can become statistically insignificant. Unfortu- 
nately, it lies in the nature of objective statistical tests that once 
an 'incorrect' ordering choice is made there exists no a poste- 
riori technique for recovering the 'true' predictors from the 
noise. 

Alternative cutoff criteria other than a fixed critical signifi- 
cance level can be chosen to terminate the model sequence. 
For example, the cutoff point can be taken as the model which 
yields the highest significance value. This is a rather stringent 
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condition which eliminates not only noise but also predictors 
which, although less significant than the lower-order com- 
ponents, may still yield a significant contribution to the predic- 
tion. A less stringent cutoff, although still more conservative 
than a fixed significance level, may be defined in terms of the 
rate of decrease of significance with model order. In this case 
the model sequence is terminated when the critical significance 
level is still exceeded, but the rate of decrease of significance 
becomes comparable with the rate of decrease which would 
result from the addition of predictors consisting of uncorre- 
lated noise. 

Another class of cutoff rules focuses on the incremental 

increase in skill obtained by sequentially adding predictors or 
on the confidence limits of individual predictor coefficients [cf. 
Jenkins and Watts, 1968; Box and Jenkins, 1976; Kashyap and 
Rao, 1976; Mosteller and Tukey, 1977]. However, these tech- 
niques are not based on the joint probability distribution of 
the coefficient estimation errors, as characterized by the p2 
statistic, and therefore suffer from the basic shortcomings 
discussed under section 3b. 

Finally, the number of predictors in a model can be limited 
by further criteria, in addition to the significance cutoff condi- 
tion. In working with EOF predictor sequences we have found 
it useful to limit the set of predictors to the EOF components 
whose eigenvalues (at the 95% significance level) exceed the 
values which would be expected by chance for a set of statisti- 
cally independent predictors [cf. Preisendorfer and Barnett, 

where 

f a e-X2/2 w, = -• ( 2•r )•/-------• dx 
and n is the number of predictors. 

The largest coefficient can therefore be regarded as statisti- 
cally significant at the 3' significance level if a > /• where 

p•=(•-•) 

or 

w• = 3'•/'• 

In contrast, a test of the statistical significance of a single 
predictor which had been specified a priori would yield the less 
stringent condition a > •', where w•, = 3'. For example, at the 
95% confidence level, the a priori significance test yields a 
critical level •' • 1.96, whereas for the largest coefficient of a 
set of n predictors one obtains for n = 20, • = 3.0, and for n = 
100, • - 3.5. Thus a priori ordering is to be preferred, if 
physical selection criteria can be found. 

In the general case one needs to consider the statistical 
significance of the set of p largest coefficients a• > a2 > 
aa'"a•,. With increasing p, the probability calculations rap- 
idly become very complex. However, an appropriate technique 
for estimating the significance cutoff point of a reordered 
predictor sequence can be developed using Monte Carlo simu- 
lations of the statistics of the null hypothesis, following the 

1977, 1978]. In practice, the combination of this a priori pre- approach used by Preisendorfer and Barnett [1977] in their 
dictor filtering technique with a fixed-significance level cutoff similar investigation of the distribution of eigenvalues of 
was found to be roughly equivalent to applying a maximum EOF's estimated from a finite data sample of uncorrelated 
significance cutoff, or a cutoff based on the rate of decrease of variables. 
significance, to the complete EOF predictor set. In the following examples the reordering technique was not 

c. Reordering of Predictors 

Besides the entirely a posteriori screening methods based on 
the unrestricted selection of suitable linear combinations of 
predictors and the converse technique of completely ordering 
the predictors a priori in a nested model hierarchy an inter- 
mediate approach is sometimes adopted in which the a pos- 
terjori selection of predictors is permitted, but the set of linear 
transformations employed in selecting the predictors is re- 
stricted to permutations. This reordering technique appears 
appropriate if the predictors represent genuinely distinct, sta- 
tistically independent physical quantities. In this case it may be 
expected that some of the predictors are directly coupled with 
the predictand, whereas others represent independent vari- 
ables of no predictive value, and one would naturally like to 
separate the predictors into these two classes. However, the 
statistical significance of the resultant reordered predictor se- 
quence and, in particular, the cutoff point separating the statis- 
tically significant predictors from the statistically insignificant 
components must again be judged with respect to the joint 
probability distribution of the complete set of predictor coeffi- 
cients. 

Consider, for example, the case that all predictors and all 
coefficient estimation errors are statistically independent. Let 
the predictors be normalized such that the coefficient estima- 
tion errors are unity, (bat •) = 1, and let a be the value of the 
largest estimated coefficient. The probability p. that the largest 
coefficient is greater or equal to a by chance (i.e., assuming 
that the null hypothesis a• ø - 0 is valid) is equal to one minus 
the probability that all estimated coefficients are less than a, or 

p. = 1 - w. '• 

applied since all predictors were intercorrelated, and there 
appeared to be no justification for ordering predictors a pos- 
terjori on the basis of one particular predictor representation, 
as opposed to some alternative linearly transformed represen- 
tation. In this case the only recourse for eliminating statisti- 
cally insignificant predictors from a large predictor set is to 
consider an a priori ordered predictor sequence in a pre- 
defined model hierarchy. 

5. PREDICTION OF SST AND WIND FIELD ANOMALIES 
IN THE TROPICAL PACIFIC 

As application, we consider now the construction of maxi- 
mum-skill predictions for SST and wind field anomalies in the 
tropical Pacific by using a nested model hierarchy. 

Long-term interactions in the tropical Pacific have been the 
subject of numerous investigations, both because of their rele- 
vance to the El Nifio phenomenon and, more generally, be- 
cause air-sea interactions in the tropics play an important role 
in controlling the principal energy fluxes driving the global 
atmospheric circulation. Past studies of these interactions have 
been concerned largely with the general structure of the anom- 
aly fields, either in terms of specific event analyses or in terms 
of overall anomaly statistics, and with simple feedback models 
which were then proposed to explain the principal features 
observed. However, there appears to have been no systematic 
attempt to construct maximum-skill prediction models within 
a general statistical framework independent of the detailed 
structure of particular physical interaction models. 

W e shall present here only a few typical examples of optimal 
model construction, four of which are discussed in this section 
and a further case in section 7. A general application of the 
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TABLE 1. Characteristics of Predictors 

Predictor 

Number Variable Station Location Time Span 

1 sea surface Tumaco, Colombia 2øN, 79øW * 1951-1970 
2 temperature Talara, Peru 4øS, 81øW 1942-1970 
3 Galapagos, Ecuador løS, 90øW 1951-1970 
4 Christmas Island 2øN, 157øW 1954-1970 

5-7 sea level eigenmodes 1, 2, and 3 of equatorial sea levelS' 1950-1970 
8-17 wind field areally averaged u and v components for the 1950-1972 

regions shown in Figure 3 
18 other equatorial wind stress rx* 1950-1972 
19 southern oscillation index [Quinn, 1974]; the sea 1950-1972 

level pressure difference between Easter 
Island and Darwin, Australia 

North Equatorial Countercurrent index 
[Wyrtki, 1974]; the sea level difference 
between Christmas and Kwajalein islands 

20 1950-1970 

Predictor set C'. all 20 predictors at time lags of 1, 2, 3, 4, 5, 6, 9, 12, 15, 18, 24, and 30 months. Predictor 
set R: SST at Talara, first equatorial sea level EOF, r x, and 6u• (Figure 3) at time lags of l, 2, 3, 4, 5, 6, 9, 
12, 15, and 18 months. 

*See Figure 3. 
•'See Barnet [1977b] for definition and Figure 3 for station locations. 

technique to a comprehensive set of anomaly fields will be 
given in a later paper (T. P. Barnett, manuscript in preparation 
1979), in which it is shown that significnt predictions with 
maximum lead times ranging from 6 to 12 months, and some- 
times beyond, can be constructed for a variety of anomaly 
fields, including variables which are directly associated with El 
Nifio. 

selection must be accepted. This typifies a general dilemma in 
constructing unbiased prediction models from limited data (cf. 
discussion following paper by Hasselmann [1979] at the Hel- 
sinki conference). In the present case, however, the physical 
hypotheses originally proposed by Bjerknes were based on 
data sets other than those used here, namely, a few years of sea 
level pressures, rather than 20-year wind field records. Never- 

Our first four prediction examples involve two predictands • theless, the possibility of some indirect biasing means that our 
T and V and two sets of predictors C and R. The predictands statistical significance limits for the experiments TR and VR 
represent the anomaly T of monthly sea surface temperature at o should be regarded conservatively as upper limits.) 
Christmas Island and a wind anomaly variable V associated 
with meridional displacements of the Hadley circulation. The 
variable T is representative of mid-ocean, near-equatorial wa- 
ter temperatures over a large region of the central and eastern 
Pacific. The variable V formally represents the amplitude of 
the second EOF of the meridional component of the Trade 
Wind Field; its close relation to the position of the inter- 
tropical Convergence Zone (iTCZ) and the associated changes 
of the Hadley circulation in the central and eastern Pacific is 
shown in Barnett [1977a]. 

The first predictor set C consists of a comprehensive set of 
20 time series of oceanic and atmospheric variables obtained 
from various stations (see Table 1 and Figure 3) which were 
considered as potentially useful predictors, without regard to 
existing physical feedback hypotheses. Where good spatial 
coverage was available for a given data set (e.g., wind field), 
the number of predictors was reduced by spatial averaging 
over coherent high-variance regions determined by an EOF 
analysis, or by retaining only the first few components of an 
EOF representation of the field. Each of the resultant 20 series 
was taken at rn = 12 different time lags (1 to 30 months), 
yielding a total of 20 X 12 = 240 (highly correlated) predictors 
zt as defined by (3). The second set of predictors R represents a 
strongly reduced subset of the comprehensive set C and con- 
tained only four time series considered to be most important to 
the prediction of T and V on the basis of the physical feedback 
theories developed by Bjerknes [ 1966] and Wyrtki [ 1975], and 
tested in Barnett [1977b]. Ten time lags were taken for each 
series, yielding a total of 4 X l0 = 40 (again correlated) 
predictors zi. (The objection that the physical models were 

All series z• were normalized to unit variance and were then 
transformed by rotation to a new set of orthogonal predictors. 
This set, ordered in decreasing variance, then defined the 
nested-model sequence. Although ordering with respect to 
variance is standard practice when no other criteria are avail- 
able, it should be noted that the structure of the EOF's in the 
present case depends on the (arbitrary) common normal- 
ization of anomalies of different dimension, location, and lag 
time. The physical interpretation of the EOF's in such a com- 
posite variable space-time space is accordingly more difficult 
than in the more familiar EOF analysis with respect to a single 
field at zero relative time lag. it may be expected, however, 
that such a composite variable EOF analysis will identify the 
principal space-time variance patterns of the predictor set and 
that these will prove most useful for constructing predictions. 
For the reduced predictor set R this ordering did indeed pro- 
duce a successful nested model sequence yielding a reasonably 
well-defined maximum-skill statistically significant model at a 
critical cutoff order, as defined by the criteria discussed in 
section 4b. 

The results for the four predictions TC, TR, VC, and VR are 
summarized in Figures 4-12. We discuss the results here pri- 
marily from the standpoint of applications of linear prediction 
theory; a more detailed consideration of general predictability 
in the tropics, key predictors, etc. will be presented by T. P. 
Barnett (manuscript in preparation, 1979). 

Figures 4 and 5 show the confidence parameter p2 ((11) with 
a ø = 0) as a function of model order for the prediction of T 8 
months into the future and V 6 months into the future for the 

C and R predictor sets. Also shown are the expected values of 
proposed after visual inspection of data and that our choice of 02, (02) = n, and the 90% and 95% confidence levels. The figures 
the set R cannot therefore be regarded as a strictly a priori clearly demonstrate that the inclusion of too many predictors 
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in the initial formulation of a prediction model will generally 
result in a statistically meaningless prediction, unless the antic- 
ipated effective predictors are specified a priori. The a poste- 
riori extraction of significant predictors from the comprehensive 
predictor set C, which failed to yield statistically significant 
predictions for either T or V at any model order (for 8- and 6- 
month lead times), is not permissible. However, statistically 
meaningful predictions were obtained in these cases by starting 
from a new reduced predictor set R. 

Figures 6 and 7 show the hindcast and estimated artificial 
skill for the 8- and 6-month predictions of T and V as a 

mal.' This again demonstrates the critical nature of the un- 
avoidably arbitrary a priori ordering of predictors. It is natu- 
rally tempting to 'improve' Figures 4 and 5 by reordering the 
predictors with respect to their contribution to the net signifi- 
cance. However, the statistical significance and cutoff point of 
the reordered sequence would then need to be investigated by 
independent tests, as discussed in section 4c. After the signifi- 
cance of a model of a particular order n has been established 
for the prespecified predictor sequence, it is of course per- 
missible to formally reorder the predictors for that model with 
respect to their significance or skill contribution (in accord- 

function of model order. For the comprehensive data set C the ance with Davis' [ 1978] use of 'principal predictors'). How- 
artificial skills SA are comparable with the hindcast skills SH, ever, a truncation of this reordered sequence would decrease 
again suggesting but not proving (cf. section 3b) that the both the skill and significance of the model. Within an a priori 
predictions with this set are statistically insignificant. chosen predictor space, the optimal model is represented by 

It may be noted that Figures 4 and 5 indicate that the first the complete n-dimensional coefficient vector, and all trunca- 
few predictors in both models TR and VR are not, by them- tion techniques by projection on to a posteriori defined linear 
selves, significant. The significance is built up by the following subspaces necessarily represent distortions of the optimal 
predictors before decreasing again for higher orders. Thus the model. 
ordering of predictors with respect to variance was not 'opti- The relation between significant predictability, lead time, 
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detail. 
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Fig. 4. Confidence parameter pa for prediction of Christmas Island 
SST anomaly T 8 months in advance. Case TC: comprehensive predic- 
tor set C, 20 time series with 12 time lags per series. Case TR: reduced 
predictor set R, 4 time series with 10 time lags. 

and number of predictors for the four prediction models is 
shown in Figures 8 and 9. (For simplicity, we have used a fixed 
95% significant level cutoff. The results are not significantly 
affected by the use of alternative cutoff criteria.) The limit of 
significant predictability is seen to be greatly enhanced by the 
introduction of the reduced predictor set. The hindcast and 
artificial skill curves associated with Figures 8b and 9b are 
shown in Figure 10. Examples of the hindcast time series 
versus the actual observations are shown in Figures 11 and 12. 
I n all cases the agreement between hindcast and observation is 
quite good. However, they also demonstrate the danger of 
estimating the quality of a prediction from visual inspection of 
hindcast time series or from the computed skill, without regard 
to the model significance. Thus Figure 12 shows the two 6- 
month predictions of V using the first 20 EOF coefficients of C 
and the first four EOF coefficients of R; the former hindcast 
accounts for 67% of the record variance, but the p•' value is 
below even the average value expected by chance, and the 
model must therefore be rejected as insignificant already at the 
50% confidence level. In contrast, the 6-month prediction of V 
using only four prediction coefficients from the R set is signifi- 
cant well above the 95% level, although it accounts for less of 
the variance (37%) than the VC model. Thus a model's ability 
to 'account for variance' is not directly related to model relia- 
bility (significance). 

In summary, the comprehensive models C, in conjunction 
with the EOF nesting strategy, failed to reveal significant 
predictability for either T or V beyond a few months, even 
though these models accounted for a large proportion of the 
variance in T and C. Thus the predictability of the system, if 

present, was being masked by the inclusion of irrelevant pre- 
dictors. However, a reduction of the predictor set based on a 
physical feedback model suggested by Bjerknes [1966] and 
others led to a considerable enhancement of statistical signifi- 
cance, prediction lead time, and (significant) skill. These re- 
sults underline the need, already emphasized by Lorenz [1956] 
and Davis [ 1977], to limit the set of predictors at the outset of 
model construction, and demonstrate that a successful appli- 
cation of a sequential model construction strategy is depen- 
dent on the suitable a priori choice and ordering of the predic- 
tors. 

6. RELATION BETWEEN EMPiRiCAL PREDICTION MODELS 

AND LINEAR DYNAMICAL MODELS 

The interpretation of an empirical prediction model in terms 
of the general dynamics of the system is.not a straightforward 
problem. If the system is nonlinear, the exact dynamical solu- 
tion will often be unknown. Indeed, the motivation for the 
construction of an empirical prediction model in the first place 
is usually the inability to cope with the full set of dynamical 
equations. However, it may be useful to ask whether an empir- 
ical linear prediction model may be interpreted in terms of a 
simple linear dynamical system (i.e., a set of linear differential 
equations), which may then be regarded as an approximate 
description of the true dynamics of the system. But even this is 
not easily addressed without additional restrictions. Thus in 
the examples considered in the previous section, the unit-lead 
prediction for T, Christmas Island SST, may be interpreted 
formally as the Green function solution of a differential equa- 
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Fig. $. Confidence parameters p• for predictions of' second ½igcn- 
function 1/of' mcridional trade wind component 6 months in advance. 
Case VC: comprehensive predictor set C, 20 time series with 12 time 
lags per series. Case TR: reduced predictor set, 4 time series with 10 
time lags. 
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Fig. 6. Hindcast skill S n and artificial skill SA for 8-month Christmas 
Island SST predictions (s½½ Figure 4 caption). 

tion for T driven by a linear combination of the predictor 
fields. However, already for the simpler prediction model TR, 
using only four predictors and 10 time lags, the equivalent 
dynamical system would generally contain derivatives of high 
order and be far from simple. The dynamical model derived 
from the unit-lead prediction would also normally fail to re- 
produce the empirical predictions for lead times greater than 

h 

Gf= • Cq-'Bf(t•+n_q) (20) 

represents the effect of the external forcing from time t n to 
tn+n, and the first term on the right-hand side describes the 
dependence on the initial state at time tn. 

We shall adopt the viewpoint that equations (18)or (19) are 
not rigorously satisfied by the data, but represent approxima- 
tions to the real system which, just as in a prediction model, 
must be fitted to the data through appropriate choice of the 
model parameters. The relation between the coefficients of the 
optimal dynamical model and the optimal prediction model 
will then depend on (1) how many of the variables (•'t, ft) 
occurring in the dynamical model are actually available as 
measured time series, (2) the way in which (18) or (19) is fitted 
to the data, and (3) the way in which the variables (•'•, ft) of the 
dynamical model are related to the predictors and predictands 
of the prediction model. 

We consider first the optimal situation in which measure- 
ments for all time series •'• and ft exist. In this case the best fit 
dynamical model may be defined, for example, as the set of 
model coefficients which minimizes the error function 

e = (Jr•(t,•+,)- C•(t•)- Bf(t,•)J =) (21) 

appropriate to the differential form (18)or, alternatively, the 
corresponding error expression 

e = (I/•(tn+n)- Cnl•(tn)- GfJ •-) (22) 

for the integral form (19). 
The minimal solution of (21) for arbitrary matrices C and B 

is clearly identical to the solution for the prediction model (1), unity. In general, a simple physical interpretation of an empiri- 
cal linear prediction model is possible only if the linear dynam- in which the predictors x are defined as the combined set {•(tn), 
ical model is first specified and the structure of the prediction f(tn)} and the predictands y as the set •(tn+•). In most cases, 
model is then chosen to match the structure of the proposed however, the components of the matrices C and B cannot be 
dynamical model. However, one then still faces the difficulty regarded as independently adjustable parameters, but will be 

determined by the combination of time derivatives and inter- that the finite order prediction model generally contains a set 
of free coefficients different from the dynamical model, so that nal coupling terms assumed for the dynamical system. These 

will normally be governed by a rather small number of free an exact one-to-one mapping between the two types of model 
is not possible. 

To illustrate the relation between empirical linear prediction 
models and linear dynamical models, consider a dynamical 
system described by a set of linear ordinary differential equa- 
tions with respect to time. It is assumed that spatial deriva- 
tives, if present in the continuous description of the system, no 
longer appear explicitly but have been expressed, after spatial 
discretization, in terms of linear combinations of a finite num- 
ber of separate components. Discretizing also the time deriva- 
tives, and introducing transformations analogous to (4), the 
evolution of the system may then be expressed in the form of 
the general first-order process 

•'t(t•+,) = • Cu•)(t•) + Y•. B.h(t•) (18) 
J--l,' ß .,n l=1,' ß .,m 

where • = (•'t) is the state vector of the system, f = (ft) is an 
external forcing field (which need not be of the same dimen- 
sion as •), and Cu and Btt are matrices characterizing the 
internal dynamical structure of the system and the form of the 
coupling to the external fields. 

Repeated iteration of (18) yields the integral form of the 
evolution equation, in matrix notation 

•(tn+n) = Cn•(tn) 4- Gf (19) 

where the Green function G, given by the sum 

physical parameters, and the error expression (21) must there- 
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Fig. 7. Hindcast skill Sn and artificial skill SA for 6-month trade 
wind anomaly prediction (see Figure 5 caption). 
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Fig. 8. Regions of statistically significant predictions for Christ- 
mas Island SST anomaly T as function of prediction time and model 
order. (a) Case TC, 20 time series with 12 time lags. (b) Case TR, 4 
time series with 10 time lags. 

fore be minimized with respect to these parameters, rather 
than the complete set of independent matrix components. 

Similarly, the minimal solution of the error function (22) for 
the integral form of the dynamical system is formally identical 
to the solution of an optimal prediction problem in which the 
predictors are identified with the set of variables/•(t•), f(t•), 
f = t(•+,),..., f(t•+n-,) and the predictands with the vector 
t•(t•+n), provided the individual components of the matrix C' 
-- C n, and the components of the matrices occurring in the 
series G can again be regarded as separately adjustable coeffi- 
cients. In fact, this is not the case, since C' and the matrices of 
the series G depend (nonlinearly) on only two matrices, C and 
B, the components of which in turn will depend on the smaller 
number of original physical parameters. 

Thus despite the formal equivalence of the first-order dy- 
namic system with a unit-lead prediction model a basic differ- 
ence exists in the way in which the parameters are introduced 
into the model. In constructing a dynamical model the goal is 
generally to minimize error expressions of the form (21) or 
(22) using the simplest acceptable physical model (e.g., of 
lowest possible order in the spatial and time derivatives). 
Methods of constructing such models, using a hierarchy of 
models of increasing complexity, are discussed in detail by Box 
and Jenkins [ 1976], Kashyap art.' Rao [ 1976], and Mosteller and 
Tukey [1977]. In the empirical .;,'ediction models discussed in 
this paper, however, the model hierarchy is determined by the 
a priori selection of predictors, based, for example, on the 
variance properties of the predictor set, independent of the 
physical interpretation of the resultant model. For an infinite 
data set it may be presumed that both model hierarchies will 
ultimately converge tothe same model (18) or (19). However, 
a truncation of the model hierarchies, as required by statistical 
sampling considerations, yields different models for the two 
cases, which in general are not directly related. (It is, of course, 
possible to select the predictors of the prediction model such 
that they represent lower-order spatial or temporal finite dif- 
ference expressions. In the case of the differential form (18) the 
prediction model hierarchy can then be chosen to coincide 
with a given dynamical model hierarchy. However, this is not 

possible for the integral form (19), which depends nonlinearly 
on the coefficient matrices C and B.) 

The disparity between finite-order dynamical models and 
empirical prediction models becomes more evident if predic- 
tion lead times greater than unity are considered. Since a 
dynamical model completely specifies the input-response 
structure of the system, it also defines an optimal prediction 
model. Thus once a dynamical model has been fitted to the 
data, for example by minimizing the unit-lead prediction error 
(21), the associated optimal prediction models for all other 
lead times are also specified. The coefficients of empirical 
prediction models, however, are determined independently for 
each lead time. Since different predictor combinations may be 
expected to be more useful for different prediction lead times, 
a strategy in which the model is optimized independently for 
each lead time clearly has advantages when working with 
approximate, truncated representations. However, it also im- 
plies that the physical interpretation of empirical prediction 
models is made more difficult by requiring the identification of 
a series of different prediction models, depending on the lead 
time as a parameter, with a single dynamical model. 

For these reasons an exact one-to-one correspondence be- 
tween finite-order prediction models and dynamical system 
simulations cannot generally be established. However, the 
physical interpretation of empirical prediction models can nev- 
ertheless be attempted in the form of a statistical consistency 
test: a dynamical model may be regarded as a statistically 
consistent interpretation of an empirical prediction model if 
the prediction coefficients associated with the dynamical 
model lie within the confidence ellipsoid of the coefficients 
derived for the optimal empirical prediction. 

This interpretation can be applied also to more general cases 
in which the predictors and predictands of the prediction 
model represent mixed or incomplete combinations of the 
forcing and response functions of the dynamical model. A 
common example is the case in which only some of the postu- 
lated inputs of the dynamical model are available as measured 
inputs for a prediction model, but the statistical properties of 
the missing inputs are postulated as part of the dynamical 
model specification (e.g., white noise forcing). In these cases it 
may be more effective to construct dynamical models by fitting 
observed and predicted variance and covariance spectra, 
rather than by attempting to reproduce the actual time series 
by minimizing prediction-error expressions of the form (21) 
and (22) [cf. Hasselrnann, 1979a]. Regardless of the method of 
fitting, however, a given dynamical model always defines an 
associated optimal prediction model with respect to a specified 
predictor set. Thus the physical interpretation of empirical 
prediction models may again be carried out by testing the 
statistical consistency of the empirical prediction coefficients 
with the prediction coefficients inferred from a dynamical 
model. 

7. EMPIRICAL PREDICTION AND DYNAMICAL MODELS OF 

SEA LEVEL VARIATIONS IN THE EQUATORIAL PACIFIC 

The prediction examples considered in section 5 represent 
typical cases in which useful predictions could be constructed 
without reference to a (mathematically formulated) dynamical 
model. As pointed out, a simple physical interpretation of the 
empirical prediction solutions in these-cases would have been 
rather difficult, since the predictors and predictands were not 
chosen to match the input and response variables of a particu- 
lar dynamical model. To illustrate the interrelationship of 
prediction and dynamical models discussed in the previous 
section we consider now a further example in which the struc- 
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Fig. 9. Regions of statistically significant predictions of the trade 
wind anomaly component V as function of prediction time and model 
order. (a) Case VC, 20 time series with 12 time lags. (b) Case VR, 4 
time series with l0 time lags. 

ture of the prediction model was specifically chosen to corre- 
spond to a particular dynamical model. 

A suitable case for such a comparison is the variation of 
east-wes_t sea level in the equatorial Pacific in response to 
changes in the wind field, for which various simple dynamical 
models have been proposed. Bjerknes [1966], and later Wyrtki 
[1975] and others, have suggested that the El Nifio phenome- 
non may be explained as an oscillation in the east-west equa- 
torial sea level induced by long-term fluctuations in the 
strength of the trade winds. The basin-wide oscillation set up 
by this mechanism produces an influx of warm surface waters 
and a dynamic adjustment at the eastern edge of the Pacific 
Basin that leads to El Nifio conditions (cf. also McCreary 
[1976] and Hudburt et al. [1976]). McWilliams and Gent [1978] 
have attempted to summarize the principal interactions in- 
volved in the form of a simple set of coupled dynamical 
equations for the key variables of the system. With respect to 
east-west sea level difference h, the authors propose a response 
to variations of the zonal wind stress (represented by some 
suitably average wind anomaly variable u) in accordance with 
(1) a first-order relaxation equation 

dh/dt + hit = b.u (23) 

with constant feedback factor X and wind-coupling coefficient 
b or, alternatively, (2) a damped oscillator equation 

cl:h dh 

dt: + 2r '•7 + woah = b. u (24) 
with constant damping coefficient r and frequency O•o. 

The integral (Green function) representations of the systems 
(23) and (24) may be written 

h(t) = b u(t')e-X(t-t')dt ' + h(to)e -x(t-to) (25) 
t o 

and 

f t sin w(t - l')e -r(t-t') h(t) = b u(t') dt' + h(to) 
to 

ß cos w(t - to)e -r(t-to' + r'h(to) + -•- (to) 

sin oo(t - lo)e -r(t-tø) 
ß 

respectively, with o• = (Wo: - r:) •/: or, in discretized form, 

and 

(26) 

© Rk{sin o0•(k + l)At} Ut-k (28) h•+• = Y•. sin w•At /•=0 

where the subscript l is a discrete time counter, At is the time 
step, and the coefficients A, R, and o0• are related to the 
coefficients R, r, and Wo in a manner depending in detail on t•e 
form of finite differences used [cf. Jenkins and Watts, 1968]. It 
has been assumed in (28) that we are dealing with an under- 
damped oscillator, w• real (cf. Figure 13). 

On the basis of these dynamical models, two prediction 
models for h were constructed. The first model (I) was chosen 
to correspond as closely as possible to the dynamical models 
and used only u as predictor. In the second model (II), six 
additional wind predictors were introduced. (The total set of 
wind predictors consisted of the 10 wind components shown in 
Table 1 and Figure 5 without •u•, •v•, and •v:.) The purpose of 
the second model was to test if a simple dynamical model with 
only one input was consistent with a more complex prediction 
model containing enough degrees of freedom to adapt to a 
number of different physical processes. In both cases the pre- 
diction was formulated as a single-lead predictand, multiple- 
lag predictor system in accordance with the discrete forms (27) 
and (28) of the dynamical models, by using first-order centered 
differences. The number of predictor lags was assumed to be 
su•ciently large (m. At = 18 months) that the initial values of 
h in (27) and (28) could be neglected and the prediction con- 
structed from the forcing function u only. (This was confirmed 
by tests including the initial values and by the damping coe•- 
cients found for the best fit dynamical models. In fact, it can be 
shown generally that even when the initial values contribute to 
the prediction their exclusion has no influence on the predic- 
tion coe•cients for the forcing function, provided the forcing 
is fairly white. For the same reason, deletion of the (k - 1) 
most recent terms of the forcing function in (27) and (28), as 
required for a k-lead rather than a unit-lead prediction, should 
have no influence on the remaining prediction coe•cients of 
the forcing function at earlier times. This was verified by 
constructing k-lead predictions for various values of k > 1.) In 
both cases the optimal prediction models represented maxi- 
mum-skill models at the 95% confidence level, as determined 
by a nested-model hierarchy using an EOF representation of 
the predictor field, after removal of the white noise EOF 
components according to the technique of Preisendorfer and 
Barnett [1977]. Prefiltering of the EOF set yielded about the 
same results as using the complete EOF set and applying a 
maximal significance cutoff condition or as using a cutoff 
based on the rate of significance decrease. However, a fixed- 
significance level cutoff without prior EOF filtering was found 
to include too many noisy predictors of higher order. 

Following McWilliams and Gent, the zonal wind stress field 

ht+, = • (AAt)•bU,_• (27) 
•=0 
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Fig. 10. Maximum hindcast skill (at 95% significance cutoff) of 
Christmas Island temperature and meridional trade wind anomaly 
predictions for the reduced predictor set R as function of forecast 
period. Also shown are the artificial skills. 

driving the east-west pressure difference in the dynamical 
model was assumed proportional to the zonal component of 
the wind anomaly. Specifically, the forcing function u was 
defined as the average of the zonal wind anomaly over the 
region between 0ø-I0øN and 150ø-180øE denoted by 6u2 in 
Figure 3. This choice is in accordance with the recent findings 
of McCreary [1976] and Barnett [1977b], who showed that 
major equatorial oceanic features respond to wind changes in 
this region rather than to changes in the core strength of the 
trade winds as suggested by Bjerknes [1966] and Wyrtki 
[1975]. The additional wind field predictors used in the second 
prediction model describe the general features of the Pacific 
Trade Wind System. The variations h in the east-west slope of 
sea level were represented by the amplitude of the first eigen- 
mode of the sea level anomaly field [Barnett, 1977b]. 

To test the consistency of the dynamical models with the 
prediction models, the square deviation 

Oa • = • (a, - a, aXd• - af )(•a, fia•)-' (29) 

between the prediction coefficient vectors tit of the optimal 
prediction model and the equivalent prediction coefficient vec- 
tor at a of the best fit dynam!cal model was compared against 

the mean square radius o• a'of the 95% confidence region 
computed for the optimal prediction model. The dynamical 
model was regarded as statistically consistent or inconsistent 
with the prediction model at the 95% confidence level accord- 
ing to oa • < o• • or oa • > o• •. 

The square deviation o, • is defined in (29) with respect to the 
coefficient space of the prediction model. For a complete pre- 
diction model, without truncation, this may be identified with 
the set of coefficients occurring in the discretized form of the 
integral representation of the dynamical model. With this 
choice of predictors, the best fit dynamical model can then be 
translated immediately into an equivalent prediction model/ 
since the Green function representing the best fit dynamical 
model immediately defines an equivalent set of prediction 
coefficients with respect to the complete set of predictors 
u(tk_•), u(tk_2), ß ß ', u(t•_m ). However, in the truncated predic- 
tion model only a linear subspace of the predictors, repre- 
sented by a relatively small number of EOF's, was acutally 
used. Thus to carry out the consistency test, the dynamical 
model must first be projected on to the predictor subspace 
used in the prediction model. In practice, this was done by 
creating a synthetic time series h' from the best fit dynamical 
model, using the observed forcing u as input in the integral 
form (27) or (28) and then determining the optimal prediction 
for this series h' by using the same predictors as were used for 
the optimal empirical prediction of the real series h. The best 
fit dynamical model itself was obtained by minimizing the 
mean square error of the discrete differential form rather than 
the integral form. 

Each of the first- and second-order dynamical models were 
found to be consistent with each of the empirical prediction 
models I and II. A comparison of the empirical prediction 
coefficients and the theoretical forms (27) and (28) (after pro- 
jection on to the truncated EOF space) is shown in Figure 14; 
other results of the experiments are listed in Table 2. Within 
the 95% error bounds on the coefficients, all four models are 
indistinguishable from each other. The difference between the 
first- and second-order best fit dynamical models is particu- 
larly small, and it may be concluded that the data does not 
justify the use of a second-order finite difference process to 
describe the local (differential) evolution of h. However, both 
empirical prediction models suggest a damped-oscillator form 
of the Green function. Although the overshoot is not quite 
significant at the 95% level, a second-order dynamical model in 
accordance with the integral form (28) was therefore also 
fitted to the empirical prediction coefficients. (This was done 
by inspection: a formal least squares fit was not carried out be- 
cause for the integral form of the dynamical model the mini- 
mization problem is no longer linear in the model parameters.) 

1957 I 58 I 59 I 60 I 61 I 62 I 63 I 6& ! 65 I 66 I 67 I 68 I 1969 

Fig. I I. Predicted and observed anomalies of trade wind component V 6 months in advance, cases VC (statistically 
insignificant at 50% confidence level) and VR (statistically significant at the 95% confidence level). 
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Fig. 12. Predicted and observed SST anomalies at Christmas Island 8 months in advance, case TR (four time series with 
l0 lags). 

This yielded a prediction model with higher skill (20%) than 
the skill values (• 10%) of either of the dynamical models 
obtained by best fitting the differential forms to the data. The 
parameters of the Green function-fitted dynamical model were 
found to be COo = 1.4.10 -7 s -• and r = 2.5.10 -8 s -•, as com- 
pared with the values COo = 2.6. l0 -7 s -• and r = 2.8. l0 -8 s -• 
estimated by McWilliams and Gent (the former value repre- 
sents a revised 'composite' frequency based on later work 
[McWilliams and Gent, 1979]). Considering the stated uncer- 
tainty of order 40% in this 'composite' frequency and the 
rather large error bands in Figure 14, we conclude that the two 
estimates of COo are not inconsistent. 

In summary, we were able to forecast variations in east-west 
slope of Pacific sea level I month in advance from past wind 
field anomalies, with skills of 38% (one wind field predictor) 
and 49% (seven wind field predictors) at a significance level of 
95%. Alternative prediction models equivalent to a (differen- 
tially best fitted) first-order or second-order damped dynami- 
cal system were also consistent with the optimal prediction 
model within the error bounds of the coefficients. However, 
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Fig. 13. Theoretical transfer functions for first- and second-order 
dynamical systems. 

these models accounted for only about 10% of the observed sea 
level variance. A higher skill of approximately 20% could be 
achieved by fitting the integral response function of a second- 
order dynamical model to the empirical response function. 
Nevertheless, the conclusion remains that a simple first- or 
second-order dynamical model driven by a single wind field 
variable is inadequate to explain most of the variance in east- 
west sea level slope. A more general model allowing an arbi- 
trary integral response to a larger number of wind field vari- 
ables is able to account for a considerably higher fraction of 
the variance. This would imply that the wind field is an impor- 
tant driving term, but the sea level response is more complex 
than assumed by McWilliams and Gent. However, the alterna- 
tive hypothesis that the sea level response to the wind is 
correctly modeled by McWilliams and Gent, but accounts for 
only 10-20% of the sea level variance, cannot be excluded at 
the 95% confidence level with the available data. 

8. FORECAST SKILL 

Up to this point we have discussed the performance of 
models only in terms of an abstract infinite data ensemble, or 
the given finite data set from which the model was constructed. 
A measure of model skill which is relevant for applications, 
however, should be defined with respect to the performance of 
the model when applied to a second data set, independent of 
the set used to construct the model. Intuitively, one may expect 
the average forecast skill Sv for an independent prediction to 
be lower than the hindcast skill Sn for the original data set, 
since the estimated optimal model • was chosen to yield maxi- 
mal skill specifically for the first data set. Thus the deviation of 
the estimated model from the true model, which produced an 
artificial enhancement of the hindcast skill Sn relative to the 
true skill So (17), may be expected to have an opposite adverse 
effect on the skill when applied to a second independent data 
set. Indeed, it can be readily shown [cf. Lorenz, 1956; Davis, 
1976] that for a given true model a ø, the ensemble average of 
the forecast skill is given to first order for small true skill So by 

(S•,) • So- (SA) (30) 

Substituting (17), this yields 

(Sv) = (Sn) - 2(SA) (31) 

Although the derivation and interpretation of equations (17), 
(30), and (31) is straightforward, there is nevertheless some 
question whether they really provide relevant estimates of the 
average forecast skill. It is assumed in deriving the relations 
that the true model is known, and the averages are then 
formed over all possible realizations of the first (hindcast) and 
second (independent) data sets. In fact, the true model is not 
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Fig. 14. Empirical transfer functions for prediction of east-west sea level change in response to equatorial wind forcing. 
The shaded region shows the approximate 90% confidence limits on the estimates of the transfer function. The symbols 
denote (triangles) optimal prediction px with •iUa only, (open circles) optimal prediction pa with all winds, (crosses) best-fit 
first-order (l) dynamic model, (solid circles) best-fit second-order (ll) dynamic model, and (squares) empirically fitted 
second-order dynamic model (Ill). 

known, whereas the hindcast data set is given. It could there- If, however, one now addresses statistical questions which 
fore be argued that the average forecast skill should be defined depend, already to first order, on differences between possible 
as an average under the side condition of agiven hindcast data alternative choices of the infinite statistical ensemble, the 
set and unknown true model, rather than the side condition of 'proper' choice of imbedding becomes a problem. The estima- 
a given true model and unknown hindcast data set. In this 
form the problem of estimating the mean forecast skill, given 
the hindcast skill, represents a problem of statistical inference: 
what can be inferred about the true model (and therefore the 
true forecast skill), given only a single finite data realization? 
(Note that 'ti'ue' refers here, as before, to the optimal empirical 
prediction for an infinitely long data set, regardless of whether 
or not the empirical prediction provides a good physical de- 
scription of the real evolution of the system.) 

The theory of statistical inference has been the subject of 
considerable discussion. The origin of the debate is well known 
and basically simple: classical axiomatic probability theory 
starts from a given abstract infinite data ensemble with known 
statistical properties; in practice, however, only a finite data set 
is available, and this therefore has to be first imbedded in an 
abstract infinite ensemble before one can proceed with statisti- 
cal theory. It can be argued that the choice of imbedding is 
basically arbitrary, provided it is consistent with the given 
finite data set within reasonable statistical confidence bounds. 

tion of the mean forecast skill or, more precisely, the difference 
between the mean forecast skill and hindcast skill is a question 
of this nature. 

According to one school of thought, such questions cannot 
be rigorously answered and are therefore meaningless. How- 
ever, various attempts have been made to deal with the basic 
arbitrariness in the choice of statistical imbedding by assigning 
some form of (necessarily subjective) a priori weighting to the 
different imbedding possibilities [cf. Savage, 1962]. Since the 
true model a ø is not known, it is natural, for example, to 
consider an ensemble of true models characterized by a proba- 
bility density function po(a ø )da ø. In the absence of other infor- 
mation, it is then often assumed that in a local region around 
the estimated model •t the distribution of true models is uni- 

form (Bayes' hypothesis) 

po(a ø )da ø = const da ø (32) 

For each true model a ø of this ensemble there exists, as before, 
a probability distribution of estimated models œ(•/aø)d• 

TABLE 2. Comparison of Dynamical and Prediction Modeling Experiments 

Variance 

Reproduced 
Hindcast After EOF Artificial 

Model Type Skill, % Truncation* Skill, % paa• ' p95 a Consistent 

Optimal prediction (l) 38 13 14.1 
(n- 7) 

Optimal prediction (ll) 49 34 16.9 
(n = 9) 

First-order dynamic, 10 94 (I) 9.5 (I) Yes (I) 
differentially fitted 88 (II) 9.7 (II) Yes (II) 

Second-order dynamic, 11 94 (l) 9.9 (l) Yes (l) 
differentially fitted 89 (ll) 8.8 (ll) Yes (ll) 

Second-order dynamic, 20 98(I) 10.1 (l) Yes (l) 
response-curve fitted 93(II 9.5 (ll) Yes (ll) 

*Applies only to dynamic models. A truncation of the formal prediction of the synthetic time series h' 
by using only the EOF's used in predictions I or II reduces the skill of 100% achieved with the full EOF 
set to the values shown. 

• For a statistically consistent dynamical model, pa a must be less than the p95a values of the correspond- 
ing prediction model I or II. 



BARNETT AND HASSELMANN: LINEAR PREDICTION 965 

which is given by the Gaussian form (10) (the covariance 
matrix (batbaj) is assumed to be independent of a ø ). As p(•/a ø ) 
depends only on the difference ba = • - a ø, we may write p(•/ 
a ø) = pg(• - a ø), and the joint probability distribution of 
estimated and true models therefore takes the form 

pj(a ø , •)d/tda ø = pg(• - a ø )po(a ø )d/tda ø (3 3 ) 

To determine the mean forecast skill, one now averages first 

the likelihood-averaged skill, obtained by averaging over all 
true models a ø for a fixed estimated model •, must always 
exceed the (hindcast) skill of the estimated model, just as the 
mean hindcast skill obtained by averaging over all hindcast 
data sets with respect to a probability distribution p(•/a ø) 
centered on the given true model a ø is always greater than the 
skill of the true model. The interchange symmetry of the 
likelihood-averaged and hindcast-averaged relations between 

the forecast skill over the ensemble of independent second data So and Sn is illustrated geometrically by Figure 1. 
sets, given the true model a ø and the first (hindcast) data set 
(i.e., •). This step is the same as in Lorenz' derivation of the 
mean forecast skill and yields for small skill values 

(SF)2 = So- SA (34) 

Equation (34) is identical to (30) except that averages over the 
hindcast data set have not been taken; the average (. ß .): on the 
left-hand side is taken over the second independent data sets, 
and the artificial skill S A in the right-hand side represents an 
unaveraged quantity determined from the given estimated 
model and given true model. Up to this point both approaches 
yield the same (expected) result, namely that an error 6a be- 

Substituting (38) in (37) one obtains 

S/ = Sn (39) 

This should be compared with the usual ensemble-averaged 
relation (31 ) 

St? -- ((StOa)• = (Sn)•- 2(SA) (31') 

The difference between (39) and (31') is due not only to the 
different forms of averaging but, more fundamentally, to the 
different ways in which the given finite data set is assumed to 
be imbedded in an infinite statistical ensemble. The dis- 

advantage of the usual ensemble-averaged expression is that it 
tween the true and estimated model results in a reduction of yields a relation only between the average hindcast skill and 
order S A in the forecast skill relative to the true skill. 

In the next step, however, the Bayesian analysis differs from 
the usual derivation. Instead of averaging (34)over the en- 
semble of hindcast data sets for a given true model a ø, the 
average is taken over the set of all possible true models a ø, 
given the hindcast data set (i.e., given •). 

According to (33 and 32), the relevant conditional probabil- 
ity (or likelihood) distribution which enters in this averaging 
operation is given by 

p(aø/i)da ø = pe(i - a ø )da ø (35) 

Thus p(aø/i) is Gaussian and is identical to the conditional 
. 

probability distribution p(•/a ø) with the variable a ø and • 
interchanged. Denoting the likelihood average of a quantity Q 
by 

{Q} = f Qp(a ø/i)da ø (36) 
one then obtains for the likelihood-averaged forecast skill 

S/ • {(SF)2} = {So}- {SA} (37) 

where {SA} = (SA) (through the assumption that (batbaj) is 
independent of a ø) and the likelihood-averaged true skill is 
given by 

{So}-- SH "{- (SAY (38) 

(In (37) and (38) and later in (40) and (43) the subscript 1 or 2 
is dropped from averages (...) which are independent of the 
side condition of a given true model or a given hindcast data 
set. ) 

Equation (38) follows from (17) by noting that the ex- 
pression for the likelihood-averaged true skill for a given esti- 
mated model • is formally identical to the expression for the 
mean hindcast skill averaged over • for fixed a ø, except that 
the variables • and a ø are interchanged. The equality of the 
conditional distributions p(•/•o ) and p(a ø/•) explains also the 
result (which at first sight appears rather surprising) that the 
likelihood-averaged true skill is greater than the hindcast skill. 
The surface of constant probability (likelihood)p(aø/fi) cor- 
respond to the confidence ellipsoids /• in Figure 1 and are 
centered on the given estimated model •. Since the skill is a 
positive definite quadratic function of the model coefficients, 

average forecast skill, and therefore makes no use of the fact 
that the hindcast skill is actually known. The likelihood ap- 
proach, on the other hand, yields a mean forecast skill under 
the side condition of a known hindcast skill, but requires an 
imbedding of each finite data series not simply in a hypotheti- 
cal infinite time series, but in an additional ensemble of pos- 
sible true models. The Bayes hypothesis of a uniform distribu- 
tion of true models, while perhaps the simplest, is basically 
arbitrary. Although it is invoked here only for a limited region 
around the estimated model •, it cannot be justified in the 
present case simply by continuity considerations. 

This can be seen by generalizing (38) and (39) to the case of 
an arbitrary distribution po(a ø). It is instructive to consider 
this generalization, as it brings out more clearly the relation 
between the two forms of estimating the forecast skill and 
helps to resolve the apparent discrepancy between the ex- 
pressions (31') and (39). In the following we therefore make no 
assumptions regarding po(a ø), other than that it is a smooth 
function which varies slowly in relation to pc(ha). 

Restricting the discussion, as before, to small skill values so 
that the principal variations in skill arise from the variations in 
the model coefficients, we have 

- = t aj ø ) Sn So t,•j (r•t6• - a o (ztzl) 
(z•z•) 

= t.• (-batba, + 2bataj) • (40) 
Forming the likelihood average of (40) according to (36) and 
expanding the factor po(a ø) occurring in the joint probability 
distribution (33) in the form po(a ø) = po(6) - •[Opo(6)/ 
cga•]ba•, we obtain as generalization of (38) • 

Po(•) •an 
(41) 

Substitution of (41) into (37) then yields as the corresponding 
generalized expression for the likelihood-averaged forecast 
skill 

S/ = Sa + 2 • (batba•)•j t9po(•) (ztzj) t..t,• Po( • ) c9 an 0 a) 
(42) 
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In contrast to the Bayesian form (39), the more general rela- 
tion (42) satisfies the requirement 

<s/>, = is/} =ffsp(ao, a)daOda = (S•th - 2(Sa) (43) 
which states that the likelihood-averaged and normal en- 
semble-averaged forecast skills are related by the condition 
that the mean of the likelihood-averaged forecast skill S•, 
integrated over all first data sets, is equal to the average, with 
respect to the set of all true models, of the ensemble-averaged 
forecast skill S• E. 

Equations (42) and (43)show that while the strict Bayesian 
hypothesis of constant P0 yields a likelihood-averaged forecast 

sure of significance and the judicious a priori selection of the 
predictor sequence such that the more important predictors 
are introduced early in the sequence. For complex systems 
some a priori physical insight into the structure of the system is 
generally necessary to define an effective model sequence yield- 
ing statistically significant predictions. 

2. Alternative techniques in which the 'statistically most 
significant' predictors are selected a posteriori by linear com- 
bination from a larger set of candidate predictors, although 
widely used, yield no improvement in either skill or signifi- 
cance over the complete model constructed from the full pre- 
dictor set. Thus a posteriori screening or stepwise regression 

skill which is equal to the hindcast skill, the generalization of cannot be used to recover significant models from a compre- 
the Bayesian approach to an arbitrary distribution of true 
models yields a likelihood-averaged forecast skill which de- 
pends on •I and, averaged over all estimated models •I, is 
smaller than the hindcast skill by the quantity 2(SA), in accord- 
ance with the expression for the usual ensemble-averaged for- 
cast skill. The apparent contradiction between the strict Bayes- 
ian relation and the more general result is resolved by noting 
that a constant probability density p0(a ø) cannot exist for all a ø 
and that on averaging (42) over •I the second term containing 
the derivative gpo(r•)/gaj, which is neglected in the strict Bay- 
esian analysis, will always yield an additional contribution 
--2(SA), regardless of the form of P0. 

In summary, (42) and (43) show that the difference between 
the measured hindcast skill and the mean forecast skill de- 

pends entirely on the structure of the unknown prior probabil- 
ity density function p0 of true models. For a distribution p0 
which varies smoothly near •I = 0, the linear dependence of the 
second term in (42) on •I suggests that for small •I S/will be 
approximately equal to Sty. The integral constraint (43) then 

hensive model which contains too many predictors for statisti- 
cal significance. Mixed techniques based on a posteori reorder- 
ing of an a priori defined set of predictors, without linear 
recombination, may be useful for predictions involving phys- 
ically distinct statistically independent predictors. However, 
the statistical significance of the reordered sequence must 
again be judged with respect to the complete predictor set. 

3. Applications of the nesting strategy to predictions of 
SST, sea level, and wind field anomalies in the tropical Pacific 
yielded 95% significant predictions with skills in the range 0.4- 
0.7 for prediction lead times of 6 to 12 months and beyond. 
The examples discussed in this paper are typical of a number 
of similar predictions for this region, including fields represen- 
tative of El Nifio, which will be presented in more detail in a 
later paper (T. P. Barnett, manuscript in preparation, 1979). 

4. To apply the technique to anomaly fields in mid-lati- 
tudes, a straightforward generalization to include the modula- 
tion of the system by the annual cycle will probably be needed. 

5. The transformation of a given finite-order empirical 
requires that SF L must be smaller than Sx for larger values of linear prediction model into an equivalent finite-order linear 
•I. However, if there exists no possibility of estimating the 
structure of p0(a ø) a priori it must be concluded generally that 
it is not possible to in ef•lhe mean forecast skill S•, given the 
hindcast skill Sx of a particular experiment, more accurately 
than S/ • S• - O(SA). 

9. CONCLUSIONS 

The main results of our presentation may be summarized as 
follows: 

1. With increasing numbers of predictors, the skill of a 
linear prediction model increases, whereas the significance 
generally decreases. The central problem in constructing linear 
prediction models from data therefore is establishing a proper 
balance between skill and significance. This requires, in partic- 
ular, a reliable measure of model significance independent of 
the measure of model skill. To determine the maximum-skill 

model which can be constructed from a given data set at a 
given significance level, a sequential model construction strat- 
egy can be used, in which a hierarchy of models is generated by 
successively adding new predictors according to a predefined 
sequence, the hierarchy being terminated when the statistical 
significance of the model falls below a prescribed limit. Alter- 
natively, the sequence can be cut off at the model with the 
highest significance or at the point where the rate of signifi- 
cance falloff exceeds some critical value, thereby excluding 
predictors which do not contribute incrementally to the model 
significance. When an EOF predictor sequence is used, the 
same effect can generally be achieved by a priori filtering of the 
principal components to remove uncorrelated white noise, by 
using the technique of Preisendorfer and Barnett [1977]. The 
success of the technique depends critically on a reliable mea- 

dynamical model is in most cases not possible, since the dy- 
namical model (if restrained to correspond to a lower-order 
differential system) normally exhibits a different dependence 
on the model parameters than the prediction model. However, 
a given dynamical model always defines an associated predic- 
tion model. The physical interpretation of empirical prediction 
models can therefore be formulated as a consistency test, a 
prediction model being regarded as statistically consistent with 
a dynamical model if the associated prediction model derived 
from the dynamical model lies within the confidence region of 
the empirical model. 

6. The empirical prediction of east-west sea level varia- 
tions from wind field anomalies in the tropical Pacific was 
found to be statistically consistent with either of the two 
simple dynamical models proposed by McgVilliams and Gent 
[1978] on the basis of the theories of Bjerknes [1966], Wyrtki 
[1975], and others. However, the empirical model parameters 
differ from those proposed by McWilliams and Gent. A dis- 
tinction between the two models could not be made with the 
current data base. The data base also does not exclude the 

alternative hypothesis that the empirical prediction model 
yields a more realistic description of the complex dynamical 
response of the ocean than the simple first- or second-order 
models of McWilliams and Gent, as evidenced by the consid- 
erably higher skill of the empirical model. 

7. For statistically significant predictions the Bayesian 
likelihood-averaged forecast skill, under the side condition of 
a given hindcast model and unknown true model, is approxi- 
mately equal to the hindcast skill. Previous discussions of the 
forecast skill have been largely concerned with the mean fore- 
cast skill averaged over the ensemble of hindcast models as- 
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suming a given true model. This is less than the similarly and R yy and R tj represent the autocovariance functions of y 
averaged hindcast skill by an amount approximately equal to and the cross-covariance function of zt and zj, respectively. In 
twice the artificial skill. Under the side conditions of the prob- evaluating (A5) and (A6), the true covariance functions must 
lem, a general statistical inference approach, ifi accordance be replaced by their estimates. N represents the number of data 
with a Bayesian analysis, appears more appropriate. However, points and the summation limit M some limiting lag beyond 
the inferred mean forecast skill is found to depend strongly on which the covariance functions can be regarded as zero within 
the assumed prior distribution of true models, nonuniform the confidence limits of the estimate. (Instead of a cutoff at M, 
prior distributions yielding inferred forecast skills which are a fading function factor which tapers smoothly to zero may be 
generally lower than the Bayesian result and more in keeping introduced into (A5) and (A6), in accordance with the Black- 
with the hindcast-averaged estimate of the forecast skill. We man and Tukey [1958] spectral estimation methods.) 
conclude that a reliable estimate of the difference between the In practice, the true orthonormal coordinate system is not 
mean forecast skill and the hindcast skill, under the side condi- known. However, in accordance with the definition of the 
tion of a given hindcast skill, cannot be meaningfully made confidence region/• the covariance matrix (•t•) should be 
without additional information on the prior probability distri- determined for a true model given by the maximum-likelihood 
bution of true models. solution. Thus in evaluating (A4), (A5), and (A6) it may be 

assumed that (ztz•) is given by the estimated covariance matrix 
APPENDIX [ZtZj] of the data realization used to construct the model, and 

Estimation of(•at•a•) the orthonormal predictor coordinate system zt is accordingly 
The error of the estimated model coefficient t?t relative to the taken to be the orthonormal system with respect to this esti- 

true coefficient a/(6) is given by mated covariance matrix. 
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