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a b s t r a c t 

Spectral wave models based on the wave action equation typically use a theoretical framework based on 

depth uniform current to account for current effects on waves. In the real world, however, currents of- 

ten have variations over depth. Several recent studies have made use of a depth-weighted current ˜ U due 

to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, 

Coastal, and Ocean Eng. 113, 187–195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared 

flows: approximate dispersion relations. J. Geophys. Res. 94, 1013–1027.] in order to account for the ef- 

fect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or 

frequency and direction) has been further simplified in recent applications by only utilizing a weighted 

current based on the spectral peak wavenumber. These applications do not typically take into account 

the dependence of ˜ U on wave number k , as well as erroneously identifying ˜ U as the proper choice for 

current velocity in the wave action equation. Here, we derive a corrected expression for the current com- 

ponent of the group velocity. We demonstrate its consistency using analytic results for a current with 

constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the 

Columbia River. The effect of choosing a single value for current velocity based on the peak wave fre- 

quency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the 

peak frequency, which should significantly extend the range of accuracy of current estimates available to 

the wave model with minimal additional programming and data transfer. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Important theoretical advances have been made in the last sev-

ral decades which have advanced our understanding of wave-

urrent interaction in ocean circulation. Theories have been in-

orporated in numerical models with the main intent of includ-

ng wind wave effects in ocean circulation without resolving sur-

ace gravity wave motions for computational efficiency. Within typ-

cal modeling systems, an ocean circulation model is coupled with

 wave generation and propagation model in order to determine

ave effects on currents and vice versa. The spectral wave mod-

ls include the effect of the mean flow in the computation of wave

ction flux, and the ocean circulation models account for the wave-

veraged wave forcing driving or modifying the mean flow. 

Spectral wave models are usually based on the theory for waves

n the presence of depth-uniform currents. In the real world, how-

ver, currents are usually vertically sheared to some degree. Re-

ently, various studies ( van der Westhuysen and Lesser, 2007; Ard-
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uin et al., 2008; Warner et al., 2010 ) have suggested the use of a

epth-weighted current ˜ U (k ) as the basis for the wave-current in-

eraction in propagation models, where ˜ U (k ) is the first order cor-

ection to the phase speed for an arbitrarily varying current U ( z )

nd is given by 

˜ U (k ) = 

2 k 

sinh 2 kh 

∫ 0 

−h 

U(z) cosh 2 k (h + z) dz (1)

here h is the water depth and k is the wave number ( Skop, 1987;

irby and Chen, 1989 ). In application, this approach is often further

runcated by using ˜ U (k p ) as the representative value of ˜ U for all

ave components, where k p denotes the wavenumber at the spec-

ral peak frequency. This procedure is now included as an option

n widely used models such as Delft-3D and COAWST ( Elias et al.,

012; Kumar et al., 2011; 2012 ). We remark here that the pertur-

ation scheme of Kirby and Chen (1989) , defined originally for the

ase of weak current, can be straightforwardly modified to cover

he case of a strong current with weak additional shear. Assuming

 fairly arbitrary split between a depth uniform and depth varying

urrent 

(z) = U + αU (z) ; α � 1 (2)
0 1 
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Fig. 1. Definition sketch. 
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and repeating the procedure used to develop the solution in Kirby

and Chen quickly establishes that the choice for leading order cur-

rent speed is U 0 = 

˜ U , with the details of the overall solution main-

tained up to second order. The parameter α represents the mag-

nitude of current shear; a scaling analysis based on finite depth

waves with horizontal and vertical length scales proportional to

k −1 , leads naturally to an expression 

α = 

�

kU s 
(3)

where � characterizes the maximum value of shear in the current

profile, and U s is the surface current speed. The expressions devel-

oped in both the perturbation solution and the analytic solution

for constant shear discussed below are both easier to interpret us-

ing a slightly different expression 

α = 

�h 

U s 
(4)

which is used throughout the remainder of the paper. 

The purpose of this study is to demonstrate the inappropriet-

ness of the use of the weighted current ˜ U as the current com-

ponent of the group velocity, and to examine the effect of using

either the correct or incorrect estimate of the current speed evalu-

ated only at the spectral peak frequency. We evaluate the accuracy

of approximate solutions in comparison to analytical or numerical

solutions for the full theory based on the Rayleigh stability equa-

tion. The theory described here is limited to unidirectional prop-

agation on a following or opposing current, and so currents and

wave numbers appear as scalars rather than vectors. In Section 2 ,

the problem for a linear wave in a uniform domain with arbitrary

current U ( z ) is established. We then outline the common approx-

imations for group velocity used in modeling and the errors re-

sulting in these applications. In Section 3 , we evaluate the approx-

imations for the analytic case of a wave on a current with con-

stant vorticity, and establish the consistency of the expressions for

group velocity derived from the perturbation solution of Kirby and

Chen (1989) . Section 4 examines comparable results of the numer-

ical solution for a current profile measured at the mouth of the

Columbia River (MCR) ( Kilcher and Nash, 2010 ). In Section 5 , we

evaluate the shortcomings of practical approximations in existing

coupled circulation-spectral wave models, where it is typical to use

only ˜ U (k p ) as the current speed. Finally, in Section 6 we describe a

strategy for providing a compact but significantly more accurate

representation of current advection velocity in SWAN or similar

models, using a Taylor series expansion of the expression for the

wavenumber-dependent current speed about the reference value

at the peak frequency. 

2. Theory and approximate expressions for the absolute group 

velocity C ga 

2.1. General theory 

We consider the linearized wave motion of an incompressible,

inviscid fluid, with wave number k and phase velocity C a = ωk /k 2 ,

propagating on a stream of velocity U ( z ) in finite water depth h .

Current and depth variables are assumed to be uniform in horizon-

tal directions ( Fig. 1 ). ω denotes the absolute wave frequency in a

stationary frame of reference, which also fixes the value of U ( z ).

We seek solutions for the vertical component of the wave orbital

velocity 

w (x , z, t) = 

˜ w (z)e i (k ·x −ωt) (5)

The problem for the vertical structure of plane waves in a spa-

tially uniform domain, riding on a vertically sheared current U ( z ),

is then given by an extension of the Rayleigh equation to allow for
n oblique angle between wave and current direction as well as

ossible rotation of the current vector over depth 

(z)( ̃  w 

′′ − k 2 ˜ w ) − σ
′′ 
(z) ̃  w = 0 ; −h ≤ z ≤ 0 

σ 2 
s ˜ w 

′ − [ gk 2 + σs σ
′ 
] ̃  w = 0 ; z = 0 (6)

˜ w = 0 ; z = −h 

here primes denote differentiation with respect to z and g is

he gravitational constant. The quantity σ (z) = ω − k · U (z) rep-

esents a depth-varying relative frequency, with σ s denoting the

alue at the mean surface z = 0 . The separate use of the kine-

atic surface boundary condition for a surface wave of form η =
 exp i (k · x − ωt ) gives ˜ w (0) = −iσs a . 

The model (6) has been used in a number of studies of arbitrary

r idealized velocity distributions; see reviews by Peregrine (1976) ,

onsson (1990) and Thomas and Klopman (1997) . For the general

ase of arbitrary U ( z ), Voronovich (1976) has described the con-

ervation law, in the geometric optics approximation, for an adia-

atic invariant corresponding to the wave action density. Evalua-

ion of these results requires knowledge of a solution to (6) , how-

ver. Karageorgis (2012) has shown a method for constructing ex-

ressions for the dispersion relation for waves on a number of ver-

ical vorticity distributions, but does not consider the further deter-

ination of the group velocity. 

For the case of weak shear, solutions to (6) may be obtained

sing a perturbation approach, described to leading order for deep

ater by Stewart and Joy (1974) and extended to finite depth by

kop (1987) and to second order by Kirby and Chen (1989) . Con-

idering deep water waves, Shrira (1993) has further demonstrated

ow series solutions may be extended to high order. Alternately,

umerical solutions may be obtained using a shooting method due

o Fenton (1973) . In the following, we limit ourselves to the eval-

ation of the first and second-order solutions presented in Kirby

nd Chen (1989) and further limit ourselves to waves and currents

ropagating in the same direction. For definiteness, we suppose

hat waves are propagating towards the right with c > 0 and k

 0, while the current can be propagating in either ± x direction. 

.2. Perturbation solution of Kirby and Chen (1989) 

Following Kirby and Chen (1989) , we assume that the steady

urrent velocity is small relative to some measure of wave phase

peed. Here, we use a Froude number based on the surface velocity

 s = U(0) defined by 

 = 

U s √ 

gh 

; | F | � 1 (7)

The wave phase speed is given by 

 a = 

ω 

k 
= C 0 + (F ) C 1 + (F 2 ) C 2 + O (F 3 ) (8)

here we indicate ordering w/r F schematically and retain dimen-

ional expressions for now. C is the usual result for linear waves
0 
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8 
n a stationary water column, and is given by 

 0 = 

√ 

g 

k 
tanh kh (9) 

C 1 and C 2 arise from the current-induced Doppler shift, with

 1 = 

˜ U in (1) and C 2 given by 

 2 = 

˜ U 

2 C 0 
[4 kI 1 (0) − (1 + 2 cosh 2 kh ) ̃  U ] 

+ 

k 2 C 0 

2 g f 2 
0 
(0) 

∫ 0 

−h 

U 

2 (z)[1 + 2 cosh 

2 
k (h + z)] dz (10) 

+ 

2 k 3 C 0 

g f 2 
0 
(0) 

∫ 0 

−h 

[ I 2 (z) I 
′ 
1 (z) − I 1 (z) I 

′ 
2 (z)] dz 

ith 

 1 (z) = 

∫ z 

−h 

U(ξ ) sinh 2 k (h + ξ ) dξ

 2 (z) = 

∫ z 

−h 

U(ξ ) cosh 2 k (h + ξ ) dξ (11) 

f 0 = sinh k (h + z) 

o O ( F 2 ), the absolute wave group velocity ˜ C ga determined from the

erturbation solution is given by 

˜ 
 ga = 

∂ω 

∂k 
= 

∂(kC a ) 

∂k 
= 

∂(kC 0 ) 

∂k 
+ (F ) 

∂(k ̃  U ) 

∂k 
+ (F 2 ) 

∂(kC 2 ) 

∂k 
(12)

he first, O ( F 0 ) term on the right hand side is the usual expression

or the current-free case, given by 

 g0 = 

C 0 
2 

(1 + G ) ; G = 

2 kh 

sinh 2 kh 

(13)

he second component on the RHS of (12) gives the expression 

ˆ 
 = 

˜ U + k 
∂ ̃  U 

∂k 
= (2 − G cosh 2 kh ) ̃  U 

+ 

4 k 2 

sinh 2 kh 

∫ 0 

−h 

(h + z) U(z) sinh 2 k (h + z) dz (14) 

hich clearly differs from the apparent phase speed correction 

˜ U 

t O ( F ). The remaining term at O ( F 2 ) is derived in sections 3 and

 for the specific cases studied here. 

It is clear that the expression 

 ga = C g0 + 

˜ U (15) 

uggested for use by a number of authors, does not represent a

onsistent approximation for the current component of the group

elocity at O ( F ). This point was made in the original study of Kirby

nd Chen (1989) , and we re-examine that conclusion in the context

f two cases in Sections 3 and 4 . The result that ˆ U rather than 

˜ U 

s the correct leading-order estimate of current velocity for use in

he wave action equation is the first main point of this study. 

In the following sections, the validity of the first and second

rder perturbation approximation will be examined for two cases;

1) a linear shear current, where the analytical dispersion rela-

ion has been obtained from the Rayleigh equation by Thompson

1949) , and (2) a current profile measured at the mouth of the

olumbia River ( Kilcher and Nash, 2010 ), where a numerical solu-

ion is found using a shooting method described in Dong and Kirby

2012) . 

. Wave on a current with constant shear 

The linear problem for waves riding on a horizontally-uniform

urrent with constant vertical shear has an exact solution. For the

ase of co-linear wave and current flow, the wave motion is de-

cribed by a potential, and no vorticity is developed at the wave
requency ( Thompson, 1949 ). Maïssa et al. (2016) examine the re-

ulting expressions for group velocity in the co-linear case with-

ut and with surface tension, and consider blocking conditions for

aves on an opposing stream, corresponding to the limit C ga →
. For the case of waves propagating at an angle to the current

irection, Constantin (2011) and others have shown that a flow

ith constant vorticity and irrotational wave motion does not ex-

st. Ellingsen (2016) points out that this result simply implies that

he waves are then described by a rotational flow with vorticity

uctuating at wave frequency. The resulting problem is completely

escribed by (6) with additional work needed to develop an ex-

ression for the vorticity. Ellingsen (2016) considers the case of

eep water and develops expressions for the resulting horizontal

orticity; the extension to finite water depth is described by Dong

2016) ; see section 3.1.2. 

We limit attention here to the co-linear case and let 

U(z) = U s + �z = U s (1 + α
z 

h 

) (16)

here U s is the surface velocity, � is the constant current shear

nd α is the current shear parameter defined in (4) . The exact dis-

ersion relation, written in terms of the phase speed relative to

urface velocity C rs = C a − U s , is given by ( Thompson, 1949 ) 

 

2 
rs = (gh − αU s C rs ) 

tanh kh 

kh 

(17)

he exact expression for the absolute group velocity C e ga = ∂ ω/∂ k
s found from (17) to be 

 

e 
ga = U s + 

(
g(1 + G ) − (αU s /h ) C rs G 

2 g − (αU s /h ) C rs 

)
C rs (18) 

ntroducing the Froude number F = U s / 
√ 

gh , we normalize the

roup velocity and phase speed by ( gh ) 1/2 and obtain 

C e ga √ 

gh 

= C e ∗ga = F + 

(1 + G ) − αF GC ∗rs 

2 − αF C ∗rs 

C ∗rs (19)

here C ∗rs = C rs / 
√ 

gh . Using (17) leads to 

 

∗
rs = 

1 

2 

( 
√ 

4 μ + α2 F 2 μ2 − αμF ) (20)

ith μ defined as 

= 

tanh kh 

kh 

(21) 

Turning to the perturbation solution of Kirby and Chen (1989) ,

e obtain results to O ( F 2 ) and compare them to the full solution

o determine their range of validity. The dimensionless O (1) phase

peed and group velocity are given by 

 

∗
0 = 

√ 

μ; C ∗g0 = 

1 

2 

√ 

μ(1 + G ) (22)

t O ( F ), the depth weighted current ˜ U and it’s derivative with re-

pect to k are given in dimensionless form by 

˜ 
 

∗ = 

˜ U √ 

gh 

= F (1 − α
μ

2 

) ; ∂ ̃  U 

∗

∂k 
= α

F 

2 

μ

k 
(1 − G ) (23)

iving a leading order current contribution to the group velocity 

ˆ 
 

∗ = 

ˆ U √ 

gh 

= F 

(
1 − 1 

2 

αμG 

)
(24) 

inally, at O ( F 2 ), the correction to the phase speed is given by 

 

∗
2 = 

1 

α2 F 2 μ3 / 2 (25) 
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Fig. 2. Wave group velocity comparison C ga /C e ga vs relative depth kh : linear shear current. Solid lines indicate O ( F 2 ) approximation; dashed lines indicate O ( F ) approximation. 
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The O ( F 2 ) correction to the group velocity is then 

 

∗
g2 = 

1 √ 

gh 

∂(kC 2 ) 

∂k 
= 

1 

16 

F 2 α2 μ3 / 2 (3 G − 1) (26)

The results for the complete expressions for group velocity are col-

lected here for convenience: 

Exact C e ∗ga = F + 

(1 + G ) − αF GC ∗rs 

2 − αF C ∗rs 

C ∗rs (27a)

O (F ) ˜ C ∗ga = 

1 

2 

√ 

μ(1 + G ) + F 

(
1 − 1 

2 

αμG 

)
(27b)

O (F 2 ) ˜ C ∗ga = 

1 

2 

√ 

μ(1 + G ) + F 

(
1 − 1 

2 

αμG 

)

+ 

1 

16 

F 2 α2 μ3 / 2 (3 G − 1) (27c)

It may be verified after some tedious algebra that the result-

ing expression 

˜ C ∗ga agrees with the expansion of the exact result

(27a) truncated at either O ( F ) or O ( F 2 ) as desired. The perturbation

solution is thus consistent with the full solution to the order con-

sidered, with a clear indication that the commonly used 

˜ U is not

the correct advection velocity to use in the wave action equation. 

3.1. Following currents F > 0 

The results for the first and second order perturbation solutions

expressed in (27) are compared to the full theory in Fig. 2 for var-

ious choices of α and for F > 0, corresponding to currents flowing

in the direction of wave propagation. (Values of 0 ≤ | F | ≤ 1 and 0

≤ α ≤ 1 represent variation from weak to strong current and weak

to strong shear, respectively. The values here are chosen purely for

example). Both the first and second order perturbation solutions

are quite good approximations to the full solution, with little indi-

cation that there is a need to use the O ( F 2 ) correction in practice. 
Fig. 3 compares the first order approximations ˜ U 

∗ and 

ˆ U 

∗ to the

econd order correction ( ̂  U 

∗ + C ∗
g2 

) for various choices of α and F . It

an be seen that, as the current becomes more sheared, the error

f neglecting the term k∂ ̃  U /∂k increases. 

.2. Opposing currents F < 0 and blocking 

For the case of an opposing current with F < 0, the group ve-

ocity of the wave train is decreased by the current. When the cur-

ent becomes strong enough to reduce the group velocity to zero

or C ga → 0), wave blocking occurs and waves are unable to trans-

ort energy in the direction of propagation. Results for the case of

onstant shear are discussed in Maïssa et al. (2016) . We investigate

he validity of the perturbation solution in predicting the blocking

urrent speed by setting the absolute group velocity to zero in each

xpression in (27). Using the exact expression (27a) , we obtain the

ollowing nonlinear equation for blocking of waves 

 

2 ( αC ∗rs ) + F 
(
αG C ∗rs 

2 − 2 

)
− (1 + G ) C ∗rs = 0 (28)

hich is solved numerically in MATLAB. The long wave limit for

he exact solution is given by 

h → 0 : F b = 

−1 

(1 − α) 1 / 2 
(29)

hich is singular for α = 1 , where the current speed is reduced to

ero at the bottom. This singularity results from the linearization

f the problem with respect to the wave motions. A more com-

lete examination of the critical Froude number F c in a hydraulic

ow with constant vertical shear yields the result F c = −1 / (1 − α +
2 / 12) 1 / 2 , where criticality corresponds to blocking of upstream

ropagation of information by infinitesimal waves.) The O ( F ) ap-

roximation, obtained from (27b) , is given by 

 b = 

μ1 / 2 (1 + G ) 

(αμG − 2) 
(30)
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Fig. 3. Ratio of first order approximations ˜ U and ˆ U to the second order correction ( ̂ U ∗ + C ∗g2 ) for various choices of current shear α and Froude number F . Solid lines are for 

the consistent O ( F ) contribution ˆ U ∗, while dashed lines are for the depth weighted current ˜ U ∗, used inconsistently as the current component of the group velocity. 

Fig. 4. Blocking current Froude number vs corresponding relative depth kh for var- 

ious choices of current shear α. (Solid lines) exact solution, (dashed lines) O ( F ) ap- 

proximation. 
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ith long wave asymptote F b = −1 / (1 − α/ 2) . This long wave limit

s a valid leading order estimate for the exact result (29) only in

he limit of small shear α; the source of this additional restric-

ion is not immediately clear in the context of the small F restric-

ion in the perturbation solution. It is noted that a re-ordering of

he problem (6) to allow for O (1) current speeds but with a small

hear restriction recovers the same perturbation series to the order

iven here, and thus the small shear limitation is perhaps a better

nterpretation in the context of the large F values associated with

locking. 

Results for the first order approximation are shown in Fig. 4

n comparison to the full theory. Exact and O ( F ) approximate so-

utions for the blocking current speed show significant deviations

or values of kh < 1. For small values of α, (30) may be approx-

mated by F b = −1 / (1 − α/ 2) , in agreement with the perturbation

olution. 
At O ( F 2 ), solving the quadratic equation for F b resulting from

27c) gives the expression 

 b = 

−B + [ B 

2 − 4 AC] 1 / 2 

2 A 

(31) 

ith 

 = α2 μ3 / 2 (3 G − 1) ; B = 16 

(
1 − 1 

2 

αμG 

)
; C = 8 μ1 / 2 (1 + G )

(32) 

eal-valued solutions for F b only exist for positive values of the

iscriminant B 2 − 4 AC. Since μ and G are both functions of kh , it is

impler to solve the equation B 2 = 4 AC for a critical shear αc as a

unction of kh ; doing so gives 

c = 

4 

[ (
3 
2 

G 

2 − G − 1 
2 

)1 / 2 − G 

] 
μ

(
G 

2 + 2 G − 1 

) (33) 

sing (33) in (31) then gives a critical blocking Froude number F bc 

or each kh , given by 

 bc = 

−B 

2 A 

= −
8 

(
1 − 1 

2 
αc μG 

)
α2 

c μ3 / 2 (3 G − 1) 
(34) 

ith the O ( F 2 ) solution for blocking breaking down for α > αc at

ach kh . The long wave results are given by 

h → 0 : αc = 2( 
√ 

2 − 1) ≈ 0 . 828 ; F bc = −(2 + 

√ 

2 ) ≈ −3 . 414 

(35) 

ith the solution breaking down at smaller current speeds with

ncreasing kh and α, as indicated by the dash-dot curve in Fig. 5 . 

Fig. 6 compares the first and second order perturbation solu-

ions to the exact solution for various choices of F < 0 and α. The

olutions are compared for a range of kh values corresponding to

nblocked waves range before the waves are blocked by the cur-

ent. Both first and second order perturbation solutions are accu-

ate predictors of group velocity for current speeds up to the block-

ng condition when shear α is small; however, as indicated above,
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Fig. 5. Blocking current Froude number F b vs corresponding relative depth kh for 

various choices of current shear α. Solid lines show the exact solution, dashed lines 

are the O ( F 2 ) approximation. The dash-dot line shows the locus of F bc values where 

the second order solution breaks down, as indicated in (34) . 

 

 

 

 

 

 

 

 

 

Fig. 7. Columbia River current profile during ebb tide. Solid line is measured data 

( Kilcher and Nash, 2010 ) and the dashed line is a 6th order polynomial fit to the 

data. 
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the approximations become weak for long waves and values of di-

mensionless shear much in excess of α = 0 . 5 . 

4. Columbia river velocity profile 

In this section we compare the group velocities obtained from

different approximations using a measured current profile from the

mouth of the Columbia River (MCR). The Columbia River is well

known for it’s large freshwater discharge and the resulting devel-

opment of a rapidly moving, buoyant plume during ebb tide condi-

tions. Here, we select a sample velocity profile collected by a pole-

mounted ADCP during the RISE (River Influences on Shelf Ecosys-

tems) project ( Kilcher and Nash, 2010 ). The profile, shown in Fig. 7 ,
Fig. 6. Wave group velocity comparison C ga /C e ga vs relative depth kh for various choices 

dashed lines are the O ( F ) approximation. 
epresents a maximum ebb condition for the time frame covered

y the file. The normalized shear parameter for this current profile

s α ∼ 8 which indicates a strongly sheared current. We consider

he idealized case of wave propagating landward against the op-

osing current at Columbia river mouth. We follow a general pro-

edure of fitting polynomials to either measured profiles or profiles

aken from gridded model results in order to establish a basis for

omputing weighted current values. Expressions below are based
of current shear α and Froude number F . Solid lines are O ( F 2 ) approximation and 
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Fig. 8. Wave group velocity comparison C ga / C ga 
n vs relative depth kh : Mouth of 

Columbia River (MCR). Solid line indicates O ( F 2 ) approximation and dashed line in- 

dicates O ( F ) approximation. 

Fig. 9. Ratio of first order approximations ˜ U and ˆ U to the second order correction 

( ̂ U + C g2 ) : Mouth of Columbia River (MCR). Solid line is ˆ U and dashed line is ˜ U . 
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n the form 

(z) = U s 

N ∑ 

n =0 

a n ( 
z 

h 

) n (36)

ith current speed referenced to the surface value U s and with di-

ensionless a n ’s. The relative depth is assumed to be varying be-

ween kh ∼ 0.5 to kh ∼ 3. Calculations here are carried out us-

ng N = 6 , with the fitted profile for the demonstration case also

hown in Fig. 7 . Results for expressions for ˜ U , ˆ U , C 2 and C g 2 re-

ulting from evaluating the perturbation solutions after introduc-

ng the expansion (36) are presented in Appendix A. 

.1. Numerical solution 

In the absence of an analytic solution for the original problem

6) , a numerical method is used to solve the Rayleigh equation. We

rst introduce normalized vertical shape functions L (z) = σ (z) /σs 

or the relative frequency and f (z) = ˜ w / (−iσs a ) , where a is wave

mplitude. (6) becomes 

f 
′′ − (k 2 + 

L 
′′ 

L 
) f = 0 ; −h ≤ z ≤ 0 

f = 0 ; z = −h (37) 

f 
′ = (L 

′ + 

gk 2 

σ 2 
s 

) f ; z = 0 

We then introduce a non-dimensional vertical coordinate ˆ z =
/h following Fenton (1973) and define a new dependent variable 

Q( ̂ z ) = 

f 

h f ′ 
(38) 

he problem is then reduced to a Riccati equation 

dQ 

d ̂  z 
= 1 − γ 2 Q 

2 ; −1 ≤ ˆ z ≤ 0 ;

2 ( ̂ z ) = (kh ) 2 + 

L 
′′ 

L 

Q = 

σ 2 
s 

(gk 2 h + L ′ σ 2 
s ) 

; ˆ z = 0 ; (39) 

Q = 0 ; ˆ z = −1 

he Riccati equation is solved using a shooting method ( Fenton,

973; Kirby and Chen, 1989; Dong and Kirby, 2012 ), with the ab-

olute frequency ω determined from the value of Q (0). We then

alculate the derivative of the absolute frequency w/r k using a

entral difference method to evaluate the group velocity C n ga nu-

erically. 

 

n 
ga = 

∂ω 

∂k 
≈ ω(k + 
k ) − ω(k − 
k ) 

2
k 
(40) 

.2. Comparison of numerical and perturbation results 

Using the expressions in Appendix A , group velocity compar-

sons based on first and second order perturbation approximations

re shown in Fig. 8 . The perturbation solutions are seen to be fairly

ood approximations. Fig. 9 compares the incorrect first order ap-

roximation 

˜ U and the consistent first order approximation 

ˆ U to

he second order correction ( ̂  U + C g2 ). The neglected term k∂ ̃  U /∂k

s shown to be as big as 40% of the second order perturbation

orrection, indicating the magnitude of the error involved in us-

ng ˜ U instead of ˆ U as the estimate for current velocity in the wave

odel. At the same time, ˆ U provides a fairly accurate estimate of

he current component of the group velocity when compared to

he higher order O ( F 2 ) result. 
. Common approximations in modeling 

Choices for current values to be used in evaluating current ef-

ects on waves have historically included depth-averaged current

 or surface current U s . More recently, as discussed above, several

nvestigators have suggested using the depth-weighted current ˜ U 

s the choice for effective current ( van der Westhuysen and Lesser,

0 07; Ardhuin et al., 20 08; Warner et al., 2010 ). Lesser (2009) in-

roduced the procedure of using a single value ˜ U (k p ) instead of

he frequency dependent ˜ U (k ) to represent the current used for all

requency-directional components, where k p is the wavenumber at

eak frequency; this procedure is included as an option in Delft-

D ( Lesser, 2009 ); see also discussions in Elias et al. (2012) . The

pproach has also been introduced in ROMS ( Warner et al., 2010 ). 

As has been mentioned above, direct use of ˜ U as a replace-

ent for depth averaged velocity incurs an error of O ( F ) in ac-

ion flux conservation. In this section, we examine the limitations

f these approximations for both the analytic and numerical cases

onsidered above. We also consider a fourth choice of ˆ U (k p ) , the

orrect estimate of the advective current component to O ( F ), but
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Fig. 10. Wave group velocity comparison C ga / C 
e 
ga vs normalized wave number k ∗ = k/k p , with k p h = 1 : linear shear flow. Solid lines are using ˆ U (k p ) , dashed lines are based 

on ˜ U (k p ) , dots indicate the depth averaged approximation and the circles are only using the surface value U s . 
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evaluated only at the peak frequency. We assume that the spec-

trum is narrow banded in the sense that | k − k p | / k p � 1 for any

k within the energetic part of the spectrum and also select three

peak wave numbers corresponding to k p h = 1 , 2 and 3. Figs. 10–12 ,

and compare the validity of these approximations for the linear

shear current, while Figs. 13–15 , and show the same comparison

for the MCR current profile. It can be seen that although the depth

weighted current ˜ U (k p ) gives a better approximation compared to

the choice of depth-average or surface current, the effect of ne-

glecting the term k ∂ ̃  U / ∂k can still cause significant errors even

at the peak frequency. It should also be noted that, despite the

fact that ˆ U (k p ) is a more fundamentally accurate choice near the

spectral peak, it still produces a comparable rate of deviation be-

tween modeled and true group velocity estimates with increasing


k . This would indicate the potential need to represent frequency

dependence in 

ˆ U in applications to broad-banded frequency spec-

tra, unless a more advantageous strategy can be developed using

values computed at the peak frequency alone. We explore such an

extension in the following section. 

6. An improved approximation based on taylor expansion 

about k p 

The comparisons of the group velocity approximations in pre-

vious sections have indicated that significant errors may be in-

curred by neglecting either the contribution of the term k∂ ̃  U /∂k

to the group velocity at O ( F ) or the wavenumber dependence of
ˆ 
 . For the remainder of this discussion, it should be clear that

we advocate the use of the velocity ˆ U in place of ˜ U in any

coupled wave-current modeling system. In this section, we de-

scribe a possible strategy for additionally recovering wavenumber
ependence in 

ˆ U using only values calculated at the peak

avenumber k p , thereby minimizing the amount of additional in-

ormation to be passed from the circulation model to the wave

odel. 

The Taylor expansion of ˆ U (k ) about the peak wavenumber k p is

iven to leading order by 

ˆ 
 (k ) = 

ˆ U (k p ) + 

d ̂  U 

dk 

∣∣
k p 

(
k ) + O ( 
k 
2 
) (41)

k = k − k p (42)

sing the relation between 

ˆ U and 

˜ U indicated in (14) , we obtain 

ˆ 
 (k ) = 

˜ U (k p ) + k p 
∂ ̃  U 

∂k 

∣∣∣
k p 

+ 
k 

[
∂ ̃  U 

∂k 

∣∣∣
k p 

+ 

∂ ̃  U 

∂k 

∣∣∣
k p 

+ k 
∂ 2 ˜ U 

∂k 2 

∣∣∣
k p 

]
+ O (
k )

= 

˜ U (k p ) + 

∂ ̃  U 

∂k 

∣∣∣
k p 

[2 k − k p ] + k p 
∂ 2 ˜ U 

∂k 2 

∣∣∣
k p 


k + O (
k ) 2 (43

o O ( 
k ), the group velocity is then given by 

C ga = 

C 0 
2 

(1 + G ) + 

ˆ U (k ) (44)

his procedure retains the effect of the wavenumber dependence

f ˜ U but requires the passage of only one or two additional co-

fficients to the wave model, depending on whether expressions

ased on 

ˆ U or ˜ U are employed. The extra data can then be used

n the wave model to compute frequency and direction-dependent

urrent values for use with each component wave. 

The accuracy of the approximation is compared to prediction of

roup velocity using ˆ U (k ) evaluated only at the peak wavenumber
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Fig. 11. Wave group velocity comparison C ga / C 
e 
ga vs normalized wave number k ∗ = k/k p , with k p h = 2 : linear shear flow. Solid lines are using ˆ U (k p ) , dashed lines are based 

on ˜ U (k p ) , dots indicate the depth averaged approximation and the circles are only using the surface value U s . 
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ˆ 
 (k p ) = 

˜ U (k p ) + k p 
∂ ̃  U 

∂k 

∣∣∣
k p 

(45)

or the linear shear case, the Taylor series coefficients are given

y 

∂ ̃  U 

∂k 
= α

U s 

2 

μ

k 
(1 − G ) 

∂ 2 ˜ U 

∂k 2 
= α

U s 

2 

μ

k 2 
[ G 

2 ( cosh 2 kh − 1) + 2 G − 2] (46) 

For the numerical case, the first two derivatives of ˜ U are ob-

ained from (A.9) . 

Comparisons for both analytic and numerical cases are shown

n Figs. 16–21 , for three different cases of k p h = 1 , 2 and 3. Consid-

ring a narrow-banded spectrum in frequency or wave number, it

s seen that the Taylor series approach provides a good estimate of

he group velocity while including the first order correction to the

roup velocity, as explained in (12) , and evaluating it for just one

eak wavenumber shows rapid deviation from the exact solution.

he Taylor series approximation could thus be used as the basis

or estimating frequency-dependent current values, with the wave

odel being able to construct a reasonable estimate of the group

elocity using a minimal set of additional information. 

. Discussion and conclusions 

The main aims of the present work have been to emphasize

hat the depth-weighted current value ˜ U in (1) is not the appro-

riate leading-order estimate for current velocity in expressions for
roup velocity, and that the use of velocity evaluated at peak fre-

uency can lead to rapid accumulation of error at frequencies away

rom the peak. The first point has been demonstrated by showing

hat the retention of wavenumber dependence in 

˜ U when differen-

iating the approximate dispersion relation to obtain group velocity

eads to results which are consistent with an exact solution in the

ase of waves on a current with constant shear, and with a numer-

cal solution computed using a candidate, strongly sheared current

rofile from MCR. 

In order to illustrate the effect of an incorrect choice of current

n wave predictions, we end with an example of a shoaling calcu-

ation based monochromatic waves propagating in constant depth

gainst an increasingly strong opposing flow. We take the MCR cur-

ent profile shown in Fig. 7 as reference U ( x m 

, z ) and construct a

urrent distribution 

(x, z) = U(x m 

, z) 
x − x 0 

x m 

− x 0 
(47)

here x 0 represents an offshore starting point and the wave shoals

n the interval x 0 ≤ x ≤ x m 

. Using wave action conservation for

aves on a depth uniform current then gives a wave height distri-

ution 

H(x ) 

H 0 

= 

√ 

C g0 

C g (x ) 

σ (x ) 

σ0 

(48) 

here subscripts 0 denote initial values at x 0 and H is waveheight,

ith energy density E = 1 / 8 ρgH 

2 . Fig. 22 shows results for cases

ith C g and σ evaluated using current values ˜ U , ˆ U , U and U s . The

elative accuracy of the result based on 

ˆ U has been established in

ection 4 and is used here as the reference for the three remaining

hoices. Results are shown for incident waves with periods ranging
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Fig. 12. Wave group velocity comparison C ga / C 
e 
ga vs normalized wave number k ∗ = k/k p , with k p h = 3 : linear shear flow. Solid lines are using ˆ U (k p ) , dashed lines are based 

on ˜ U (k p ) , dots indicate the depth averaged approximation and the circles are only using the surface value U s . 

Fig. 13. Wave group velocity comparison C ga / C 
n 
ga vs normalized wave number k ∗ = 

k/k p , with k p h = 1 : MCR velocity profile. Solid lines are using ˆ U (k p ) , dashed lines 

are based on ˜ U (k p ) , dots indicate the depth averaged approximation and the circles 

are only using the surface value U s . 

 

 

 

 

 

Fig. 14. Wave group velocity comparison C ga / C 
n 
ga vs normalized wave number k ∗ = 

k/k p , with k p h = 2 : MCR velocity profile. Solid lines are using ˆ U (k p ) , dashed lines 

are based on ˜ U (k p ) , dots indicate the depth averaged approximation and the circles 

are only using the surface value U s . 
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from 6 to 12 seconds. As would be expected, the prediction based

on 

ˆ U deviates the most from the value based on depth-averaged

current U for shorter waves, where the influence of the larger cur-

rents near the surface is enhanced, and from the value based on

surface current U s the most for longer waves, where the weight-

ing over depth becomes more uniform. The prediction based on 

˜ U 
s always closer to the correct answer than predictions made us-

ng surface or depth-averaged values, but errors are still significant

nd can be corrected using the proper expression 

ˆ U . 

The second point is cautionary in nature, and we have proposed

 method for extending the range of model accuracy without im-

osing a massive increase in required data exchange between cir-

ulation and wave models. 



S. Banihashemi et al. / Ocean Modelling 116 (2017) 33–47 43 

Fig. 15. Wave group velocity comparison C ga / C 
n 
ga vs normalized wave number k ∗ = 

k/k p , with k p h = 3 : MCR velocity profile. Solid lines are using ˆ U (k p ) , dashed lines 

are based on ˜ U (k p ) , dots indicate the depth averaged approximation and the circles 

are only using the surface value U s . 
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The results here are limited to an examination of the group ve-

ocity C ga and do not address the corresponding approximations

or wave action density. In particular, it is important to determine

hether the action density can be approximated using a simple

orm N = E 0 /σ
∗, with E 0 = 1 / 2 ρga 2 based on depth-uniform cur-

ents and σ ∗ = ω − kU 

∗ with U 

∗ related to the available weighted

orms of U in some simple manner. (This problem has also been

ecently considered by Quinn et al., 2017 ). The theory described

n this study is limited to unidirectional propagation on a follow-

ng or opposing current, and so currents and wave numbers appear
ig. 16. Comparison of absolute group velocity C ga / C 
e 
ga vs normalized wave number k ∗

xpansion of ˆ U (k ) about k p , dashed-dotted lines are based on ˆ U (k p ) and dashed line is u
s scalars rather than vectors. The expressions for depth-weighted

urrents given here need to be extended to two horizontal

imensions for use in modeling, and the Taylor series expansion

bout peak wavenumber similarly needs to be developed in full

ector form. These extensions are presently being developed and

tilized in an extension of the SWAN wave model, and will be re-

orted separately in the context of the description of a coupled

ystem based on SWAN and the non-hydrostatic model NHWAVE

 Ma et al., 2012 ). The break-down of the perturbation approach in

he application to blocking of long waves requires further attention

s well, and will be considered separately. 
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ppendix A. Depth-weighted current velocities based on 

olynomial form of U ( z ) 

We define the ambient current profile U ( z ) in polynomial form

s 

(z) = U s 

N ∑ 

n =0 

a n ( 
z 

h 

) n (A.1)

here the a n are defined by fitting to measurements or to grid-

ased numerical values. Evaluating ˜ U from (1) then gives 

˜ 
 = 

U s G 

h 

N ∑ 

n =0 

a n 

∫ 0 

−h 

( 
z 

h 

) n cosh [2 k (h + z)] dz 

= 

U s 

h 

N ∑ 

n =0 

a n 

h 

n 
J n (A.2) 
= k/k p , with k p h = 1 : linear shear flow. Solid lines are based on the Taylor series 

sing ˜ U (k p ) . 

http://dx.doi.org/10.13039/100000001
http://makani.coas.oregonstate.edu/rise/data/adcp/june04_polemounted/
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Fig. 17. Comparison of absolute group velocity C ga / C 
e 
ga vs normalized wave number k ∗ = k/k p , with k p h = 2 : linear shear flow. Solid lines are based on the Taylor series 

expansion of ˆ U (k ) about k p , dashed-dotted lines are based on ˆ U (k p ) and dashed line is using ˜ U (k p ) . 
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with J n given by 

J n = G 

∫ 0 

−h 

z n cosh [2 k (h + z)] dz (A.3)

The first two terms J 0 and J 1 may be simply evaluated, after which

the remaining J n ’s are defined by a recurrence relation: 

J 0 = h 

J 1 = −h 

2 μ

2 

(A.4)

J n = 

n 

4 k 2 

[
G (−h ) (n −1) + (n − 1) J n −2 

]
For the polynomial of order N = 6 used in Section 5 , ˜ U is given

by 

˜ 
 = U s 

[
a 0 − μ

2 

a 1 + 

(1 − G ) 

2(kh ) 2 
a 2 + 

3(G − μ) 

4(kh ) 2 
a 3 

+ 

(
3(1 −G ) 

2(kh ) 4 
− G 

(kh ) 2 

)
a 4 + 

(
15(G − μ) 

4(kh ) 4 
+ 

5 G 

4(kh ) 2 

)
a 5 (A.5)

+ 

(
45(1 − G ) 

4(kh ) 6 
− 15 G 

2(kh ) 4 
− 3 G 

2(kh ) 2 

)
a 6 

]

The derivative of ˜ U w/r k is given by 

˜ 
 k = 

U s 

h 

N ∑ 

n =0 

a n 

h 

n 
(J n ) k (A.6)

where subscript k denotes the derivative, and where ( J n ) k can be

expressed as 

(J 0 ) k = 0 

(J 1 ) k = −h 

2 

2 

μk (A.7)

(J n ) k = 

−2 J n 

k 
+ 

n 

4 k 2 

[
(−h ) n −1 G k + (n − 1)(J n −2 ) k 

]

ith 

k = 

μ

k 
(G − 1) 

G k = 

G 

k 
(1 − G cosh 2 kh ) (A.8)

or N = 6 , using (A.6) results in 

 ̃

 U k = U s 

[ 
− k 

2 

μk a 1 −
(kG k −2 G + 2) 

2(kh ) 2 
a 2 + 

3(k (G k −μk ) −2(G −μ)) 

4(kh ) 2 
a 3 

+ 

−k (2 h 

2 k 2 + 3) G k + 4 G (h 

2 k 2 + 3) − 12) 

2(kh ) 4 
a 4 (A.9

+ 

5(h 

2 k 3 G k + 3 kG k − 2 G (h 

2 k 2 + 6) − 3 kμk + 12 μ) 

4(kh ) 4 
a 5 

+ 

−k (2 h 

4 k 4 + 10 h 

2 k 2 + 15) G k + G (4 h 

4 k 4 + 40 h 

2 k 2 + 90) −90) 

4(kh ) 6 
a 6 

]

he resulting O ( F ) correction to the group velocity is finally given

y 

ˆ 
 = 

U s 

h 

N ∑ 

n =1 

a n 

h 

n 
( kJ n ) k (A.10)

t O ( F 2 ), the expression for C 2 is given by (10) , and can be written

s 

 2 = 

˜ U 

2 C 0 
A + 

k 2 C 0 

2 g f 2 
0 
(0) 

B + 

2 k 3 C 0 

g f 2 
0 
(0) 

C (A.11)

here 

 = [4 kI 1 (0) − (1 + 2 cosh 2 kh ) ̃  U ] 

B = 

∫ 0 

−h 

U 

2 (z)[1 + 2 cosh 

2 
k (h + z)] dz (A.12)

 = 

∫ 0 

−h 

[ I 2 (z) I 
′ 
1 (z) − I 1 (z) I 

′ 
2 (z)] dz 



S. Banihashemi et al. / Ocean Modelling 116 (2017) 33–47 45 

Fig. 18. Comparison of absolute group velocity C ga / C 
e 
ga vs normalized wave number k ∗ = k/k p , with k p h = 3 : linear shear flow. Solid lines are based on the Taylor series 

expansion of ˆ U (k ) about k p , dashed-dotted lines are based on ˆ U (k p ) and dashed line is using ˜ U (k p ) . 

Fig. 19. Comparison of absolute group velocity C ga / C 
n 
ga vs normalized wave num- 

ber k ∗ = k/k p , with k p h = 1 : Mouth of Columbia River (MCR). Solid lines are based 

on the Taylor series expansion of ˆ U (k ) about k p , dashed-dotted lines are based on 
ˆ U (k p ) and dashed line is using ˜ U (k p ) . 
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Fig. 20. Comparison of absolute group velocity C ga / C 
n 
ga vs normalized wave number 

k ∗ = k/k p , with k p h = 2 : Mouth of Columbia River (MCR).Solid lines are based on the 

Taylor series expansion of ˆ U (k ) about k p , dashed-dotted lines are based on ˆ U (k p ) 

and dashed line is using ˜ U (k p ) . 

W  

r

I

ith 

 1 (z) = 

∫ z 

−h 

U(ξ ) sinh 2 k (h + ξ ) dξ

 2 (z) = 

∫ z 

−h 

U(ξ ) cosh 2 k (h + ξ ) dξ (A.13) 
e first evaluate the expressions for I 1 ( z ) and I 2 ( z ). Using the cur-

ent profile (A.1) , we obtain 

 1 (z) = U s 

N ∑ 

n =0 

a n 

h 

n 

∫ z 

−h 

ξ n sinh 2 k (h + ξ ) dz 

= U s 

N ∑ 

n =0 

a n 

h 

n 
I 1 ,n (z) (A.14) 
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Fig. 21. Comparison of absolute group velocity C ga / C 
n 
ga vs normalized wave num- 

ber k ∗ = k/k p , with k p h = 3 : Mouth of Columbia River (MCR). Solid lines are based 

on the Taylor series expansion of ˆ U (k ) about k p , dashed-dotted lines are based on 
ˆ U (k p ) and dashed line is using ˜ U (k p ) . 
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B

 

with 

I 1 , 0 (z) = 

cosh 2 k (h + z) − 1 

2 k 

I 1 , 1 (z) = 

[
z cosh 2 k (h + z) + h 

2 k 
− sinh [2 k (h + z)] 

4 k 2 

]
(A.15

I 1 ,n (z) = 

1 

4 k 2 

[
2 k ( z n cosh 2 k (h + z) − (−h ) n ) − nz n −1 sinh 2 k (h + z
Fig. 22. Wave shoaling H ( x ) / H 0 for waves on an opposing current of the form shown

representation of depth-uniform current in determining wave action. ˆ U : solid line; ˜ U : das
+ n (n − 1) I 1 ,n −2 ] 

imilarly, I 2 ( z ) can be expressed as 

 2 (z) = U s 

N ∑ 

n =0 

a n 

h 

n 

∫ z 

−h 

ξ n cosh 2 k (h + ξ ) dz 

= U s 

N ∑ 

n =0 

a n 

h 

n 
I 2 ,n (z) (A.16)

ith 

I 2 , 0 (z) = 

sinh 2 k (h + z) 

2 k 

 2 , 1 (z) = 

[
z sinh 2 k (h + z) 

2 k 
− cosh 2 k (h + z) − 1 

4 k 2 

]
(A.17)

I 2 ,n (z) = 

1 

4 k 2 

[
2 k ( z n sinh 2 k (h + z) ) − nz n −1 cosh 2 k (h + z) 

+ n (−h ) n −1 + n (n − 1) I 2 ,n −2 

]
he expression A in (A.12) is evaluated using (A.14) and (A.16) .

oving to the second term in (A.12) , we have 

 = 

∫ 0 

−h 

U 

2 (z)[1 + 2 cosh 

2 
k (h + z)] dz 

= 

∫ 0 

−h 

U 

2 (z)[2 + cosh 2 k (h + z)] dz 

= U s 
2 

N ∑ 

n =0 

N ∑ 

m =0 

a n a m 

h 

n + m 

∫ 0 

−h 

z n + m (2 + cosh 2 k (h + z)) dz (A.18)

= U s 
2 

N ∑ 

n =0 

N ∑ 

m =0 

a n a m 

[
2 h 

m + n + 1 

(−1) n + m +2 + 

1 

h 

n + m 

I 2 ,n + m 

(0) 

]

 in Fig. 7 . Results are shown for four choices of current values, each used as a 

hed line; U : dots; U s : circles. 
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he last term in (A.12) is given by 

C = 

∫ 0 

−h 

[ I 2 (z) I 
′ 
1 (z) − I 1 (z) I 

′ 
2 (z)] dz 

 

′ 
1 (z) = U(z) sinh 2 k (h + z) (A.19) 

 

′ 
2 (z) = U(z) cosh 2 k (h + z) 

nd can be written as 

 = U s 
2 

N ∑ 

n =0 

N ∑ 

m =0 

a n a m 

h 

n + m 

H n,m 

(A.20) 

ith 

 n,m 

= 

∫ 0 

−h 

z m [ I 2 ,n (z) sinh 2 k (h + z) − I 1 ,n (z) cosh 2 k (h + z) ] dz 

(A.21) 

or the polynomial form, H n , m 

is given by 

 0 ,m 

= 

1 

2 k 

[
(−h ) m +1 

m + 1 

+ I 2 ,m 

(0) 

]

 1 ,m 

= 

1 

2 k 

[
(−h ) m +2 

m + 2 

+ (−h ) I 2 ,m 

(0) + 

I 1 ,m 

(0) 

2 k 

]
(A.22) 

 n,m 

= 

1 

2 k 

[ 
( −h ) n + m + 1 

n + m + 1 

+ ( −h ) n I 2 ,m 

(0) 

+ 

n (−h ) n −1 

2 k 
I 1 ,m 

(0) + 

n (n −1) 

2 k 
H n −2 ,m 

] 
he resulting second order correction to group velocity will be 

 g2 = 

∂kC 2 
∂k 

= C 2 + k 
∂C 2 
∂k 

= C 2 + k 

[
∂ 

∂k 

(
˜ U 

2 C 0 

)
A + 

˜ U 

2 C 0 
A k + 

∂ 

∂k 

(
k 2 C 0 

2 g f 2 
0 
(0) 

)
B + 

k 2 C 0 

2 g f 2 
0 
(0) 

B k

+ 

∂ 

∂k 

(
2 k 3 C 0 

g f 2 
0 
(0) 

)
C + 

2 k 3 C 0 

g f 2 
0 
(0) 

C k 

]
(A.23) 

We also need an expression for ˜ U kk to be used in the Taylor

eries in Section 6 . This is given by 

˜ 
 kk = 

U s 

h 

N ∑ 

n =0 

a n 

h 

n 
(J n ) kk (A.24) 

here ( J n ) kk can be expressed as 

(J 0 ) kk = 0 

(J 1 ) kk = −h 

2 

2 

μkk (A.25) 

(J n ) kk = 

2 J n 

k 2 
+ 

−1 

2 k 3 

[ 
n (−h ) n −1 G k + n (n − 1)(J n −2 ) k 

] 

−2(J n ) k 
k 

+ 

1 

4 k 2 

[ 
n (−h ) n −1 G kk + n (n − 1)(J n −2 ) kk 

] 
ith 

kk = 

μ

k 2 

[ 
(G − 1) 2 − (G − 1) + G (1 − G cosh 2 kh ) 

] 

G kk = 

G 

2 

k 2 
(G + G cosh 

2 
2 kh − 2 cosh 2 kh ) (A.26) 

A Matlab script which shows the evaluation of each of these

xpressions is provided as Supplement 1. 
upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ocemod.2017.06.002 
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