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Doppler Frequency Estimation and the Cramér-Rao
Bound

Richard Bamler

Abstract—This paper addresses the problem of Doppler fre-
quency estimation in the presence of speckle and receiver noise.
An ultimate accuracy bound for Doppler frequency estimation
is derived from the Cramér-Rao inequality. It is shown that
estimates based on the correlation of the signal power spectra
with an arbitrary weighting function are approximately Gauss-
ian distributed. Their variance is derived in terms of the
weighting function. It is shown that a special case of a corre-
lation-based estimator is a maximum-likelihood estimator that
reaches the Cramér-Rao bound.

These general results are applied to the problem of Doppler
centroid estimation from SAR data. Different estimators known
from the literature are investigated with respect to their accu-
racy. Numerical examples are presented and compared with
experimental results.

Keywords—Doppler frequency estimation, Cramér-Rao
bound, Synthetic Aperture Radar, Doppler centroid estima-
tion.

I. INTRODUCTION

STIMATION of Doppler frequency shifts is a fun-

damental operation in radar data processing: Weather
radar and moving-target indication radar exploit the
Doppler shift of each radar return to measure the velocity
of scatterers. In Synthetic Aperture Radar (SAR) the
Doppler history of a target, while traversing the beam, is
used to focus the data in the azimuth direction. Here, the
mean Doppler frequency, the Doppler centroid, is a mea-
sure of the effective antenna squint angle. It is used to
adjust the bandpass characteristic of the azimuth compres-
sion filter to the location of the signal spectrum. An in-
accurate Doppler centroid not only affects resolution and
the signal-to-noise ratio, but also allows aliased azimuth
frequency components to fall within the passband of the
compression filter, and thus reduces the signal-to-ambi-
guity ratio [1], [2].

If only isolated point scatterers are considered, Doppler
estimation means finding the frequency shift of an a priori
known signal corrupted by additive receiver noise. This
leads to the concept of matched filtering and ambiguity
function. Ultimate bounds of the accuracy of such esti-
mators have been derived in [3], [4].

For weather radar and SAR, the assumption of point
targets is not applicable. An extended target, €.g., a sur-
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face much larger than a resolution cell with a high rough-
ness compared to the wavelength, is a more appropriate
model. The radar data from such a Rayleigh scattering
target suffer from speckle noise, which must be consid-
ered when designing an optimum estimator.

This paper addresses the problem of Doppler estima-
tion under the assumption of both additive (thermal) and
multiplicative (speckle) noises. The organization is as fol-
lows: In Section II the assumed statistical properties of
the signals under consideration are given. In Section III
the ultimate accuracy bound of Doppler frequency esti-
mation based on the Cramér-Rao inequality is presented.
In Section IV the accuracy of Doppler frequency esti-
mators using correlation is derived. Section V presents
the optimum estimator; i.e., one that meets the Cramér-
Rao bound. In Section VI the general mathematical re-
sults of the preceding sections are applied to Doppler cen-
troid estimation from SAR data. Several known esti-
mators are compared with respect to the Cramér-Rao
bound. Numerical examples are given. In Section VII the
theoretical findings are compared with experimental re-
sults, and Section VIII supplies concluding remarks.

. MATHEMATICAL PRELIMINARIES

Assume that the radar data are coherently demodulated
and sampled at a period of At to form the complex vector:

o utkl, <=+, ulN) (D)

where u, represents the radar signal; and u,, the receiver
noise. In the cases of weather radar and moving target
indication, u may be the data from one return. For SAR,
u represents data in the azimuth direction.

Throughout the paper, extended targets of uniform
backscatter are assumed. Thus signal and noise are as-
sumed to be complex, Gaussian, zero-mean, and station-
ary processes orthogonal to each other. The assumption
of uniform backscatter does not mean any loss in gener-
ality, since it can be shown [5], [6] that all the results of
this paper can be easily adapted to the case of nonhomo-
geneous targets if the number of samples N is multiplied
by a contrast dependent factor:

(n?

a5 =1 2)
where I is the radar image pixel intensity; and ““¢ )"’
means the spatial or temporal average.

u=u +u, = @1],- -
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The information contained in U is fully present in its
discrete Fourier transform:

U=U,+U, =N, -, Ul ---, UND. @3

Since Gaussian processes are invariant against Fourier
transform, the signal spectrum U; and the noise spectrum
U, are, again, complex Gaussian, zero-mean, and orthog-
onal.processes. Due to the assumed stationarity of U, the
spectral samples U[i] are mutually uncorrelated.

It is important to understand that the phase of U carries
no information about the Doppler frequency, since U has
been modeled as a stochastic process with the aforemen-
tioned properties. Hence it is sufficient to consider the
power spectrum:

S = (S, -+, S, - -+, SIND
= (U, -+ LU, -, JUINIPD @)

as a starting point for Doppler frequency estimation. $ has
the following properties:

E{Sli} = E{|UJi] + U,li11%}
= E{IUL1} + E{IU17 o)
E{|Ui11*} = A - Af — fo) 6)
E{|U,[i1]*} = 4, = const ™

with E{-} denoting the expectation value.

Equation (7) means that the thermal noise has been con-
sidered to be white with a power spectral density propor-
tional to A,. A,(f) in (6) is the a priori known power
spectral density of the signal; Af is the frequency sam-

pling interval; and f;, is the Doppler frequency shift to be
estimated. Combining (5) to (7) leads to:

E{S[i1} = AG - Af = fp) ®)

with
A(f) = A(f) + 4,. )

A(f) will be referred to as the nominal power spectrum;
it includes both signal and noise and is assumed to be
periodic with period 1/A¢.

Since U is a complex Gaussian process, the probability
density function of each sample S[i] under the condition
of a particular Doppler frequency f;, is given by the well-
known exponential distribution (x? distribution with two
degrees of freedom) [7]:

1
pSLL fo) = A A =Ty

) ) L) B
°xp{ A Af—fD)Z' (a0

Obviously, the power spectrum S exhibits the typical
speckle statistics. This implies that the variance of S[i]
is:

var {S[i1} = E{(A( - Af — fp) — S[iD%}

= A - Af — fo) (11)

Note that the contributions A, f) and 4, from the signal
and noise do not show up separately.

III. THE CRAMER-RAO BOUND FOR DOPPLER
FREQUENCY ESTIMATION

Suppose that an estimator operates on the power spec-
trum § of the data as defined in (4) and shall exploit all
the a priori knowledge about the nominal power spectrum
A(f) and speckle statistics given by (10). Then the fun-
damental Cramér-Rao inequality from estimation theory
[8]-[10] states that the variance of any (unbiased) Dopp-
ler frequency estimate ¢ will be lower bounded by:

var {¢} = ! .

3 In p(S; fu)ﬂ
E {< o

Here, p(S; fp) is the joint probability for all values S[i]
under the condition of fj,. Several authors have interpreted
this fundamental limit in the context of Doppler or time
delay estimation [3], [11], [12]. Translated to the nota-
tions of this paper, their results say that the Cramér-Rao
bound for a Doppler frequency estimate ¢ from N data
samples is:

(12

} = UM & (13)

g L(f) Y lanral Y
(Unless otherwise stated, all integrations extend over one
spectral period 1/A¢.)
Trivially, var {¢} highly depends on the shape of A(f).
Equation (13) gives a design criterion for A(f). All the
spectral regions where the derivative A’(f) is high and

A(f), which is proportional to the speckle noise, is low
contribute most to the accuracy of the estimator.

IV. CorRRELATION-BASED DOPPLER FREQUENCY
ESTIMATORS

It is a common strategy of Doppler centroid estimators
for SAR data [2], [5], [6], [13]-[15] to correlate the power
spectrum S with some weighting function B( f) centred at
a trial Doppler centroid value ¢:

N
D) = 2 SIi] - BG - Af = ¢). (14)

The value of ¢ with:
D(¢) =0 (15)

is taken as the Doppler centroid estimate. Such an esti-
mator may be implemented either directly in the fre-
quency domain or by comparing the energies of different
looks in the time domain. Both approaches are equivalent
to each other from the point of signal theory (Parseval’s
theorem). Equation (14) implies that the design of such a
correlation based Doppler frequency estimator is fully de-
termined by the choice of the weighting function B(f).
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In this section a mathematical relationship between the
shape of B(f) and the estimation accuracy is derived. This
result is compared with the Cramér-Rao bound from (13).

The function D(¢) of (14) is the weighted sum of N
uncorrelated data S[i]. Hence D(¢) is a stochastic process
with approximate Gaussian distribution, no matter how
the samples S[i] were originally distributed (central limit
theorem). Its expectation is:

N
= 2 AG - Af = fo) - Bl - Af = @)

E{D(¢)}
1
:A—f' SA(f_fD) “ B(f— o) df. (16)
For an unbiased estimator, B(f) must be chosen so that
E{D(fp)} = 0. '

Near ¢ = fp the function E{D(¢)} can be expanded
into a Taylor series:

E{D(¢)} = k - (¢ — fp) + higher order terms  (17)
with
dE{D($)} -1 S
k = ———— ~— A - B’ d
el NSV RO R AL
1
= A—f SA(f) - B(f)df. (18)

The last expression of (18) holds, since both A(f)
and B(f) are periodic with a period of 1/Az; i.e.,
A(-1/Q2 - AD) = AQ1/(2 - Ap) and B(—-1/Q2 - Ap) =
B(1/(2 - Ap).

With (11) the variance of D(¢) becomes:

N
var {D(@)} = 25 AG - Af = fo) - BG - Af = ¢)’

n

— £y - — &
Af S[A(f fo) - B(f = ®)]" df. (19)

Then

var {D(fp)}

var {¢} =

i.e., the variance of the estimate ¢ is finally found to be
(see also [16]):

S [A(f) - BLOY df

var {¢} = Af - 3 @n
[S A(H) - B'(f) df]

or

g [Af) - BOOY df

{¢} = Af- :
var {¢ Af [S - B df]z

The approximation of (20) is sufficient if the higher or-
der terms in (17) can be neglected for |¢ — fp| < 3 -

vvar {¢}. For the number N approaching infinity this is
always true. Then ¢ is also Gaussian distributed.

Note that only the variance of the power spectrum as
given by (11) (and not its particular probability density
function) has been used to derive (21).

Equation (21) is an objective criterion for the optimi-
zation of the correlation kernel B(f), provided that the
nominal spectrtim A( f), i.e., both its signal part and noise
part, is known. A ‘‘good’’ weighting function B(f) is
obviously one that averages over many samples of S[i] to
keep the variance of D(¢) low, and, on the other hand,
allows for a high discrimination power of D(¢) by gen-
erating a large slope k of the correlation result.

V. THE OpTIMUM ESTIMATOR

It is known that maximum-likelihood estimators reach
the Cramér-Rao bound; i.e., the optimum Doppler fre-
quency estimator is one that maximizes the a posteriori
likelihood:

~ 1 S[i]
r& o =1 275 eXp{ AG - Af - q&)}'
(22)

It can be easily shown [11] that the (optimum) maxi-
mum-likelihood Doppler frequency estimator is a corre-
lation-based estimator as defined by (14) using as a
weighting function:

B(f) = —i< ! > =“f3 = A 5. (23)

afF\A(f))  A(f)Y  [A() + 4
Inserting this particular function B(f) into (21) indeed
leads to the Cramér-Rao bound of (13).

The optimum weighting function of (23) has been used
in [6], [15] for Doppler centroid estimation, without con-
sidering the additive noise term A4,,, however.

A closer look at (23) might be of interest. The maxi-
mum-likelihood estimator obviously searches the zero of
the correlation between the measured spectrum and the
derivative of 1/A(f). This is equivalent to the minimi-
zation of the correlation of the measured spectrum with
the reciprocal of the nominal spectrum. Correlating with
1/A(f) means that spectral regions with low energy, and
thus with low speckle noise, contribute more than the
areas of § with high energy. This is an intuitive expla-
nation for the superior performance of this estimator in
the presence of multiplicative noise.

Often, Doppler frequency estimation is performed on
power spectra obtained by incoherently averaging the
spectra of several uncorrelated signals. The results de-
rived so far are also applicable for this case if the number
N is replaced by the overall number of samples contrib-
uting to the estimate. Denoting the number of averaged
spectra by M, this means that either N is substituted by
N + Mor Afis replaced by Af/M.

VI. DoprpLER CENTROID ESTIMATION FROM SAR DaATtaA

The results of the preceding sections will now be ap-
plied to the problem of estimating the Doppler centroid

[l
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from SAR data. It is assumed that a data block of N, azi-
muth lines, of N, complex samples each, is used for es-
timation. In this context, the applied mathematical nota-
tions obtain the following physical meanings: f, =
Doppler centroid; At = 1/PRF (with PRF being the
pulse-repetition frequency); Af = PRF/N; N = N, - N,
* B, /f; (with f, /B, being the range oversampling factor);
B, = range bandwidth; f; = range-sampling frequency;
§ = azimuth power spectrum of the SAR data; and A,( f)
= nominal azimuth signal power spectral density, reflect-
ing the aliased azimuth two-way antenna gain pattern.

Assuming an antenna of length L without beam shaping
on a platform with a velocity v, the nominal azimuth sig-
nal power spectrum can be modeled as:

+ o

A(f) ~ 2 sinc (f —n - PRE)/f)'  (24)

with f_z'”
)

For sensors like Seasat, ERS-1, or SIR-C/X-SAR, the
PRF’s cover the range of:

0.9 - fy <PRF < 1.5 - f,.

(25)

For these values, (23) can be well approximated by its
first-order Fourier series [17]:

A(f) ~ ap + a, - cos 2nf/PRF). (26)

Any noise term A, only contributes to a,. Thus A(f)
can be assumed to be of the following form:

A(f) =1 + m - cos 2nf/PRF). @27

The factor m depends on both the additive noise level and
degree of aliasing. In the numerical examples of this sec-
tion,

m=0. 28)

is assumed. Fig. 1 shows this particular nominal spec-
trum.

In the following, four different Doppler centroid esti-
mators, i.e., different weighting functions B(f), will be
compared.

 A. Energy Balancing 2], [14]

Here the spectrum S is ‘‘cut” into two parts at the
Doppler centroid estimate ¢. The estimate is accepted if
the sums of the spectral values for i < ¢/Afand i >
¢ /Af are equal; i.e., their difference is zero. Thus:

I, for—PBW/2 < f<0

B(f) =4-1, for0 < f< PBW/2 (29)
0, otherwise
and
B'(f) = 6(f + PBW/2) — 2 - 8(f) + 8(f — PBW/2)
(30)

where PBW = PREF is the processing bandwidth (see Fig.
2(a)).

Al(f)

0.3
T —

- PRF2 PRF/2

Fig. 1. Nominal azimuth power spectrum assumed for numerical exam-
ples.

[ ] f
]

Fe——— PBW ———={
(a)

PRF/2

- PRF/2

(b

(©)

N
(d)

Fig. 2. Weighting functions B(f) of different Doppler centroid esti-
mators.

Application of (21) yields (see also [5], [6], [15])):
S +PBW /2

A df
PRF -PBW/2

N 4 - [A(0) — A(PBW)/2)]*

For the nominal spectrum of (27) the variance is lowest

for PBW = PRF:
1.1
m 2/

With m = 0.7, the standard deviation of the energy
balancing estimator is:

var {¢} = (3D

PRF 1
N 16

var {¢} = (32)

PRF

SD {¢} = 0.3985 - —. 33
{8} =0 N (33)

B. Correlation with the Nominal Spectrum

Energy balancing does not incorporate any information
about A(f) in B(f) and thus might be intuitively consid-
ered to be only suboptimum.

From detection theory it is known that correlation with
the nominal function followed by a maximum detection is
optimum for signals buried in additive white Gaussian
noise. For computational reasons it is more convenient to
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correlate with the first derivative of the nominal function
and look for a zero. Applying this approach to Doppler
centroid estimation means (Fig. 2(b)):

B(f) = A'(f). (34)
Then (21) becomes:
. ' 2
PRF S [ACf) - A'(NH) df
var {¢} = (35)

H A'(f) dfT

For the particular spectrum A(f) of (27), correlation
with A'(f) yields:

PRFZ 1 11
=+ ).
var {9} = A <m2 4> (36)
Form = 0.7 a standard deviation of:
PRF
SD {¢} = 0.3407 - 37

N

is expected, which is better than the one obtained with
energy balancing. This result is still not optimum because
of the multiplicative character of speckle noise.

C. Correlation Doppler Centroid Estimator [5], [12],
[16], (18], [19]

This method uses the Fourier relationship between the
power spectrum S and autocorrelation function s of the
data. The phase gradient of s around zero lag is propor-
tional to the frequency location of the centroid S. This
gradient may be estimated by calculating the phases of
s[11, s[2], - - - . For most SAR data only the value s[1],
i.e., for lag = 1/PREF, is of a sufficiently high signal-to-
noise ratio. From its phase, the Doppler centroid is esti-
mated in the following way:

PRl S UL e 38)
27
where
s[1] = E{u*[k] - ulk + 1]} 39)
and u[k] being the azimuth raw data.
From
& s (i Af—¢
s[1] = E] S[i] - exp {j27r <—§F—>]
- exp {j2w¢ /PRF} (40)
and
i-Af—¢
} 22 S[i] - sin < _PRF >
arg [s[1]} = arctan -
) i~ Af— ¢
2. S[i] - cos < —————PRF >
2
13;—‘:; 1)

it follows that this Doppler centroid estimator tries to find
that value of ¢, where the inner product of S and a sine
function is zero. Hence this correlation Doppler centroid

estimator has the same performance as one with a weight-
ing function of the form:

B(f) = sin 2xf/PRF)

i.e., for nominal spectra like the one in (27), this esti-
mator is identical to a correlation with A'(f). Therefore:

PRF

N

42)

SD {¢} = 0.3407 - 43)
also for this estimator.

Note that the term *‘correlation Doppler centroid esti-
mator’’ has been adopted from [5], [19] and should not
be confused with the class of ‘‘correlation-based esti-
mators’’ as defined in Section IV.

D. Optimum Estimator [6], [11], [15]
According to (23), the optimum weighting function is:
A'( )
B(f) = 44)
A
With this kernel the Cramér-Rao bound for Doppler
centroid estimation is reached:

var {¢} —E- !

N A’ z
[0 o

A(f)
For the particular spectrum of (27) and (28), the stan-

dard deviation of the optimum estimator can be found by
numerical integration:

44

45)

PRF

N

Besides the choice of the weighting function B( f), sev-
eral other points have to be considered when constructing
an accurate Doppler centroid estimator:

¢ In (2), it has already been noted that scene contrast
reduces the effective number of samples N by the factor
(I)*/(I*). This problem can be coped with to a certain
extent by estimating f;, separately from samples of differ-
ent intensities and appropriately averaging the results, as
described in [6], [15].

e High scene contrast also causes another nuisance:
The data block that is used for the estimation of f; con-
tains not only the whole azimuth chirps, but also the high-
frequency or low-frequency sections of partially covered
chirps. If these belong to strong scatterers, the shape of
the azimuth spectrum may be cruelly distorted. An azi-
muth compression prior to the selection of the estimation
area avoids this problem. This compression in turn pre-
sumes an accurate value for fp in order not to bias the
estimate. Therefore a Doppler centroid estimator using
focused data must work iteratively.

e If the data are precompressed for estimation, a resid-
ual distortion of the azimuth spectrum may still be caused
by aliased frequency components; i.e., by azimuth am-
biguities of strong scatterers, located one synthetic aper-
ture away from the estimation region.

SD {¢} = 0.2516 - (46)
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VII. EXAMPLES

In this section the above theoretical findings shall be
compared to experimental results obtained from a Seasat
scene of a uniform ocean surface. The accuracy numbers
of the energy-balancing estimator and maximum-likeli-
hood estimator have been adopted from [6], [15], and a
correlation Doppler centroid estimator has been imple-
mented by the author. In both cases, estimates have been
obtained based on data blocks of 64 complex range bins
by 4096 azimuth samples each. These estimates have been
fitted to a linear function in range direction. The deviation
of each estimate from this function has been taken as the
estimation error. Since Seasat data are oversampled by a
factor of 1.198 in range, the effective number of samples
contributing to each estimate is N = 218818. In Table I,
the standard deviations predicted from (33), (43), and (46)
are listed, together with the experimentally obtained re-
sults.

VIII. CONCLUDING REMARKS

In this paper the problem of estimating a frequency shift
of power spectra of a priori known shape in the presence
of speckle and additive noise has been addressed. Ex-
tended targets have been assumed. An ultimate accuracy
bound has been given and an optimum estimator has been
formulated. It should be noted that this optimality refers
not only to the known correlation-based estimators, but to
any other estimator without additional a priori knowl-
edge.

By substituting frequency with time, the results apply
also to the case of time delay estimation; e.g., range mea-
surement of extended targets by altimeters.

The comparison of Doppler centroid estimators showed
accuracies much higher than needed for normal SAR pro-
cessing. Methods like attitude reconstruction or multiple
PRF technique, however, benefit from an accuracy on the
order of a few hertz.

The differences between the Doppler centroid esti-
mators are not dramatic, however, in the case of the par-
ticularly assumed spectrum. Other practical considera-
tions might influence the choice of a weighting function.
For example, it may be considered inconvenient that the
weighting function of the maximum-likelihood estimator
depends on the signal-to-noise ratio (see (33)), which has
to be estimated itself.

Another point of concern is that nominal spectra like
the one in (27) contain aliasing, especially near the min-
imum. Thus high image contrast tends to distort the min-
imum, rather than the maximum. The maximum-likeli-
hood estimator may no longer be optimum in such cases,
because the spectral values near that minimum contribute
strongly.
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TABLE 1
COMPARISON OF PREDICTED AND MEASURED ACCURACIES OF
DiFrERENT DOPPLER CENTROID ESTIMATORS

Standard Deviations

Predicted Measured
Estimator (Hz) (Hz)
Energy balancing 1.40 L5
Correlation Doppler centroid estimator 1.20 1.3
Maximum-likelihood estimator 0.89 1.0
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