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This paper describes an experimental investigation in which a large number of water 
waves were focused at one point in space and time to produce a large transient wave 
group. Measurements of the water surface elevation and the underlying kinematics 
are compared with both a linear wave theory and a second-order solution based 
on the sum of the wave-wave interactions identified by Longuet-Higgins & Stewart 

(1960). The data shows that the focusing of wave components produces a highly 
nonlinear wave group in which the nonlinearity increases with the wave amplitude 
and reduces with increasing bandwidth. When compared with the first- and second- 
order solutions, the wave-wave interactions produce a steeper wave envelope in which 
the central wave crest is higher and narrower, while the adjacent wave troughs are 
broader and less deep. The water particle kinematics are also strongly nonlinear. 

The accumulated experimental data suggest that the formation of a focused wave 

group involves a significant transfer of energy into both the higher and lower har- 
monics. This is consistent with an increase in the local energy density, and the 

development of large velocity gradients near the water surface. Furthermore, the 
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nonlinear wave-wave interactions are shown to be fully reversible. However, when 
compared to a linear solution there is a permanent change in the relative phase of 
the free waves. This explains the downstream shifting of the focus point (Longuet- 
Higgins 1974), and appears to be similar to the phase changes which result from the 
nonlinear interaction of solitons travelling at different velocities (Yuen & Lake 1982). 

1. Introduction 

It is well known that the largest ocean waves do not usually form part of a regular 
wave train, but represent an individual event within a random sea state. The off- 
shore measurements shown on figure 1 provide a good example of this behaviour. 
The formation of these very large wave forms is believed to be associated with the 
focusing of wave components such that the individual wave crests come into phase 
at one point in space and time. The statistics of extreme waves in a random sea were 
first investigated by Longuet-Higgins (1952), and the effects of nonlinearity and fi- 
nite bandwidth further clarified by Longuet-Higgins (1980). More recently, Tromans 
et al. (1991) considered the occurrence of a two-dimensional focused wave group. 
This solution is based upon the statistical analysis outlined by Slepian (1963) and 
predicts the most probable extreme wave given the spectral properties of the sea 
state. Unfortunately, this approach is only valid to a first order of wave steepness 
and therefore neglects the nonlinear wave-wave interactions. This omission is par- 
ticularly important in the case of an extreme wave event since (by definition) these 
waves will be very steep and therefore highly nonlinear. 

20 

10 

10 
-20 -10 0 10 20 

t/s 

Figure 1. Large ocean wave. (Measurements taken from the Tern Platform located in the 
northern North Sea. Courtesy of Shell UK Exploration and Production Ltd.). 

The importance of the nonlinear interactions was emphasised in an earlier exper- 
imental study presented by Rapp & Melville (1990). This considered the breaking 
criteria associated with a focused wave group, and showed that if A represents the 
linear sum of the individual wave amplitudes and kc is the central wave number, 
wave breaking occurs at much lower values of Akc than would otherwise be expected 
(i.e. Akc <? 0.4). This implies that the nonlinear interactions produce a significant 
increase in both the crest elevation and the underlying kinematics. In general terms, 
the nonlinear interactions may be subdivided into the high-frequency terms which 
alter the local characteristics of the wave group (i.e. sharpening of the wave crest 
and broadening of the wave trough), and the low-frequency terms which correspond 
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to the global interactions and hence produce the relatively slow changes, such as the 
perturbation of the mean water level. 

The present paper will consider the nonlinear wave-wave interactions, and will 
present the results of a new experimental study in which the surface elevation, the 
underlying kinematics and the nonlinearity of the focused wave group were mea- 
sured within a laboratory wave flume. Section 2 commences with a brief review of 
the wave-wave interaction theory proposed by Longuet-Higgins & Stewart (1960). 
These interactions are summed up over a given frequency range to provide a first ap- 
proximation to the nonlinear interactions occurring within a focused wave group. The 
experimental apparatus is described in ? 3. Section 4 outlines the wave-generation 
procedure and describes some precautionary observations necessary to ensure the in- 
tegrity of the resulting data. The experimental observations are discussed in ? 5 and 
comparisons are made with both linear and nonlinear wave theories. Finally, some 
conclusions are presented in ? 6 and the practical implications of the experimental 
results are briefly outlined. 

2. Previous work 

The first rigorous evaluation of nonlinear wave-wave interactions in water of fi- 
nite depth was proposed by Longuet-Higgins & Stewart (1960). Using the solution 
procedure outlined by Stokes (1847), they considered the interaction between two 
progressive wave trains and produced explicit second-order solutions for both the 
water surface elevation r/ and the velocity potential 0. If the x-axis is measured hor- 
izontally in the direction of wave propagation, and the z-axis is measured vertically 
upwards from still water level, the following results apply: 

al a2 
r7 = -r + -2- +- [C cos('l 

- 
02) 

- D cos(~l + b2)], (2.1) 

0 = 01 + ()2 + ^E cosh((kl - k2)(z + h)) sin(l - 02) 

g(k - k2) sinh((ki - k)h)- (1i - 02)2 cosh((ki - k2)h) 

Fcosh((ki + k2)(z + h))sin(Q1 + 02) 

g(ki + k2) sinh((ki + k2)h) - (u + 2)2 cosh((kl + k2)h) ' ( 

where the subscripts distinguish between the two wave trains, and (r1,2/2) and 

(d1, b2) are the second-order Stokes solutions expressed in terms of the wave ampli- 
tude a, the wave number k, the wave frequency a, the phase angle / and the water 
depth h. The constant coefficients (C, D, E and F) are defined by Longuet-Higgins 
& Stewart (1960) and are reproduced in Appendix A. The (1 + '2) terms identified 
in equations (2.1) and (2.2) provide a first approximation to the local nonlinearity 
discussed earlier, whereas the (1 - b2) terms correspond to the low-frequency or 
global interactions. 

The solutions proposed by Longuet-Higgins & Stewart (1960) have two important 
limits. First, if the wave trains are identical (ai = a2, k1 = k2, Ci = U2 and d1 = )2), 
the resulting wave form will have a first-order surface amplitude of a = a1 + a2, 
and the second-order terms must converge to the classical Stokes (1847) solution. 
Alternatively, if the first wave component is very much shorter than the second 
(ki > k2), the classical long-wave-short-wave interaction occurs. In this case, the 
long wave is unaffected by the short wave, but the short wave is modulated by the 
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long wave so that it is shorter and higher on the crests of the long wave and longer 
and lower on the troughs. If a' represents the modulated wave amplitude and k' the 
modulated wave number, Longuet-Higgins & Stewart (1960) give the limiting results 
as 

a' - a + a1a2k2( tanh(k2h) + 3 coth(kh)) cos( 2), (2.3) 

k' = kI + a2k1k2 coth(k2h) cos(42). (2.4) 
Numerical calculations conducted by Longuet-Higgins (1987) show good agree- 

ment with equations (2.3) and (2.4) provided neither of the wave trains are too 
steep. However, as the wave steepness increases the numerical results diverge from 
the second-order solution. This indicates the increasing importance of the higher or- 
der terms. A similar pattern has been observed in laboratory measurements presented 
by Miller et al. (1991). 

If equations (2.1) and (2.2) are applied to a focused wave group, the total second- 
order solution is given by the sum of the interactions resulting from each pair of wave 
components. If a wave group consists of N free waves, the second-order description 
of the surface elevation and the velocity potential are, respectively, 

N N N 

17 = 1(n)? + 3 T((n,m), (2.5) 
n=l n=l1 m=n+1 

N N N 

= {?)(n) + E E C(n,m),: (2.6) 
n=l n=l1 m=n-+l 

where r/(n) and (n) are the second-order Stokes solutions for the nth wave component, 
and rl(n,m) and q(n,m) are the second-order interactions between the nth and mth 
components of the wave group. These latter terms are calculated using equations (2.1) 
and (2.2). Equations (2.5) and (2.6) provide a first approximation to the nonlinear 
interactions occurring within a focused wave group. It is these solutions which will 
be compared to the experimental data. 

3. Experimental apparatus 

( a ) Laboratory flume 
The experiments were conducted in a new wave flume which has been constructed 

in the Civil Engineering Hydraulics laboratory at Imperial College. This facility is 
20 m long, 0.3 m wide and has a maximum working depth of 0.7 m. The side walls, and 
the central portion of the bed, are constructed from glass for maximum optical access. 
The waves are generated by a flat bottom-hinged paddle located at one end of the 
wave flume. The hydrostatic loads acting on the paddle are supported mechanically 
(via a system of springs and pulleys), and the drive motor is controlled numerically. 
This arrangement allows the successful generation of waves with a period range from 
0.4 to 2.0 s. 

Although the paddle mechanism has an 'active feedback response', whereby a 
reflected wave component is detected by a force transducer and absorbed during the 
generation process, the success of the present study was dependent upon the effective 
absorption of the wave energy at the downstream end of the wave flume. No reflected 
wave components could be tolerated within the working section of the wave flume. 
To achieve this a large block of poly-ether foam (hole gauge 2 mm) was installed to 
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focus location (x = xf = 0) 
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Figure 2. Experimental apparatus. 

provide passive absorption. The foam was 2 m in length and the leading edge was 
cut to form a vertical wedge with an included angle of approximately 30?. A sketch 
showing the layout of the experimental flume is given in figure 2. 

(b) Measuring techniques 
A total of six surface-piercing wave gauges were used to measure the time history 

of the water surface elevation at fixed spatial locations. These gauges consist of two 
vertical wires 0.8 mm in diameter and located 10 mm apart. Each gauge was mounted 
on a vertical traverse attached to a movable carriage located on rails at the top of 
the wave flume. The output from these gauges is directly proportional to their depth 
of immersion. This allows the water surface elevation to be determined to within 
+1 mm with minimal disturbance of the flow field. 

The wave kinematics were measured using laser Doppler anemometry. A 35 mW 
helium-neon laser was used to create a two-beam arrangement from which the hor- 
izontal component of the wave-induced velocity was determined. The laser beams 
were initially projected in a horizontal direction and existed in a vertical plane par- 
allel to the centre line of the wave flume. After reflection in an optically flat mirror, 
orientated at 45? to the horizontal, the beams were directed vertically upwards. A 
second mirror was used to create a 90? reflection and rotation, so the beams were 
perpendicular to the direction of wave motion and orientated in a horizontal plane. 
Finally, a 500 mm focal length converging lens was used to create a measuring vol- 
ume which was located midway across the width of the tank, and estimated to be 
approximately 0.5 mm3. The receiving camera and the associated photomultipliers 
were located on the opposite side of the wave tank so that the intersection of the 
two beams could be observed in 'forward scatter' mode. This arrangement provides 
the optimal signal-to-noise ratio with no disturbance of the flow field. 

To position the measuring volume at any depth within the flow field, the second 
deflecting mirror, the converging lens and the receiving camera were supported within 
a traverse mechanism. The positional accuracy of this arrangement was estimated 
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to be ?1 mm in the vertical direction and i2 mm in the horizontal direction. To 
improve the output signal from the laser Doppler anemometer, the flow was seeded 
with milk added in the ratio of approximately 100 ppm. After filtering to remove 
some high-frequency contamination (> 60 Hz), it was estimated that the horizontal 
velocity could be determined to ?2% with the accuracy largely being dependent 
upon the calibration of the frequency tracker, and the measurement of the beam 
separation. 

The calibration of the laser Doppler anemometer was further checked by measuring 
the horizontal velocities beneath a series of regular waves. To eliminate the unknown 
return flow (Swan 1990), the velocity amplitude was calculated at a large number of 
elevations beneath the level of the wave trough. These results were compared with a 
fifth-order Stokes solution based upon the formulation proposed by Fenton (1985). 
The agreement was near perfect, with maximum errors close to the accuracy noted 
above (?2%). 

4. Experimental method 

(a) Wave generation 
To create a desired wave group within the laboratory flume, a specified range 

of wave components were generated and their relative phases adjusted so that, at 
some instant in time, the individual wave components were brought into focus at 
one spatial location. Constructive interference occurs and a large wave crest results. 
This approach is similar to that adopted by Rapp & Melville (1990) in that a linear 
wave solution is used to determine the appropriate phasing of the various wave 
components. If the nth wave component has a wave number kn (2n/Ln) and a wave 
frequency ucn (27T/Tn), where Ln and Tn are, respectively, the wave length and the 
wave period, the surface elevation r at the focal point (x = Xf)is given by 

N 

7r(xf, tf) - an cos(knXf - cnttf), (4.1) 
n=l 

where N is the total number of wave components, an is the amplitude of the nth wave 
and tf is the time at which the wave focusing occurs. If the Cartesian coordinates 
shown in figure 2 have their origin at the focus position (xf = 0) then the individual 
wave components are focused at tf = 0, and a linear wave solution gives the required 
surface elevation generated at the wave paddle (x = Xp) as 

N 

r7(xp, t) -= an cos(knxp - fnt), (4.2) 
n=l 

where xp is the linear predicted distance from the focal point to the wave paddle. 
Since this approach is based upon the linear sum of the individual wave compo- 

nents, it neglects the nonlinear wave-wave interactions. As a result, both the focal 
point and the focus time are unknown. To simplify the experimental procedure, the 
focus point (x = Xf) was predetermined so that the focused wave occurred 8 m down- 
stream of the paddle (figure 2). This enabled both the velocity data and the transfer 
function (see below) to be measured at the same cross section. To achieve this, the 
input value of Xp was determined experimentally for each wave group. Using this 
approach, the focusing time tf could be set to zero and a direct comparison made 
with the solutions given in equations (2.5) and (2.6). 
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The generation of a desired wave group (with a given spectral content) is dependent 
upon the accuracy of the transfer function. This describes the relationship between 
the numerically generated input signal and the resulting surface elevation. If I(a) 
represents the amplitude of a sinusoidal input signal with a wave frequency a, and 

a(r) is the amplitude of the surface profile measured at the focus position, then a 
first-order transfer function T(a, a) is defined by 

a(a) = T(a,ac)I(c). (4.3) 

To avoid the uncertainty associated with a theoretically predicted transfer function 
based upon the response of the paddle control, T(a, a) was determined experimen- 
tally using an appropriate range (0.4 s < T < 2.0 s) of regular wave trains. This 
calibration was repeated at regular intervals throughout the experimental study and 
the transfer function found to be extremely stable. The maximum RMS error in the 
predicted water surface elevation for any one wave component was never greater than 
2%. This is consistent with the measuring error associated with the surface piercing 
wave gauges (l? mm). It should be noted that no attempt was made in the present 
study to investigate the higher order characteristics of the transfer function (Schaffer 
1993). This is consistent with the widely held belief that a bottom hinged paddle 
operating in deep water produces no significant unwanted higher order harmonics. 
Indeed, if this were not the case, the water surface elevation and the velocity mea- 
surements beneath a regular wave train would have shown considerable departures 
from the classical Stokes solution. No such discrepancies were observed. 

(b) Preliminary observations 

If the simultaneous generation of a large number of individual wave components 
is to be successfully completed within a laboratory wave flume, precautions must be 
taken to limit the following difficulties: 

(1) the reflection of the long wave components at the downstream end of the wave 
flume; 

(2) The modulation of the short wave components and the formation of cross tank 
resonance; 

(3) The development of longitudinal seiching due to the start-up characteristics of 
the wave paddle. 
A series of preliminary observations were conducted to investigate these effects. First, 
the spatial uniformity of an appropriate range of regular wave trains was measured 
over the central portion of the wave flume, and the reflection coefficient determined 
from the variation in wave height. The passive absorber shown in figure 2 was found 
to work remarkably well. In the present study, the longest wave component included 
in any wave group had a period of T = 1.6 s. At this, and all other wave periods, the 
reflection coefficient was less than 2%. At the other end of the wave spectrum, the 
generation of high-frequency wave components may induce a transverse oscillation 
across the width of the wave flume. This is often coupled with a downstream modu- 
lation of the surface profile. Although these effects were reduced by the width of the 

experimental facility (0.3 m), some difficulties were observed for wave periods less 
than 0.5 s. To eliminate this effect, the shortest wave components were restricted to 
T > 0.5 s. In this case, the surface elevation corresponding to a regular wave train 

(T = 0.5 s) measured at x = xf showed no evidence of either wave modulation or 
cross-tank resonance. Indeed, at this, and all other wave periods, the variation in the 
wave height was less than 1%. 
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Finally, to limit the disturbance created by the start-up of the wave paddle, the 
amplitude of the input signal was linearly increased from zero over the first 4 s of 
the generation process. To assess the effectiveness of this approach, the water surface 
elevation was measured at the downstream end of the wave flume during the initial 
generation of a large regular wave train. Several wave periods were investigated 
(0.5 s < T < 1.5 s), and in no case was there any significant evidence of longitudinal 
seiching (i.e. the amplitude of any long-wave components was always less than the 
measuring accuracy of the wave gauges, +1 mm). However, in each case, the envelope 
of the advancing wave front was similar to the Fresnel envelope first investigated by 
Longuet-Higgins (1974). In the present investigation, this initial amplitude variation 
has no effect upon the nature of the focused wave group since the individual wave 
components were simultaneously generated (see later) for a period of 30 s prior to 
the formation of the focused event. 

In conducting these preliminary tests, two further difficulties arose. First, the 
high-frequency wave components decayed significantly along the length of the wave 
flume. Although the transfer function was calibrated for wave heights measured at 
the focus position, this decay represents an additional spatial dependence which was 
undesirable within the present investigation. The addition of a photographic wetting 
agent, (Teepol, in approximately 1 ppm) produced a reduction in the surface tension 
and helped to limit the effects of the side walls. After the inclusion of this additive, 
the decay of the shortest wave components (T = 0.5 s) within the envelope of the 
focused wave group (say 5-6 m) was found to be less than 2% of the generated wave 
height. This approach also eliminated any small disturbances on the water surface. 

The second problem was again associated with the effects of wall friction. During 
the propagation of a focused wave group, the maximum water surface elevation 
corresponds to an individual event within the wave flume. The largest wave crest 
therefore propagates along previously dry side walls. This enhances the frictional 
effect and produces a slight three dimensionality of the surface profile. To minimize 
this, the side walls were sprayed with a water-Teepol mixture before the generation of 
each wave group. Subsequent measurements showed that the variation in the surface 
elevation across the width of the wave flume was always less than 2%. 

5. Experimental results 

The experimental investigation considered the four period ranges or frequency 
bands indicated on table 1. Each wave group consisted of 29 individual wave com- 
ponents, which were simultaneously generated by the wave paddle. In each case, the 
wave components were of equal amplitude, and equally spaced within the appropri- 
ate period range. This does not, however, correspond to a uniform spacing within the 
frequency domain, and, consequently, the amplitude spectrum, a(u), derived from a 
fast Fourier transform of the input signal decays according to o-2. This is in marked 
contrast to the 'top hat' spectrum used by Rapp & Melville (1990) in their study of 
wave breaking. 

To complete the test conditions, a range of input amplitudes were considered. This 
allowed each frequency band to be investigated up to the limiting condition where 
wave breaking occurs. As a result, a total of some 45 individual wave groups were 
investigated within the present study. 
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Table 1. Input characteristics 

case period range (s) frequency band (Hz) 

A 0.5 <I T' 1.5 0.66 < f 2.0 
B 0.6 < T< 1.4 0.71 f 1.66 
C 0.7 1.3 0.77 < f < 1.42 
D 0.8 < T ' 1.2 0.83 < f < 1.25 

80 
-3 3- 

--VL~LjT~ 
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- 40----- t4\0 -2 
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31 - -A-"'?-- 
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Figure 3. (a) The formation of a focused wave group. The number indicated on the left-hand 
side corresponds to the position along the length of the wave flume, x(m). (b) Wave focusing 
close to the focal point: - -- -, x -10 mm; , x = 0 mm; - - -, x = +10 mm. 

(a) Evolution of a focused wave group 
The evolution of a focused wave group is considered in figure 3a. These measure- 

ments correspond to case B in table 1 and show the time history of the surface 
elevation at seven spatial locations. If the origin of the coordinate axes is established 
at the focus position (Xf = 0), the measuring locations are x = -3 m, -2 m, -1 m, 
0 m, 1 m, 2 m and 3 m where x is measured in the direction of wave propagation. 
Figure 3a shows the convergence of wave energy at the focal location and the rapid 
development of the maximum crest elevation. 

Figure 3b considers the development of the wave group close to the focal location. 
The measurements correspond to case D and show surface elevations recorded at 
x = -10 mm, 0 and +10 mm. The maximum crest elevation clearly arises at the 
focal location (x = 0), and the water surface elevation h(t) is symmetrical about 
the focusing event. At the adjacent locations (x -10 mm and +10 mm), the crest 
elevation is reduced, and the surface profile is asymmetrical. Measurements of this 
type were used to determine the location of the focus position for each of the wave 
groups investigated in the present study. 

The reversibility of the water surface elevation is considered in figures 4a-c. In 
each figure, the time history of the water surface elevation at equal distances up- 
stream (-x) and downstream (+-x) of the empirically determined focus position 
are presented. However, at the downstream location (x > 0), the time history has 
been reversed (i.e. r7(-t)), so that in each case (x -= 1 m, ?2 m and ?4 m) two 
comparable plots are presented. Although this data specifically corresponds to the 
narrow-banded spectrum (case D) with an input amplitude of A = 55 mm, these 
results are representative of all the wave groups generated in the present study. It 
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Figure 4. Reversibility of the water surface elevation either side of the focus point ((a) 
x = ?l m; (b) ?2 m; (c) ?4 m): - , r(t) at < 0; - --, r(-t) at x > 0. 

is clear from this data that the water surface elevation either side of the focus point 
is virtually identical, and thus the wave group is symmetric in both space and time. 
This implies that the nonlinear wave-wave interactions are fully reversible, provided 
viscous effects are neglected and wave breaking does not occur. 

(b) Surface elevation at the focal location 

Figures 5 and 6 concern the surface elevations resulting from the broad-banded 
spectrum (case B) and the narrow-banded spectrum (case D). Three input wave 
amplitudes are considered (A = 22 mm, 38 mm and 55 mm), where A represents the 
linear sum of the component wave amplitudes (A = 29an). In each figure, the sur- 
face elevation measured at the focus point is compared with the first-order solution 
derived from the linear sum of the individual wave components. With the smallest 
input amplitude (figures 5a and 6a), there is good agreement between the experimen- 
tal data and the linear solution. In both cases the amplitude of the individual wave 
components is less than 1 mm (i.e. an = 22/29 mm) and, consequently, the nonlinear 
wave-wave interactions are almost non-existent. Figures 5b, 6b and 5c, 6c concern 
the larger input amplitudes (A - 38 mm and 55 mm). In these figures the increased 
wave amplitude produces a rapid divergence from the linear solution. The wave crest 
at the focus position becomes higher and narrower, while the adjacent wave troughs 
become wider and less deep. The nonlinearity therefore creates a steeper wave enve- 
lope. This is consistent with a local increase in the energy density due to a transfer 
of energy into the higher harmonics. 

The effect of the nonlinear interactions is largest in the narrow-banded spectrum 
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Figure 5. Surface profile at the focal point (case B, (a)A = 22 mm; (b) A= 38 mm; (c) 
A = 55 mm): *, measured data; - , linear solution; - , second-order solution. 

(case D). With an input amplitude of A = 55 mm (figure 6c), the crest elevation 
measured relative to still water level is 30% larger than the linear solution and 
20% larger than the second-order solution. These results are in marked contrast to 
the equivalent values for a regular wave, where, even at the limiting condition (i.e. 
ak ~ 0.4), the maximum crest elevation is only some 5% larger than the second-order 
Stokes solution. The importance of the higher order interactions is consistent with 
the numerical calculations presented by Longuet-Higgins (1987). After reconsider- 
ing the long-wave-short-wave interaction, he showed that the second-order solution 
will underestimate the nonlinearity as the wave steepness increases. The present ob- 
servations appear to confirm this trend, and suggest that, in the case of a focused 
wave group, the higher order interactions develop rapidly and therefore occur at a 
relatively low wave steepness. 

The maximum crest elevation is considered in figure 7. The vertical axis defines 
the crest elevation measured at the focus position, and the horizontal axis describes 
the linear solution based upon the input signal sent to the wave paddle. The exper- 
imental data corresponds to the four frequency bands given in table 1 and shows 
that the nonlinear wave-wave interactions increase with the input amplitude, and 
reduce with increasing bandwidth. The relationship between the bandwidth and the 
maximum crest elevation is further considered in figure 8. The four frequency ranges 
described in table 1 are again considered and the crest elevations resulting from 
three input amplitudes (A = 20 mm, 40 mm and 55 mm) are compared with the 
second-order solution given in equation (2.5). It is interesting to note that over this 

(admittedly) limited range of frequency bands, the predicted second-order crest el- 
evations are independent of the bandwidth. In contrast, the experimental data are 
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Figure 6. Surface profile at the focal point (case D, (a) A = 22 mm; (b) A = 38 mm; (c) 
A = 55 mm): e, measured data; --, linear solution; ---, second-order solution. 
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Figure 7. Measured crest elevations: - - -, linear solution; - - , case A; - --, case B; 
- -, case C; - , case D. 

strongly bandwidth dependent, and show that the largest nonlinear wave-wave inter- 
actions occur in the narrow-banded spectrum (case D). This comparison highlights 
the importance of the higher order wave-wave interactions, and implies that the 
bandwidth dependence arises at order a kn and above. 

(c) Nonlinearity and focus location 

The large increase in the crest elevation of the narrow-banded spectrum (case D) 
prompted a further investigation into the nonlinearity of a focused wave group. By 
inverting the input signal I(t) sent to the paddle (i.e. -I(t)), the surface elevation 
generated at the focus position will correspond to the summation of N wave troughs 
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rather than N wave crests. If the development of a focused wave group is essentially 
a linear process, the surface elevation, r* (t), resulting from the negative input signal 
will represent the inverse of the original surface profile (i.e. -r* (t) = h(t)). However, 
if the focusing process is nonlinear, neither the local nor the global second-order 
interactions (oc (ak)2) identified in equation (2.1) will change sign when the wave 
group is inverted. In consequence, if the water surface profile corresponding to the 
sum of N wave troughs is itself inverted (i.e. -r*(t)), it will differ from the profile 
arising due to the summation of N wave crests (r1(t)). This effect, and, in particular, 
the local nonlinearity resulting from the high-frequency interactions, may be expected 
to increase the amplitude of the wave group. 

The present results, corresponding to the narrow-banded spectrum (case D), are 
given in figures 9a-d. For each input amplitude, the focus position for the positive and 
negative input signals were identical, and the difference between the recorded water 
surface elevations (rq(t) and -r/*(t)) provides a measure of the nonlinearity of the 
wave group. In figure 9a, (A = 12.5 mm) the surface profiles are almost identical. This 
corresponds to the case where the individual wave components are very small (a, < 
0.5 mm) and, consequently, the wave-wave interactions are negligible. However, an 
increase in the input amplitude (i.e. A = 25 mm, 38 mm and 50 mm) highlights 
the nonlinear behaviour of the wave group. The increasing difference between the 
measured surface profiles would appear to substantiate the nonlinearity observed in 
figures 5-7. 

The position and time of the focusing event were also found to be dependent upon 
the nonlinearity of the wave group. In a further series of tests the linear solution 
(xp = 8 m) was adopted and the exact position of the focus point determined ex- 
perimentally (i.e. Xf 5 0, tf = 0). The four frequency bands described in table 1 
were considered, and in each case it was found that an increase in the wave am- 
plitude produced a downstream shift of the focus point. This effect was first noted 
by Longuet-Higgins (1974), and further reported (without rigorous investigation) by 
Kim et al. (1992). The present results describing the downstream shifting of the focus 
point are given in figure 10a, while the corresponding data describing the focus time 
are given on figure 10b. In this latter case there appears to be considerable scatter 
in the experimental data. This is undoubtedly due to the accuracy (?0.05 s) of the 
internal (PC) clock used for the numerical control of the wave paddle. Although 
the drive signals were highly repeatable, the accuracy of the clock produced small 
variations in the start-up time of the wave paddle. This variability has no bearing on 
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the spatial location of the focused wave group. The data presented in figures lOa, b 
suggest that both the location and time of the focused event are dependent upon 
the nonlinearity of the wave group. In each case, x and t increases with the input 
amplitude, but reduces with increasing bandwidth. This is consistent with the obser- 
vations of the maximum crest elevation shown in figures 7 and 8. The experimental 
data shown in figures 9a-d indicate that the summation of N wave troughs are fo- 
cused at exactly the same location as N wave crests. This result indicates that the 
change in the position of the focus point is not dependent upon the local nonlinear- 
ity, but is dependent upon the global interactions and the overall nonlinearity of the 
wave group. 

(d) Wave kinematics 

The horizontal component of the wave-induced water-particle velocity was mea- 
sured at the focus location using the laser Doppler anemometer described previously. 
This method provides velocity data at a single point, and, consequently, a large 
number of repeated generations of the same wave group were necessary to achieve a 
description of the entire flow field. For this approach to be satisfactory, the paddle 
mechanism must be capable of repeatedly generating an identical wave group at the 
same location within the wave flume. Tests conducted over a long time period for 
a wide range of frequency bands showed that a particular surface profile could be 
consistently repeated. To complete the kinematic measurements, wave groups B and 
D were generated approximately 400 times. The standard deviation of the measured 
crest elevations was 2.1%. This is consistent with the measuring errors associated 
with the wave gauges. 

A typical sequence of velocity traces and surface profiles are shown in figures la, b. 
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Figure 11. Horizontal velocity (case D, A = 55 mm; (a) z = 0 mm; (b) z =-60 mm): 
surface elevation r)(t); *, horizontal velocity u(t). 

These measurements correspond to the narrow-banded spectrum (case D) and show 
thee measur ts oresizontal velocity at two elevations ( = 0 mm and z = 
-60 mm) directly beneath the focus location. Figure 1la provides measurements 
taken above trough level and, consequently, the velocity trace is intermittent. Using 
the measuring system discussed previously, the velocity field could be determined to 
within 8 mm of the water surface. Above this level the velocity trace was of insufficient 
duration to be reliably tracked by the laser Doppler signal processor. 

The horizontal velocity measured beneath the broad-banded spectrum (case B) 
and the narrow-banded spectrum (case D) are shown in figures 12 and 13, respec- 
tively. In each case, three input amplitudes are considered (A = 22 mm, 38 mm and 
55 mm) and the measurements compared with both the linear and the second-order 
solutions. At the lowest value of the wave steepness (Akc 0.1), there is good agree- 
ment between the observed and predicted kinematics (figures 12a and 13a). However, 
at Akc 0.15 (figures 12b and 13b), the nonlinear effects are significant. In the broad- 
banded spectrum (case B), the maximum horizontal velocity occurring at the focus 
location (x = 0, t = 0) is reduced due to the set-down under the wave group. This 
effect is caused by a long bound wave associated with the (01 - 2) terms discussed 
earlier. The resulting motion, which first arises at a second order of wave steepness 
(Longuet-Higgins & Stewart 1960, 1964), takes the form of a backwards (or nega- 
tive) flow on the scale of the wave group. Indeed, it may be interpreted as a dynamic 
response to the positive mass transport occurring within the wave group. However, 
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Figure 12. Horizontal velocity beneath the focal point (case B, (a) A = 22 mm; (v) A = 38 mm; 
(c) A = 55 mm): *, measured data; --, linear solution; - -, second-order solution. 

since a focused wave group represents a transient event, the backwards flow is time- 
dependent (i.e. a bound long wave) and should not therefore be misinterpreted as 
the time-independent second-order Stokes drift (or the resulting Eulerian backflow) 
which arises beneath a regular wave train. 

Figure 12b shows good agreement between the second-order solution and the ve- 
locity profile measured beneath the broad-banded spectrum. In the narrow-banded 
spectrum (figure 13b), the velocity reduction is smaller and can only be identified 
in the lower layers of the flow field (i.e. z < -200 mm). Close to the water surface 
(z > -100 mm) the measured velocity is either larger than or equal to the linear so- 
lution. These observations suggest that the nonlinear interactions occurring at order 
a3 k and above are already becoming significant in the narrow-banded spectrum. 

A further increase in the wave steepness (Akc 0.22) produces a highly nonlin- 
ear flow field. In the broad-banded spectrum (figure 12c), the second-order velocity 
reduction is clearly present in the lower layers of the flow field (z < -100 mm). 
However, above this level the velocity increases so that the values recorded near the 
water surface are larger than the predicted second-order motion (equation (2.6)). 
In the narrow-banded spectrum (figure 13c), the higher order interactions are very 
significant. The second-order velocity reduction may be present in the lower layers 
of the flow field, but the velocity increases very rapidly towards the water surface. 
Indeed, the velocities recorded within the crest of the focused wave group are 30% 
larger than either the second-order solution or the extrapolated linear solution. The 
gradient of the horizontal velocity within this region (i.e. du/Oz as z - ) is also 
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Figure 13. Horizontal velocity beneath the focal point (case D, (a) A = 22 mm; (b) A = 38 mm; 
(c) A = 55 mm): *, measured data; - , linear solution; - , second-order solution. 

considerable larger than that predicted by a linear solution. This suggests a transfer 
of energy to wave components of greater frequency and shorter wavelength. 

It is important to note that, in the case of large amplitude waves, the application of 
a linear solution above still water level (z = 0) is known to produce significant errors. 
This is because, in a linear solution, the velocity due to the short-wave components 
will be extrapolated to the crest of the longer waves. In essence, these difficulties arise 
because the extrapolation process does not allow the individual wave components to 
ride over one another. The resulting errors are often referred to as 'high-frequency 
contamination' (Sobey 1990) and have been discussed by a number of authors includ- 
ing Forristall (1986), Gudmestad (1990) and Taylor (1992). It is widely believed that 
the use of an extrapolated linear solution in a random sea state will overestimate 
the magnitude of the crest kinematics (Skjelbreia et al. 1991). Indeed, a number of 
empirically modified wave theories have been proposed to overcome exactly this dif- 
ficulty (Wheeler 1970; Rodenbusch & Forristall 1986; Gudmestad & Connor 1986). 
However, the present measurements indicate that this overestimation does not neces- 
sarily arise when the solution is based on the correct linear wave amplitudes. Indeed, 
in the case of a focused wave group, the present measurements suggest that the non- 
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Figure 14. Velocity of the focused wave crest (Vcf): U, case A; A, case B; V, case C; *, case D; 
- , linear solution. 

linear interactions can produce near-surface velocities which are significantly larger 
than an extrapolated linear solution. 

(e) Crest velocity and onset of wave breaking 
If the position of an individual wave crest is given by Or7/Ox = 0 and occurs at 

x = xc, the phase velocity of the focused wave crest (Vfc) is defined by 

Vf = dxc/dt at xc- 0, t 0. (5.1) 

At a first order of wave steepness, equation (5.1) yields a solution of the form 

N N 

(Vfc)linear = E anurnkn ankn (5.2) 
n=l n=l 

Figure 14 compares this solution with the experimental data gathered from two 
wave gauges located either side of the focus position. If Ax is the separation of 
the probes (in this case 300 mm) and At is the time taken for the largest wave 
crest to pass between the probes, the experimental data shown on figure 14 simply 
corresponds to Ax/At. Using this approach, it was estimated that the phase velocity 
of the focused wave crest could be determined to +3%. 

For each frequency range (cases A-D), the measured data is shown to be in good 
agreement with the linear solution given in equation (5.2). In particular, the phase 
velocity of the focused wave crest appears to be independent of the wave amplitude 
and does not display the nonlinearity observed in either the water surface elevation 
or the underlying kinematics. This may, in part, reflect the fact that the increase 
in the phase velocity due to the nonlinearity of the wave form is generally small. 
For example, in the case of a regular wave train with a steepness of ak = 0.25, 
the nonlinear increase in the phase velocity is only of the order of 3%. However, 
in the present case, each frequency band has been investigated up to the point of 
wave breaking, and one might therefore expect the local nonlinearities to increase 
the focused phase velocity by a significant factor. Indeed, Kinsman (1984) has shown 
that the limiting crest velocity in a regular wave train is approximately 10% larger 
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than the first-order solution. If af, kf and Cfl are the local wave amplitude (or half 
the instantaneous wave height), the local wave number, and the linear phase velocity 
at the focus point, then (to a first approximation) the nonlinear phase velocity would 
be of order cfl(l + a k ). In the present study, this corresponds to an increase of 
approximately 5% for the steepest wave group (i.e. case D with an input amplitude of 
A = 55 mm). Although this increase is larger than the uncertainty in the measuring 
technique, the data presented in figure 14 shows no observable increase in the phase 
velocity. 

One possible explanation for this lies in the formation of a backwards (or negative) 
flow at the scale of the wave group. This was first identified by Longuet-Higgins & 
Stewart (1964), and has been discussed earlier in the context of the long-wave motion 
that is set-down (figures 12c and 13c). This flow is also of order (ak)2c, and it may 
happen that in the present case it almost exactly cancels with the increase in the 
phase velocity arising from the local nonlinear interactions occurring at the focused 
wave crest. Indeed, if the second-order wave-wave interactions (equation (2.5)) are 
incorporated within equations (5.1) and (5.2), there is no significant change in the 
predicted phase velocity. 

In a subsequent investigation (initiated as a result of comments received during 
the review procedure), the phase velocity was measured for a variety of input param- 
eters, including a range of wave heights, frequency bands and spectral shapes. In all 
cases, the second-order correction to the phase velocity was extremely small, and the 
measured data shown to be in good agreement with the linear solution. These results 
further suggest that, over the admittedly limited range of bandwidths appropriate to 
a laboratory wave flume, the two (opposing) nonlinear contributions to the velocity 
of the focused wave crest cancel, and as a result there is good agreement with the 
linear solution outlined in equations (5.1) and (5.2). 

For each of the frequency bands described in table 1, the input amplitude was 
increased until the onset of wave breaking. This limiting condition was characterized 
by a progressive steepening of the largest wave crest and the eventual formation 
of a spilling breaker. In each case the onset of wave breaking occurred with an 
input amplitude of A 60 mm. This corresponds to a limiting wave steepness of 
Akc - 0.24, which is very close to the value of Akc = 0.25 obtained by Rapp & 
Melville (1990). Figure 15 considers this limiting condition and compares the present 
data with the observations presented by Rapp & Melville (1990). The agreement 
between these data sets is somewhat surprising since the amplitude spectra used 
in the present study (a(a) - (--2) are very different from the top hat distribution 
used by Rapp & Melville. Indeed, it remains unclear why a linear criterion, based 
upon a central wave number (kc), should provide a good description of the limiting 
conditions within a highly nonlinear flow field in which the maximum crest elevation 
is strongly bandwidth dependent (figure 8). 

The onset of wave breaking was further investigated using still photography. With 
the aid of an electronic trigger to control the camera shutter, a picture of the water 
surface elevation was obtained at the instant of wave focusing. Using this approach, 
it was estimated that the spatial variation in the water surface elevation could be 
determined to ?3 mm. If (as above) afkf defines the local wave steepness, where af 
is half the instantaneous wave height and kf is the local wave number calculated 
from the measured wave length, then the onset of wave breaking occurs at afkf = 
0.22 and 0.34 for cases B and D, respectively. These values are considerable smaller 
than the limiting steepness for a regular wave train (ak W 0.44), and appear to be 
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Figure 15. Limiting conditions for a focused wave group: - -, Rapp & Melville (1990), 
present data. 

Table 2. Limiting wave characteristics 

experimental data linear theory 
T7max 7lmin kf af rlmax Tlmin 

Case B +76 mm -14 mm - 5.2 45 mm +60 mm -24 mm 

Case D +92 mm -39 mm ~ 5.2 66 mm +60 mm -46 mm 

consistent with the results presented by Rapp & Melville (1990). In particular, the 
limiting values of the locally measured wave amplitude (either af or T7max) reduces 
with increasing bandwidth. Data describing the local wave characteristics at the 
onset of breaking are given in table 2. 

This data highlights the extreme crest-trough asymmetry within the spatial do- 
main, and suggests that although the onset of wave breaking occurs at large crest 
elevations (rmax), the corresponding local wave amplitudes (af) are relatively small. 
For example, a comparison with linear wave theory (see table 2) suggests that, with 
a broad-banded spectrum (case B), af is only some 7% larger than that predicted 
by the linear sum of the wave components, whereas, in the narrow-banded spectrum 
(case D), af is approximately 25% larger. However, in both cases, af is significantly 
smaller than the limiting amplitude of an equivalent regular wave. For example, a 
Stokes wave having the same wave number (k = kf) would have a predicted limiting 
amplitude of the order of 85 mm. This is almost twice as large as that observed in 
the broad-banded case (B), and 29% larger than the narrow-banded case (D). 

(f) Spectral properties and relative phasing 
It is clear from the measurements of both the water surface elevation and the 

underlying kinematics that there is a redistribution of the energy within the focused 
wave group. To investigate this behaviour, the power spectrum of the recorded water 
surface elevation was determined via a fast Fourier transform (FFT). Unfortunately, 
this approach is not well suited to the analysis of an individual focusing event. The 
confidence limits associated with an FFT require the total signal length to be very 
much larger than the period of the component waves. As a result, the focusing event, 
within which the important nonlinearities occur, only occupies a small proportion of 
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Figure 16. Power spectra estimates (case B, (a) A = 22 mm; (b) A = 55 mm): - - , 
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Figure 17. Power spectra estimates (case D, (a) A = 22 mm; (b) A = 55 mm): --- -, numerical 
data input to wave paddle (r7(t) at x = xp); - -, T](t) at x = -8 m; , rt(t) at x = 0. 

the total signal length. Nevertheless, previous researchers (including Rapp & Melville 
1990) have shown that important information can be obtained. 

The results of the FFT analysis are shown on figures 16 and 17. In each case, 
the water surface elevation was sampled at 25 Hz for a duration of 82 s to give a 
total of 2048 data points. Figures 16a, b correspond to the broad-banded spectrum 
(case B) with an input amplitude of A = 22 mm and A = 55 mm, respectively. 
In each figure, three normalized power spectra are shown: the first is based upon 
the input signal sent to the wave paddle; the second corresponds to the surface 
elevation measured 8 m upstream of the focus position (x = -8 m); and the third 
is the power spectrum derived from the surface elevation measured at the focus 
point (Xf = 0). In each figure, the distribution of energy within a number of discrete 
wave components is indicated by the 'jagged' characteristics of the power spectra. In 
figure 16a (A = 22 mm), the measured data shows a small energy 'leakage' towards 
the low-frequency components, but there is no significant transfer of energy into the 
higher harmonics. In contrast, figure 16b (A = 55 mm) identifies a significant transfer 
of energy into the higher harmonics at the focus location. 

Figures 17a, b present a similar sequence of plots for the narrow-banded spectrum 
(case D). In this case, the same number of wave components (N = 29) are generated 
within a smaller frequency range and, consequently, the normalized power spectra are 
smoother than those given previously. With an input amplitude of A = 22 mm, there 
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Figure 18. Spatial variation in power spectral estimates (case D, A = 55 mm): - - 
x = -8 m; ----, x -6 m; - -, x = -4 m; - - -, x = -2 m; --, x = O m. 

is again no significant transfer of energy within the frequency domain. However, with 
a larger input amplitude (figure 17b), the power spectrum of the surface elevation 
measured 8 m upstream of the focus position shows the importance of the second 
harmonics (i.e. there is a significant energy distribution within the frequency range 
1.7-2.3 Hz). In contrast, the power spectrum corresponding to the focus position 
shows a reduction of energy within the input frequency range (0.8-1.3 Hz), and a 
redistribution of this energy to the higher harmonics (> 1.3 Hz). Figure 18 shows 
the normalized power spectra of the surface elevation measured at five locations 
within the wave flume. The transfer of energy into the higher harmonics as the wave 
group approaches the focus position is clearly identified. 

In addition to the spectral information discussed above, the relative phasing of the 
wave components can also be determined from a Fourier transform of the measured 
water surface elevation. Figures 19a-i concern the narrow-banded spectrum (case D) 
with an input amplitude of A = 22 mm. The relative phasing of the free waves is 
considered at seven locations fixed relative to the linear focus position. In each case, 
the measured data is in good agreement with a linear solution and, in particular, the 
waves are in phase at the predicted linear focus, i.e. A/ = 0 at x - 0 (figure 19e). In 
contrast, figures 20a-i again concern the narrow-banded spectrum (case D) and give 
a similar sequence of data corresponding to an input amplitude of A = 55 mm. In this 
latter case, the nonlinear wave-wave interactions change the relative phasing of the 
wave components. As a result, the waves are no longer in phase (i.e. A/ : 0) at the 
linear focus position (figure 20e). This is consistent with the previous measurements 
of the focus position given in figure 10a. These phase changes (relative to the linear 
solution) imply that the phase velocity of the wave components has changed. Indeed, 
figure 20e suggests that the dispersion within the wave group is reduced since the 
initial phase differences are decreasing more slowly in comparison with the low- 
amplitude case (figure 19e). These results are consistent with the notion that the 
wave components are becoming bound to the 'dominant' waves within the group. 

To a first order of approximation, the group velocity is defined by cg = dw/dk. 
After substituting for the phase velocity c = w/k, we obtain (from Tucker 1991) 

cg = c- Adc/dA, (5.3) 

where A is the wavelength. In the case of a regular wave train propagating in deep 
water, the final term in equation (5.3) reduces to 'c giving the well-known result 
that (to a first approximation) the group velocity is equal to one half of the phase 
velocity in deep water. However, in the present case, the experimental data suggests 
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Figure 19. Phase changes along the length of the wave flume (case D, A = 10 mm, (a) x = -6 m; 
(b) x = -4 m; (c) x -2 m; (d) x -1 m; (e) x = 0 m; (f) x = +1 m; (g) x = +2 m; (h) 
x = +4 m; (i) x = +6 m): ?, linear phases; *, measured phases. 

that the nonlinear interactions produce a relative change in the local phase velocity. 
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In particular, the phase changes identified via the Fourier transform suggest that 
the phase velocity of the high-frequency components is increased relative to that 
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of the low-frequency components (hence the reduced dispersion). Consequently, a 
nonlinear term arises in which dc/dA < 0, and, as a result, equation (5.3) predicts 
an increase in the local group velocity. Although this argument is perhaps somewhat 
tenuous, not least because the nonlinear group velocity is not uniquely defined, the 
present results appear to be consistent with the theoretical investigation presented by 
Peregrine & Thomas (1979). Having considered a number of alternative definitions 
(based upon the propagation of wave energy and wave action), they concluded that 
for steep narrow-banded waves the nonlinear group velocity increases. 

Finally, the experimental data gathered downstream of the focus position (fig- 
ure 20i) suggest that the nonlinear interactions associated with the focusing of wave 
components produces a permanent phase change. This is perhaps consistent with the 
calculations presented by Oikawa & Yajima (1974), Yuen & Lake (1982) and Pere- 
grine (1983), which have shown that the nonlinear interaction of solitons travelling 
at different velocities also produces a permanent phase change. 

6. Conclusions and practical implications 

A new series of experimental observations has been presented in which the water 
surface elevation and the underlying kinematics were measured for a range of two- 
dimensional wave groups. In each case, the individual wave components were focused 
at one point in space and time so that constructive interference occurred resulting 
in a large wave drest. A focusing event of this type is believed to be of considerable 
practical importance since it provides a realistic mechanism for the development of 
an extreme wave form appropriate to the design of offshore structures and vessels. If 
this event is specified in terms of a given return period (typically a 100 year design 
wave), both the maximum water surface elevation and the underlying kinematics are 
required to determine the associated fluid loads. 

The present measurements have shown that the focusing of wave components can 
produce a highly nonlinear wave group in which both the water surface elevation and 
the near-surface water particle kinematics are significantly larger than that predicted 
by the linear sum of the wave components. In particular, the central wave crest 
(measured at the focus location) is higher and narrower, while the adjacent wave 
troughs are broader and less deep. These changes correspond to a steepening of the 
overall wave envelope, and suggest that there is an increase in the local energy density 
at the focus location. The experimental data indicates that the nonlinearity of the 
wave group increases with the amplitude of the wave components, but reduces with 
increasing bandwidth. This pattern is observed in both the maximum crest elevation 
and the downstream shifting of the focus location. However, in this latter case, it is 
interesting to note that the summation of N wave crests are focused at exactly the 
same location as N wave troughs. This implies that the focusing of wave energy is 
dependent upon the overall nonlinearity of the wave group (i.e. an envelope effect) 
and is not dependent upon the 'local' interactions occurring at the focus location. 

A second-order solution based upon the sum of the wave-wave interactions terms 
identified by Longuet-Higgins & Stewart (1960) has also been presented. Compar- 
isons with the experimental data suggest that, although this solution provides an 
improved description of the water surface elevation, many of the wave-wave interac- 
tions occur at a higher order of wave steepness. This is consistent with the numerical 
calculations presented by Longuet-Higgins (1987). In particular, the bandwidth de- 
pendence clearly identified in the experimental data does not arise at a second order 
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of wave steepness. Indeed, the velocity data provides further evidence as to the im- 
portance of the higher order interactions. In the narrow-banded spectrum, the near 
surface velocities are considerably larger then either the first- or the second-order so- 
lutions based upon the input wave components. This result is at odds with a number 
of previous experimental studies (notably Skjelbreia et al. 1991), which suggest that 
an extrapolated linear solution will overestimate the magnitude of the near-surface 
velocities in a random wave train. Indeed, these experimental results have led to 
the formulation of several empirically modified (or stretched) wave theories. These 
are widely used in the offshore industry and are specifically adapted to reduce the 
magnitude of the predicted velocities within the crest to trough region. However, the 
present study shows that in the case of a focused wave group the nonlinear inter- 
actions may produce very large near-surface velocities which are inconsistent with 
the existing empirical formulations. The experimental data also suggests that the 
nonlinear interactions produce a velocity reduction in the lower layers of the flow 
field. This is particularly apparent in the broad-banded spectrum and is believed to 
be associated with a long bound wave. This produces a backwards (or negative) flow 
on the scale of the wave group, and may be interpreted as a dynamic response to the 
positive mass transport occurring beneath the focused wave group. This long-wave 
interaction first arises at a second order of wave steepness, and is shown to be in 
good agreement with the solution proposed by Longuet-Higgins & Stewart (1960). 

In contrast to the nonlinearity observed in both the water surface elevation and 
the underlying kinematics, the phase velocity of the focused wave crest is shown 
to be in good agreement with linear theory. The most likely explanation for this is 
that the expected nonlinear increase in the local phase velocity is offset by the neg- 
ative flow associated with the low-frequency modulation (or set-down) of the mean 
water level. The spectral properties of the focused wave group (determined from a 
Fourier analysis of the recorded water surface elevation) indicate that the nonlinear 
interactions lead to a significant transfer of energy into the higher harmonics. This 
provides the large increase in the local energy density, which is consistent with the 
change in the surface profile. Provided there is no evidence of wave breaking, these 
energy changes appear to be entirely reversible; in the sense that the wave group is 
symmetric about the focus location. In addition, the Fourier analysis also describes 
the relative phasing of the wave components, and shows that the dispersion of the 
wave group is reduced by the nonlinear interactions. This accounts for the down- 
stream shifting of the focus location, and implies that there is a nonlinear increase 
in the group velocity. This latter point is consistent with the theoretical calculations 
presented by Peregrine & Thomas (1979). The phasing of the wave components also 
suggests that the free waves undergo a permanent phase change in regions of high 
nonlinearity. This is perhaps analogous to the phase changes which occur when soli- 
tons of different velocity interact nonlinearly. 

Finally, the present study also considered the limiting characteristics of the focused 
wave groups. In each case, the onset of wave breaking was found to occur at Akc 
0.24, which is very close to the value of Akc ~ 0.25 identified by Rapp & Melville 
(1990). The agreement between these results is somewhat surprising since the spectral 
properties of the wave groups show considerable variation. Indeed, given that much 
of the present experimental data suggests that a focused wave group is both highly 
nonlinear and bandwidth dependent, it is difficult to explain why a linear criterion, 
based upon a central wave number, should provide such a good representation of the 
limiting condition. 
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Appendix A. 

The second-order constants (C, D, E and F) introduced in equations (2.1) and 

(2.2) are given by Longuet-Higgins & Stewart (1960) as 

C [201i-2(-i - -2)(1 + 0T1a2) + 03(al - 1) -(7 (2 - l)](-1 - c2)(ai02 - 1) 
a2(a2 - 1) - 2a1(72(a1a2 - 1) + 2(a2 - 1) 

+(,2 +1- o2) - 12(12 + 1), (A 1) 

D - [2(71(2(o1 + u2)(ai2 - 1) + o(7 - 1) + o(7( - 1)](o7 + c72)(01a2 + 1) 
1(7 2- 1) - 12( 1 2(1C2 - 1) 0-1) 

-_(f + 22 + + 012(c1a2 - 1), (A2) 

E = - a, a2 [2(1 2 (721 - 
)2)( + a1 C2) + (o (2- _) - (a 2-1 )] (A 3) 

F- -oala2[2772(al + a2)(1 - 0102) - 0C3(c13 - 1) - 73(022 - 1)], (A4) 
where A represents the ratio of the wave frequencies (U2/u1) and the a coefficients 
are 

a1 = coth(klh), a2 = coth(k2h). (A5) 
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