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This paper concerns the description of a two-dimensional irregular sea state in 
which a large transient wave is generated through the constructive interference (or 
focusing) of the component waves. A numerical model is presented and 
comparisons are made with recent laboratory data. This includes measurements 
of the horizontal kinematics within the crest to trough region. The proposed 
solution is based upon a Fourier series expansion in space and time, in which the 
amplitude of the individual harmonics are determined by a least squares fit to the 
non-linear free surface boundary conditions. This approach allows for a realistic 
mix of free waves (with differing phase velocities) and their associated bound 
waves. The solution, which is not assumed to be either locally or globally steady, 
can be used to predict the kinematics beneath a recorded (or predicted) water 
surface elevation. The numerical results are in excellent agreement with the 
laboratory data, and the solution is robust in the sense that convergence is always 
achieved from simple initial conditions. The proposed model is not computa- 
tionally intensive and may thus be suitable for design calculations. 

1 IN TR ODUC TION 

The design calculations appropriate to the safety and 
serviceability of  any offshore structure are dependent 
upon a reliable estimate of  both the maximum water 
surface elevation and the underlying kinematics. For  
example, in the case of  a fixed jacket structure, the water 
surface elevation is required for air gap calculations, 
while the underlying kinematics will determine both the 
local forces on individual members and the global values 
of  the base shear and the overturning moment.  To 
simplify these calculations it has become common 
practice to assume that the largest ocean waves can 
either be modelled by an 'equivalent' regular wave or a 
steady state solution (Dean 1) in which the gross 
characteristics of  the wave are identified by a long time 
series simulation of  a random sea state. 

However, recent field data (Rozario et al.2; Sand et 
al. 3) have shown that the largest ocean waves do not 
usually arise as part  of  a regular wave train, but occur 
as individual events which rapidly disperse in both 
space and time. Indeed, the formation of  the largest 
waves is believed to be associated with the focusing 
of  wave energy whereby the phasing of  the individual 
wave components is such that constructive interference 
occurs at one point in space and time. The occurrence of  
these events has been considered by Tromans et al. 4 
Unfortunately, this so-called 'Newave' solution is only 

valid to a first order of  wave steepness and therefore 
neglects the non-linear wave-wave interactions. Indeed, 
comparisons with both recent laboratory data (Baldock 
et al. 5) and field data collected from the Tern platform in 
the northern North  Sea (Rozario et al.2; Tromans 
et al. 6) suggest that a linear solution will under-estimate 
both the maximum water surface elevation and the near 
surface kinematics. 

The present paper will address these points and will 
present the results of  a numerical formulation based 
upon a double Fourier series expansion first adopted 
by Lambrakos. 7 Section 2 commences with a brief 
review of  the existing kinematic models. The numerical 
formulation is outlined in Section 3 and comparisons are 
made in Section 4 with both the existing solutions and 
the experimental data presented by Baldock et al. 5 
Finally, some conclusions are proposed in Section 5 and 
the practical implications of  the numerical results 
briefly outlined. 
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2 PREVIOUS WORK 

The complexity of  a large transient wave arises because 
the fluid motion is both highly non-linear, unsteady and 
irregular. To overcome these difficulties the existing 
design solutions adopt  one of  two approximations. In 
the first case they may neglect the time dependence of 
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the wave motion and apply a regular or steady state 
solution. Alternatively, the non-linearity may be 
neglected and a linear random wave solution applied. 
This latter approach is often combined with an empirical 
modification (or 'stretching') of the kinematics within 
the crest to trough region. 

In the first case one could seek to define an 
appropriate wave height (H) and wave period (T), so 
that a higher order Stokes' solution (Fenton 8) may be 
applied to an 'equivalent' regular wave. Unfortunately, 
previous researchers (including Kinsman 9) have shown 
that the predicted water surface elevation may differ 
considerably from a measured record. To address this 
difficulty the non-linear boundary conditions may be 
satisfied numerically along a measured surface profile. 
This approach was first proposed by Dean 1 for steady 
waves with irregular surface profiles. Although these 
solutions are both non-linear, the transient nature of a 
large focused wave is neglected, and significant errors 
may therefore result. 

The second approach incorporates the time depen- 
dence by superimposing a large number of small 
amplitude waves. If the wave heights (Hi), wave 
frequencies (wi) and wave numbers (ki) of the freely 
propagating small amplitude waves are known, a linear 
random wave model will provide a first estimate of the 
time dependent solution. However, this approach 
neglects the non-linearity of the flow field, and in 
particular the wave-wave interactions first proposed by 
Longuet-Higgins and Stewart) ° Baldock et al. ~ have 
considered these interactions in the context of a focused 
wave group such that the total second order interaction 
is given by the sum of the interactions arising from each 
potential 'pair' of wave components. Although this 
solution provides an improved description of a focused 
wave group, a comparison with recent laboratory 
data (Baldock et al. 5) suggests that the higher order 
interactions (O. {a3k 3} and above) cannot be neglected. 
This is consistent with the numerical calculations 
presented by Longuet-Higgins ~1 in which he showed 
that the wave-wave interactions become highly non- 
linear when the steepness of the long wave increases. 
These results are also in agreement with the arguments 
outlined by Dean ~2 in which he suggested that the 
non-linear wave-wave interactions provide a possible 
mechanism for the formation of the largest or 'freak' 
wave events. 

The second order solution outlined by Longuet- 
Higgins and Stewart 1° concerns the interaction of freely 
propagating wave trains. Unfortunately, it is difficult to 
identify these waves from a recorded time history of 
the water surface elevation. A Fourier transform of a 
recorded profile will provide an estimate of the power 
spectrum from which the amplitude of the wave 
components may be inferred. However, it is not 
possible to distinguish (with any degree of certainty) 
which wave components are free, and which 

components arise from the non-linear interactions and 
may therefore be bound (both spatially and temporally) 
to the interacting free waves. To address this point 
Petti 13 has proposed a method to distinguish the first 
and second order terms within a measured time series. 
Unfortunately, this approach is not capable of isolating 
the higher order terms. Errors of this type have led to 
the over-prediction of the kinematics within the crests of 
large random waves. In essence these problems arise 
because firstly, a linear random wave model does not 
allow the individual wave components to ride over one 
another, and secondly, it does not differentiate between 
the free waves and the bound waves which will have 
a significantly different dispersion relationship. As a 
result, the velocities associated with the high frequency 
waves are extrapolated to the crests of the longer waves 
and an over-prediction results. This effect is often 
referred to as high frequency contamination, and has 
been considered by a number of authors including 
Forristal114 and Sobey. 15 

To overcome this difficulty a number of empirical 
solutions have been proposed. These are based upon 
both laboratory and field data, and seek to reduce the 
near surface kinematics in an attempt to compensate for 
the occurrence of high frequency contamination. The 
first and perhaps the most common method was 
proposed by Wheeler, 16 although a number of similar 
approaches have been presented by Chakrabarti, ~7 
Rodenbusch and Forristall, ~8 Lo and Dean 19 and 
Gudmestad and Connor. 2° These solutions are widely 
used in design calculations. However, they do not satisfy 
the governing field equations and recent work by 
Gudmestad and Haver 21 concludes that they are 
sensitive to both the degree of non-linearity and the 
upper limit of the spectral analysis. In light of these, and 
other difficulties, the authors of this paper would not 
expect these empirical solutions to provide a good 
description of the kinematics associated with a highly 
non-linear focused wave group. 

In addition to the design solutions discussed above a 
number of advanced numerical models have also been 
used to describe a non-linear irregular wave train. For 
example, Dold and Peregrine 22 describe a boundary 
element method which allows the investigation of the 
non-linear wave-wave interactions in both the spatial 
and the temporal domains. However, this solution 
requires a spatial description of the wave group. 
Although this information is not easily obtained from 
a time history of the water surface elevation at one 
spatial location, Skyner et al. 23 have shown that this 
numerical formulation is in good agreement with 
laboratory measurements of breaking waves. Sobey 24 
provides an alternative approach based on a local 
Fourier approximation which is (in some respects) 
similar to the polynomial approximation proposed by 
Fenton. 25 In the local Fourier solution the recorded 
water surface elevation is sub-divided into a large 
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number of small 'windows', within which the solution is 
assumed to be locally steady. This approach has been 
shown to be in good agreement with higher order steady 
state solutions, but has not thus far been used to predict 
the kinematics beneath a highly transient focused wave 
group. The present paper will consider an alternative 
solution based upon a method first proposed by 
Lambrakos. 7 The advantage of this approach is that 
the computational requirements are not excessive, and 
since the solution is based upon a time history of the 
water surface elevation, it may represent an effective 
design tool. 

3 NUMERICAL MODELLING 

The numerical model described within this section is 
based upon a double Fourier series expansion first 
adopted by Lambrakos. 7 This approach provides a 
description of a non-linear unsteady wave train in both 
the spatial and the temporal domains. To achieve these 
results using a Fourier series one must assume that there 
is some fundamental (or characteristic) wave period. 
This implies that both the water surface elevation and 
the underlying kinematics are periodic over some large 
spatial/temporal domain. However, within this region 
the solution may deform in both space and time. 
Although this periodic constraint is rarely (if ever) 
valid, the numerical results suggest that the solution is 
not strongly dependent upon this assumption provided 
that the fundamental period is sufficiently large. Indeed, 
the solution is shown to provide a good description 
of a large transient wave generated by the focusing of 
wave energy. 

Although the proposed model is similar to that 
described by Lambrakos, 7 a comparison with recent 
laboratory data (Section 4) has led to a number of 
significant changes. In particular, a weighting 
function is introduced so that the time history of 
the water surface elevation at one spatial location is 
sufficient to define the flow field in the vicinity of the 
measuring location. 

G o v e r n i n g  e q u a ~ o n s  

If a uni-directional irregular wave train is propagating in 
an inviscid, homogeneous and incompressible fluid of 
constant depth, the fluid motion may be assumed 
irrotational and the conservation of mass gives: 

02t~  02 t~  

Ox 2 ÷ ~ = o (1) 

where the velocity potential, ~b, is defined so that the 
velocity components (u, v) in the (x, z) directions are 
given by: 

04 o4 
u = - 0-~'  v = - 0-~ (2)  

A sketch showing the orientation of the co-ordinate axes 
is given in Fig. 1. Equation (1) represents the governing 
field equation which is subject to the usual boundary 
conditions. 

(a) If the bed is impermeable the vertical velocity 
must reduce to zero at z = 0: 

&b 0 at  z = 0  (3)  - - - - ~  

Oz 

(b) The kinematic free surface boundary condition 
dictates that the water surface should be a 
streamline: 

on o¢ on o4 
- -  o n  z = r/ (4)  

Ot Ox Ox Oz 

where rl(x,t) is the water surface elevation 
measured in a stationary frame of reference. 

(c) The dynamic free surface boundary condition 
requires the pressure to be constant on the water 
surface. Applying the unsteady Bernoulli equation 
we obtain: 

1 o~, +-- I  (ro~l 2 ro,~l 2\ 
r/-~-~- 2g t,L J +L zJ ) 

where Q is the Bernoulli constant. 

= Q  on z = r /  

(s) 

z=O ~ 
"l'II~ [~l , ~ Im] 

Fig. 1. Co-ordinate axes. 

F o u r i e r  s o l u t i o n  

The velocity potential adopted by Lambrakos 7 repre- 
sents a Fourier series expansion in the spatial and the 
temporal domains: 

M N 

q~(x, z, t) = Z Z - cosh (knz)(Amn cos (knx - -  ~mt) 
m = l n = l  

+ B,~n sin (knx - COmt)) (6) 

where A,~n, B,~., Wm and k. are constants for a given 
solution. In accordance with our previous discussion a 
Fourier series solution of this type requires the definition 
of a fundamental period T1. If this is taken as the time 
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Fig. 2. A large ocean wave. Measurements taken from the Tern 
Platform (Northern North Sea) and provided by Shell 

Exploration & Production (UK) Limited. 

span of a chosen segment of the surface record, the first 
(or fundamental) harmonic will have a frequency 
~ = 27r/T~. The corresponding value for the wave 
length L~, and therefore the wave number k~ (2rc/L~), is 
calculated using the minimisation procedure discussed 
below. In the present study we are primarily concerned 
with the formation of a large transient wave, and 
consequently the most appropriate segment of the 
surface record is that which contains the focused wave 
crest. For example, Fig. 2 shows the water surface 
elevation recorded in January 1992 at the Tern platform 
located in the northern North Sea (Rozario et al.2). It is 
data of this type which we will attempt to model using 
the potential function given in eqn (6). In all cases the 
value of T~ was chosen so that it was significantly larger 
than the maximum period of the component waves. 
Having identified a fundamental period, the remaining 
Fourier components are defined by: 

Wm ~- m w l ,  k,, = nk~ (7) 

where m and n are integers having maximum values of 
M and N, respectively. 

The potential function given in eqn (6) allows the 
wave group to deform in both space and time. 
Furthermore, the combination of wave frequencies 
(w,~) and wave numbers (k,) introduces wave compo- 
nents having different phase velocities (wm/kn). This 
is in marked contrast to the steady state solutions 
(Chappelear, z6 Dean ~ and Chaplin 27) where all the 
harmonic components have the same phase velocity. 
Table 1 concerns the phase velocity (measured relative 

TaMe 1. Phase velocityre~vetothefundament~ 

Wl W 2 W 3 W 4 W 5 W 6 

k~ 1 2 3 4 5 6 
k2 1/2 1 3/2 2 5/2 3 
k 3 1/3 2/3 1 4/3 5/3 2 
k 4 1/4 112 3/4 1 5/4 3/2 
k5 1/5 2/5 3/5 4/5 1 6/5 
k 6 1/6 113 1/2 2]3 5/6 1 

to the fundamental) of the first 36 wave components 
( M - - 6 ,  N = 6). These values emphasise the range of 
phase velocities and demonstrate that the proposed 
solution represents a combination of free waves and 
their associated bound waves (indicated in bold type). 
Although the wave components described in Table 1 are 
defined by the appropriate Fourier modes, the ampli- 
tudes of the individual harmonics (Am~, B,~n) are 
dependent upon the boundary conditions. As a result, 
not all the components described in Table 1 will be 
relevant, and the final solution will converge to the 
appropriate mix of free waves and bound waves which 
minimise the errors in the boundary conditions (see 
below). In the present study we will only consider uni- 
directional waves. This is consistent with the experi- 
mental observations (Section 4) in which the reflection 
of wave energy at the downstream end of the wave flume 
was virtually eliminated (< 2% of the incident wave 
height) by the installation of an effective passive 
absorber. However, the inclusion of negative wave 
numbers in eqn (7) would allow the nurnerical scheme 
to consider the interaction of waves travelling in 
opposite directions. 

Computational procedure 

Since the Fourier series expansion given in eqn (6) 
satisfies both the governing eqn (1) and the bottom 
boundary condition (3), the unknown coefficients 
(A,,,n, Bran) must be defined to minimise the error in the 
non-linear free surface boundary conditions. If E~: 0 
represents the error in the kinematic free surface 
boundary condition at (xj, ti) and EDg is the equivalent 
error in the dynamic free surface boundary condition, 
eqns (4) and (5) respectively give: 

( Orl 04~ Orl 04~) 
Erzij = --ffi Ox Ox I- ~ on z = r/(xj, ti) (8) 

O~b z O0 _ Q)  
ED,7__ (r  ~_~_~÷~gl0q~. 1 [(~xx) ÷(~zz) 2] 

/ 

o n  z = • (xj,  ti) (9)  

After non-dimensionalising with respect to the funda- 
mental frequency (wl), the total error in the non-linear 
free surface boundary conditions (ET) is: 

±£I( c E T =  EDij ÷ EKq (10) 
i=lj=1 L\  / \ / J 

where I and J are of equal magnitude and denote the 
number of temporal and spatial locations at which 
the boundary conditions are evaluated. 

If the proposed solution includes M frequency 
components each with N wave numbers (where 
typically M = N) a total of 2MN Fourier coefficients 
are created. Adding to this the wave number of the 
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fundamental harmonic (kl) and the Bernoulli constant 
(Q) gives a total of 2 (MN+ 1) unknowns. To solve 
these parameters by minimising the errors in the free 
surface boundary conditions requires some initial (or 
trial) values from which an iterative solution will 
converge. In the present case a first order wave theory 
was found to be sufficient to provide both an initial 
estimate for kl and a single velocity potential coefficient 
O.e. Amn Or Brnn) describing the dominant harmonic in 
the measured water surface elevation. All the remaining 
coefficients were initially set to zero. 

With these initial conditions a first estimate of the 
boundary condition error ET may be obtained from eqn 
(10). If ET is quasi-linearised by expanding the unknown 
parameters X(p), where 1 <_ p <_ 2[MN + 1], in a first 
order Taylor series about the previous iteration, 
successive values of ET are given by: 

2 ( M N +  1) 0 E ~  

= + o x ( p )  p = l  

where q is merely a counter corresponding to the number 
of iterations, and the X'(p) r ~eI~.resent small changes in the 
unknown parameters. IfE~ + is minimised with respect to 
the unknowns (X(p)), 2 (MN + I) equations result: 

OE~+ 1 OE~+ 1 
= 0,  = 0 , . . .  

0X(1) 0X(2) 
(12) 

0E~÷ ~ = 0 
' "  0X(2 N ÷ 

from which the values of X'(p)  may be obtained by 
standard matrix decomposition and back substitution 
methods (Press et al?S). After each iteration the new 
value of each unknown parameter is 

x ( , )  = x ( , ) q  ÷ 

where A represents a damping factor. This reduces the 
change in the unknown parameters between successive 
iterations and therefore improves the stability of the 
iterative scheme. In the present study A = 0.6 was 
sufficient to achieve convergence in all cases. 

If the present scheme is to be based upon the recorded 
water surface elevation at one spatial location (i.e. ~7(t) 
at x = Xr), the time history of the water surface elevation 
at all other spatial locations (x ~ Xr) must be determined 
within the iterative procedure. If ~ (x1, ti) q corresponds 
to the water surface elevation after q iterations at x = xy 
and t = t~, the dynamic free surface boundary condition 
gives the surface elevation at the next iteration as: 

(1 0~_.~ q 1 ( (oq~q~ 2 
r] ()cj, tf) q+ l 

Ot \ Ox / 

Using this approach the dynamic free surface boundary 
condition is not satisfied exactly, but the error Er~ 
reduces to zero as ~/q+l_~/q ~ 0 within the iterative 
procedure. This method is different to that adopted by 
Lambrakos. 7 In his solution the dynamic free surface 
boundary conditions appears to be solved exactly to give 
~'l(Xj, ti) a t  each iteration. As a result, the only 
contribution to E T at all points x ¢ x r comes from the 
kinematic free surface boundary condition. Neither EDij 
or (more importantly) OEDij/OX(p) were calculated 
within his iterative procedure. This approach has also 
been considered in the present study and calculations 
have shown that it significantly increases the number of 
iterations required for convergence. 

Although the solution outlined above is (potentially) 
capable of describing a large transient wave, a 
preliminary comparison with the experimental data 
(Section 4) highlighted an important limitation. This 
arises because the sum of the errors (ED~ + Eloy) at all 
points in space and time does not adequately take into 
account the input to the numerical model which occurs 
at one spatial location. In essence, the least squares fit to 
the boundary conditions is dominated by the large 
number of spatial locations at which measured data 
is not provided. The solution may therefore under- 
estimate the amplitude of the surface record at x = x r in 
an attempt to minimise EKO at x ~ Xr. As a result, the 
numerical model provides a poor fit to the measured 
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Fig. 3. (a) Predictions of the water surface elevation, ~ (t), (b) 
boundary condition error, ET. Measured data (• • u); weight- 

ing factor: ( . . . .  ) F = 1; - -  F = 50. 
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Table 2. Test conditions for exl~_rimental data (after Baldock 
eta/ .  s) 

Case Period range Input amplitude, A 
(mm) 

B2 0 . 6 < T <  1.4 38 
B3 0 " 6 < T <  1'4 55 
D2 0"8< T <  1'2 38 
D3 0 ' 8 < T <  12 55 

water surface elevation and under-estimates the non- 
linearity of  the sea state. To overcome this difficulty a 
weighting function (F~.) is introduced within eqn (10). 
Calculations have shown that this parameter is of  
considerable importance since the input data (at 
x = x~) provides the only link between the numerical 
formulation and the physical problem. If the predicted 
water surface elevation does not provide a good fit to the 
input data at x = x r, the spatial evolution of  the wave 
group cannot be satisfactorily modelled. The total error 
ET thus becomes: 

[( I J 03 1 

eT = }2  V,'eDO + 
i = l j = l  

w h e r e ~  l a t x = x r a n d ~ = l a t x ~ x r .  Theva lue  
of  ~ ( x  = Xr) is dependent upon the non-lineafity of  

the sea state. In practice it may be determined iteratively 
by increasing its value until there is no change in 
the predicted water surface elevation. However, in the 
present study Fj(x = Xr) = 50 was found to be appro- 
priate for all cases. The influence of  this weighting 
function is clearly identified in Fig. 3(a) and 3(b). 
Figure 3(a) concerns the free surface elevation at x = Xr 
and compares the experimental data (case D3) provided 
by Baldock et al. 5 with two runs of the numerical model. 
In the first case F~.(x---Xr) = 1, while in the second 
F~.(x = x r ) =  50. In all other respects the numerical 
simulations were identical. Figure 3(b) concerns the 
same case and presents the total error in the free surface 
boundary conditions at each spatial location. With 
F~-(x = xr) = 1 the fit to the measured data is poor, but 
the total error ET is a minimum because the solution 
under-estimates the non-linearity of  the wave group. 
However, at x --- Xr there is a large discontinuity in the 
total error since the boundary condition errors at this 
location are based upon the measured water surface 
elevation. With F~(x = xr) = 50 the numerical solution 
adequately reflects the non-linearity of  the measured 
sea state, and although the errors are larger at x ~ x~ 
they are more realistically distributed across the 
spatial domain. 

Finally, the resolution of  the numerical scheme (in 
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Fig. 4. Surface elevation, ~ (t): (...) Measured data; (- - -  -) linear solution; ( . . . .  ) 2nd order solution; ( - - - )  numerical model ((a) & 
(b) M = N =  18, F =  50; (c) & (d) M =  N =  15, F=50) .  
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Case B2. 

. ~ , , ~  ° ° 

(a) o .~ ~ 
VELOCT'~ [.v'=] 

Caee D2. 

(c) .o 

~ . - J  

VELOCITY (~v'e) 

] 

Case B3. 
100 

-i i - / 

- -  

- -  

(b) .0 .~ ~. ~ .~ -~ 
VE:LOGT'~ (~,'=] 

Fig. 5. Peak horizontal velocity, u(z): (mllm) Measured data; (- 
model ((a) & (b) M = N = 18, F 

terms of w and k) is dependent upon the length of the 
surface record, the number of spatial and temporal 
positions (I, J )  and the order of the proposed solution 
(M,N). If  the record length defines the fundamental 
period T], the number of points (I) must be chosen so 
that their spacing in time (At) is less than or equal to 
half the shortest wave period, i.e. At < T]/(2M). Using 
a similar approach the separation of the points in space 
(Ax) is given by Ax < L~/(2N) where L~ is the length 
of the fundamental harmonic (27r/k~) which is calcu- 
lated within the iterative solution. Although the order of 
the numerical scheme is not directly comparable to the 
order of  a Stokes' expansion, it is interesting to note 
that if a 15th order solution has 15 wave frequencies and 
15 wave numbers (i.e. M = N = 15) a total of 225 
individual harmonics are included. If, in this case, the 
measured surface profile contains a dominant wave 
frequency which is approximated by the third harmonic 
(wa,k3), then a 15th order numerical solution includes 
frequencies up to five times the frequency of the 
spectral peak. In this case the numerical model will 
approximately correspond to a 5th order Stokes' 
solution. However, if the sea state is highly irregular a 
comparison of this type cannot be made. The numeri- 
cal calculations presented in Section 4 require a 
maximum of 324 individual harmonics (M = N = 18). 

Case D3. 

-4 

(d) .0 ~1 ,~. ~ .~ ~ 
VI~I..OCTT~ [.~'=1 

- -  -) linear solution; ( . . . .  ) 2nd order solution; ( 
= 50; (c) & (d) M = N = 15, F = 50). 

) numerical 

In these cases, involving the most non-linear wave 
groups, the calculations took approximately two hours 
on a Silicon Graphics (2000) workstation. Other, 
lower order, calculations were undertaken on a 486 
(33 MHz) PC. 

4 COMPARISON WITH EXISTING DATA 

Reg.81"  waves 

To investigate the proposed model we first compared the 
numerical results with a fifth order Stokes' solution 
(after Fenton 8) of a non-linear regular wave train 
(ak "~ 0"33). In this case the surface elevation r/(t) 
generated by the fifth order solution was used as input 
to the numerical code, and the underlying kinematics 
were calculated without further constraint (i.e. no 
attempt was made to restrict the time dependence of 
the numerical model). A comparison of both the water 
surface elevation and the underlying kinematics showed 
that the numerical predictions were in near perfect 
agreement with the Stokes' solution. Indeed, the 
maximum 'errors' in the predicted water surface 
elevation (r/) and the horizontal kinematics (u) were 
1.3% and 2%, respectively. 



108 T. E. Baldock, C. Swan 

80  ~ 

413- 

-20- 

-40- 

(~) ' ~  -i.2 -~ -i~ ~ .~ ~ ~.'~ fi5 
TII '~ Is) 

l~10 o ' ~ . 1 -  ~ 

i: -~ / 

/ 
/ 

.0  .1 .2 .3 .~1 .5 
( b )  VI~L~I'I'Y (m/m~ 

Fig. 6. (a) Surface elevation, r/(t) at x = 0, (b) peak horizontal 
velocity, u(z). Comparison with 'equivalent' regular wave 
(Case B3). (m-m) Measured data, ( . . . .  ) fifth order Stokes' 
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(M = N = 18, F = 50). 

Transient (time-clependenO waves 

In a second (and more testing) investigation the 
numerical model was compared with the laboratory 
data presented by Baldock et al. ~ This provided 
experimental measurements of several highly non-linear 
wave groups. In each case 29 individual frequency 
components were simultaneously generated by a 
numerically controlled wave paddle, and the relative 
phasing of the wave components was adjusted so that 
constructive interference occurred at one point in space 
and time. This approach, which was also adopted by 
Rapp and Melville, 29 produced a large transient wave 
similar to the 'new wave' formulations presented by 
Tromans et al. 4 The present study will consider two 
specific data sets (originally referred to as cases B and D) 
in which the individual wave components were of  equal 
amplitude and were equally spaced within the given 
period range. In each case we shall confider two input 
ampfitudes such that if A represents the linear sum of 
the individual wave components, we have A = 38 mm 
and A = 55ram. In these cases Baldock et al. 5 provide 
simultaneous measurements of the water surface eleva- 
tion r/(t) and the horizontal velocity components u(t) at 
the focus location. It is this data which will be compared 
to the numerical model. The test conditions corres- 
ponding to these data sets are outlined in Table 2. 

If the wave steepness is defined by the product of the 
input amplitude (A) and the central wave number (kc), 
cases B2 and D2 have a steepness of Akc = 0-15 while 
B3 and D3 correspond to A k  c = 0.22. Previous work on 
the limiting characteristics of focused wave groups 
(Rapp and Melville 29 and Baldock et al. 5) has shown 
that the onset of wave breaking occurs at A k  c ~ 0.24. 
This suggests that cases B3 and D3 are within 10% of 
their limiting linear amplitude (Amax), and consequently 
the central wave crest will be highly non-linear. 

Figure 4(a)-(d) concerns the water surface elevations 
measured at the focus location for the four cases 
identified in Table 2. If the maximum crest elevation 
(for a given input amplitude) provides an indication of 
the non-linearity of the wave group, the narrow banded 
spectrum (case D) is more non-linear. The first order (or 
linear) solution given on Fig. 4(a)-(d) is based upon the 
amplitudes, frequencies, and wave numbers of the freely 
propagating small amplitude waves generated at the 
wave paddle. A comparison with the measured data 
suggests that a highly non-linear transient wave is 
characterised by a central wave crest which is higher and 
narrower than that predicted by a linear sum of the wave 
components, while the adjacent wave troughs are 
broader and less deep. The second order solution, 
based upon the sum of the wave-wave interactions 
identified by Longuet-Higgins and Stewart, l° provides 
an improved description of the water surface elevation. 
However, the non-linearity of the central wave crest 
is again underestimated. The experimental data are 
consistent with the transfer of wave energy into 
high frequency components which are associated with 
the higher order wave-wave interactions. A detailed 
discussion of these points is provided by Baldock et al. 5 
Figure 4(a)-(d) demonstrates that while a first or second 
order solution cannot provide an adequate description 
of the water surface elevation, the proposed numerical 
scheme is capable of closely approximating the 
measured wave profile. This is, of course, essential if 
the underlying kinematics are to be accurately predicted. 

The horizontal velocity occurring directly beneath the 
focused wave crest is shown in Fig. 5(a)-(d). The four 
cases described in Table 2 are considered and the 
measured data compared with a linear solution, a 
second order solution and the present numerical 
model. The experimental data suggest that the non- 
linear wave-wave interactions significantly increase the 
near surface velocities. This is particularly evident in 
Fig. 5(d) which corresponds to the most non-linear wave 
group. Furthermore, the gradient of the horizontal 
velocity with depth (Ou/Oz as z ~ r/) is larger than that 
predicted by either a first or a second order solution. At 
greater depths beneath the water surface (z < d /2 )  the 
linear solution over-estimates the horizontal kinematics. 
This apparent velocity reduction should not (however) 
be confused with the second order return flow which 
arises beneath a regular wave train. Indeed, these 
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observations are all consistent with the redistribution of 
wave energy, since the higher frequency components 
produce large near surface flows which decay rapidly 
with depth. In contrast to the first and second order 
solutions, the proposed numerical model provides a 
good description of the measured data. In particular, the 
number of frequency components required to model 
both the water surface elevation and the underlying 
kinematics increases with the amplitude of the wave 
group. This is consistent with the normalised power 
spectra provided by Baldock et al. 5 Furthermore, the 
fundamental wave number increases with the amplitude 
of the wave group, thereby implying an overall 
steepening of the wave envelope. 

To emphasise the importance of the time dependent 
terms within a focused wave group Fig. 6(a) & (b) 
compare the broad banded case (B3) with a higher order 
Stokes' solution (FentonS). In this comparison an 
'equivalent' wave period was estimated from the zero 
crossing points measured at the focus location, and the 
wave height (H) was determined from the measured 
data. Figure 6(a) compares the measured and predicted 

water surface elevation and shows that a regular wave 
solution does not provide a good representation of a 
large transient wave. In particular, the Stokes' solution 
under-estimates the maximum crest elevation by 
approximately 20%. This comparison highlights the 
increased crest-trough asymmetry which occurs within 
a focused wave group. This has important implications 
for the calculation of air gaps. Figure 6(b) concerns 
the horizontal velocity measured directly beneath the 
focused wave crest. In this case the Stokes' solution 
under-estimates the kinematics at all depths. These 
results suggest that both the total base shear and the 
over-turning moment will be significantly under- 
estimated by a steady solution based upon an 
'equivalent' regular wave. 

Although the maximum crest elevation (producing the 
most extreme kinematics) is of primary importance for 
design calculations, the present solution may also 
describe the flow field at other spatial locations. Figures 
7(a)-(d) and 8(a)-(d) compare the measured and 
predicted surface elevations, ~/(t), for cases B3 and D3 
at four spatial locations in the vicinity of the focal point 



110 T. E. Baldock, C. Swan 

-~-,~-~-.~ ~ .~ ~ ,~ t~ -is-t~-~ :.4 ~ :4 
(a) ~ Id (b) ~ ~ 

~ a 

KI 

(c) 

V 
_~ ~ .~ t~ 

I I ~  

I 

- t ~ - t ~ - ~  :.4 ~ .~ ~ ~ 
(d) ~01 
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(x = 0). In each case the predicted water surface 
elevation is in reasonable agreement with the measured 
data. Indeed, this agreement is perhaps better than one 
might expect given that the input to the numerical model 
merely corresponds to the time series at one spatial 
location (x = 0). These results suggest that the Fourier 
series given in eqn (6), together with the error 
minimisation outlined in eqns (8)-(15), provides a 
reasonable description of  the wave components arising 
within a highly non-linear random sea state. 

Figures 7(a)-(d) and 8(a)-(d) also suggest that the 
'errors' in the predicted water surface elevation are 
dependent upon the distance from the input data (at 
x = 0), and primarily arise near the boundaries of  the 
time domain (i.e. t ~ + l .6s ) .  This is particularly 
apparent in Fig. 8(d) (case D3 at x = -0 .88 m) where 
the description of  the surface profile for It[ > l '0s  is 
poor. The 'errors'  within this region arise because the 
numerical model is based upon a fundamental harmonic 
(in this case T1 = 3.2s) and therefore assumes that 
although the surface profile deforms within this domain, 
r/(x = -0-88, t = - 1.6) = r/(x = -0.88,  t = + 1 "6). This 
assumption is incorrect and significant errors will result if 

a large wave occurs at one end of the time domain. This 
situation arises in Fig. 8(d) and consequently the waves 
at t ~ + 1.2 s are inadequately modelled. Difficulties of  
this type may, however, be overcome by increasing 
the fundamental period and including more Fourier 
components. Unfortunately, this also increases the 
computational effort required for convergence. 

5 CONCLUSIONS 

The present paper has considered the description of  a 
two dimensional non-linear wave group generated by 
the focusing of  wave components within a random sea 
state. A numerical model based upon a Fourier series 
expansion in space and time has been described, and the 
results compared to recent laboratory data presented by 
Baldock et al. 5 This comparison suggests that if the time 
history of  the water surface elevation is known, or can 
be predicted from the statistical characteristics of  the sea 
state (Tromans et al.4), the numerical model H I  provide 
a good fit to both the measured water surface elevation 
and the underlying kinematics. In particular, the 
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proposed solution can incorporate a large number of  
frequency components with a wide range of  phase 
velocities. This enables the solution to define the 
appropriate mix of  free waves and their associated bound 
waves which minimise the error in the non-linear free 
surface boundary conditions. As a result, the proposed 
solution is capable of  modelling the high frequency waves 
which are generated by the non-linear wave-wave 
interactions. It is these components which produce both 
the large water surface elevations at the focus position 
and the increased kinematics near the water surface. 

Further comparisons with the laboratory data suggest 
that while the present numerical model provides a good 
description of  the focused wave groups, a steady wave 
solution based upon an 'equivalent' regular wave does 
not. In particular, a higher order Stokes' solution will 
under-estimate both the maximum crest elevation (for a 
given wave height) and the magnitude of  the horizontal 
velocity. The numerical model is also able to predict 
the time history of  the water surface elevation away 
from the focus position. In these cases the numerical 
predictions are in reasonable agreement with the 
laboratory data provided that the fundamental period 
is of  sufficient duration to negate the periodic constraint, 
and the number of  Fourier components is sufficiently 
large to provide the required resolution. 

In a real three dimensional sea the focusing of  wave 
energy to produce a large transient wave will incorpo- 
rate both directional and frequency spreading. Although 
the proposed model cannot (at present) rigorously define 
the non-linear interactions within a short-crested 
sea, the effect of  directional spreading may be at least 
partially included by applying a pre-determined spread- 
ing function to the calculated kinematics. The proposed 
model is based upon a simple numerical procedure 
which is not computationally intensive. Furthermore,  
the solution is robust in the sense that convergence was 
achieved in all cases with simple initial conditions. We 
therefore conclude that the present model is appropriate 
for design calculations where a description of  the water 
surface elevation is available (or can be calculated), but 
the underlying kinematics are unknown. 
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