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Capillary–gravity wave transport over spatially random drift
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Abstract

We derive transport equations for the propagation of water wave action in the presence of subsurface random flows. Using
the Wigner distributionW(x, k, t) to represent the envelope of the wave amplitude at positionx, time t contained in high
frequency waves with wave vectork/ε (whereε is a small parameter compared to a characteristic distance of propagation),
we describe surface wave transport over flows consisting of two length scales; one varying slowly on the wavelength scale, the
other varying on a scale comparable to the wavelength. Both static underlying flows and time-varying underlying flows are
considered. The spatially rapidly varying but weak surface flows augment the characteristic equations with scattering terms
that are explicit functions of the correlations of the random surface currents. These scattering terms depend parametrically
on the magnitudes and directions of the smoothly varying drift and are shown to give rise to a Doppler-coupled scattering
mechanism. Conservation of wave action (CWA), typically derived for drift varying over long distances, is extended to systems
with flow that varies on small length scales of order the surface wavelength. Our results provide a formal set of equations to
analyze transport of surface wave action, intensity, energy, and wave scattering as a function of the smoothly varying drifts
and the correlation functions of the random, highly oscillating surface flows. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Surface flows modify the free surface boundary conditions that determine the dispersion for propagating water
waves. The effects of smoothly varying (compared to the wavelength) currents on water wave dynamics have been
analyzed using ray theory [1,2] and the principle of conservation of wave action (CWA) (cf. [3–7] and references
within). These studies and many others have largely focused on the linear and nonlinear dynamics of gravity
waves propagating over even larger scale spatially varying drifts [8]. Water waves can also scatter from regions of
underlying vorticity regions smaller than the wavelength [9,10]. Boundary conditions that vary on capillary length
scales, as well as wave interactions with structures comparable to or smaller than the wavelength can also lead to
wave scattering [11,12], attenuation [13,14], and Bragg reflections [15,16]. Nonetheless, water wave propagation
over random underlying currents that vary overboth large and small length scales, and their interactions, have
received relatively less attention.

In this paper, we report results describing the properties of surface wave propagation over both static, and
time-varying underlying flows. Rather than computing wave scattering from specific static flow configurations
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[9,17,18], we take a statistical approach by considering ensemble averages over realizations of the randomness.
Different statistical approaches have been applied to wave propagation over a random depth [19], third sound
localization in superfluid Helium films [20], and wave diffusion in the presence of turbulent flows [21–23]. Although
random surface flows such as turbulence are in general rotational, we will only consider irrotational underlying flows.
Possible applications include uniform flow over a random bottom, generating static random underlying flows, or
propagation of a surface wave in a field of randomly generated (e.g. by the wind) surface waves. In the latter case,
each surface wave in the field is irrotational, but the underlying flow is time-dependent. We focus on the statistical
properties of wave transport over irrotational underlying flows and derive new results with respect to small scale,
and time-dependent randomness. Vorticity effects in wave propagation over a spatially gradually varying rotational
flow have been considered by White [5]. Although it is straightforward to generalize our statistical approach to
include the important effects of vorticity, we will limit our study to Eq. (4) in order to make the development of the
transport equations more transparent.

In the next section we derive the linearized capillary–gravity wave equations to lowest order in the irrotational
surface flow. The boundary conditions are reduced to two partial differential equations that couple the surface
height to velocity potential at the free surface. We treat only the “high frequency” limit [24] where wavelengths are
much smaller than the system under consideration. In Section 3, we introduce the Wigner distributionW (x, k, t)
[21,24,25] which represents the wave energy density and allows us to treat surface currents that vary simultaneously
on two separated length scales. The dynamical equations developed in Section 2 are then written in terms of an
evolution equation forW. Upon expandingW in powers of (wavelength/propagation distance), we obtain transport
equations.

In Section 4, we present our main mathematical result, Eq. (34), an equation describing the transport of surface
wave action. Appendix A gives details of some of the derivation. The transport equation includes advection by
the slowly varying drift, plus scattering terms that are functions of the correlations of the rapidly varying drift,
representing water wave scattering. Upon simultaneously treating both smoothly varying and rapidly varying flows
using a two-scale expansion, we find that scattering from the latter depends parametrically on the smoothly varying
flows. In Section 5, we discuss the regimes of validity, consider specific forms for the correlation functions, and
detail the conditions for Doppler coupling. We find CWA even in the presence of small scale drift variations provided
that the correlations of the drift satisfy certain constraints. We also physically motivate the reason for considering
two scales for the underlying drift. In the limit of yet larger propagation distances, after multiple wave scattering,
wave propagation leaves the transport regime and becomes diffusive when the underlying random flows are static
[26].

2. Surface wave equations

Assume an underlying flowV(x, z, t) ≡ (U1(x, z, t), U2(x, z, t), Uz(x, z, t)) ≡ (U(x, z, t), Uz(x, z, t)), where
the 1, 2 components denote the two-dimensional in-plane directions. This flow may be generated by external,
time-dependent sources such as wind, internal flows beneath the water surface, as well as other water waves. The
surface deformation due toV(x, z, t) is denoted̄η(x, t)wherex ≡ (x1, x2) is the two-dimensional in-plane position
vector. An additional variation in height due to the velocityv(x, z, t) associated with a chosen surface wave is
denotedη(x, t). When all flows are irrotational, we can define their associated velocity potentialsV(x, z, t) ≡
(∇x + ẑ∂z)Φ(x, z, t) andv(x, z, t) ≡ (∇x + ẑ∂z)ϕ(x, z, t). Incompressibility requires

�ϕ(x, z, t)+ ∂2
z ϕ(x, z, t) = �Φ(x, z, t)+ ∂2

z Φ(x, z, t) = 0, (1)

where� = ∇2
x is the two-dimensional Laplacian. The kinematic condition applied atz = η̄(x, t)+η(x, t) ≡ ζ(x, t)

is [6]

∂tη(x, t)+ U(x, ζ, t) · ∇xζ(x, t) = Uz(x, z = ζ, t)+ ∂zϕ(x, z = ζ, t). (2)
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Upon expanding Eq. (2) to linear order inη andϕ about the free surface, the right-hand side becomes

Uz(x, ζ, t)+ ∂zϕ(x, ζ, t) = Uz(x, η̄, t)+ η(x, t)∂zUz(x, η̄, t)+ ∂zv(x, η̄, t)+ O(η2). (3)

At the surfacez = η̄, ∂t η̄(x, t) + U(x, η̄, t) · ∇xη̄(x, t) = Uz(x, η̄, t). Now assume that the underlying flow is
weak enough such thatUz(x, z ≈ 0, t) and η̄ are both small. A rigid surface approximation is appropriate for
small Froude numbersU2/c2

φ ∼ |∇xη̄|2 ∼ Uz(x,0, t)/|U(x,0, t)| � 1 (cφ is the surface wave phase velocity)
and the free surface boundary conditions can be approximately evaluated atz = 0 [9]. Although we have assumed
Uz(x, z ≈ 0, t) = ∂zΦ(x, z ≈ 0, t) ≈ 0 and a vanishing surface deformationη̄(x, t) ≈ 0, ∇x · U(x,0, t) =
−∂zUz(x,0, t) �= 0.

Combining the above approximations with the dynamic boundary conditions (derived from balance of normal
surface stresses atz = 0 [6]), we have the pair of coupled equations

∂tη(x, t)+ ∇x · (U(x, z = 0, t)η(x, t)) = lim
z→0−

∂zϕ(x, z, t),

lim
z→0−

[ρ∂tϕ(x, z, t)+ ρU(x, z, t) · ∇xϕ(x, z, t)] = σ�η(x, t)− ρgη(x, t), (4)

whereρ, σ , andg are the water density, air–water surface tension, and gravitational acceleration, respectively. If
wavelengths are defined to have scales of O(1), the system size, or distance of wave propagation shown in Fig. 1
is of O(L) with L � 1. To implement our high frequency [24] asymptotic analyses, we rescale the system such
that all distances are measured in units ofL ≡ ε−1. We eventually take the limitε → 0 as an approximation
for small, finiteε. Surface velocities, potentials, and height displacements are now functions of the new variables
x → x/ε, z → z/ε andt → t/ε. We shall further nondimensionalize all distances in terms of the capillary length
�c = √

σ/gρ. Time, velocity potentials, and velocities are dimensionalized in units of
√
�c/g,

√
g�3

c , and
√
g�c,

respectively, e.g. for water,U = 1 corresponds to a surface drift velocity of∼ 16.3 cm/s.
SinceUz(x, z ≈ 0, t) ≈ 0, we define the flow at the surface by

U(x, z = 0, t) ≡ U(x, t)+ √
εδU

(
x
ε
,
t

ε

)
. (5)

In these rescaled coordinates,U(x, t) denotes surface flows varying on length scales of O(1) much greater than
a typical wavelength, whileδU(x/ε, t/ε) varies over lengths of O(ε) comparable to a typical wavelength. The

Fig. 1. The relevant scales in water wave transport. Initially, the system size, observation point, and length scale of the slowly varying drift is
O(L), with surface wave wavelength and scale of the random surface current of O(1). Upon rescaling, the system size becomes O(1), while the
wavelength and random flow variations are O(ε).
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amplitude of the slowly varying flowU(x, t) is O(ε0), while that of the rapidly varying flowδU(x/ε, t/ε), is
assumed to be of O(

√
ε). A more detailed discussion of the physical motivation for considering the

√
ε scaling is

deferred to Section 5. After rescaling, the boundary conditions (4) evaluated atz = 0 become

∂tη(x, t)+ ∇x ·
[(

U(x, t)+ √
εδU

(
x
ε
,
t

ε

))
η(x)

]
= lim

z→0−
∂zϕ(x,0),

∂tϕ(x, t)+ U(x, t) · ∇xϕ(x, t)+ √
εδU

(
x
ε
,
t

ε

)
· ∇xϕ(x, t) = ε�η(x, t)− ε−1η(x, t). (6)

In the limiting case whereδU = 0 andU(x, t) ≡ U0 is strictly uniform, Eq. (11) lead to the familiar capillary–gravity
wave dispersion relation

H(k) =
√
(k3 + k) tanhkh + U0 · k ≡ Ω(k)+ U0 · k, (7)

if all dynamical variables are assumed to follow a time dependence of the form e−iHt . Although drift that varies
mildly over a wavelength can be treated with characteristics and WKB theory, random flows that varying appreciably
over a wavelength require a statistical approach. Without loss of generality, we chooseδU to have mean zero and
an isotropic two-point correlation function〈δUi(x, t)δUj (x′, t ′)〉 ≡ Rij(|x − x′|, |t − t ′|), where(i, j) = (1,2) and
〈· · · 〉 denotes an ensemble average over realizations ofδU(x, t).

Sincex andt play a symmetrical role in the subsequent equations, we introduce the new variableX = (x, t) and
define the spatial Fourier decompositions for the dynamical wave variables

ϕ(X,−h ≤ z ≤ ζ ) =
∫

Q

ϕ(Q)e−iQ·X coshq(h+ z)

coshqh
, η(X) =

∫
Q

η(Q)e−iQ·X, (8)

the surface flows

U(X) =
∫

Q

U(Q)e−iQ·X, δU
(

X
ε

)
=
∫

Q

δU(Q)e−iQ·X/ε, (9)

and the correlations

Rij(X) =
∫

Q

Rij(Q)e−iQ·X. (10)

In Eqs. (8) and (9)Q = (q,−ωq) = (q1, q2,−ωq), q ≡ |q| =
√
q2

1 + q2
2, and

∫
Q ≡ (2π)−3

∫
dq1 dq2

∫ +∞
−∞ dωq .

We similarly defineP ≡ (p,−ωp) andK ≡ (k,−ωk) for subsequent analyses. The Fourier integrals forη exclude
q = 0 due to the incompressibility constraint

∫
xη(x, t) = 0, while theq = 0 mode forϕ gives an irrelevant constant

shift to the velocity potential. Note thatϕ in Eq. (8) manifestly satisfies Laplace’s Eq. (9). Substituting Eq. (9) into
the boundary conditions, we obtain,

iωkη(K)− i
∫

Q

η(K − Q)U(Q) · k − i
√
ε

∫
Q

η

(
K − Q
ε

)
δU(Q) · k = ϕ(K) k tanhεkh,

iωkϕ(K)− i
∫

Q

U(Q) · (k − q)ϕ(K − Q)− i
√
ε

∫
Q

δU(Q) ·
(

K − Q
ε

)
ϕ

(
K − Q
ε

)

= −(εk2 + ε−1)η(K), (11)

where theδU(Q) are correlated according to

〈δUi(P)δUj (Q)〉 = Rij(|P|)δ(P + Q). (12)

Since the correlationRij(X) is symmetric ini ↔ j , and depends only upon the magnitude|X|,Rij(|P − Q|) is real.
Here,(|P − Q|) represents(|p − q|, |ωp − ωq |).
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3. The Wigner distribution and asymptotic analyses

The intensity of the dynamical wave variables can be represented by the product of two Green functions evaluated
at pointsX±εY/2, whereY ≡ (y, t). The difference in their evaluation points,εY, resolves the waves of wave vector
|k| ∼ 2π/(εy) and frequencyω ∼ 2π/(εt). Elter and Molyneux [19] used this representation to study shallow
water wave propagation over a random bottom. However, for the finite depth surface wave problem, where the Green
function is not simple, and where two length scales are treated, it is convenient to use the Fourier representation of
the Wigner distribution [24,27,28].

Defineψ = (ψ1, ψ2) ≡ (η(X), ϕ(X, z = 0)) and the Wigner distribution:

Wij(X,K) ≡ (2π)−3
∫

eiK·Yψi
(

X − εY
2

)
ψ∗
j

(
X + εY

2

)
dY, (13)

whereX is a central field point from which we consider two neighboring pointsX ± εY/2, and their intervening
wave field. Fourier transforming theX variable using Eq. (8) we find,

Wij(P,K) = (2πε)−3ψi

(
P
2

− K
ε

)
ψ∗
j

(
−P

2
− K
ε

)
. (14)

The total wave energy, comprising gravitational, kinetic, and surface tension contributions is

E = 1

2

∫
x

[
|∇xη|2 + |η|2

]
+ 1

2

∫
x

∫ 0

−h
dz |U + ẑUz + v|2 − 1

2

∫
x

∫ 0

−h
dz |U + ẑUz|2

= 1

2

∫
k

(k2 + 1)|η(k)|2 + k tanhkh |ϕ(k, z = 0)|2. (15)

The energy above has been expanded to an order inη(x, t) andϕ(x, z, t) consistent with the approximations used to
derive Eq. (4). In arriving at the last equality in (15), we have integrated by parts, used the Fourier decompositions
and imposed an impenetrable bottom condition atz = −h. The wave energy density carried by wave vectork and
frequencyωk is [28]

E(X,K) = 1
2Tr[A(k)W(X,K)], (16)

whereA11(k) = k2 + 1, A22(k) = k tanhkh, A12 = A21 = 0.
In the presence of slowly varying drift, we identifyW(X,K) as thelocal Wigner distribution at positionx and

time t representing waves of wave vectork with fast frequencyωk. An equation for its Fourier transformW(P,K)
can be derived by considering the equation for the vector fieldψ implied by the boundary conditions (Eq. (4)):

iLj�(K)ψ�(K) = i
∫

Q

U(Q) · (k − qδj2)ψj (K − Q)+ i
√
ε

∫
Q

δU(Q) ·
(

k − q
ε
δj2

)
ψj

(
K − Q

ε

)
, (17)

where the operatorL(K) is defined by

L(K) =
(
ωk i|k| tanhε|k|h
−i(εk2 + ε−1) ωk

)
. (18)

We have redefined the physical wave number to bek/ε so thatk ∼ O(1). Upon using Eqs. (14) and (17), (see
Appendix A)

iLj�

(
P
2

− K
ε

)
Wij(P,K)= i

∫
Q

U(Q) ·
(

−k
ε

+ p
2

− qδj2

)
Wij

(
P − Q,K + εQ

2

)

+i
√
ε

∫
Q

δU(Q) ·
(

−k
ε

+ p
2

− q
ε
δj2

)
Wij

(
P − Q

ε
,K + Q

2

)
. (19)
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If we now assume thatW(P,K) can be represented by functions that vary independently at the two relevant length
and time scales,P → P + Ξ/ε (whereΞ ≡ (ξ,−ωξ )). This amounts to the Fourier equivalent of a two-scale
expansion whereX is replaced byX andY = X/ε [24]. The two new independent wave vectorsP andΞ are both
of O(1). Expanding the Wigner distribution in powers of

√
ε,

W(P,K) → W0(P,Ξ,K)+ √
εW1/2(P,Ξ,K)+ εW1(P,Ξ,K)+ O(ε3/2). (20)

We expand each quantity appearing in Eq. (19) in powers of
√
ε and equate like powers. ExpandingL(−K/ε+P/2) =

ε−1L0(K)+ L1(K,P)+ O(ε), we have

L0(K) =
(

−ωk ik tanhkh

−i(k2 + 1) −ωk

)
, L1(K,P) ≡

(
1
2ωp ip · kf (k)

ip · k 1
2ωp

)
, (21)

where

f (k) ≡ −hk + sinhkh coshkh

2k cosh2kh
. (22)

3.1. Order ε−1 terms

Upon subtracting its adjoint from Eq. (19), and collecting terms of O(ε−1),

W0(P,Ξ,K)L†
0 (K+)− L0(K−)W0(P,Ξ,K) = 0, (23)

whereK± ≡ K±Ξ/2. To solve Eq. (23), we use the eigenvalues and normalized eigenvectors forL0 and its complex

adjointL†
0 . The eigenvectors corresponding to the eigenvaluesτΩ(k)− ωk − iγ andτΩ(k)− ωk + iγ are

bτ =




iτ

√
α(k)

2

1√
2α(k)


 and cτ =




iτ√
2α(k)

√
α(k)
2


 , (24)

respectively, whereα(k) ≡ Ω(k)/k2 + 1, andτ = ±1. The physical origin of the small imaginary term iγ arises
from causality, but can also be explicitly derived from considerations of an infinitesimally small viscous dissipation
[11]. Although we have assumedγ → 0, for our model to be valid, the viscosity need only be small enough such that
surface waves are not attenuated before they have a chance to multiply scatter and enter the transport or diffusion
regimes. Since in the frequency domain, wave dissipation is given byγ = 2νk2 [29] whereν is the kinematic
viscosity andcg(k) ≡ |∇kΩ(k)| is the group velocity, the corresponding decay lengthk−1

d ∼ cg(k)/(νk
2) must be

greater than the relevant wave propagation distance. Therefore,

ε2cg(k) � 2πνk2, (25)

for transport to survive dissipation. The inequality (25) is most easily satisfied in the shallow water wave regime for
transport. Even in deep water, for 100 cm waves, criterion (25) requiresε � 6× 10−4, providing an ample regime
for transport behavior to take hold. For 10 cm waves, the criterion isε � 2 × 10−3.

A solution that manifestly satisfies Eq. (23) is constructed by expanding in the basis of 2× 2 matrices composed
from the eigenvectors

W0(P,Ξ,K) = δ(Ξ)
∑

τ,τ ′=±
aττ ′(P,K)bτ (k−)b

†
τ ′(k+), (26)
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where theδ(Ξ) constraint arises from imposing the condition thatL0 in Eq. (26) defines the high frequency dispersion

relation. Upon right[left] multiplying Eq. (26) by the eigenvectors of the adjoint problem,cτ (k−)[c
†
τ (k+)], we find

a+− = a−+ = 0, anda−−(P,Ξ,K) ≡ a−(P,Ξ,K) = a++(P,Ξ,−K) ≡ a+(P,Ξ,−K) �= 0 only if Ξ = 0. From
the leading order in Eq. (19) we deduce

aτ (X,K) = aτ (X, k)δ(ωk + τH(X, k)), (27)

where

H(X, k) = H(x, k, t) =
√
(k3 + k) tanhkh + U0(x, t) · k. (28)

This relation states that high frequenciesωk are related to wave number through the familiar capillary–gravity wave
dispersion relation.

From the definition ofW0, we see that the(1,1) component ofW0 is the local envelop of the ensemble averaged
wave intensity|η(X,K)|2 � a+(X,K)α(k). Similarly, from the energy (Eq. (16)), we see immediately that the local
ensemble averaged energy density

〈E(X,K)〉 = A11(k)α(k)〈a(X,K)〉 + A22(k)〈a(X,K)〉 = Ω(k)〈a(X,K)〉, (29)

wherea(X,K) = a+(X,K). Therefore, since the starting dynamical equations are linear, we can identify〈a(X,K)〉 as
the ensemble averaged local wave action associated with waves of wave vectork [30] and frequencyωk determined
by the usual dispersion relation (Eqs. (27) and (28)). The wave action〈a(X,K)〉, rather than the energy density
〈E(X,K)〉 is the conserved quantity [3,4,6].

3.2. Order ε−1/2 terms

Collecting terms of orderε−1/2 in the symmetrised form of Eq. (19), we obtain

W1/2(P,Ξ,K)L†
0 (K+)− L0(K−)W1/2(P,Ξ,K)+

∫
Q

U(Q) · ξW1/2(P

−Q,Ξ− Q,K)−
∫

Q

δU(Q) · k− W0

(
P,Ξ− Q,K + Q

2

)
+
∫

Q

δU(Q) · k+W0

(
P,Ξ− Q,K − Q

2

)

−
∫

Q

δU(Q) · q
[

W0

(
P,Ξ− Q,K + Q

2

)
S + S W0

(
P,Ξ− Q,K − Q

2

)]
= 0, (30)

where

S =
[

0 0

0 1

]
.

Similarly, decomposingW1/2 in the basis matrices composed ofbτ (k−)b
†
τ ′(k+) (as in Eq. (26)), substituting

W0(P,K)δ(Ξ) from Eq. (26) into the above, and inverse Fourier transforming in the slow variableP, we obtain

W1/2(X,Ξ,K) =
∑

τ,τ ′=±

δU(Ξ) · Γτ,τ ′(X, ξ,K)bτ (k−)b
†
τ ′(k+)δ(ωk + τH)

ωk− − ωk+ + τ ′Ω(k+)− τΩ(k−)+ U(X) · ξ+ 2iγ
, (31)

where

Γτ,τ ′(X, ξ,K)≡ k−aτ ′(X,K+)c†
τ (k−)bτ ′(k+)− k+aτ (X,K−)b†

τ (k−)cτ ′(k+)

+ ξ
2

∑
µ=±

[aµ(X,K+)c†
τ (k−)bµ(k+)+ aµ(X,K−)b†

µ(k−)cτ ′(k+)]. (32)
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3.3. Order ε0 terms

The terms of orderε0 contained in the symmetrised form of Eq. (19) read

iW0(P,K)L†
1 (−P)− iL1(P)W0(P,K)− i

∫
Q

k · U(Q)q · ∇kW0(P − Q,Ξ,K)

+i
∫

Q

U(Q) · p W0(P − Q,Ξ,K)+ i
∫

Q

δU(Q) · k+ W1/2

(
P,Ξ− Q,K − Q

2

)

−i
∫

Q

U(Q) · q[S W0(P − Q,Ξ,K)+ W0(P − Q,Ξ,K)S]

−i
∫

Q

δU(Q) · k− W1/2

(
P,Ξ− Q,K + Q

2

)

−
∫

Q

δU(Q) · q
[

S W1/2

(
P,Ξ− Q,K + Q

2

)
+ W1/2

(
P,Ξ− Q,K − Q

2

)
S
]

+iW1L†
0 − iL0W1 +

∫
Q

U(Q) · ξW1(P − Q,Ξ,K) = 0. (33)

To obtain an equation for the statistical ensemble average〈a+(X,K)〉, we left-multiply Eq. (33) byc†
+(k) and

right-multiply by c+(k) and substituteW1/2 from Eq. (31). We obtain a closed equation fora(X,K) ≡ 〈a+(X,K)〉
(we henceforth suppress the〈· · · 〉 notation fora(X,K) andE(X,K)) by truncating terms containingW1. Clearly,

from Eq. (24),c†
+(k)(iW1L†

0 − iL0W1)c+(k) = 0. Furthermore, we assume〈ξW1(P − Q,Ξ,K)〉 ≈ 0 which
follows from ergodicity of dynamical systems, and has been used in the propagation of waves in random media
(see [24,31]). The transport equations resulting from this truncation are rigorously justified in the scalar case
[32,33].

4. The surface wave transport equation

The main mathematical result of this paper, an evolution equation for the ensemble averaged wave action
a(x, k, t) (recall thata+(X,K) = a(x, k, t)δ(ωk ± H(x, k, t))) follows from Eq. (33) above (cf. Appendix A) and
reads,

∂ta(x, k, t)+ ∇kH(x, k, t) · ∇xa(x, k, t)− ∇xH(x, k, t) · ∇ka(x, k, t)

= −Σ(x, k, t)a(x, k, t)+
∫

Q

σ(q, k, x, t)a(x, q, t), (34)

whereH is given in Eq. (28). The left-hand side in Eq. (34) corresponds to wave action propagation in the absence
of random fluctuations. It is equivalent to the equations obtained by the ray theory, or a WKB expansion (see
Section 5.1). The two terms on the right-hand side of Eq. (34) represent refraction, or “scattering” of wave action
out of and into waves with wave vectork, respectively. In deriving Eq. (34) we have inverse Fourier transformed
back to the slow field point variablex, and used the relation(α(k) − f (k)α−1(k))k ≡ ∇kΩ(k). We also assumed
Rij(Q)qi = Rij(Q)qj = 0, which would always be valid for divergence-free flows in two dimensions. Although
the perturbationδU is not divergence-free in general,∇ · δU(X, z = 0) = −∂zδUz(X,0) �= 0, by using symmetry
considerations, we will show in Section 5.2 thatRij(Q)qi = Rij(Q)qj = 0.
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The scattering rates are

Σ(x, k, t) ≡ 2π
∑
τ=±

∫
dq dω qiRij(q−k, ω)kjb†

+(k)cτ (q)b
†
τ (q)c+(k)× δ(ω−τH(x, τq, t)+ H(x, k, t)),

σ (x, q, k, t) ≡ 2π
∑
τ=±

∫
dq dω τqiRij(τq − k, ω)kj |b†

τ (τq)c+(k)|2

×δ(ω − τH(x, q, t)+ H(x, k, t)), (35)

where

b†
+(k)cτ (q)b

†
τ (q)c+(k) = (τα(k)+ α(q))(τα(q)+ α(k))

4α(k)α(q)
, |b†

τ (k)cτ ′(q)|2 = (τα(q)+ α(k))2

4α(k)α(q)
. (36)

Physically,Σ(x, k, t) is a decay rate arising from scattering of action out of wave vectork. The typical distance
traveled by a wave before it is significantly redirected, or converted into different frequency modes, is defined by
the mean free path

�mfp = cg(k)

Σ(k)
∼ O(1). (37)

The mean free path described here carries a different interpretation from that considered in weakly nonlinear, or
multiple scattering theories [25,34] where one treats a low density of scatterers. Rather than strong, rare scatterings
over every distance�mfp ∼ O(1), we have considered constant, but weak interaction with an extended, random flow
field. Although here, each scattering is O(ε) and weak, over a distance of O(1), approximatelyε−1 interactions
arise, ultimately producing�mfp ∼ O(1). The kernelσ(x, q, k, t) represents scattering of action from wave vector
q into action with wave vectork. Upon integration overω, bothΣ andσ include effects of inelastic scattering via
the argumentH(x, τq, t)− H(x, k, t) in the correlation functionRij. Note that the slowly varying driftU(x, t) also
enters parametrically in the scattering throughH(x, k, t).

However, when the power spectrum isδ-correlated in frequencyR(Q) = R(q)δ(ω), i.e. when the random field
δU is slowly varying in time, the resulting termsδ(τH(x, τq, t) − H(x, k, t)) (in Σ(x, k, t)) andδ(τH(x, q, t) −
H(x, k, t)) (in σ(q, k, x, t)) imply that we can consider the independent transport of waves at a fixed frequency
ω0 ≡ H(x, k, t). Even if all waves have frequencyω0, waves of different wave vectors may nevertheless interact,
giving rise to wave number conversion and Doppler effects.

5. Results and discussion

In addition to treating scattering from surface flows containing two explicit length scales, we have further assumed
that the amplitude ofδU scales asεβ with β = 1/2: the random flows are correspondingly weakened as the high
frequency limit is taken. Since scattering strength is proportional to the power spectrum of the random flows and
is quadratic inδU, heuristically, the mean free path�mfp ∼ cg(k)/Σ(k)ε

1−2β . Forβ > 1/2, the scattering is too
weak and the mean free path diverges. In this limit, waves are nearly freely propagating and can be described by the
slowly varying flows alone, or WKB theory. Ifβ < 1/2,�mfp → 0 and the scattering becomes so frequent that over
a propagation distance of O(1), the large number of scatterings may lead to diffusive (cf. Section 5.4) behavior [26].
Therefore, only random flows that have the scalingβ = 1/2 contribute to the wave transport regime. Moreover, wave
localization phenomena are precluded whenβ > 0, even in the limit of time-independentδU. In a two-dimensional
random environment, the localization length over which wave diffusion is inhibited is approximately [26]

�loc ∼ �mfp exp(ε−1k�mfp) ∼ ε1−2β exp(ε−2β). (38)
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As long as the random potential is scaled weaker(β > 0), �loc → ∞, and strong localization will not take hold.
In the following subsections, we systematically discuss the salient features of water wave transport contained in
Eq. (34) and derive wave diffusion for propagation distances� O(1).

5.1. Slowly varying drift: U(x, t) �= 0, δU = 0

First consider the case where surface flows vary only on scales much larger than the longest wavelength 2π/k

considered, i.e.δU = 0. The left-hand side of Eq. (34) represents wave action transport over slowly varying drift
and may describe short wavelength modes propagating over flows generated by underlying long surface waves.

The nonscattering terms of the transport equation (34) is equivalent to the results obtained by ray theory (WKB
expansion) and conservation of wave action (CWA) [1–6]. Assume the WKB expansion [35,36]

ηε = Aη(x, t)eiS(x,t)/ε and ϕε = Aϕ(x, t)eiS(x,t)/ε, (39)

with smoothly varyingAη andAϕ . Upon using the aboveansatz in Eq. (13) and settingε → 0, we havea(x, k, t) =
|A|2(x, t)δ(k−∇xS(x, t))where|A|2 = 2α(k)|Aϕ |2 = 2α−1(k)|Aη|2. Substitution of this expression fora(x, k, t)
into Eq. (34), we obtain the following possible equations forS(x, t) and|A|2(x, t)

∂tS + H(x,∇xS, t) = 0, ∂t |A|2(x, t)+ ∇x · (|A|2∇kH(x,∇xS, t)) = 0. (40)

The first equation is the eikonal equation, while the second equation is the wave action amplitude equation. Recalling
that|Aη|2 = α(k)|A|2/2, we obtain the following transport equation for the height amplitude:

∂t

(
|Aη|2
α(∇xS)

)
+ ∇x ·

(
|Aη|2
α(∇xS)

∇kH(x,∇xS)

)
= 0. (41)

Eq. (41) is the same as Eq. (8) of [5], except that hisΩ̄ is replaced here byα owing to our inclusion of surface
tension.

Wave action conservation can be understood by noting that

d

dt
a(X(t),K(t), t) = 0, (42)

where the characteristics(X(t),K(t)) satisfy Hamilton’s equations

dX(t)

dt
= ∇kH(X(t),K(t)),

dK(t)

dt
= −∇xH(X(t),K(t)). (43)

Here,X(t) andK(t) are the position and wave number of the waves. The solutions to the ordinary differential
equation (43) are the characteristic curves used to solve Eq. (40) [37].

5.2. Correlation functions and conservation laws

Now consider the case whereδU �= 0. The scattering rates defined by Eq. (35) depend upon the precise form of
the random flow correlationRij. There are actually six additional terms in the calculation ofσ andΣ which vanish
because

2∑
j=1

Rij(Q)qj = 0, for i = 1,2. (44)

To prove relationship (44) we consider thethree-dimensional and incompressibility properties ofδU(x, z, t) =
δU(X, z). If δUz(K, kz) andδUz(K,−kz) have the same probability distribution; thus,

〈δUi(P, pz)δUz(K, kz)〉 = 〈δUi(P, pz)δUz(K,−kz)〉, (45)
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and

2∑
j=1

δ(P+K)Rij(K)kj =
2∑

j=1

〈δUi(P, z=0)δUj (K, z=0)kj 〉=
2∑

j=1

〈
δUi(P, z = 0)

∫ ∞

−∞
dkz δUj (K, kz)kj

〉

= −
∫ ∞

−∞
〈δUi(P,0)δUz(K, kz)〉kz dkz = 0,

where we have invoked the a Fourier transform in thez-direction, incompressibility, and Eq. (45), respectively. This
result requires the correlation function to be transverse:

Rij(|Q|) = R(q, ωq)

[
δij − qiqj

q2

]
, (46)

whereR(q, ωq) is a scalar function. This transverse nature is the same tensoral structure that would arise for a
incompressible two-dimensional fluid and is expected since we considered an infinite layer of fluid of fixed depth
h [38]. The correlation kernels in the scattering integrals can now be written as

qiRij(|τQ−K|)kj = R(|τQ − K|)
[

q · k − q · (τq − k)k · (τq−k)
|τq − k|2

]
= τ

R(|τQ − K|)
|τq − k|2 q2k2 sin2θ, (47)

whereθ denotes the angle betweenq andk. The scattering must also satisfy the support of theδ-functions; for
U(X) = 0 only |q| = |k| satisfy theδ-function constraints. In the presence of slowly varying drift, the evolution of
a(X, |K| �= |Q|) can “Doppler” couple to that ofa(X,Q).

It is straightforward to show from the explicit expressions (35) that

Σ(x, k, t) =
∫

dq σ(x, q, k, t). (48)

This relation indicates that the scattering operator on the right-hand side of Eq. (34) is conservative: Integrating
over the whole phase space yields

d

dt

∫
x

∫
k

a(x, k, t) = 0. (49)

Eq. (49) is the generalization of CWA to include scattering of action from highly oscillating random flowsδU(X/ε).
Althougha(x, k, t) is conserved, that the total water wave energyE(x, k, t) = Ω(k)a(x, k, t) is not conserved is
easy to show ifU(x) is small enough such that theδ-function in theσ(q, x, k, t) integral is triggered only when
τ = +1. SinceH(x, k, t)a(x, k, t) is conserved (as can be seen from Eq. (34)),

d

dt
E = − d

dt

∫
x

∫
k

k · U(x, t) a(x, k, t) �= 0. (50)

This nonconservation results from the energy that is exchanged between waves and the underlying flow. WhenU is
large enough for Doppler coupling (τ = −1), an additional term arises and neitherH(x, k, t)a(x, k, t) norE(x, k, t)
are conserved.

5.3. Doppler-coupled scattering

For simplicity, we only discuss here time-independentδU, nonetheless, the transport equation (34) accommodates
a rich variety of behaviors. All wave interactions with the underlying flow are thus elastic, and we need only consider
a single fixed wave frequencyω0 and evaluate the support ofδ(τH(x, τq, t) − H(x, k, t)) (for Σ(x, k, t)) and
δ(τH(x, q, t)− H(x, k, t)) (for σ(x, q, k, t)).



118 G. Bal, T. Chou / Wave Motion 35 (2002) 107–124

Fig. 2. (a) Contour plot ofH(q). Each grayscale corresponds to a different constant value ofH(q) = H(k) ≡ ω0. (b) The band ofq that satisfies
0.625< ω0 < 0.6625. Wave vectorsq andk that lie in this band can couplea(x, k, t) to a(x, q, t) via wave scattering.

Consider action contained in water waves of fixed wave vectork. WhenU(x) = 0, onlyτ = +1 terms contribute
to the integration overq as long as|q| = |k|. In this case, we can define the angleq · k = k2 cosθ and reduce the
cross-sections to single angular integrals over

qiRij(|q − k|)qj = R

(∣∣∣∣2k sin
θ

2

∣∣∣∣
)
k2

4

sin2θ

sin2θ/2
, τ = +1. (51)

AssumingR(|q|) is monotonically decreasing, the most important contribution to the scattering occurs whenq and
k are collinear.

WhenU(x) �= 0, andτ = +1, the sets ofq which satisfyΩ(q) + U(x) · q = Ω(k) + U(x) · k ≡ ω0 trace
out closed ellipse-like curves and are shown in the contour plots ofH(q) in Fig. 2(a). The parameters used are
U(x) · k1 = −0.5k1 andh = ∞ (the−k1,−q1 directions are defined by the direction ofU(x)). Each grayscale
corresponds to a curve defined by fixedH(k) = ω0. All wave vectorsq in each contour contribute to the integration
in the expressions forΣ(k) andH(q, k). Thus, slowly varying drift can induce an indirect Doppler coupling between
waves with different wave numbers, with the most drastic coupling occurring at the two far ends of a particular oval
curve. For example, in Fig. 2(b), the dark band denotesq such thatH(q) = ω0 when 0.625< ω0 < 0.6625. The
wave vectorsq ≈ (−0.3,0) andq ≈ (0.8,0) are two of many that contribute to the scattering terms. Therefore, the
evolution ofa(x, k ≈ (−0.3,0), t) also depends ona(x, q ≈ (0.8,0), t) via the second term on the right-hand side
of Eq. (34).

ProvidedU(x) is sufficiently large, theτ = −1 terms can also contribute to scattering. The dissipative scattering
rateΣ(k)a(x, k, t)will only change quantitatively since additionalq’s will contribute toΣ(k). However, this decay
process depends only onk and is not coupled toa(x, |q| �= |k|, t). Wave vectorsq that satisfy theδ-function
in the σ(q, x, k, t)a(x, q, t) term will, as whenτ = +1, lead to indirect Doppler coupling. This occurs when
H(q, x, k, t) = −ω0 and, as we shall see, allows Doppler coupling of waves with more widely varying wavelengths
than compared to theτ = +1 case. Ifτ = −1 terms arise, the drift frame energya(x, k, t)H(x, k) is no longer
conserved. Fig. 3(a) plotsH(q1, q2 = 0) for U(x) = 1 <

√
2, U(x) = √

2, andU(x) = 1.6 >
√

2. Sinceω0
andH(q) are identical functions,−ω0 can take on values below the upper dotted line (ω0 � 0.22 forU = 1.6).
Therefore, coupling forτ = −1 andq2 = 0 occurs for values of−ω0 between the dotted lines. Depending upon
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Fig. 3. Conditions for Doppler coupling whenτ = −1. (a) Plot ofH(q1, q2 = 0;h = ∞) for U = 1,U = √
2, andU = 1.6. Only forU >

√
2

doesH(q1, q2 = 0;h = ∞) < 0. (b) Contour plot of|H(q)|. Each grayscale corresponds to a different constant value ofH(q) = H(k) ≡ −ω0.
(c) The bands ofq satisfying 0.414< −ω0 < 0.468. (d) An expanded view of the coupling bands for 0.0756< −ω0 < 0.1368. Note that wave
numbers of very small modulus can couple with wave numbers of significantly larger modulus.

the value ofω0, coupling can occur at two or four different pointsq = (q1,0). Fig. 3(b) shows a contour plot of
H(q)| as a function of(q1, q2). A level set lying between the dotted lines in(a) will slice out two bands; one band
corresponds to all values ofk that couple toq lying in the associated second band. Two bands determined by the
interval 0.414< −ω0 < 0.468 are shown in Fig. 3(c). For anyk lying in the inner band of Fig. 3(c), allq lying
in the outer band will contribute to Doppler coupling forτ = −1, and vice versa. As−ω0 is increased, the inner
(outer) band decreases (increases) in size, with the central band vanishing when−ω0 approaches the upper dotted
line in (a) where theτ = −1 coupling evaporates. If−ω0 is decreased, the two bands merge, then disappear as−ω0
reaches the lower limit. Fig. 3(d) is an expanded view of the two bands for small 0.0756< −ω0 < 0.1368. Note
that a small island ofq or k appears for very small wave vectors. The water wave scattering represented byσ(q, k)
can therefore couple very long wavelength modes with very short wavelength modes (the two larger bands to the
right in Fig. 3(d)). However, the strength of this coupling is still determined by the magnitude ofqiRij(|q − k|)kj ,
which may be small for large|q − k|. If δU(t/ε) is time-dependent, the oval curves discussed in Figs. 2 and 3
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will be broadened as interactions among waves of different frequencies arise. Not only do waves of different wave
vectors interact through theδU, within each oval curve, but waves of different frequency interact by virtue of the
time dependence ofδU, coupling different level sets.

The depth dependence of Doppler coupling will be relevant whenhq, hk � 1 whereq andk are the magnitudes
of the wave vectors of two Doppler-coupled waves. Forτ = +1, finite depth reduces the ellipticity of the coupling
bands, resulting in weaker Doppler effects. Since the water wave phase velocity decreases withh, a finite depth
will also reduce the criticalU(x) required forτ = −1 Doppler coupling. For smallU(x), it is clear that the
δ-functions associated with theτ = −1 terms inσ(q, k) are first triggered when theq and k are antiparallel,
U · k = −k|U|,U · q = +q|U|. Fig. 4(a) shows the phase velocity for various depthsh. In order forτ = −1 to
contribute to scattering,U ≥ cφ(k;h). ForU ≈ 1.6, this condition holds in theh = ∞ case for 0.5 � k � 2
(the dashed region ofcφ(k,∞)). Recall that our starting equations (system (4)) are valid only in the small Froude
number limit. However, for water waves propagating over infinite depth,τ = −1 coupling requiresU > Umin =
mink{cφ(k)}, with cφ(kmin) � 22 cm/s. Therefore, in such “supersonic” cases, whereτ = −1 is relevant, our
treatment is accurate only at wave vectorsk∗ such thatU � cφ(k

∗;h), e.g. the thick solid portion ofcφ(k; ∞) in
Fig. 4(a). ForU � Umin, theτ = −1 term can couple wave vectorsq ≈ 0 � kmin with k ≈ 2− 3 � kmin. The rich
τ = −1 Doppler coupling displayed in Fig. 3 is peculiar to water waves with a dispersion relationH(q) that behaves
asq3/2,U · q, or q1/2 depending on the wavelength. Doppler coupling in water wave propagation is very different
from that arising in acoustic wave propagation in an incompressible, randomly flowing fluid [21,22,39] where
H(q) = cs|q|. An additional Doppler coupling analogous to theτ = −1 coupling for water waves arises only for
supersonic random flows whenU(x) ≥ cs, independent ofq. In such instances, compressibility effects must also be
considered.

Fig. 4(b) plots the minimum drift velocityUmin(h) whereτ = −1 Doppler coupling first occurs at any wave
vector. The wave vector at which coupling first occurs is also shown by the dashed curve. For shallow water,
h � √

3, Umin(h) ∝ √
h and very long wavelengths couple first (smallk(Umin)). For depthsh >

√
3 (∼ 3 cm

for water), the minimum drift required quickly increases toU∗(∞) = √
2, while the initial coupling occurs at

increasing wave vectors until at infinite depth, where the first wave vector to Doppler couple approachesk → 1
(in water, this corresponds to wavelengths of∼ 6.3 cm). The conditions forτ = −1 Doppler coupling outlined in
Figs. 2 and 3 apply to bothΣ(k) andσ(q, k), with the proviso thatq andk are parallel forΣ(k) and antiparallel
for σ(q, k). However, even whenU < Umin such that onlyτ = +1 applies, the set ofq corresponding to a constant

Fig. 4.U > cφ(k) is required forτ = −1 coupling. (a) The phase velocitycφ(k) for various depthsh. The velocity shown by the solid horizontal
line U ≈ 1.6 > cφ(k;h = ∞) for 0.5 � k � 2. (b) The minimumUmin(h) required for existence ofτ = −1 coupling at any wave vectork,
and the wave vectork(Umin) at which this first happens.
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value ofH(k) = ω0, traces out a noncircular curve. There is Doppler coupling between wave numbersq �= k as
long asU �= 0.

5.4. Surface wave diffusion

We now consider the radiative transfer equation (34) over propagation distances long compared to the mean free
path�mfp. Imposing an additional rescaling and measuring all distances in terms of the mean free path, we introduce
another scalingε−1, proportional to the number of mean free paths traveled. Sinceβ = 1/2, transport of wave
action prevails when O(ε) < |x| ∼ O(1), while diffusion may arise when O(ε−1) ∼ |x| < �loc.

In the special case of time-independentδU, waves of each frequency satisfy Eq. (34) independently. To derive
a diffusion equation for waves of frequencyω0, we assume for simplicity thatU is constant and small such that
ω0+H(x, q) �= 0 (theτ = −1 terms are never triggered by theδ-functions). Expanding all quantities in the transport
equation (34) in powers ofε, one can find

ȧ + Ū · ∇xa − ∇x · D · ∇xa = 0. (52)

The effective driftŪ is given by

Ū =
∫
k∇kH(k)δ(k · U +Ω(k)− ω0)∫

kδ(k · U +Ω(k)− ω0)
. (53)

For U = 0, h = ∞ andω∞(k) = √
k3 + k, the isotropic diffusion tensor becomes

D = 1

Σ(k)Vω0

∫
Q

|∇QΩ∞(q)|2q̂q̂T
δ(Ω∞(q)− ω0) = c2

g(k)

2Σ(k)
I, (54)

whereVω0 = ∫
kδ(H(k) − ω0) andI is the 2× 2 identity matrix. Thus, the diffusion equation fora(x, t) assumes

the standard form [26]

ȧ − c2
g(k)

2Σ(k)
�a = 0. (55)

Recall that dissipation may allow for transport, but ifνk2 ε2cg(k) (compare Eq. (25)), diffusion can be precluded.
For one meter waves, the possibility of diffusion requiresε � 8 × 10−3. Diffusion exists strictly in the limit
of time-independentδU; for time-varyingδU, wave action dynamics becomes more complicated due to random
flow-mediated energy exchange among the waves.

6. Summary and conclusions

We have used the Wigner distribution to derive the transport equations for water wave propagation over a spatially
random drift composed of a slowly varying partU(X), and a rapidly varying part

√
εδU(X/ε). The slowly varying

part determines the characteristics on which the waves propagate. We recover the standard result obtained from
WKB theory: conservation of wave action. ProvidedRij(Q)qj = 0, we extend CWA to include wave scattering
from correlationsRij of the rapidly varying (both in space and time) random flow. Evolution equations for the
nonconserved wave intensity and energy density can be readily obtained from Eq. (34). Moreover, conservation of
drift frame energya(x, k, t)H(x, k, t) requires smallU < Umin and absence ofτ = −1 contributions to scattering.

Explicit expressions for the scattering ratesΣ(x, k, t) andσ(q, x, k, t) are given in Eq. (35). Even in the limiting
case of time-independentδU, wave number conversion can arise for a fixed frequency. For fixedω0 = H(k), we
find the set ofq such that theδ-functions in Eq. (35) are supported. This set ofq indicates the wave vectors of the
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background surface flow that can mediate Doppler coupling of the water waves. Although widely varying wave
numbers can Doppler couple, supported by theδ-function constraints, particularly forτ = −1, the correlation
Rij(|q − k|) also decreases for large|q − k|. For long times, multiple weak scattering nonetheless exchanges action
among disparate wave numbers within the transport regime. Our collective results, including water wave action
diffusion, may provide a model for describing linear ocean wave propagation over random flows of different length
scales. The scattering terms in Eq. (34) also provide a means to correlate sea surface wave spectra to statisticsRij

of finer scale random flows.
The recent extension by [5] of CWA to include rotational flows also suggests that an explicit consideration of

velocity and pressure can be used to generalize the present study to include rotational random flows. Other feasible
extensions include more detailed analyses of the energy and action cascade arising from a time-dependentδU.
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Appendix A. Derivation of the transport equation

Some of the steps in the derivation of Eq. (34) are outlined here. By taking the time derivative ofWij in Eq. (14)
and using the definition (17) foṙψ , we obtain

0= (2πε)3iWi�(P,K)L∗
�j

(
−K
ε

− P
2

)
− (2πε)3iLi�

(
−K
ε

+ P
2

)
W�j (P,K)

+i
∫

Q
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. (A.1)

To rewrite the above expression as a function ofWij only, we relabel appropriately, e.g.

−K
ε

− P
2

= −K′

ε
− P′

2
− K
ε

+ P
2

− Q = −K′

ε
+ P′

2
, (A.2)

for the third term on the right-hand side of Eq. (A.1). Similarly relabelling for all relevant terms yields the integral
equation (19).

The O(ε−1/2) terms of Eq. (19) determineW1/2. Decomposing

W1/2(P,Ξ,K) ≡
∑

τ,τ ′=±
a
(1/2)
τ,τ ′ (P,Ξ,K)bτ (k−)b

†
τ ′(k+), (A.3)

and substituting into Eq. (30) we find the coefficientsa
(1/2)
τ,τ ′ , where in this casea(1/2)+− , a

(1/2)
−+ �= 0. Due to the nonlocal

nature of the third term on the right-hand side of Eq. (30), we must first inverse Fourier transform the slow wave
vector variable back toX.
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To extract the O(ε0) terms from Eq. (19) we need to expandL to orderε0, the L1 term. Similarly, the terms
W(P − Q,Ξ,K ± εQ/2) must be expanded:

W
(

P − Q,Ξ,K ± 1
2εQ

)
= W(P − Q,Ξ,K)± 1

2εq · ∇kW(P − Q,Ξ,K)+ O(ε2). (A.4)

The εq · ∇kW(P − Q,Ξ,K) terms combine with the−ε−1U(Q) · k− + ε−1U(Q) · k+ terms from the third and
fourth terms in Eq. (19) to give the third term on the right of Eq. (33). TheδU-dependent, orderε0 terms (the sixth,
seventh, and eighth terms on the right-hand side of Eq. (33)) come from collecting

±√
εδU(Q) ·

(
−k
ε

± ξ

2ε

)√
εW1/2

(
P,Ξ− Q,K ± Q

2

)
, (A.5)

from the last two terms in Eq. (19). The regularizationγ allows certain terms involvingW1/2 (cf. Eq. (31)) to
combine in the form

lim
γ→0

[
1

ωk− − ωk+ + τ ′Ω(k+)− τΩ(k−)+ U(X) · ξ+ 2iγ
− c.c.

]
= −2π iδ

(
ωk− − ωk+ + τ ′Ω(k+)− τΩ(k−)+ U(X) · ξ) . (A.6)

Upon using theon-shell relation (27), the ensemble averaged time evolution of the Wigner amplitudeaσ (x, k, t)
can be succinctly written in the form:

∂ta+(x, k, t)+ ∇kH(x, k, t) · ∇xa+(x, k, t)− ∇xH(x, k, t) · ∇ka+(x, k, t)

= −Σ(x, k, t)a+(x, k, t)+
∑
µ=±

∫
Q

σ+,µ(x, q, k, t)aµ(x, q, t). (A.7)

Using the form forW0 found from Eq. (23) to findW1/2, we substitute into Eq. (33) to find the result (34), the
transport equation for one of the diagonal intensities of the Wigner distribution. We have explicitly used eigenbasis

orthonormalityb†
τ (k) · cτ ′(k) = dτ,τ ′ and the fact thata−(x, k, t) = a+(x,−k, t).
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