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Abstract

We derive transport equations for the propagation of water wave action in the presence of subsurface random flows. Using
the Wigner distributioV(x, Kk, t) to represent the envelope of the wave amplitude at poskidime r contained in high
frequency waves with wave vectkye (wheres is a small parameter compared to a characteristic distance of propagation),
we describe surface wave transport over flows consisting of two length scales; one varying slowly on the wavelength scale, the
other varying on a scale comparable to the wavelength. Both static underlying flows and time-varying underlying flows are
considered. The spatially rapidly varying but weak surface flows augment the characteristic equations with scattering terms
that are explicit functions of the correlations of the random surface currents. These scattering terms depend parametrically
on the magnitudes and directions of the smoothly varying drift and are shown to give rise to a Doppler-coupled scattering
mechanism. Conservation of wave action (CWA), typically derived for drift varying over long distances, is extended to systems
with flow that varies on small length scales of order the surface wavelength. Our results provide a formal set of equations to
analyze transport of surface wave action, intensity, energy, and wave scattering as a function of the smoothly varying drifts
and the correlation functions of the random, highly oscillating surface flows. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Surface flows modify the free surface boundary conditions that determine the dispersion for propagating water
waves. The effects of smoothly varying (compared to the wavelength) currents on water wave dynamics have been
analyzed using ray theory [1,2] and the principle of conservation of wave action (CWA) (cf. [3-7] and references
within). These studies and many others have largely focused on the linear and nonlinear dynamics of gravity
waves propagating over even larger scale spatially varying drifts [8]. Water waves can also scatter from regions of
underlying vorticity regions smaller than the wavelength [9,10]. Boundary conditions that vary on capillary length
scales, as well as wave interactions with structures comparable to or smaller than the wavelength can also lead to
wave scattering [11,12], attenuation [13,14], and Bragg reflections [15,16]. Nonetheless, water wave propagation
over random underlying currents that vary ovieoth large and small length scales, and their interactions, have
received relatively less attention.

In this paper, we report results describing the properties of surface wave propagation over both static, and
time-varying underlying flows. Rather than computing wave scattering from specific static flow configurations
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[9,17,18], we take a statistical approach by considering ensemble averages over realizations of the randomnes:
Different statistical approaches have been applied to wave propagation over a random depth [19], third sound
localization in superfluid Helium films [20], and wave diffusion in the presence of turbulent flows [21-23]. Although
random surface flows such as turbulence are in general rotational, we will only consider irrotational underlying flows.
Possible applications include uniform flow over a random bottom, generating static random underlying flows, or
propagation of a surface wave in a field of randomly generated (e.g. by the wind) surface waves. In the latter case,
each surface wave in the field is irrotational, but the underlying flow is time-dependent. We focus on the statistical
properties of wave transport over irrotational underlying flows and derive new results with respect to small scale,
and time-dependent randomness. Vorticity effects in wave propagation over a spatially gradually varying rotational
flow have been considered by White [5]. Although it is straightforward to generalize our statistical approach to
include the important effects of vorticity, we will limit our study to Eq. (4) in order to make the development of the
transport equations more transparent.

In the next section we derive the linearized capillary—gravity wave equations to lowest order in the irrotational
surface flow. The boundary conditions are reduced to two partial differential equations that couple the surface
height to velocity potential at the free surface. We treat only the “high frequency” limit [24] where wavelengths are
much smaller than the system under consideration. In Section 3, we introduce the Wigner distibatida ¢)
[21,24,25] which represents the wave energy density and allows us to treat surface currents that vary simultaneousl
on two separated length scales. The dynamical equations developed in Section 2 are then written in terms of ar
evolution equation fowV. Upon expandindV in powers of (wavelength/propagation distance), we obtain transport
equations.

In Section 4, we present our main mathematical result, Eq. (34), an equation describing the transport of surface
wave action. Appendix A gives details of some of the derivation. The transport equation includes advection by
the slowly varying drift, plus scattering terms that are functions of the correlations of the rapidly varying drift,
representing water wave scattering. Upon simultaneously treating both smoothly varying and rapidly varying flows
using a two-scale expansion, we find that scattering from the latter depends parametrically on the smoothly varying
flows. In Section 5, we discuss the regimes of validity, consider specific forms for the correlation functions, and
detail the conditions for Doppler coupling. We find CWA even in the presence of small scale drift variations provided
that the correlations of the drift satisfy certain constraints. We also physically motivate the reason for considering
two scales for the underlying drift. In the limit of yet larger propagation distances, after multiple wave scattering,
wave propagation leaves the transport regime and becomes diffusive when the underlying random flows are static
[26].

2. Surface wave equations

Assume an underlying floW(x, z, t) = (U1(X, z, t), U2(X, 2, 1), U, (X, z, 1)) = (U(X, z, 1), U, (X, z, 1)), where
the 1, 2 components denote the two-dimensional in-plane directions. This flow may be generated by external,
time-dependent sources such as wind, internal flows beneath the water surface, as well as other water waves. Th
surface deformation due ¥, z, t) is denoted;j(x, r) wherex = (x1, x2) is the two-dimensional in-plane position
vector. An additional variation in height due to the velooity, z, ) associated with a chosen surface wave is
denotedn(x, t). When all flows are irrotational, we can define their associated velocity pote¥iiglg, ) =
(Ve +20)P (X, z,t) andv(X, z, 1) = (Vx + 23;)(X, z, t). Incompressibility requires

Ap(X, 2,0) + 829X, 2,1) = AD(X, 7, 1) + 32P(X, 7,1) = 0, 1)

whereA = Vf is the two-dimensional Laplacian. The kinematic condition applied=at; (X, t) +n(X, ) = ¢ (X, t)
is [6]

3t7l(x’ t) + U(X, ;v t) : Vxé'(x’ t) = UZ(Xv = ;v t) + 3z§0(xa = g-’ t)' (2)
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Upon expanding Eqg. (2) to linear orderjrandg about the free surface, the right-hand side becomes
UZ(Xv {! t) + aZ(p(Xv {1 t) = UZ(Xv ﬁ: t) + 77(X7 t)aZUZ(Xv 1’_], t) + 8ZV(Xv ﬁs t) + O(ﬂz) (3)

At the surfacez = 7, 9,77(x, t) + U(X, 7, t) - Viij(X, 1) = U,(X, 77, t). Now assume that the underlying flow is
weak enough such thdf,(x,z ~ 0,¢) andi are both small. A rigid surface approximation is appropriate for
small Froude number&2/c3 ~ |Vyij|? ~ U.(x,0,1)/|U(x,0,1)| < 1 (c4 is the surface wave phase velocity)
and the free surface boundary conditions can be approximately evaluated®f9]. Although we have assumed
U,(X,z =~ 0,1) = 9,@(X,z ~ 0,1) ~ 0 and a vanishing surface deformatig(x, ) ~ 0, V. - U(X,0,7) =
—3,U,(x,0,1) # 0.

Combining the above approximations with the dynamic boundary conditions (derived from balance of normal
surface stresses at= 0 [6]), we have the pair of coupled equations

X, 1) + Vi - (UX, z=0,)n(Xx, 1)) = Iirg 0, 0(X, z, 1),
z—U™

lim [pdip(X. 2.1) + PUX. 2. 1) - Veg(X. 2. )] = 0 An(X. 1) — pgr(X. 1), (4)
Z

wherep, o, andg are the water density, air—water surface tension, and gravitational acceleration, respectively. If
wavelengths are defined to have scales @)(the system size, or distance of wave propagation shown in Fig. 1
is of O(L) with L > 1. To implement our high frequency [24] asymptotic analyses, we rescale the system such
that all distances are measured in unitsLofs ¢~1. We eventually take the limi¢ — 0 as an approximation
for small, finites. Surface velocities, potentials, and height displacements are now functions of the new variables
X = X/e,z — z/e andt — t/e. We shall further nondimensionalize all distances in terms of the capillary length
¢. = +/o/gp. Time, velocity potentials, and velocities are dimensionalized in unitg@¥g, /g3, and/ge.,
respectively, e.g. for watet] = 1 corresponds to a surface drift velocity-ef16.3 cm/s.

SinceU,(x, z ~ 0, t) &~ 0, we define the flow at the surface by

Ux,z = 0,1) = U(x, 1) + /28U (gg) (5)

In these rescaled coordinatés(x, t) denotes surface flows varying on length scales @f)@nuch greater than
a typical wavelength, whildU(x/e, t /) varies over lengths of @) comparable to a typical wavelength. The
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Fig. 1. The relevant scales in water wave transport. Initially, the system size, observation point, and length scale of the slowly varying drift is
O(L), with surface wave wavelength and scale of the random surface curreit)pfi@on rescaling, the system size becomés)Qwhile the
wavelength and random flow variations ar&D
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amplitude of the slowly varying flowU(x, ) is O(£%), while that of the rapidly varying flowU(x/e, 1 /¢), is
assumed to be of Q/¢). A more detailed discussion of the physical motivation for consideringhscaling is
deferred to Section 5. After rescaling, the boundary conditions (4) evaluated Atbecome

on(X, t) + Vy - [(U(x, 1) + /esU <§ g)) n(x)} = Iirra d;¢0(X, 0),
z—>U™

dro(X, 1) + U(X, 1) - Vep(X, 1) + /e8U C—( é) Vep(X, 1) = eAn(X, 1) — e (X, 1). (6)

Inthe limiting case wher&U = 0 andU(X, ¢t) = Ug is strictly uniform, Eq. (11) lead to the familiar capillary—gravity
wave dispersion relation

H(K) = v/ (k3 + k) tanhkh + Ug - k = 2(K) + U - k, @

if all dynamical variables are assumed to follow a time dependence of the fdfth Although drift that varies
mildly over a wavelength can be treated with characteristics and WKB theory, random flows that varying appreciably
over a wavelength require a statistical approach. Without loss of generality, we ¢tbosdave mean zero and
an isotropic two-point correlation functiqaU; (x, 1)8U; (X', t)) = Rjj(Ix — X'|, [t —¢’|), where(, j) = (1, 2) and
(---) denotes an ensemble average over realizatiodb ¢f, 1).
Sincex andr play a symmetrical role in the subsequent equations, we introduce the new vXriah(lg, ) and
define the spatial Fourier decompositions for the dynamical wave variables

. _ “igxCoshg(h +2) [ nqerter
oX. —h<z<0)= ngo(@e s "00= [ n@eex (8)
the surface flows
U(X):/ UQe 12X, sU (5) =/5U(Q)e*iQ'X/€, (9)
0 € 0
and the correlations
Rijj(X) = /QRij(Q)e_iQ'X- (10)

In Egs. (8) and (9R = (0, —wy) = (g1, g2, —w), ¢ = |d| = \Jq? +¢3, and [, = 27) 73 [ dg1 dga /"33 deoy.

We similarly defineP = (p, —w,) andK = (k, —wy) for subsequent analyses. The Fourier integrals, fexclude

q = 0due to the incompressibility constraifjty(x, r) = 0, while theq = 0 mode fory gives an irrelevant constant
shift to the velocity potential. Note thatin Eq. (8) manifestly satisfies Laplace’s Eq. (9). Substituting Eq. (9) into
the boundary conditions, we obtain,

i (K) — fn(K QU - k—|f/ (
K K —
oK) =i /U(Q) (k= DK ~ Q)—uf/ sUQ) - ( 5Q> < Q)

&

>8U(Q) k = o(K) k tanhekh,

= —(ek® + e Hn(K), (11)
where theSU(Q) are correlated according to
(8U;(P)8U;(Q)) = Rij(IPDS(P + Q). (12)

Since the correlatioR;jj(X) is symmetric ini <> j, and depends only upon the magnitydg Rjj(|P — Q|) is real.
Here,(|P — Q) represents|p — ql, |wp — wyl).
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3. TheWigner distribution and asymptotic analyses

The intensity of the dynamical wave variables can be represented by the product of two Green functions evaluated
atpointsX+¢Y/2, whereY = (y, r). The difference in their evaluation point¥,, resolves the waves of wave vector
k| ~ 27 /(ey) and frequency» ~ 27 /(et). Elter and Molyneux [19] used this representation to study shallow
water wave propagation over arandom bottom. However, for the finite depth surface wave problem, where the Green
function is not simple, and where two length scales are treated, it is convenient to use the Fourier representation of
the Wigner distribution [24,27,28].
Definey = (¥1, ¥2) = (n(X), (X, z = 0)) and the Wigner distribution:
i Y Y
Wi (X, K) = (27)73 / ek Ty, (x - %) v (X + %) v, (13)
whereX is a central field point from which we consider two neighboring po¥ts ¢Y/2, and their intervening
wave field. Fourier transforming thévariable using Eqg. (8) we find,
P K P K
Wiy(P,K) = re) 3y (5 — = Jvi (-5 —=). (14)
2 ¢ 2 ¢

The total wave energy, comprising gravitational, kinetic, and surface tension contributions is

1 2 2 1 0 2 2 1 0 5 2
E:—/[me + In| ]+—f/ dz |U + zU; + v ——// dz |U + 2U,|
2 x 2 xJ—h 2x —h

=%/(szr1)|n(k)|2+ktanhkh|go(k,z =02 (15)
k

The energy above has been expanded to an ordgkin) andg (X, z, t) consistent with the approximations used to
derive Eq. (4). In arriving at the last equality in (15), we have integrated by parts, used the Fourier decompositions
and imposed an impenetrable bottom condition at —&. The wave energy density carried by wave vegtand
frequencywy is [28]

E(X,K) = 3Tr[A(W(X, K)], (16)

whereA11(k) = k2 + 1, A22(k) = k tanhkh, Ao = Ap1 = 0.

In the presence of slowly varying drift, we ident¥¥/(X, K) as thelocal Wigner distribution at positiox and
time r representing waves of wave vectowith fast frequencyo;.. An equation for its Fourier transforiV(P, K)
can be derived by considering the equation for the vector ffeiltiplied by the boundary conditions (Eqg. (4)):

Lie00p) =1 | U@ - (k=@ K~ +ive [ 3U@- (k= 2) v, (x-2).
where the operatdr(K) is defined by

ok ilK| tanhs|k|h>

—iek?+e ) (18)

L(K) = (

We have redefined the physical wave number td& feso thatk ~ O(1). Upon using Egs. (14) and (17), (see
Appendix A)

. P K . k
iLje <E - Z) Wij (P, K) =IfQU(Q) . (—g + g —q8j2> Wij <P— Q. K+ %})

Kk
+i\/E/Q8U(Q)-<—g+g—g8jg> Wi (P—g,K—i—%). (19)
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If we now assume thaW/(P, K) can be represented by functions that vary independently at the two relevant length
and time scale®? — P + Z/e (whereE = (& —wg)). This amounts to the Fourier equivalent of a two-scale
expansion wher& is replaced byX andY = X/¢ [24]. The two new independent wave vect&and = are both

of O(1). Expanding the Wigner distribution in powers gE,

W(P, K) = Wo(P, &, K) + /eWi2(P, &, K) + eW1 (P, E, K) + O(c¥?). (20)

We expand each quantity appearingin Eq. (19) in powe&aind equate like powers. Expanding-K/s+P/2) =
e Lo(K) + L1(K, P) + O(¢), we have

- ik tanhkh Lo, ip-kfk)
Loy = " . LKpP=(2"7 plf : (21)
—i(kc+ 1) —wg ip-k 5Wp
where
hk 4 sinhkh coshkh
k) = — 22
A 2k costtkh (22)

3.1. Order e~ Lterms

Upon subtracting its adjoint from Eq. (19), and collecting terms ef ®),
Wo(P, &, K)LJ (K+) — Lo(K_)Wo(P, Z. K) = 0. (23)

whereK . = K+ 5/2. To solve Eq. (23), we use the eigenvalues and normalized eigenvectogsfud its complex
adjointLg. The eigenvectors corresponding to the eigenvaty@é&) — w; — iy andr2(k) — wy + iy are

o V20 (K
b, = 2 and ¢, = () , (24)
1 VoK)
20 (K) 2

respectively, where (k) = £2(k)/k% + 1, andr = +1. The physical origin of the small imaginary tergn arises

from causality, but can also be explicitly derived from considerations of an infinitesimally small viscous dissipation
[11]. Although we have assumed— 0, for our model to be valid, the viscosity need only be small enough such that
surface waves are not attenuated before they have a chance to multiply scatter and enter the transport or diffusio
regimes. Since in the frequency domain, wave dissipation is givep by 2vk? [29] wherev is the kinematic
viscosity andcg(k) = |V $2 (k)| is the group velocity, the corresponding decay Ier‘@h ~ cg(k)/(vkz) must be

greater than the relevant wave propagation distance. Therefore,

azcg(k) > 27vk?, (25)

for transport to survive dissipation. The inequality (25) is most easily satisfied in the shallow water wave regime for
transport. Even in deep water, for 100 cm waves, criterion (25) requizes$ x 104, providing an ample regime
for transport behavior to take hold. For 10 cm waves, the criteriensis2 x 10732,
A solution that manifestly satisfies Eq. (23) is constructed by expanding in the basisdfitatrices composed
from the eigenvectors

Wo(P, £.K) = 8(8) 3 arer (P, K)be (k)b (k). (26)

7,7'=%+



G. Bal, T. Chou/Wave Motion 35 (2002) 107-124 113

where theéf (£) constraint arises from imposing the condition thgin Eq. (26) defines the high frequency dispersion
relation. Upon right[left] multiplying Eq. (26) by the eigenvectors of the adjoint probteﬂp)[cj(kﬁ], we find
ay_=a_y =0,anda__(P, E,K) =a_(P, E,K) = a4+ (P, B, —=K) = a (P, E, —K) # 0 only if Z = 0. From
the leading order in Eq. (19) we deduce

a: (X, K) = a; (X, K)8(wr + TH(X, K)), 27)
where
H(X, k) = H(x, k, t) = +/ (k3 + k) tanhkh 4+ Ug(x, t) - k. (28)

This relation states that high frequencigsare related to wave number through the familiar capillary—gravity wave
dispersion relation.

From the definition 0¥V, we see that thél, 1) component of\ is the local envelop of the ensemble averaged
wave intensityn (X, K)|? =~ a_ (X, K)a(k). Similarly, from the energy (Eq. (16)), we see immediately that the local
ensemble averaged energy density

(E(XX, K)) = Ann(a k) (a(X, K)) + A22(K) (a(X, K)) = 2(K)(a(X, K)), (29)

wherea (X, K) = ay (X, K). Therefore, since the starting dynamical equations are linear, we can idegifyK)) as
the ensemble averaged local wave action associated with waves of wavek@€pand frequencw; determined
by the usual dispersion relation (Egs. (27) and (28)). The wave agiiof K)), rather than the energy density
(E (X, K)) is the conserved quantity [3,4,6].

3.2. Order e 2 terms

Collecting terms of ordes—1/2 in the symmetrised form of Eq. (19), we obtain

[84]

Wio(P. E. K)LT(K ) — Lo(K_)Wy/2(P, Z. K) + /QU(Q) LWy 2(P

P,E—QK PE_QK-—
-0.2-0K - [ 0@k Wo(ZE3EEE ) [ 50 -kawo (PE3E2)

_/qu(Q) -q |:W0 (W) S+ SWp <P’E_—(2?’K_Q)] =0, (30)

where
00
S= .

Similarly, decomposingV,,, in the basis matrices composed h);f(k_)bj,(k+) (as in Eq. (26)), substituting
Wy (P, K)§(E) from Eqg. (26) into the above, and inverse Fourier transforming in the slow vafake obtain

SU(E) - T o/ (X, & K)be (K )b, (Ky )8 (wx + TH)

WX, 5,10 = n,zziwk_ — o, + 720 —T2(0) +UX) - E+ 20y e
where
T o (X, & K) =K_an (X, K)el (Kb (Ke) — Kpar (X, KO)b! (Ko )er (k)
+§ 3l % Kee] (kb (ki) + a, (X, Kbl (ke (k). (32)

p==
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3.3. Order £% terms

The terms of ordet? contained in the symmetrised form of Eq. (19) read

iWo (P, K)LI(—P) —iL1(P)Wo(P, K) — i/Qk- Uu@q- ViWo(P — Q, E,K)

+i/QU(Q) -PWo(P—Q, E,K) + i/QSU(Q) -k W2 (P, E-Q K- %)

i /QU(Q) .GISWo(P — Q. £, K) + Wo(P — Q, &, K)S]

—i/ sUQ) - k- Wy <P, E—-QK+ %)
Q

—/Q8U(Q) -q |:SW1/2 (P, E—-—Q,K+ %) +Wy2 (P, E—-—QK-— %) S]

WAL LW + / U(Q - EW,(P—Q 5, K) =0, (33)
o

To obtain an equation for the statistical ensemble avetagéX, K)), we left-multiply Eq. (33) bycI(k) and
right-multiply by c (k) and substitut&Vy , from Eq. (31). We obtain a closed equation égKX, K) = (a4 (X, K))

(we henceforth suppress tke - ) notation fora(X, K) and E (X, K)) by truncating terms containindy1. Clearly,

from Eq. (24),cI(k)(iW1Lg — iLoWyp)ci (k) = 0. Furthermore, we assuméW1(P — Q, =, K)) ~ 0 which

follows from ergodicity of dynamical systems, and has been used in the propagation of waves in random media
(see [24,31]). The transport equations resulting from this truncation are rigorously justified in the scalar case
[32,33].

4. Thesurface wavetransport equation

The main mathematical result of this paper, an evolution equation for the ensemble averaged wave action
a(x, k, 1) (recall thata; (X, K) = a(x, k, 1)§(wr & H(X, k, 1))) follows from Eg. (33) above (cf. Appendix A) and
reads,

daX, K, t) + VikHX, K, 1) - Vea(X, K, 1) — VeH(X, K, 1) - Vika(X, K, 1)
= _E(X’ k7 t)a(xv k? Z‘) + / G(q7 ka Xv t)a(xa qa t)v (34)
Q

whereH is given in Eq. (28). The left-hand side in Eq. (34) corresponds to wave action propagation in the absence
of random fluctuations. It is equivalent to the equations obtained by the ray theory, or a WKB expansion (see
Section 5.1). The two terms on the right-hand side of Eq. (34) represent refraction, or “scattering” of wave action
out of and into waves with wave vectky respectively. In deriving Eq. (34) we have inverse Fourier transformed
back to the slow field point variabbe and used the relatiofer (k) — f (k)a~1(k))k = V82 (k). We also assumed
Rijj(Q)g; = Rjj(Q)g; = 0, which would always be valid for divergence-free flows in two dimensions. Although
the perturbatiosU is not divergence-free in generd,- §U(X, z = 0) = —9,8U, (X, 0) # 0, by using symmetry
considerations, we will show in Section 5.2 tla(Q)g; = Rij(Q)g; = 0.
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The scattering rates are
XX, Kk, 1) = ZnZ / dgdw g; Rij(q—k, w)kjbI(k)c,(q)b:r(q)ch(k) x 8(w—tH(X, 1q, 1) + H(X, K, 1)),
=%

o(x.q.k)=2ry" / dqdw tg; Rij(zq — k, w)kj|bj-(rq)c+(k)|2
=%

w8(w — THX, Q1) + HX, K, 1)), (35)
where
t t _ (rak) + a(@)(ra(q) + a(k) Fooe o2 - 0@ +ak)?
b, (K)c: (@b, (e (k) = 20 (02 (@) , lb; (K)cr ()|~ = T dau@) (36)

Physically, X (x, k, ¢) is a decay rate arising from scattering of action out of wave vdct@he typical distance
traveled by a wave before it is significantly redirected, or converted into different frequency modes, is defined by
the mean free path

_ Cg(k)
o X (k)

mfp ~ O(D. (37)
The mean free path described here carries a different interpretation from that considered in weakly nonlinear, or
multiple scattering theories [25,34] where one treats a low density of scatterers. Rather than strong, rare scatterings
over every distancémg ~ O(1), we have considered constant, but weak interaction with an extended, random flow
field. Although here, each scattering is<®and weak, over a distance of(D, approximatelye —1 interactions
arise, ultimately producingms ~ O(1). The kerneb (x, g, k, #) represents scattering of action from wave vector
g into action with wave vectok. Upon integration ovew, both X ando include effects of inelastic scattering via
the argumenH(x, tq, r) — H(X, Kk, 7) in the correlation functiorRjj. Note that the slowly varying drit(x, ¢) also
enters parametrically in the scattering throdx, k, 7).

However, when the power spectrumsigorrelated in frequencR(Q) = R(Q)$(w), i.e. when the random field
8U is slowly varying in time, the resulting termdgtH(x, tq, t) — H(X, k, 7)) (in X (x, k, ¢)) ands(tH(X, g, 7) —
H(x, k, 1)) (in o(q, k, X, 7)) imply that we can consider the independent transport of waves at a fixed frequency
wo = H(X, Kk, ¢). Even if all waves have frequenayy, waves of different wave vectors may nevertheless interact,
giving rise to wave number conversion and Doppler effects.

5. Resultsand discussion

In addition to treating scattering from surface flows containing two explicit length scales, we have further assumed
that the amplitude 08U scales as? with 8 = 1/2: the random flows are correspondingly weakened as the high
frequency limit is taken. Since scattering strength is proportional to the power spectrum of the random flows and
is quadratic iU, heuristically, the mean free pathy ~ cg(k)/E(k)sl—zﬂ. For 8 > 1/2, the scattering is too
weak and the mean free path diverges. In this limit, waves are nearly freely propagating and can be described by the
slowly varying flows alone, or WKB theory. B < 1/2,£mf, — 0 and the scattering becomes so frequent that over
a propagation distance of(D, the large number of scatterings may lead to diffusive (cf. Section 5.4) behavior [26].
Therefore, only random flows that have the scafing 1/2 contribute to the wave transport regime. Moreover, wave
localization phenomena are precluded wigen 0, even in the limit of time-independesit). In a two-dimensional
random environment, the localization length over which wave diffusion is inhibited is approximately [26]

Cioc ~ Umfp €XPle~ klmep) ~ 172 exple =2F). (38)
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As long as the random potential is scaled wedlger- 0), £,oc — oo, and strong localization will not take hold.
In the following subsections, we systematically discuss the salient features of water wave transport contained in
Eq. (34) and derive wave diffusion for propagation distange3(1).

5.1. Sowly varying drift: U(x,7) £ 0,6U =0

First consider the case where surface flows vary only on scales much larger than the longest wavejgngth 2
considered, i.eSU = 0. The left-hand side of Eq. (34) represents wave action transport over slowly varying drift
and may describe short wavelength modes propagating over flows generated by underlying long surface waves.

The nonscattering terms of the transport equation (34) is equivalent to the results obtained by ray theory (WKB
expansion) and conservation of wave action (CWA) [1-6]. Assume the WKB expansion [35,36]

ne = Ap(x, N ESXV and g, = Ay (x, 1) €50/, (39)

with smoothly varyingA,, andA,. Upon using the abowansatzin Eq. (13) and setting — 0, we havex(x, k, 1) =
|A12(X, 1)8(K— VxS(X, 1)) where|A|? = 2a(k)|A,|? = 2a~1(k)| A,|?. Substitution of this expression farx, k, 1)
into Eq. (34), we obtain the following possible equationsS6x, 1) and|A|2(x, 1)

S +HX VeS, 1) =0,  3|APX, 1) + Vx - (JAIPViH(X, V,S, 1)) = 0. (40)

The first equation is the eikonal equation, while the second equation is the wave action amplitude equation. Recalling
that|A,,|2 = a(k)|A|%/2, we obtain the following transport equation for the height amplitude:

3 14, + Vi - 14,2 ViH(X, V¢S) | =0 (41)
"\ a(v,9) (v, S) P '

Eq. (41) is the same as Eq. (8) of [5], except thatf2iss replaced here by owing to our inclusion of surface
tension.
Wave action conservation can be understood by noting that

%a(x(t), K(),1) =0, (42)

where the characteristi¢X (¢), K (¢)) satisfy Hamilton’s equations

dX(t)_VHX K dK ()
= Vk (X(@), K(1)), a

Here, X (t) and K (¢) are the position and wave number of the waves. The solutions to the ordinary differential
equation (43) are the characteristic curves used to solve Eq. (40) [37].

= —VeHX @), K (1)). (43)

5.2. Correlation functions and conservation laws

Now consider the case whest) # 0. The scattering rates defined by Eq. (35) depend upon the precise form of
the random flow correlatioRjj. There are actually six additional terms in the calculatioa ahd X which vanish
because

2
ZRij (Qq,; =0, fori=1,2 (44)
j=1

To prove relationship (44) we consider thi@ee-dimensional and incompressibility properties 6fJ(x, z,1) =
SUX, 2). If U (K, k;) andsU, (K, —k,) have the same probability distribution; thus,

(8Ui (P, p2)8U (K, k;)) = (8Ui(P, p-)8U (K, —k;)), (45)
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and
2 2 2 00
E:MP+QRMKMj=2:@&02pﬂﬁUﬂK@:QWﬁ:E:GUKPJ::m/ d@SUﬂKkgh>
j=1 j=1 j=1 -
=—/'<aMR0mUAK@»@d@=o,

where we have invoked the a Fourier transform ingtirection, incompressibility, and Eq. (45), respectively. This
result requires the correlation function to be transverse:

Rij(1Q) = R(q, ;) [au - %] , (46)

whereR(q, w,) is a scalar function. This transverse nature is the same tensoral structure that would arise for a
incompressible two-dimensional fluid and is expected since we considered an infinite layer of fluid of fixed depth
h [38]. The correlation kernels in the scattering integrals can now be written as

q'@q—kw'@q—b]_TRﬂﬂ?—KD
7 — k|2 ~ ltg—k?

qi Rij(|1Q—-KDk; = R(I7Q — KI) [q~ k— q°k? sin?o, 47
wheref denotes the angle betwegrandk. The scattering must also satisfy the support of&Hanctions; for
U(X) = 0 only|q| = |K]| satisfy the3-function constraints. In the presence of slowly varying drift, the evolution of
a(X, |[K| # |Q|) can “Doppler” couple to that ai(X, Q).

It is straightforward to show from the explicit expressions (35) that

(x k, 1) =/ dgo(x, q, k, 7). (48)

This relation indicates that the scattering operator on the right-hand side of Eq. (34) is conservative: Integrating
over the whole phase space yields

d
E/x/ka(x, k,t) =0. (49)

Eq. (49) is the generalization of CWA to include scattering of action from highly oscillating randomsflb@6s e).
Althougha(x, k, t) is conserved, that the total water wave enekgy, k, t) = £2(K)a(x, k, ¢) is not conserved is
easy to show iU(x) is small enough such that tldefunction in theo (q, X, k, 7) integral is triggered only when
T = +1. SinceH(x, k, 1)a(x, k, t) is conserved (as can be seen from Eq. (34)),

dE—
dr

This nonconservation results from the energy that is exchanged between waves and the underlying flawishen
large enough for Doppler coupling & —1), an additional term arises and neithlKk, K, t)a(x, k, t) nor E(x, K, t)
are conserved.

_ﬂf/kumnaxko¢a (50)
dtxk

5.3. Doppler-coupled scattering

For simplicity, we only discuss here time-independahtnonetheless, the transport equation (34) accommodates
arich variety of behaviors. All wave interactions with the underlying flow are thus elastic, and we need only consider
a single fixed wave frequenayp and evaluate the support 8trH(x, g, t) — H(X, k, 7)) (for X (x, k, #)) and
S(tH(x, q,1) — H(X, k, 1)) (for o (X, q, k, 1)).
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Fig. 2. (a) Contour plot oH(qg). Each grayscale corresponds to a different constant valdégf= H(k) = wp. (b) The band ofj that satisfies
0.625 < wp < 0.6625. Wave vectorg andk that lie in this band can couplex, k, 1) to a(X, g, ¢) via wave scattering.

Consider action contained in water waves of fixed wave vactdrhenU(x) = 0, onlyt = +1 terms contribute
to the integration oveq as long asgq| = |k|. In this case, we can define the anglek = k2 cosf and reduce the
cross-sections to single angular integrals over

.0
qiRij(1g—Kkg; = R (’2ksm—

5
> ) k2 _sin'e T=+1 (51)

4 sirt0/2’

AssumingR(|q|) is monotonically decreasing, the most important contribution to the scattering occurgjahdn
k are collinear.

WhenU(x) # 0, andr = +1, the sets of] which satisfy2(q) + UXX) - q = £2(k) + U(X) - k = wg trace
out closed ellipse-like curves and are shown in the contour plok$(gf in Fig. 2(a). The parameters used are
U(x) - k1 = —0.5k1 andk = oo (the —k1, —q; directions are defined by the directiondfx)). Each grayscale
corresponds to a curve defined by fixek) = wg. All wave vectorgyin each contour contribute to the integration
in the expressions far' (k) andH(q, k). Thus, slowly varying drift can induce an indirect Doppler coupling between
waves with different wave numbers, with the most drastic coupling occurring at the two far ends of a particular oval
curve. For example, in Fig. 2(b), the dark band dengtesch thatH(q) = wg when 0625 < wp < 0.6625. The
wave vectorgl ~ (—0.3, 0) andg ~ (0.8, 0) are two of many that contribute to the scattering terms. Therefore, the
evolution ofa(x, k ~ (—0.3, 0), r) also depends am(x, q ~ (0.8, 0), ¢) via the second term on the right-hand side
of Eq. (34).

ProvidedU(x) is sufficiently large, the = —1 terms can also contribute to scattering. The dissipative scattering
rate X (K)a(x, k, t) will only change quantitatively since additiorg$ will contribute to X' (k). However, this decay
process depends only dnand is not coupled ta(x, |g] # |K|, 7). Wave vectorg that satisfy thes-function
in the o (g, X, k, t)a(x, g, t) term will, as whent = +1, lead to indirect Doppler coupling. This occurs when
H(a, x, k, t) = —wp and, as we shall see, allows Doppler coupling of waves with more widely varying wavelengths
than compared to the = +1 case. Ift = —1 terms arise, the drift frame energyx, k, 1)H(X, k) is no longer
conserved. Fig. 3(a) plotd(g1, g2 = 0) for UX) = 1 < V2, U(X) = /2, andU(x) = 1.6 > +/2. Sincewy
andH(q) are identical functions;-wg can take on values below the upper dotted ling £ 0.22 forU = 1.6).
Therefore, coupling for = —1 andg> = 0 occurs for values of wg between the dotted lines. Depending upon
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Fig. 3. Conditions for Doppler coupling when= —1. (a) Plot ofH(g1, g2 = 0; h = o0) for U = 1,U = +/2, andU = 1.6. Only forU > /2
doesH(q1, g2 = 0; h = o0) < 0. (b) Contour plot ofH(g)|. Each grayscale corresponds to a different constant valdémf= H(k) = —wp.
(c) The bands of satisfying 0414 < —wp < 0.468. (d) An expanded view of the coupling bands fd¥156 < —wp < 0.1368. Note that wave
numbers of very small modulus can couple with wave numbers of significantly larger modulus.

the value ofwg, coupling can occur at two or four different poirgs= (g1, 0). Fig. 3(b) shows a contour plot of
H(qg)| as a function ofg1, g2). A level set lying between the dotted lines(in) will slice out two bands; one band
corresponds to all values &fthat couple tay lying in the associated second band. Two bands determined by the
interval 0414 < —wp < 0.468 are shown in Fig. 3(c). For akylying in the inner band of Fig. 3(c), at] lying

in the outer band will contribute to Doppler coupling for= —1, and vice versa. As-wy is increased, the inner
(outer) band decreases (increases) in size, with the central band vanishing-wiapproaches the upper dotted
linein (a) where the = —1 coupling evaporates. #wg is decreased, the two bands merge, then disappeabgs
reaches the lower limit. Fig. 3(d) is an expanded view of the two bands for stBab®< —wp < 0.1368. Note

that a small island odj or k appears for very small wave vectors. The water wave scattering representéql By

can therefore couple very long wavelength modes with very short wavelength modes (the two larger bands to the
right in Fig. 3(d)). However, the strength of this coupling is still determined by the magnitugl&pf|q — K|k,
which may be small for largég — K|. If 8U(¢/¢) is time-dependent, the oval curves discussed in Figs. 2 and 3
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will be broadened as interactions among waves of different frequencies arise. Not only do waves of different wave
vectors interact through th#J, within each oval curve, but waves of different frequency interact by virtue of the
time dependence @, coupling different level sets.

The depth dependence of Doppler coupling will be relevant witghk < 1 whereg andk are the magnitudes
of the wave vectors of two Doppler-coupled waves. et 41, finite depth reduces the ellipticity of the coupling
bands, resulting in weaker Doppler effects. Since the water wave phase velocity decreagesvitiite depth
will also reduce the critical/ (x) required fort = —1 Doppler coupling. For small/ (x), it is clear that the
8-functions associated with the = —1 terms ino (g, k) are first triggered when the andk are antiparallel,

U-k = —k|U|,U-q= +¢|U|. Fig. 4(a) shows the phase velocity for various degthi order fort = —1 to
contribute to scattering/ > cg(k; h). ForU =~ 1.6, this condition holds in thé = oo case for 6 S k < 2

(the dashed region @f; (k, 00)). Recall that our starting equations (system (4)) are valid only in the small Froude
number limit. However, for water waves propagating over infinite depts, —1 coupling required/ > Umin =
ming{cy (k)}, with ¢4 (kmin) =~ 22 cm/s. Therefore, in such “supersonic” cases, where —1 is relevant, our
treatment is accurate only at wave vectbfsuch thatl < cy(k*; h), €.9. the thick solid portion afy (k; co) in

Fig. 4(a). FolU Z Unin, ther = —1 term can couple wave vectafss 0 < kmin With k &~ 2 — 3 > kmin. The rich

t = —1 Doppler coupling displayed in Fig. 3 is peculiar to water waves with a dispersion retitipthat behaves
asq¥?, U - q, or¢%/? depending on the wavelength. Doppler coupling in water wave propagation is very different
from that arising in acoustic wave propagation in an incompressible, randomly flowing fluid [21,22,39] where
H(g) = cs|gl. An additional Doppler coupling analogous to the= —1 coupling for water waves arises only for
supersonic random flows whéh(x) > cs, independent ¢f. In such instances, compressibility effects must also be
considered.

Fig. 4(b) plots the minimum drift velocity/min(k) wherer = —1 Doppler coupling first occurs at any wave
vector. The wave vector at which coupling first occurs is also shown by the dashed curve. For shallow water,
h < /3, Unin(h)  +/h and very long wavelengths couple first (smialUmin)). For depths: > +/3 (~ 3cm
for water), the minimum drift required quickly increasestié(co) = /2, while the initial coupling occurs at
increasing wave vectors until at infinite depth, where the first wave vector to Doppler couple approashés
(in water, this corresponds to wavelengths-06.3 cm). The conditions fot = —1 Doppler coupling outlined in
Figs. 2 and 3 apply to bot®' (k) ando (g, k), with the proviso that] andk are parallel for¥ (k) and antiparallel
for o (g, k). However, even wheli < Upmin such that onlyy = +1 applies, the set af corresponding to a constant

phase velocity ¢ (k:h) U, for ==—1 coupling
3 ‘ ‘ : ‘ 1.5 : : :
2 = 11
=
""" '"///——- h=oco I ]
B D2 05y [ KU,
- - h:1 I Umirl
[ — = I
(). h=0.5 :
0 ; , 0 :
0 1 2 3 4 5 0 1 2 3 4
k h

Fig. 4.U > ¢4 (k) is required forr = —1 coupling. (a) The phase velocity (k) for various deptha. The velocity shown by the solid horizontal
line U ~ 1.6 > ¢4 (k; h = o0) for 0.5 < k < 2. (b) The minimumUnmin(h) required for existence af = —1 coupling at any wave vectar,
and the wave vectdr(Unmin) at which this first happens.
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value ofH(k) = wo, traces out a noncircular curve. There is Doppler coupling between wave nugnbefksas
long asU # 0.

5.4. Surface wave diffusion

We now consider the radiative transfer equation (34) over propagation distances long compared to the mean free
pathfmsp. IMposing an additional rescaling and measuring all distances in terms of the mean free path, we introduce
another scaling —1, proportional to the number of mean free paths traveled. Sinee 1/2, transport of wave
action prevails when @) < |x| ~ O(1), while diffusion may arise when @ 1) ~ |x| < £joc.

In the special case of time-independéblt, waves of each frequency satisfy Eq. (34) independently. To derive
a diffusion equation for waves of frequeney, we assume for simplicity thafl is constant and small such that
wo+H(X, q) # 0(ther = —1terms are never triggered by #hdéunctions). Expanding all quantities in the transport
equation (34) in powers af, one can find

a+U-Vea—Vy-D:-Vea=0. (52)
The effective driftU is given by
[ ViHK)S (K - U+ 2(K) — wo)

U= 53
[i8(k- U+ (k) — wo) 3)
ForU = 0, 1 = oo andws.(K) = /&3 + k, the isotropic diffusion tensor becomes
1 c§ (k)
D=—" | |V0R2eo(®|?208 8(200(q) — w0) = ———1 54
S /Ql 0200([°00" 8(200(Q) — @0) ox " (54)

whereV,,, = ]kS(H(k) — wp) andl is the 2x 2 identity matrix. Thus, the diffusion equation fa¢x, r) assumes
the standard form [26]

cgk)
T2

Aa = 0. (55)

Recall that dissipation may allow for transport, butkfzﬁﬁszcg(k) (compare Eg. (25)), diffusion can be precluded.
For one meter waves, the possibility of diffusion requisesc 8 x 10~3. Diffusion exists strictly in the limit

of time-independentU; for time-varyingéU, wave action dynamics becomes more complicated due to random
flow-mediated energy exchange among the waves.

6. Summary and conclusions

We have used the Wigner distribution to derive the transport equations for water wave propagation over a spatially
random drift composed of a slowly varying p&rtX), and a rapidly varying par/esU(X/¢). The slowly varying
part determines the characteristics on which the waves propagate. We recover the standard result obtained from
WKB theory: conservation of wave action. Provid®g(Q)g; = 0, we extend CWA to include wave scattering
from correlationsrj; of the rapidly varying (both in space and time) random flow. Evolution equations for the
nonconserved wave intensity and energy density can be readily obtained from Eq. (34). Moreover, conservation of
drift frame energy:(x, k, t)H(X, k, #) requires smalU < Unin and absence af = —1 contributions to scattering.

Explicit expressions for the scattering rafeéx, k, ) ando (g, X, K, ¢) are given in Eg. (35). Even in the limiting
case of time-independesU, wave number conversion can arise for a fixed frequency. For fixed H(k), we
find the set ofy such that thé-functions in Eq. (35) are supported. This setjofidicates the wave vectors of the
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background surface flow that can mediate Doppler coupling of the water waves. Although widely varying wave
numbers can Doppler couple, supported by §Henction constraints, particularly far = —1, the correlation
Rij(]q—K]) also decreases for largg— k|. For long times, multiple weak scattering nonetheless exchanges action
among disparate wave numbers within the transport regime. Our collective results, including water wave action
diffusion, may provide a model for describing linear ocean wave propagation over random flows of different length
scales. The scattering terms in Eq. (34) also provide a means to correlate sea surface wave spectra t®;gtatistics
of finer scale random flows.

The recent extension by [5] of CWA to include rotational flows also suggests that an explicit consideration of
velocity and pressure can be used to generalize the present study to include rotational random flows. Other feasibl
extensions include more detailed analyses of the energy and action cascade arising from a time-ddgpendent
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Appendix A. Derivation of thetransport equation

Some of the steps in the derivation of Eqg. (34) are outlined here. By taking the time derivai}eimEqg. (14)
and using the definition (17) faf, we obtain

: K P : K P
0= (27&)%iW;e(P.K)L}; <—; - E) — (2me)%iLi (—; + 5) Wi (P, K)

+i/QU(Q) - (—';‘ +2- q8i2> Vi <—§ to- Q) v (-% - g)
oo (5 a0 19

oo (+3-)o (L5 (£-

-ive[ @ (-5-2-Z5e)wi (-S+2)w(-5-3-2) A1)

To rewrite the above expression as a functiogfonly, we relabel appropriately, e.g.

K_P__K_P K. P o K_P
e 2 & 2 & 2 T 2’

for the third term on the right-hand side of Eq. (A.1). Similarly relabelling for all relevant terms yields the integral
equation (19).
The Qe ~Y/2) terms of Eq. (19) determiné/; . Decomposing

(A.2)

WioP, 2K = 3 a? (P, 2, Kb, (k)b (ky), (A.3)
T,7'=%
and substituting into Eg. (30) we find the coefﬂmemffé ,Where in this casefﬁz), (1/2) # 0. Due to the nonlocal

nature of the third term on the right-hand side of Eq. (30), we must first inverse Fourler transform the slow wave
vector variable back tX.
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To extract the @°) terms from Eq. (19) we need to expahdo orders?, theL; term. Similarly, the terms
WP — Q, E, K £+ £Q/2) must be expanded:

W(P —Q E K+ %EQ) =W(P - Q, E,K) + 3eq- Vi\W(P - Q, E,K) + O(e?). (A.4)
Theeq- ViW(PP — Q, E, K) terms combine with the-e~1U(Q) - k_ + ¢~ U(Q) - k. terms from the third and

fourth terms in Eq. (19) to give the third term on the right of Eq. (33). §dedependent, order terms (the sixth,
seventh, and eighth terms on the right-hand side of Eq. (33)) come from collecting

k
+./25U(Q) - (‘g + Z—i) VEWy (P, E-QK<+ g) , (A.5)

from the last two terms in Eq. (19). The regularizatiprallows certain terms involvingVy > (cf. Eqg. (31)) to
combine in the form

. 1
i [wk Ton, FUR(,) — 20 FUX) £+ 2y C'C‘]
= —27ié (a)kf — o, +7T'2(Kky) — 1R2(Kk-) + UX) - S) . (A.6)

Upon using theon-shell relation (27), the ensemble averaged time evolution of the Wigner amplitudek, 1)
can be succinctly written in the form:

(%, K, 1) + ViHG K, 1) - Vear (6, K, 1) — VeHX, K, 1) - Viag (%, K, 1)
=—X (X K, Day(x, K, 1)+ Z/ o (X, G, K, 1), (X, g, 1). (A7)
u=+"2

Using the form forWg found from Eq. (23) to findNy,2, we substitute into Eq. (33) to find the result (34), the
transport equation for one of the diagonal intensities of the Wigner distribution. We have explicitly used eigenbasis

orthonormalityb;r(k) - C7(K) = d; - and the fact thad_ (x, k, 1) = a1 (X, =K, t).
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