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[1] Transformation of gravity capillary surface waves on the current created by a large-
amplitude internal wave (IW) is considered. The trajectories of surface wave packets in a
domain of coordinate and wave number are calculated for different IW amplitudes. In
particular, the location of maxima and minima of the surface wave (SW) spectral density
W with respect to the IW profile is studied. It is shown that for sufficiently large-amplitude
internal solitary waves (solitons) propagating in the same direction as the surface wave the
minimum of W for all SW lengths is situated over the crest of the soliton. The
corresponding ‘‘critical’’ value of the soliton amplitude is calculated. The noncollinear
propagation of internal and surface waves is also considered. Finally, some numerical
results obtained using the kinetic equation that describes the transformation of W in a field
of large-amplitude internal wave solitons are presented that are in agreement with the
qualitative description and with recent observations of radar scattering from strong internal
waves in a coastal area. INDEX TERMS: 4572 Oceanography: Physical: Upper ocean processes; 4560
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1. Introduction

[2] The influence of internal gravity waves on wind
waves has been discussed for several decades. The interest
in this problem has increased especially since the develop-
ment of remote sensing facilities that measure the effects of
internal waves on the sea surface [Hughes and Gower,
1983; Hughes and Dawson, 1988; Gasparovic et al.,
1988; Thompson et al., 1988; Lyzenga and Bennett, 1988;
Hogan et al., 1996; Kropfli et al., 1999]. Usually the
transformation of a wind-wave spectrum under the action
of a nonuniform current created by internal waves is
calculated numerically from the kinetic equation for the
spectral density of wave energy or action. This is often
associated with a rather cumbersome and physically unclear
body of calculation. However, some important qualitative
conclusions about the character of wind-wave spectrum
transformation can be made from a much simpler analysis
of surface wave kinematic characteristics such as wave
packet trajectories and the wave vector variations in the
internal wave field.

[3] For an internal wave soliton this approach was
applied, apparently for the first time, by West et al. [1975]
and Thompson and West [1975]. They have shown that
surface wave groups can be reflected from the area of the
internal wave soliton with an upward pycnocline displace-
ment (both in forward and backward directions), which may
significantly affect the SW spectrum. An example of calcu-
lation of the wave number variation for wave packets
propagating parallel to a group of internal wave solitons
was given by Caponi et al. [1988]. The results were
presented in a coordinate-wave vector domain which
revealed the existence of wave groups trapped by an internal
wave. The group trajectories for surface gravity waves
moving at an angle to the propagation direction of an IW
soliton with negative pycnocline displacement were consid-
ered by Gotwols et al. [1988]. A detailed analysis of surface
wave kinematics (variability of wave number) in a field of
internal waves was carried out by Basovich [1979] for one-
dimensional wave propagation through an internal soliton
and by Basovich and Bakhanov [1984] for a two-dimen-
sional problem when surface wave packets propagate under
an arbitrary angle to a sinusoidal IW. Still, their consider-
ation was confined by weak (linear) internal waves. In this
case, significant variations of wave parameters occur for
SWs whose group velocities projected on the propagation
direction of the internal wave are close to the internal wave
phase speed (group synchronism). These waves may be
reflected and trapped even by a small internal wave current
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(‘‘blocking effect’’) [see Phillips, 1977; Basovich and Tala-
nov, 1977]. For typical values of the IW speed, this effect is
strongest for decimeter range SWs. Therefore, the trajecto-
ries of surface wave packets were constructed only for
gravity surface waves rather than for capillary and gravity
capillary waves.
[4] Our consideration here is based on the fact that in

many cases the tide-generated IWs appear in the form of
‘‘solibores,’’ i.e., trains of localized, solitary isopycnal
depressions which we call here internal solitons (notwith-
standing the more specific mathematical definition of a
soliton). Moreover, in many cases these solitons are very
strong in the sense that the displacement of isopycnal
surfaces may be comparable with or even significantly
larger than the initial depth of the pycnocline. A recent
strong example of such behavior is the Coastal Ocean
Probing Experiment (COPE) described by Stanton and
Ostrovsky [1998] and Kropfli et al. [1999], where the IW
solitons having amplitudes up to 25–27 m propagated on
the background of a 5–7 m deep pycnocline. The current
velocity in these solitons could be close to the wave phase
velocity, which testifies to an extremely strong nonlinearity
(up to an almost maximal amplitude at which a soliton
would break). As a result, at different points of the solitary
IW profile, the aforementioned blocking effect can occur for
a broad range of wavelengths. In this situation the location
of maxima and minima of surface wave spectral density
registered in COPE was different from those predicted
before. Note that these positions can be an important
indicator for interpretation of radar scattering data.
[5] In this paper, a detailed analysis of the wave packet

trajectories for gravity-capillary waves propagating over
internal solitary waves of different amplitudes, including
very strong ones, is presented. Based on kinematic
approach, the distribution of the SW intensity over the
soliton is evaluated, including the positions of maxima and
minima of wave energy with respect to the current profile
in the IW. We also give some calculations of the varia-
bility of surface wave spectral density by solving the
kinetic equation, which confirms the qualitative analysis
and agrees with the data of COPE as a typical example of
very strong solitons in coastal zones.

2. Basic Equations

2.1. Equations for Space-Time Rays

[6] Propagation of a surface wave on a large-scale
current U = U(r, t), where r = (x, y), is described by
the known equations of space-time rays (‘‘geometrical
approximation’’) [e.g., Basovich and Bakhanov, 1984]:

_r ¼ @w r; k; tð Þ
@k

; _k ¼ �@w r; k; tð Þ
@r

; ð1Þ

where k and w are wave vector and frequency of the wave
packet (group) in the reference frame immovable with
respect to bottom. The current created near the water surface
by the internal wave

U ¼ U x� Ctð Þx0 ð2Þ

is assumed to be known (the effect of SW on the current can
be neglected [Basovich, 1982]). Here x0 is the unit vector in
x direction. In the coordinate frame moving with phase speed

of the internal wave (below it is called system C ), the current
determined by equation (2) is stationary and hence the wave
packet frequency � = w � (x0, k)C remains constant. The
motion of surface wave packets in system C is described by
equation (1), where w is replaced by �, which, in turn, is
determined by the known dispersion equation

� ¼ �kxC þ kxCb xð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g k2x þ k2y

� �1=2
þn k2x þ k2y

� �3=2
r

: ð3Þ

Here kx and ky are components of the horizontal wave
vector (they are chosen parallel and perpendicular to the
propagation direction of the internal wave, respectively),
b(x) = U/C, x = x � Ct, and n is the surface tension
coefficient divided by the water density. The dispersion
relation (3) is essentially the first integral of the system
(1). It allows the construction of trajectories of the wave
packets in variables x and k. The y component is
conserved along any fixed trajectory of the wave packet
(group) provided the current created by the internal wave
does not depend on y. Therefore, to describe the wave
group propagation, it is necessary to consider only the
projections of trajectories on the plane (x, kx).

2.2. On Strongly Nonlinear Solitons

[7] Among the problems arising here is adequate
description of current velocity in a strong IW for use in
our calculations. Small and moderate-amplitude solitons
are commonly described by the known Korteweg-de Vries
(KdV) equation [e.g., Ostrovsky and Stepanyants, 1989].
However, as already noted, in a number of coastal zone
observations such solitons are strongly nonlinear, and the
classical KdV model is inapplicable; in particular, the
width of observed solitons proves to be much larger than
that predicted by KdV for the same amplitudes, their
velocity is smaller, and the width is only weakly depend-
ent on the amplitude in a wide range of parameters.
[8] No strict theory exists that describes strong IWs in a

way analogous to the evolution KdV equation. For a two-
layer model, computational results [e.g., Amick and Turner,
1986] show that a limiting soliton amplitude exists at which
the wave tends to a pair of infinitely separated fronts
(kinks). Similar properties follow from a simplified system
obtained by Choi and Camassa [1999] which somewhat
generalizes Boussinesq equations to stronger nonlinearity.
However, observed solitons, even strongly nonlinear ones,
do not approach this value of amplitude. Based on that,
several simplified analytical models that reduce the problem
to a one-dimensional evolution equation were later sug-
gested [e.g., Ostrovsky, 1999]. However, only limited
applicability or no analytical solutions exist for strong
solitons even in these simplified equations. Thus, to avoid
cumbersome expressions, we approximate pycnocline dis-
placement (a depression in most shallow-water situations,
i.e., h < 0) by a shape corresponding to a KdV soliton:

h ¼ � h0
cosh2 x � Ct

�

� � ; ð4Þ

where h0 is maximal displacement (the soliton amplitude),
and � is the characteristic width of the soliton. We,
however, do not use the relationships between the
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parameters C, �, and h0 following from the KdV equation
because they are not valid for the observed strong solitons.
Thus, equation (4) should be considered as a phenomen-
ological approximation which coincide with the KdV
solitons in the limit of weak nonlinearity.
[9] To calculate surface current from equation (4), a

two-layer model will be used which can be considered as
adequate for coastal zones with a sharp pycnocline (as in
the case of COPE). The current velocity in the upper layer
for a long stationary wave can readily be determined from
the mass conservation condition as

U

C
¼ �h

h1 � h
; ð5Þ

where h1 is the thickness of the upper layer (h2 for the lower
layer).
[10] In cases when the dependence between soliton

velocity and its amplitude is necessary, we shall use a
recent semiempirical model suggested by Ostrovsky [1999]
which gives good agreement with observations if h1 � h2
that is the case in a number of coastal zone experiments. It
is based on the exact description of very long progressive
waves for which dispersion can be neglected, with an
addition of a phenomenological nonlinear dispersive term.
From that equation, the normalized soliton velocity can be
well approximated by a polynomial

C=C0 ¼ 1þ 0:5s� 0:116s2 þ 0:0225s3 � 0:0017s4: ð6Þ

Here s = h0/h1, C0 ¼
ffiffiffiffiffiffiffiffiffi
g0h1

p
, g0 = g�r/r, g is the gravity

acceleration, r is the density, and �r is the density
difference of the layers (in the ocean g0 � g). Note that
the validity of this model under the conditions considered
has been confirmed both by comparison with the Choi and
Camassa [1999] model. It is easy to see that C0 is the
linear longwave velocity in the case considered (thin upper
layer), and in this case, the ratio (6) does not depend on
specific parameters of the layers. When dimensional values
are needed for calculations, we used COPE data as an
example on which to base our calculations, and accepted
the following experimental values of parameters: h1 = 5 m,
h2 = 143 m (hence the condition h1 � h2 is met), and the
relative density change in the pycnocline �r/r = 0.002.
This particular hydrology will be considered for illustra-
tion, considering that the main effects associated with
strongly nonlinear internal waves are of general applic-
ability. Note that the approximation (6) differs from the
numerical result by less than 1% for all s < 5.5, i.e., up to
the soliton amplitudes of 27.5m (the full range of COPE
data). In what follows, calculations were performed for
different values of maximal pycnocline depressions.

3. Kinematics of Wave Packets

3.1. Collinear Propagation

[11] Consider now the surface wave group trajectories
under the action of the current (equation (5)) in internal
solitons of different amplitudes. These results will be used
in the next section to describe transformation of surface
wave spectral density, W. We begin with the one-dimen-
sional case of collinear propagation of surface and internal
waves (ky = 0).

[12] The trajectories of surface wave packets (groups)
on the (kx, x) plane are shown in Figures 1a–1c for three
values of soliton amplitude (wave numbers are plotted in
logarithmic scale). The trajectories were calculated numeri-
cally from equations (3) to (6) for different values of �
fixed at each trajectory.
[13] The figures readily show how the wavelength

changes in the course of propagation of a given group.
Figure 1a corresponds to a relatively small pycnocline
displacement, h0 = 1 m or, according to equation (5),
Umax/C = 0.17. Here two stationary points exist where a
packet can stay infinitely long over the soliton peak: a
saddle, where k = ks, that corresponds to surface wave-
length l = 1.1 cm, and a center at k = kc, where l = 20
cm. The closed trajectories around the center correspond to
trapped wave groups localized in the vicinity of the
soliton, whereas the others begin at infinity and pass
through the soliton. For trajectories starting in the interval
between the values k1 and k2 (see Figure 1a), the wave
number grows upon propagation toward the soliton peak,
and for the rest of the trajectories, it decreases.

Figure 1. Trajectories of surface wave packets in a one-
dimensional case (ky = 0): (a) h0 = 1 m, (b) h0 = 7 m, and (c)
h0 = 15 m.
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[14] Trajectories also exist that do not reach the soliton
peak at all but are reflected from some points at IW
slopes. In these points, the well-known blocking effect
occurs. Note that for these trajectories, the wave number
grows at the leading edge of the soliton and decreases at
its trailing edge.
[15] With the increase of h0, the center is displaced

upwards and the saddle downwards, and the variations of
the surface wave number become stronger. Moreover, for
some value of soliton amplitude, the picture changes
qualitatively as a result of a bifurcation. In Figure 1b,
the case of h0 = 7 m or Umax/C = 0.58 is shown. There
still exist two equilibrium points, a center and a saddle, but
the separatrix (a trajectory going in/out of the saddle point)
encloses the center so that all packets moving between
center and saddle are now trapped by the internal wave.
For the scales selected, the saddle corresponds to wave-
length l = 2.3 cm, and center, l = 8.5 cm. The packets
moving above the separatrix (large k) are passing through
the soliton to infinity. The same is true for very small k
(trajectories going well below the center). Other packets
moving outside the separatrix are reflected after reaching a
turning (blocking) point. It is interesting to note that there
also exist trajectories (like the one marked as 4bl in Figure
1b) that do not reach minus infinity after the reflection but
return to the right under the center, then go left, and are
reflected again. These back-and-forth motions can repeat
themselves more than once. Hence, the effects of ‘‘double
blocking’’ and ‘‘quartic blocking’’ are possible.
[16] A further increase of h0 leads to a new bifurcation:

the saddle and the center coalesce and both disappear so
that there are no trapped packets at all. Such a situation is
shown in Figure 1c where h0 = 15 m and Umax/C = 0.75.
Note that in this case all wave packets reaching the soliton
center decrease their wave number and all of them
propagate locally faster that the soliton (at x = 0 all
trajectories go from left to right).

3.2. Propagation in Different Directions

[17] In a similar way, surface wave propagation under a
finite angle q to the direction of internal wave propagation
can be described. In general, plotting the wave packet
trajectories in the three-dimensional coordinate-wave vector
space would be most representative here. However, such a
three-dimensional pattern is rather complicated. A common
method is to plot again the dependencies kx(x) for a fixed
value of ky [Basovich and Bakhanov, 1984; Gotwols et al.,
1988]. However, under these conditions the wave propaga-
tion direction (defined by the ratio kx/ky) would vary strongly
from one trajectory to another. Namely, longer waves (the
bottom part of the corresponding figure) would propagate
under large angles q, whereas the top part of the figure (short
waves) corresponds to small values of q. This method does
not seem to give a clear qualitative description of the
behavior of wave groups. Here we chose a different ensem-
ble of wave groups; namely, those propagating in the same
direction (i.e., having the same ratio kx/ky) at the moment
when they reach the soliton peak, i.e., the point x = 0.
Evidently, these packets have different initial and final
propagation directions, and the value of ky , still remaining
constant along each trajectory, differs for different trajecto-
ries. In this way we are able to describe the SWs having close

propagation directions but a broad range of wavelengths
when they approach the soliton peak.
[18] The corresponding trajectories of wave packets are

shown in Figures 2a and 2b for q = 30	 over the soliton
peak. For a weak internal wave when h0 = 1 m (Figure 2a),
they differ only slightly from the case q = 0: the saddle
moves a little upwards and the center a little downwards (the
point ks corresponds to l = 0.9 cm and the point kc
corresponds to l = 27 cm). Note that only a lower part of
the trajectory is shown for the trapped groups (moving
around the center). With the increase of soliton amplitude
up to h0 = 20 m andUmax/C = 0.8 (Figure 2b), the trajectories
qualitatively correspond to Figure 1c in the one-dimensional
case. In particular, for large solitons, at the point x = 0 all
trajectories have the same sign of curvature, i.e., the
second derivative @2kx/@x

2 is positive at x = 0 for all
trajectories (the effect of this parameter is explained below,
before the formula (8)). However, for the bifurcation
leading to the pattern shown in Figure 2b, larger soliton
amplitudes are needed. That is why Figures 1c and 2b are
shown for different h0 (15 and 20 m, respectively).
[19] Upon increasing q to 45	, groups still exist with a

negative value of @2kx/@x
2 in the point x = 0 even for

internal wave amplitudes as large as 20 m (Figure 3). The
bifurcation similar to that yielding the picture shown in
Figure 2b occurs for even larger amplitudes. Note that the
crossing of trajectory projections in Figure 3 does not, of
course, mean crossing of real trajectories in the three-dimen-
sional coordinate-wave vector space (except for, possibly,
the equilibrium points), because the crossed curves corre-
spond to various values of ky . Note also that the variations of

Figure 2. Trajectories of surface wave packets with q =
30	: (a) h0 = 1 m and (b) h0 = 20 m.
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wave number for an SW propagating under a finite angle to
the direction of internal wave propagation are typically
smaller than those in the case q = 0.

4. Surface Wave Spectrum Transformation
(Qualitative Analysis)

4.1. Relationship Between Variations of Wave Number
and Wave Energy

[20] By using the analysis of wave packet trajectories
performed above, one can consider how the spatial distribu-
tion of wave energy density, W(x, k) will evolve due to IWs
with different amplitudes h0. In general, a kinetic equation
with a given initial energy spectrum W0(k) incident on the
IW region, must be solved as it shall be done here later.
However, for better understanding, we start again from a
simplified approach based on the results of the previous
sections. As is known [e.g., LeBlond and Mysak, 1978], in
the absence of wind forcing and dissipation, spectral density
of surface wave action, N, remains constant at any fixed
wave group trajectory. Therefore, the value of N at a given
point (r, k) is equal to that at the initial point of the same
trajectory where the internal wave current is absent. Here we
use a common definition for the energy as a spectral integral
of the correlation function of surface displacements, and for
wave action as N(r, k, t) = W(r, k, t)/w, and all these
quantities are taken in the reference frame of water, i.e. that
moving with the local IW current velocity with respect to the
bottom. This, in turn, defines the wave energy of a group,
which in the same reference frame has the form:

W ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk þ nk3

p
¼ N �þ C � Uð Þkx½ 
: ð7Þ

[21] As a result, the energies of wave groups (proportional
to mean square of displacements) and their wave vectors far
from a soliton, W0 and k0, completely determine the spatial
distribution of wave action and energy in the perturbed area.
This enables a qualitative description of wave energy mod-
ulation based on the evolution of the wave number in the
groups plotted in Figures 1–3.
[22] In general, there are two sources of change of wave

energy by the IW current. First, it changes adiabatically,
according to equation (7) with N = const for each trajectory.
Second, initial spectral variations of N0(k) and W0(k) are

carried along trajectories and bring different values of W
from those existing over the soliton at the initial moment.
These two factors form a rather complex pattern of space-
time distribution of wave energy.
[23] To simplify the problem and adjust it to the remote

sensing needs, we shall consider spatial distributions of W at
a fixed wave number kf and, in particular, the change of W
(contrast) over the soliton maximum with respect to its
value in the absence of IW. Indeed, only waves with a fixed
k (or close to it) are often responsible for the radar scattering
at a fixed wavelength (as in the case of Bragg scattering), so
that variation of the energy of such waves shall define, at
least qualitatively, the variation of the scattered signal.
[24] In what follows, we shall mainly be interested in

waves approaching the soliton from infinity and exclude
trapped groups (which can be important only for waves
arising over the soliton). Also we make a natural assump-
tion that the initial distributions of wave action, N0(k), and
energy, W0(k), decrease with the growth of k, which is
almost always true for the range of wavelengths consid-
ered, which are shorter than the wind maximum. Con-
sequently, if the wave number of a group increases along
its trajectory from infinity (i.e., from some k = k0) to a
selected point where it becomes equal to the given kf > k0,
it will bring a larger action and, according to equation (7),
larger energy to that point (from a longer-wave part of the
initial spectrum) in comparison with its initial (unper-
turbed) value at the same kf, W0(kf), and vice versa. This
approach reduces the problem to one in which we consider
the changes of k along the trajectories as shown in Figures
1–3.

4.2. One-Dimensional Processes

[25] We again begin from a one-dimensional case, ky = 0,
and describe the variations of spatial distribution of W(x)
with the growth of the soliton amplitude. We shall first
concentrate on the vicinity of the soliton peak.
[26] First is the case of relatively small h0 shown in

Figure 1a. In this figure, the wave numbers in the range of
570 rad/m to 65 rad/m (wavelengths 1.1 cm to 9.7 cm) at
x = 0 move from infinity to somewhere between the saddle
and the center. For these groups, k has a maximum over
the soliton; hence, as follows from the above consider-
ation, N and W are larger than they are in the absence of
IW. This creates a positive contrast.
[27] For longer waves, with k < 11 rad/m, or l > 58 cm,

and for shorter ones, with k > 570 rad/m, or lengths below
1.1 cm, when the trajectories move below or above the
equilibrium points, wave number decreases; this means
that N and W decrease with respect to their unperturbed
values at the same k (negative contrast).
[28] In the range of 11 < k < 65 rad/m (wavelengths 9.7

cm to 58 cm), the groups are trapped inside the separatrix
and move around the center. They are irrelevant to the
groups coming from infinity but describe the behavior of
waves excited over the soliton.
[29] At the slopes of the soliton, the groups are reflected

(blocked) and do not reach the IW peak. It is seen that k
grows at the frontal slope and decreases on the rear one.
Correspondingly, W increases in comparison with its
unperturbed value in the first case and decreases in the
second. Note that we do not specially discuss the known

Figure 3. Trajectories of surface wave packets with q =
45	, h0 = 20 m.
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effect of wave amplitude increase at blocking points
(space-time caustics) because it is smeared for waves with
a wide continuous spectrum.
[30] Qualitatively, the pattern of trajectories remains the

same for larger h0 (Figure 1b) but the effect is stronger.
For all nontrapped waves, there will be a minimum ofWover
the soliton. Finally, for the case of very strong IW shown in
Figure 1c, when the separatrix disappears, W always has a
minimum (and a deep one) above the soliton, and reaches a
maximum on its front slope. Thus, we have the following
pattern of wave behavior in different wavelength ranges
(we use the same parameters of a soliton as those in Figures
1a–1c):
[31] For wavelengths of 20 cm to 2.5 m and less than

1.1 cm, for all h0, W(x) always has a minimum over the
soliton. For moderate and large h0 (as in Figures 1b and
1c), these waves have a maximum on the frontal slope of
the soliton.
[32] Within these limits, for waves of 1.1 to 20 cm, W

increases over the soliton for small h0. When h0 becomes
larger, the corresponding trajectories coming from infinity
do not reach the soliton peak. In this case, W increases
over the leading edge and decreases over the trailing edge
of the soliton. For large IW amplitudes, when the equili-
brium points disappear, the energy minimum is always
over the soliton.
[33] Finally, for l > 2.5 m, the waves always pass the

soliton, always with a slight decrease of W over the
soliton. The velocities of these long waves exceed C
considerably, and their interaction with the IW current is
weak.
[34] As follows from the above consideration, in a

practically important range of wavelengths from 1 to 20
cm, the wave energy increases at x = 0 for weak solitons
and decreases for stronger solitons. For the analysis of
observational data, it is constructive to define the border-
line value of h0 at which this qualitative change of
behavior occurs. As already mentioned, this result depends
on whether a minimum or maximum of k exists at the
point x = 0. In other words, the sign of the second
derivative @2kx/@x

2 at this point determines the effect.

From equation (3) it readily follows that the sign of
@2kx/@x

2 changes when the following equation is satisfied:

2C 1� b0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g k2x þ k2y

� �3=2
þn k2x þ k2y

� �5=2
r

�gkx � 3nkx k2x þ k2y

� �
¼ 0; ð8Þ

where the values of b0 = b(0) and C depend on h0, according
to equations (5) and (6).
[35] The resulting curves corresponding to equation (8)

for the soliton model outlined above and, for comparison,
for the standard KdV model (in which only the first two
terms are left in the right-hand side of equation (6)) are
shown in Figure 4. The critical value, h0cr, for which the
energy of all waves decreases over the soliton as compared
to the nonperturbed state, is achieved at a corresponding
critical value of b0 in equation (8) for which @b0/@k = 0. It is
seen that this value is larger for the KdV model than for the
strongly nonlinear one: when C decreases, bcr decreases
also. (In Figure 1, the saddles and centers move closer to
each other for the same soliton amplitude.)

4.3. Oblique Propagation

[36] Now let us briefly discuss the case of an arbitrary
angle between the directions of internal and surface wave
propagation. In general, the SW spectra are anisotropic, so
that the variability of W depends on the direction in a rather

Figure 4. Borders between the areas of increase and
decrease of W over the soliton peak (x = 0) in (kx, h0) space
for one-dimensional case for �r/r = 0.002, h1 = 5 m, H =
148 m. The 1-‘‘nonlinear dispersion’’ model, (6), 2- KdV
approximation.

Figure 5. Borders of W increase and decrease areas above
internal wave soliton (x = 0) in (kx, h0) space for�r/r= 0.002,
h1 = 5 m, H = 148 m: (a) q = 30	 and (b) q = 45	 (b). The 1-
‘‘nonlinear dispersion’’ model, (6), 2- KdV approximation.
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complicated way. To obtain a simpler but qualitatively useful
result, here we consider an isotropic wave field when the
initial spectral density does not depend on q in the range of
wave vectors considered. The dependencies of a ‘‘border’’
amplitude (similar to that in Figure 4) on the wave number
for different wave directions, q, are shown in Figure 5a for
q = 30	 and in Figure 5b for q = 45	. As in Figures 1–3,
the increase of the angle results in the increase of soliton
amplitudes that correspond to similar results.
[37] The condition @b0/@k = 0 for an arbitrary angle

results in the following:

bcr ¼ 1� cos q
gnð Þ1=4 6� 2

ffiffiffi
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Here we considered the spectral density transformation for
free surface waves. As shown by, e.g., Hughes [1978] and
Basovich et al. [1982], taking into account the wind factor
results in the decrease of contrast and an additional
displacement of maxima and minima of W with respect to
the internal wave profile. This effect strongly depends on
the relaxation time for the wind waves and hence, on the
wavelength, wind speed, and the wave propagation
direction with respect to wind. Such a dependence is
complicated [e.g., Phillips, 1977; Hughes, 1978], but in
general this dependence is stronger the shorter the wave
considered. For centimeter-range ripples it is typically
possible to neglect the wind effect only in special cases such
as almost transverse wave propagation to the wind direction
(see below). On the other hand, as was experimentally
shown in [e.g., Thompson and Gasparovic, 1986; Basovich
et al., 1988; Ermakov and Salashin, 1994], the cascade
mechanism can play a significant role when the centimeter
and millimeter range SWs are transformed by the internal
wave field. Namely, IWs transform decimeter gravity waves
(for which the wind relaxation is less significant) which, in
turn, modulate ‘‘parasitic’’ capillary ripples arising on the
gravity wave crests and propagating toward the wave front.
This mechanism is the subject of intense discussions
currently. In most cases, the locations of positive and
negative contrasts for parasitic ripples roughly coincide with
those for a basic gravity wave. In this case, the above results

for the behavior of W in decimeter range would describe the
geometry of contrasts for centimeter range parasitic waves:
amplification over a weak IW soliton and reduction over a
strong one. That is, the qualitative pattern of cascade
modulation in space is expected to be similar to that for the
free waves, although the ‘‘boundary’’ values of IW
amplitude, at which the decrease of W above the soliton is
changed by its increase, would be different in these two
cases.

5. Comparison With Experimental Results

[38] Let us briefly discuss the experimental data. Note
that in a majority of experiments in which surface signatures
of internal waves were investigated, surface and internal
waves propagated in opposite directions. Transformation of
SW propagating in the same direction as internal waves was
observed by Hughes and Grant [1978] and Shuchman et al.
[1988]. In the former work SWs were modulated by
relatively weak IWs generated by a moving ship. The
corresponding disposition of minima and maxima of spec-
tral density for the SW agrees with the results of the present
work for the case of small b0. In the latter work, SWs were
transformed by intensive IWs. It was found that, in a broad
range of wavelengths, the wave energy minimum is situated
near the maximum of surface current created by the IW.
This is also in agreement with our results.
[39] For the opposite propagation of surface and internal

waves, there is no effect of reflection and trapping of
surface waves. In this case the formula (13) from Hughes
[1978] can be used. As follows from that formula, the
spectral density of SW must grow on the frontal slope of
the internal soliton (with a pycnocline depression) and
decrease on its trailing edge. These results are confirmed
by the experimental data.
[40] Extremely strong SW modulation by IWs was

observed in COPE, as mentioned above. Here we omit a
detailed description of that experiment’s logistics, which is
already given in Kropfli and Clifford [1996] and Kropfli et
al. [1999]. In the context of the present work, it is important
that in COPE, a simultaneous measurement of strong
internal wave dynamics and of the corresponding back-
scattered radar signal was carried out. Figure 6 demonstrates

Figure 6. Temporal records of the vertically polarized (VV) signal (top) from the ETL Ka band radar
and (bottom) of the subsurface current (below).
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variability of a backscattered Ka band (8 mm) radar signal
with vertical polarization (top figure) due to an internal
wave; horizontal current above the pycnocline is shown in
the bottom figure in the same timescale. The amplitude of
the first three solitons is about 27 m, and of the next four,
about 20 m. The radar beam was directed almost perpen-
dicularly to the internal wave front: the angle between
observation direction and internal wave propagation direc-
tion was approximately 10	. As seen from the figure,
minima of the scattered signal correspond to maxima of
the current, i.e., to soliton peaks. It is in agreement with the
above results regarding variability of 4 mm ripples, for
which W decreases over the soliton. (Here the Bragg
scattering under small grazing angles is implied as
described by Kropfli et al. [1999] so that the resonance
wavelength is about half of the radar wavelength of 8 mm.)
[41] Figure 7 demonstrates variability of the X band (3

cm) radar signal (top figure) in the field of an internal wave
(a displacement of the 15	C isotherm is in the bottom
figure). The scattered radar signal decreases over the crests
of the first three solitons, two of which have amplitudes of
about 13 m each and one of about 8 m. At the same time,
the scattered signal increases over the fourth soliton with an
amplitude of about 6 m. From our theory, the increase of W
for 1.5 cm ripples above the soliton is replaced by its
decrease in roughly this range of internal wave amplitudes.
[42] To obtain quantitative theoretical results regarding

the variability of spectral density of SWs, a more straight-
forward mathematical description is needed. An additional
important question is the effect of wind on the modulation
of the short waves. For the COPE parameters we solved
numerically the well-known kinetic equation for the spectral
density of wave action [Hughes, 1978]:

@N

@t
þ _r

@N

@r
þ _k

@N

@k
¼ gN � gN 2

N0

; ð10Þ

where g is the growth rate of wind waves, and N0 is the
spectral density of wave action in the absence of internal
waves. The last, nonlinear term gives a phenomenological
description of nonlinear wave interactions and amplitude-
dependent losses (such as those due to wave breaking); it is
also necessary for establishment of a stationary wave

spectrum. The expressions (1) for variations of _r and _k were
used for calculations along with equation (10).
[43] Some results of calculation of the variability of

normalized surface wave spectral density W/W0 in an
asymptotic, quasi-stationary regime are shown in Figures 8
and 9 for SWs with wavelengths of 20 cm and 1.5 cm,
respectively. The internal wave was taken in the form of two
solitons propagating with a speed of 0.5 m/c. The scale for
pycnocline displacement is given to the right of each figure.
The wind speed is taken to be 1.5 m/s, the angle between the
directions of wind and internal wave propagation is 40	,
whereas propagation of surface and internal waves is sup-
posed to be parallel (q = 0), corresponding to the direction of
radar beam. Such a small wind speed was chosen to better
demonstrate kinematic effects considered above. The value
of W/W0 is shown in decibels. The Piersson-Moskowitz
formula [Piersson and Moskowitz, 1964] was used forW0,
and the angular dependence was chosen as cos2(qW/2), where
qW is the angle between the directions of wind and wave
propagation.
[44] For Figure 8, the growth coefficient, g, was calcu-

lated according to the Hughes formula [Hughes, 1978]
obtained as an approximation from several experimental
works performed both in laboratory and in situ. It is seen

Figure 7. Temporal records of the vertically polarized (VV) signal (top) from the ETL X band radar and
(bottom) of the depression of the 15	C isotherm (below).

Figure 8. The transformation of spectral density (top) of
surface waves with a length of 20 cm in the field (bottom)
of internal waves solitons (below). From a numerical
simulation.
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from the figure that the minimum of W is situated almost
over the peak of the strong internal soliton while it is shifted
to the rear side of a weaker soliton: just as it was derived
from the qualitative analysis of wave packet trajectories. At
the same time, for waves with l = 1.5 cm, only an
insignificant variation ofW is obtained from the correspond-
ing calculation. This may testify to the aforementioned
cascade mechanism of ripple modulation by internal waves.
However, a strong variability of ripples observed in the
experiment can be obtained by using another formula;
namely, a theoretical expression obtained by Miles [see
Phillips, 1977] and giving smaller values of g, which was
used for calculations shown in Figure 9. Certainly, choosing
different approximations for g for different spectral ranges
of SWs is rather arbitrary but it gives a good agreement with
the corresponding experiments, and seems to be justified by
the present situation in the wind-wave theory when no well-
established expression for g exists. The variation obtained
of W0/W for 1.5 cm ripples shown in Figure 9 is close to the
variability of the X band radar signal observed in COPE.
[45] Note that in both cases, as predicted by the theory,

for a strong soliton the minimum of W is situated on the
soliton crest and is shifted toward the trailing slope of a
smaller soliton.
[46] The values of g taken above are smaller than those

commonly adopted for the SWs propagating along the wind.
This is due to the large angle between these directions, and,
more specifically, between the directions of the wind and of
the radar beam: 40	 in the cited COPE measurements. This
circumstance strongly decreases the effect of wind on wave
modulation. This is confirmed by estimates of different
terms in equation (10). These estimates show that even for
a small modulation coefficient of SW, each term in the left-
hand side of equation (10) can be comparable to the right-
hand side responsible for the wind effect. In particular, the
order of g�1 for a 1.5 cm long ripple (corresponding to the 3
cm radar Bragg scattering) is about 31 s, whereas a charac-

teristic time of effective wave transformation by IW is about
140 s; it is significantly larger, but the adiabatic effect is still
important, as shown by the calculations based on equation
(10).

6. Conclusions

[47] The behavior of surface wave groups in the coordi-
nate-wave vector domain varies qualitatively with the
increase of internal wave amplitude. For strongly nonlinear
internal waves the variation of the surface wave number
becomes so significant that, for example, to determine the
spectral density variability for initially decimeter-range sur-
face waves, it is necessary to take into account capillary
components of the surface wave spectrum. The location of
positive and negative contrasts of surface wave energy with
respect to the maxima and minima of the isotherm (hence,
the isopycnal surfaces) displacement in the IW varies with
the increase of internal wave amplitude, so that for strong
IW, wave energy has a minimum over the soliton crest or
close to it in the entire range of the surface wave spectrum.
The theoretical results are confirmed by observational exam-
ples. Still, a more detailed overview of observational data is
needed for a more substantial validation of the theory and to
define the limits of its applicability.
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