OCTOBER 1987

MARK A. BAKER AND CARL H. GIBSON

Sampling Turbulence in the Stratified Ocean: Statistical
‘ Consequences of Strong Intermittency

MARK A. BAKER*

Scripps Institution of Oceanography,
University of California at San Diego, La Jolla, CA 92093

CARL H. GIBSON

Departments of Applied Mechanics and Engineering Sciences and Scripps Institution of Oceanography,
University of California at San Diego, La Jolla, CA 92093

{Manuscript received 6 May 1985, in final form 4 August 1986)

ABSTRACT

Turbulence and turbulent mixing in the ocean are strongly intermittent in amplitude, space and time. The
degree of intermittency is measured by the “intermittency factor” o2, defined as either o7, the variance of the
logarithm of the viscous dissipation rate ¢, Or o, the variance of the logarithm of the temperature dissipation
rate x. Available data suggest that the cumulative distribution functions of ¢ and x in stratified layers are
approximately lognormal with large ¢ values in the range 3-7. Departures from lognormality are remarkably
similar to those for Monte Carlo generated lognormal distributions contaminated with simulated noise and
undersampling effects.

Confidence limits for the maximum likelihood estimator of the mean of a lognormal random variable are
determined by Monte Carlo techniques and by theoretical modeling. They show that such large o” values cause
large uncertainty in estimates of the mean unless the number of data samples is extremely large. To obtain
estimates of mean dissipation rates € and X with +10% accuracy at the 95% confidence level in the seasonal
thermocline, the main thermocline or Pacific equatorial undercurrent (all stratified layers with large intermittency)
requires 2600 or 10 000 independent data samples for ¢® = 3 or 7, respectively.

If intermittency is ignored and the data are treated as if normally distributed, mean dlsmpatlon rates will
probably be underestimated from a small number of samples. For example, it is generally accepted that canonical
estimates of the main thermocline vertical eddy diffusivity of order 1 cm? s~*, based on bulk property models,
are inconsistent with much smaller values inferred, ignoring intermittency effects, from thermocline microstructure
measurements. However, after accounting for the intermittent lognormality of the data, no statistically significant
discrepancy exists.

Intermittency may cause qualitative as well as quantitative undersampling errors: minimum values in the
vertical profiles of mean dissipation rates are commonly inferred from individual profiles at the seasonal ther-
mocline depth and the equatorial undercurrent high-velocity core depth where maxima may actually exist.
From the new confidence intervals, such minima are shown to be artifacts of the extreme intermittency in these
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strongly stratified layers.

1. Introduction

Viscous and diffusive dissipation rates ¢ and x of
turbulent velocity and temperature fluctuations in the
ocean are enormously intermittent in magnitude, space
and time, where ¢ = 2ue,,, e; = (u J o, 2, x
= 2D(T,)2 v is the kinematic viscosity, D is the thermal
diffusivity, u is the velocity, T is the temperature, and
commas denote partial differentiation with respect to
the spatial coordinates x with indices i,j = 1, 2 or 3.
Repeated indices are summed.

The range of local values in a given layer may be
five orders of magnitude in € and ten orders of mag-
nitude in x. Space averages may be intermittent in
time, and time averages intermittent in space. Even
the intermittency may be intermittent because adjacent
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layers may have different mechanisms which govern
their turbulence and mixing. Accurate estimates of
mean dissipation rates and other turbulence and mixing
parameters such as the Cox number C = (T ?)/(T ),
and the (microstructure) vertical eddy diffusivity K,
= DC, must take these various classes of intermittency

into account. The present paper focuses on the statis-
tical consequences of intermittency in sampling ocean
turbulence and mixing. The hydrodynamic implica-
tions of the intermittency are discussed by Gibson
(1980, 1981, 1982a,b,c, 1983, 1986, 1987a,b).

Gregg et al. (1973), Williams (1974), Belyaev et al.
(1975a), Osborn (1978), Elliott and Oakey (1979),
Gregg (1980), Crawford (1982), Washburn and Gibson
(1984), Osborn and Lueck (1985) and Oakey (1985)
all find oceanic turbulence dissipation parameters X
= C, x and ¢ to be approximately lognormal. Typical
microstructure datasets consist of only 10-100 samples.
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Arithmetic means, modes and medians of such small
datasets are satisfactory estimators of expected values
X for normally distributed random variables (Nrvs),
but generally result in severe underestimates of X for
intermittent lognormally distributed random variables
(LNrvs) such as ¢ and x in the stratified ocean. The
juxtaposition of “intermittent” and “lognormal” is in-
“tended to identify lognormal random variables with
large “intermittency factors” of,y. “Large” is defined
by the threshold o,y greater than 3 which yields mean-
to-mode ratios for LNrvs greater than order 100. “In-
termittent lognormality” is not intended to imply on/
off lognormality nor should it be interpreted to mean
that the variable is discrete rather than continuous. It
does imply that the dominant contribution to the ex-
pected value is produced by a small fraction of the
volume sampled. ’

The sampling problems induced by intermittency
have been known for many years in atmospheric tur-
bulence studies. Gibson et al. (1970) report intermit-
tency factors of, as large as 4.0 in the marine atmo-
spheric boundary layer, and good agreement with the
lognormal distribution for € proposed by Kolmogoroff
(1962), discussed in section 5. Tennekes and Wyngaard
(1972) warn that such extreme intermittency of small-
scale turbulence imposes significant data processing
hazards, both in signal-to-noise and time integration,
for estimating average values with acceptable accuracy.
They refer to kurtosis values of velocity derivatives in
the atmosphere over land of about 40, corresponding
to of, values of about 3.7 assuming lognormality. In
contrast, Hald (1952), in his review of lognormal dis-
tributions, presents an example of a lognormal distri-
bution he describes as “markedly skew” although the
0%, value is only 1.1. Such small values of of,. and
0ty in the range 1-2, have only been observed in the
surface mixed layer and other strong shear layers in
the ocean. Gibson (1983) shows o, is in the range
0.5-1.5 for the mixed layer data of Dillon (1982); Os-
born and Lueck (1985) derive a a3, value of 1.96 from
measurements of velocity fluctuations in the surface
mixed layer; and in section 4a a value of ot = 0.62 is
derived for the strong shear layer above the equatorial
undercurrent from the data of Crawford (1982).

The properties of lognormal random variables are
detailed in appendix A. Briefly, the expected value,
E(X), of a lognormal random variable X is given by
exp( + 02/2), where p is the expected value and o is
the variance of the Gaussian random variable ¥ = InX.
The maximum likelihood estimator of E(X) is Xy
= exp(m + s%/2), where m and s? are the arithmetic
sample mean and variance of Y, respectively. The use
of lognormal probability plots to estimate u and a_2 is
outlined. In appendix B the rationale for selecting Xmre
to estimate E(X) is derived. In particular, the arithmetic
mean, X,,, is shown to require significantly more
samples than required by X for the same degree of
statistical uncertainty when the intermittency factor
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o is large. Readers are strongly encouraged to review
appendices A and B, which are of a tutorial nature and
form the statistical basis of the present paper.

In section 2, empirical oceanic cumulative distri-
bution functions (CDFs) and their observed departures
from lognormality are compared to CDFs generated
by Monte Carlo methods, which include simulated
noise. A specific procedure to estimate u and ¢* and
the degree of noise contamination in the measured
CDFs is given. Section 3 examines confidence intervals
used by Elliott and Oakey (1979, 1980) and Oakey
(1985) to indicate the uncertainty in their X, estimates
of E(X). Their intervals will be shown to be incorrect.
New confidence intervals are derived theoretically and
are tested by comparison to intervals generated by
Monte Carlo methods. These new theoretical intervals
are strongly dependent on the intermittency parameter
o%.x, and allow estimation of the necessary number of
samples required to estimate the expected value at a
given level of uncertainty.

In section 4 several microstructure datasets from the
Atlantic and Pacific equatorial undercurrents, the sea-
sonal thermocline and the main thermocline are re-
viewed to test the validity and consequences of the hy-
pothesis of lognormality. The results are discussed in
section 5, and conclusions are presented in section 6.

2. Noise and sample size effects on the CDF

A result common to many of the oceanic empirical
CDFs is the apparent departure from lognormality of
the upper and lower tails of the CDFs. Given an ex-
tremely large sample of a LNrv and an ideal measure-
ment system, without noise or sensor limitations, the
measured random variable would be lognormal, the
empirical CDF would fit a straight line on a lognormal
probability plot and would pass any number of statis-
tical tests for lognormality. Unfortunately, noise is al-
ways present in microstructure measurements along
with sensor limitations and limited sample size.

The separate effects of noise and sample size on the
empirical CDF may be demonstrated by Monte Carlo
methods. A first-order model of the measured signal .S
is

Smeas(t) = [A(1)*Strue(?) + n(1)]*8(2) 1
where A(f) is the impulse response function corre-
sponding to frequency or spatial response limitations,
the asterisk denotes convolution, n(¢) is the noise por-
tion of the signal, and g(¢) represents the impulse re-
sponse function of the filter(s) used.

For microstructure measurements, Smeas(f) might
represent conductivity, temperature or vertical shear
of the horizontal velocity. Dissipation rates x and e
may be computed by integrating the temperature gra-
dient spectrum and the vertical shear of horizontal ve-
locity spectrum, respectively, assuming isotropy and
using the Taylor hypothesis = Uk/2w=. The variances
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of different wavenumber, k, bands are computed and
integrated over the wavenumber bands of interest. This
results in estimates of the band-passed signal variance
for that segment of the data record.

Noise measurements for conductivity, temperature
or vertical shear of the horizontal velocity indicate ap-
proximately bandlimited white noise for these signals.
Figure 5 of Gregg and Pederson (1980) displays con-
ductivity spectra which havé the characteristic flatness
indicative of bandlimited white noise in the dissipation
wavenumber band. Figure 6 of Crawford and Osborn
(1980) shows the noise spectrum for the velocity shear
probe is also relatively flat in the wavenumber band
used to estimate e. Figure 5 of Oakey (1982) shows
noise spectra in terms of temperature gradient spectra

which have approximately +2 slopes indicating a .

bandlimited white noise spectrum for the temperature
signal.

It should be emphasized in this discussion that it is
not critical that the empirical noise distributions be
exactly bandlimited white noise. What is necessary is
the realization that the presence of noise, or attempts
to subtract noise from signals, will result in departures
of the measured distribution function from the under-
lying true signal distribution function. Note that if the
data come from a particularly active region, or if the
averaging length is long enough so that significant signal
variance is measured, the effect of noise on the mea-
sured distribution is reduced.

The noise contributes a variable percentage of the
measured variance, depending on signal strength. Noise
levels are generally estimated by examining the quietest
portions of the data records and are usually quoted in
terms of equivalent °C? s™! and cm? s73 for x and ¢,
respectively. To attempt to reproduce the effect that
noise has on empirical CDFs, the following procedure
is employed. Gaussian random numbers Z; are gen-
erated that are distributed as N(0, a,,), where ¢, is the
quoted equivalent noise variance in the measured
oceanic signal. A new random variable

1
-1

é(zi_ zZy

i=1

Y,= 2

is formed that has an expected value of ¢, and variance
20,%/(n — 1), where

™M=

z=1sz 3)
n

i=1

The sample size n is chosen to be about 10-20 due to
the recognized variability in the estimated oceanic noise
levels. Oakey (1982), for instance, cites an uncertainty
of a factor of 2 in the quoted noise variance. Lognormal
random variables are generated using the same sample
sizes and graphically estimated statistics from the mea-
sured oceanic datasets. The noise samples Y, are added
to these lognormal random variables to simulate the
presence of noise. If noise subtraction is performed in
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the measured oceanic data, a constant noise factor of
o, is then subtracted to mimic crudely the procedures
employed. Lognormal probability plots of these Monte
Carlo runs are generated for comparison to the em-
pirical oceanic data.
- Figures 1, 2 and 3 are Monte Carlo simulations, us-
ing the procedure outlined above, of lognormal prob-
ability plots of the oceanic datasets from section 4
shown in Figs. 7c, 8 and 10. In each case, the statistics
of the oceanic dataset, shown by the straight line in
Figs. 1, 2 and 3, are used to seed the lognormal random
number generator and the noise variance is used to
seed the Gaussian random number generator. The
noise levels used for Figs. 1, 2 and 3 are 4 X 107 cm?
$73,24X1077°C?s'and 1.3 X 1078 °C? s}, respec-
tively. These values can be found in Crawford and Os-
born (1980), Washburn and Gibson (1984) and Oakey
(1982), respectively. The » for the Y,, computations are
8, 15 and 20, respectively. In Figs. 2 and 3, a constant
noise factor, equal to the respective value cited above,
is subtracted after addition of the random noise to ap-
proximate the noise subtraction methods used in the
oceanic examples. Noise subtraction in the measured
data is performed by integrating the difference between
the signal spectrum and the noise spectrum until the
difference is zero or negative.

In each case the essential characteristics of the
oceanic CDFs are reproduced. The straight line shown
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FG. 1. Lognormal probability plot of a lognormal random variable
contaminated with simulated noise effects. Signal and noise statistics
correspond to the below-core region of the equatorial undercurrent
data of Crawford (1976), shown in Fig. 7c. The straight line corre-
sponds to the signal statistics produced by the graphical fit shown in
Fig. 7c. Note the similarity in CDF shapes for Figs. 1 and 7c.
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FIG. 2. Curve 1 is based on the same procedure employed in Fig.
1, using the signal and noise statistics corresponding to data of Fig.
8 from the seasonal thermocline data of Washburn and Gibson (1984).
Curve 2 represents the data from curve 1 corrected for noise by sub-
tracting a noise constant and corresponds to curve 2 in Fig. 8. The
straight line corresponds to the signal statistics produced by the
graphical fit shown in Fig. 8.

in each simulation corresponds to the signal statistics
estimated from the oceanic datasets using the graphic
procedure. When noise subtraction is not performed,
the CDFs droop at the low end. When noise subtraction
is employed, the CDFs break up and away from the
true underlying lognormal distribution. The appear-
ance of the upper and lower tails of the Monte Carlo
CDFs are remarkably similar to the oceanic examples.
In the Monte Carlo runs the apparent deviation from
the underlying distribution in the upper tail is attributed
to sample size, rather than to any underlying departure
from lognormality or as a consequence of sensor res-
olution limitations.

Samples may be encountered with significant vari-
ance at scales beyond the resolution of the sensor. These
unresolved samples are falsely measured as smaller
values. The upper tail of the empirical CDF will then
break up and away from the true underlying distri-
bution falsely indicating a deficit of larger values.

The Monte Carlo runs fail statistical tests such as
the x? goodness-of-fit test for lognormality just as badly
as the oceanic examples. For cases where noise con-
tamination is a problem it would be more appropriate
to apply such tests assuming the measured random
variable is the sum of a lognormal random variable
and a noise random variable. Careful statistical studies
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of the time series and the resultant processing would
allow a more accurate characterization of the CDF of
the noise portion of the final product of the data anal-
ysis. Assuming the noise is independent of the signal,
goodness-of-fit tests would be applied to the probability
density function, pdf, resulting from the sum of the
signal and noise random variables. Application of x>
tests without accounting for the presence of noise will
generally fail, but the conclusion that the underlying
distribution is significantly different from lognormal is
then questionable.

Assume the noise variance, random vanable X 1,18
independent of the signal variance, random variable
X;. Note both are positively distributed random vari-
ables. The cumulative distribution function CDF(y) of
the random variable Y = X; + X, is given by

y Y
CDF()) = fo Lfl(xx)fz(y’—xl)dxldy’ “

from Hoel et al. (1971), where f; and f; are the prob-
ability density functions of X; and X,, respectively.
The inner integral is a convolution of the two density
functions and indicates the possibility of contamination
of the true signal CDF over an interval rather than the
noise inducing only a simple cutoff of the CDF. The
excellent agreement between the simulated and mea-
sured distributions implies that the measured distri-
butions are derived from a convolution of approxi-

, mately Gaussian noise distributions with underlying

lognormal distributions.
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HG. 3. As in Fig. 1 except with noise subtraction, corresponding
to Fig. 10 for the subseasonal thermocline data of Elliott and Oakey
(1979), which also were corrected by noise subtraction. The straight
line corresponds to the signal statistics produced by the graphical fit
shown in Fig. 10.
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Based on the Monte Carlo runs and the above resuits,
the following procedure is recommended for deter-
mination of the degree of noise contamination, and
for estimating u and o if the contamination is exces-
sive, Two sample sets should be generated for each
comparison to lognormality of € or x on a probability
plot. A noise spectrum ¢, should be estimated from a
quiet section of the record. The first sample set may
be generated by integrating the measured spectrum ¢,,
over a fixed frequency range. An alternative procedure
for this sample set is to integrate ¢,, until it intersects
¢,. Both procedures will szi// include noise over the
band of integration. Note that if m and s° are computed
from sample sets derived from both of these procedures,
method 2 will produce closer estimates of the true val-
ues than method 1. The second sample set from the
same data record is generated by integrating (¢, — ¢,,)
until the difference is zero or negative.

Both sample sets are then plotted on lognormal
probability paper. Where the two curves converge and
the linear range begins indicates the start of the resolved
portion of the CDF. A least-square line should be fitted
to this linear range and g and ¢ estimated as described
in appendix A. Washburn and Gibson (1984) employ
the procedure outlined above, except the estimates are
generated by a visual fit to the linear region.

If the signal is always appreciably above the noise,
or if ¢? is small, there will be little difference between
these graphical estimates of u and ¢* and the arithmetic
estimates m and s2. In those cases, the arithmetic es-
timates are preferred. But in cases where the indicated
noise contamination is excessive (>20%) and for an
underlying ¢ > 3, the graphical procedure is more
accurate.

For example, m is —14.76 and 52 is 0.72 for the data
corresponding to curve 1 in Fig. 2, but the true values
of 1 and ¢% are —16.74 and 4.88, respectively. The
graphical procedure yields the estimates —16.73 and
4.73 for u and o2, respectively. For such noise contam-
inated data, u will be overestimated and o underes-
timated by m and 52, respectively. In addition, the dif-
ference (o7, — 52) increases as the noise contamination
increases.

Because the underlying distribution in the modeled
signal is lognormal and the simulations of noise and
limited sample size appear reasonable, the striking
similarity of the deviations from lognormality of both
oceanic and modeled datasets suggests that much of
the deviation of the oceanic distributions from log-
normality is due to noise and sample size effects. The
conclusion is that deviations from lognormality ob-
served so far in the oceanic data cannot be taken as
evidence against lognormality of the underlying dis-
tributions.

3. Confidence intervals for X,

Elliott and Oakey (1979) find that the Cox number
is approximately lognormally distributed for their data.
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In Elliott and Oakey (1979, 1980), X is used to es-
timate the expected value of the microstructure pa-
rameters and in both papers confidence intervals for
the estimate of the expected value are employed. These
are the first published attempts by oceanic microstruc-
ture investigators to construct confidence limits for the
expected value of an LNrv estimated by X,,.. In Elliott
and Oakey (1979), the explicit form of the confidence
intervals is not presented, but on page 288 they state:

From the characteristic of log-normality, some estimate
can be made for the confidence interval for the means.
Using the mean value of the Cox number and standard
deviation of the plot in Fig. 5 (Inc = 1.8) as representative
for individual segments with 37 samples, then, when
transformed into linear coordinates (Hald, 1952), the
95% confidence limits become 2.24 < C ~ 4 < 7.75.
. Thus for our data, the mean values for each 10 m seg-
ment (0-1, 1-2, ..., 8-9) should be accurate (95% con-
fidence limits) to within a factor of 2.

In Elliott and Oakey (1980), X is employed to esti-
mate the mean Cox number. In addition, Elliott and
Oakey (1980) state:

As was described in Hald (1952), we have calculated log
¢ = mean(logx) and ¢* = Var(logx) and from these have
obtained the median(x) = ¢ and the mean(x) = ¢
X 107721810 where the 1o confidence limits are given
by £/10° < X < £ X 10°.

In the notation of the present paper, £ = exp(m), X
= X and o = s. The method of calculation of £, o
and the median and mean are correct for a lognormal
distribution. However, note the lack of sample size de-
pendence. These “confidence limits™ actually represent
the («/2) and the (1 — «/2) percentile points for a theo-
retical (not empirical) distribution assuming that x and
o are known, not estimates. They indicate the skewness
of the distribution of X and are not presented as con-
fidence intervals by Hald. Oakey (1985) modifies these
intervals by incorporating sample size. The new inter-
vals are given by
£ X 107 Zarzen”

172 —1/2

<mean(X) < £ X 107"

&)

where the z,/, is based on the degree of confidence.
Oakey used z,,, = 0.98, or a 68% confidence interval.
The new limits have two correct interpretations. They
are the empirical percentile points of the empirical dis-
tribution, and they are also the correct confidence in-
tervals for the median of X. They are not the correct
confidence intervals for the expected value of X, based
on using X _
Confidence intervals may be formed based on X,
from the Gaussian properties of the estimators m and
5% These intervals are approximately correct for very
small samples and become increasingly accurate with
increasing sample size. Because m is the arithmetic
mean of Nrvs, it is N(i, a7 /%), The arithmetic sample
variance, s, is asymptotically N[o?, V2o*(n —1)"'/2},
from Cramer (1946). The distribution of s is well rep-
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resented by the Gaussian distribution for n > 30. For
Nrvs, m and s? are independent random variables.
Therefore, the sum S = m + s%/2 is a random variable
that is asymptotically N{u + ¢%/2, [¢*/n + ¢*/2(n
~ 1)]*/?}. The new random variable S is standardized,
yielding

_(m+5Y2)=(u+6%2)
~ [e¥n+o*2(n— ]2

(6

which is asymptotically N(0, 1). Confidence intervals

for Z are now easily formed. Rearrangement of terms’

and then transformation of the intervals by the exp
operation lead to the following confidence intervals
based on X of LNrvs: '

Konte €XD(—12472) < E(X) < Xente €Xp(20p2)  (7)

with a (1 — a) confidence coefficient, where 5 = [¢%/n
+ ¢*/2(n — 1)]'2 Because X equals exp(S), from
(B9), and S is approximately normal, X, should be
approximately lognormally distributed. Asymptotical
normality is a property of maximum likelihood esti-
mators, and implies the lognormal distribution of X,
should converge to a normal distribution as n = co.
Using a Gaussian random number generator, 40 000

random numbers that are N(2.98, V4.4 1) are generated.
The values of ¢ and o2 correspond to the arithmetic
estimates of u,c and of,c for the Gregg (1977) data
(see Table 1). From these 40 000 random numbers,
two sets of 4000 estimates of X, using the arithmetic
and graphical methods, are formed from subsets of size
10. Shown in Fig. 4a are the normal (curve 1) and
lognormal (curve 2) probability plots for the 4000 es-
timates produced by the arithmetic method. The log-
normal (curve 3) probability plot for the 4000 estimates
yielded by the graphical procedure is also displayed.
Figure 4a indicates X, is clearly non-Gaussian and is
approximately lognormal for # = 10. The straight line
is the expected CDF, N(5.185, V1.52), if the sum (m
+ 52/2) is Gaussian for » = 10. The arithmetic mean
and variance of the 4000 arithmetic estimates of (u
+ ¢?/2) are 5.168 and 1.47, respectively, which com-
pare quite well with the expected values. The arithmetic
mean- and variance of the 4000 graphical estimates of
(u + 0%/2) are 5.31 and 2.38, respectively. Also shown
in Fig. 4a are the 0.05 and 0.95 percentile points for
the empirical CDF (curve 2) generated by the arith-
metic method. These percentile points correspond to
a realization of the 90% confidence interval for X ..
The 90% confidence interval, (24, 1358), generated by
Eq. (7), compares quite well with the Monte Carlo in-
terval, (29, 1396), displayed in Fig. 4a. Intervals derived
from (7) also agree, for large samples, with the large
sample intervals presented in appendix B, Eq. (B15).
A closer look at Fig. 4a reveals that for large o2y,
small n, and significance levels in the range 95% to
99%, both upper and lower confidence limits generated
by (7) are underestimates. This should be kept in mind
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Fi1G. 4a. Lognormal (2) and normal (1) probability plots for Monte
Carlo generated values of the estimator Xy, based on the arithmetic
method. Parameters N = 10, u = 2.98 dnd o* = 4.41 are approximately
equal to those for the Gregg (1977) Cso » measurements, shown in
Fig. 14. The straight line is the theoretical lognormal CDF of X,
based on the assumption m + s%2 is normally distributed, for ¥
= 10.

in section 4 where, generally, the limits are quite wide.
Because the exact probability distributions of » and
s% are known, new tables could be generated and exact
intervals obtained since the CDF of the sum of two
independent random variables result from the con-
volution of the individual pdfs. Such tables would have
to cover a wide range in m, s> and n. However, because
the number of samples required for a statistically sig-
nificant estimate is shown to be quite large, this should
be unnecessary. -
Figure 4b shows lognormal probability plots of X,
estimated by the arithmetic method, curve 1, and the
graphical method outlined in appendix A (curve 2) for
n = 100 and the same p and ¢* as in Fig. 4a. The
theoretical CDF, N(5.185, V0.142), of In (X,,,), based
on the properties of m and_'sz, is again shown by the
straight line. The fit of the X, estimates generated by
the arithmetic method is extended to the 0.99 and 0.01
percentiles of the theoretical CDF before departures
start to occur. The arithmetic mean and variance of
the 4000 samples of (m + s%/2) are 5.180 and 0.142,
respectively, which again compare quite well with the
expected values. The empirical CDFs produced by the
arithmetic and graphical procedures are virtually in-
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FIG. 4b. Lognormal probability plots for Monte Carlo generated
values of X based on the arithmetic method and the graphical
method of estimating the parameters p and ¢>. N = 100, p = 2.98
and o® = 4.41. The straight line is again the theoretical CDF, but for
N = 100.

distinguishable for n = 100. Note: a < sorting procedure
rather than the < sorting procedure actually used,
would introduce a positive bias in the graphical esti-
mates. The arithmetic mean and variance of the 4000
graphical estimates of (1 + ¢%/2) are 5.184 and 0.148,
respectively.

Although theoretical confidence intervals are not
available for the graphical technique, the graphical
method has the advantage that it needs only to resolve
a portion of the CDF accurately in order to make an
accurate estimate of the parameters of the distribution.
Inclusion of excessively noise-contaminated data re-
sults in underestimates of ofx using the arithmetic
method. When the fraction of the samples at or below
the noise level is excessive, confidence intervals are
constructed using (7) and the graphical estimates of
pinx and 0’|2nx-

Figure 4b indicates that for sample sizes of ~100
or larger the confidence limits generated by such
graphical replacements are relatively accurate. The
three cases in this paper where the noise contamination
is excessive have sample sizes of 84, 333 and 3792 and
o’ values of 5.91, 3.56 and 4.88, respectively. Figure
4b indicates that insertion of these graphical estimates
into (7) is reasonable and justified.

As shown in Fig. 4a, for small samples of size about
10 and large o2 about 5, the CDF of graphical estimates
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begins to depart significantly from the predicted line
based on the arithmetic method with corresponding
distortions of confidence intervals estimated from (7).

Using (7), the number of independent samples nec-
essary to obtain an estimate of the expected value
within +6 of the true value, at a desired significance
level, may be calculated. Figure 5 shows the number
of independent samples required for various values of
—& at the 95% significance level. If the —1 is neglected
in the term ¢*/2(z — 1), the number of independent
samples required for a given 6 is

(P4
T [In(1 £8)P

Assuming o? is in the range 3-7, Fig. 5 shows that
a range of 2600 to 10 000 independent samples is re-
quired, respectively, for estimating the expected value
to 10% accuracy with 95% confidence using X

The approximate number of samples required for
X., to obtain an estimate of the expected value within
+4 is computed by combining the relative efficiency of
X.m from the ratio of (B13) to (B10) and the number
of samples required for X to obtain the same degree
of accuracy. This is shown in Fig. 6 for —5. Whereas
Xoie requires 2600 to 10 000 samples for 10% accuracy
at the 95% level for o2 in the range of 3-7, X, requires
7000 to 400 000 samples: an increase by factors of 3
to 40.

®
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‘72InX

FIG. 5. The number of independent samples N required to estimate
the expected value of a LNrv within —¢ of the true value at the 95%
significance level using the maximum likelihood estimator Xgye,
from (8).
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4. Reexamination of oceanic microstructure datasets

Figures 7-10 and 14 show lognormal probability
plots of several oceanic microstructure datasets in the
equatorial undercurrent, seasonal thermocline and
main thermocline layers. These datasets are reviewed
to test the hypothesis of lognormality of oceanic tur-
bulence and mixing parameters and to reinterpret var-
ious estimates of mean values taking the intermittency
of the data into account.

The CDFs of oceanic mixing parameters will be dif-
ficult to resolve fully. The low end of the CDF is dis-
torted by noise contamination of the smallest measured
values. Inadequate spatial or frequency response and
inadequate sample size cause distortion of the high end.
The dependence of the estimated expected value E(X)
on the unresolved tail regions of the sample CDF may
be readily ascertained. The fraction F(x) of E(X) con-
tributed by values less than x is given by

exp[ (lnX A)%/2621dX
F;
)= f V2x exp(ii + 6%/2)

where indicates estimates. F;(x) is evaluated based
on either the arithmetic, i = 1, or the graphical, | = 2,
estimates of u,x and of,x for each comparison to log-

®
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normal in Figs. 7-10, 14. The + indicates the largest
value of the dataset. Also shown in each comparison
to lognormal are the 95% confidence intervals for the
expected value based on the indicated value of Xp.
The subscript associated with X, indicates that the
estimate is produced by the arithmetic, 1, or graphical,
2, methods. The value of X, is indicated by an aster-
isk. The statistical summary is presented in Table 1.

a. Equatorial undercurrents

Measurements of velocity and temperature micro-
structure in the Pacific equatorial region at 150°W are
presented by Crawford (1982). Crawford shows a fit to
lognormal of 20 m average ¢ values, computed for the
depth range 40-120 m, and a vertical heat flux param-
eter Ky, computed for depths 60-120 m. Crawford
finds the lognormal fits to be excellent, as long as values
are restricted to within +£0.5° of the equator, corre-
sponding to 19 drops within this category. Crawford
goes on to state that:

The standard deviations for the lognormal distributions
of ¢ and Ky are 1.0 and 1.1, respectively, smaller than
the value of 1.8 for K observed by Elliott and Oakey
in the thermocline at 9°N, 22°W. One expects internal

TABLE 1. Statistical summary of the reexamined oceanic microstructure datasets.

- - —_ 2 Confidence intervat
Depth Xam Xmie, Xmiey Hiluz 03 /og R1/Ry 4] N
Equatorial undercurrent
Crawford and Osborn {1981) elcm?/sec3) 30'S - 15'N 150°W
40-60 m 1.2x10-3 | 1.7x10-3 2X10-3 | -7.25/-7.46 | 1.68/2.5 12/43 9 6X1074 <E<5X1073
60-80 m 9.2X10"4 | 9.7X10-4 | 9.4x10-% | -7.25/-7.39 | 0.62/0.85 2.5/3.6 g | 5X10-4 <£< 1.8x10-3
80-100 m 85X1074 | 1.1X10°3 | 9.1X10"% | -8.26/-8.61 | 2.91/3.22 79/125 9 |1.8X10-% <£<6.8X10-3
100-120 m 1.1X10-3 | 4.3X10-3 | 9.7x10°3 | -9.15/-9.63 | 7.39/9.99 | 65186/3.2X108 g | 8x10® <eé<2x10-1
Crawford (1976) € (cm2/sec3) 18'S-37'N 24-33° W -
Above core 3.6X103 | 6.5X103 | 8.8X10°3 | -6.74/-6.73 3.4/4.0 164/403 82 [3.3X10°3 <&< 1.27X1072
Core 1.0X10-4 b 11X1074 | **/-12.05 **/5.91 **/7080 84 14.0X1078 <F<3.2X1074"
Below core 5.6X10-4 | 4.8X1074 [ 8.6Xx10-4 | -9.4/-0.89 3.5/5.66 191/4866 84 |3.16X10™% << 2.3X1073*
Seasonal thermocline
Washburn and Gibson (1984) x(°C2/sec/ 50°N 145°W
=3Tm 0.84/1.05 . 6.2X1077 | **/-16.74 **/4.88 **/1510 3792 5.4X1077 <X<7X1077*
: X106 ,
Dillon (1982) x(°C2/sec) 50°N 145°W
3040 m | 7.3X10-5 Tz.sxuﬂ ]mew4 -11.5/-11.66 ] 6.49/7.97 | 16898/155593 T 32 L 4X10-5 <% < 1.6X10-3
Elliott and Oakey (1979) x{°C2/ec/ 9°02'N 22°38'W
35125 m T 2.2X10-8 | J 2.1x1o-8T "/-19.437 *4/356 | **/208 | 333h5x1o-3< ¥ <29%108"
Main thermocline -
. Gregg {1977) Cox number 28°N 155°W
zsomzoofn[ 95 [ 179 [ 181 [ 2.93/2.57 4.41/52 I 746/2441 l 10 L 16 < C < 2003

1Denotes arithmetic estimation of ¢ and ¢2

2 Denotes graphical estimation of u and ¢2

3Xam computed: with noise subtraction/without noise subtraction
4R = mean to mode ratio = exp (3 62/2)

*Based on graphical estimates of u and 02

**Method not used due to noise effects
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FIG. 6. As in Fig. 5 except the number of samples N is for the
arithmetic mean X, instead of the maximum likelihood estimator
Xonie, from (8) and the relative efficiency re = mse (Xpe)/D*(Kam).
See Fig. B1.

waves to contribute strongly to the shear at their position,
while the zonal shear at the equator dominates the in-
ternal wave shear and maintains larger values of € at the
equator. It could be that because the zonal shear varies
over a smaller range than internal wave shear, the values
of € and Ky will also vary less. If so, then one can de-
termine the nature of equatorial turbulence with fewer
samples than are required in the seasonal thermocline
at higher latitudes (italics added). (p. 1147)

Actually, Crawford’s data indicate a much larger
rather than a smaller degree of intermittency than
found by Elliott and Oakey (1979). This is because
Crawford’s estimates of the standard deviations of the
logarithm of € and Kj; are based on using logarithms
to the base 10, whereas the Elliott and Oakey (1979)
estimate is based on logarithms to the base e. Craw-
ford’s values of 1.0 and 1.1 become 2.3 and 2.54 when
transformed to the standard system of base ¢ employed
by Elliott and Oakey. Therefore, of,x values for Craw-
ford’s data become 5.3 and 6.4 for € and Kj;, respec-
tively. Corresponding mean-to-mode ratios R [see ap-
pendix A, (A7)] for € and Ky, are 2836 and 14 765. The
value of 14 765 should be compared to the Elliott and
Oakey mean-to-mode ratio, based on their estimated
value of ofoc = 3.24, of only 129. Based on the mea-
sured CDFs, a larger rather than smaller number of
samples will generally be required in equatorial regions
than in thermocline layers at high latitudes to achieve
the same accuracy in estimates of mean values.
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A closer examination of the dataset is revealing.
Figure 5a of Crawford (1982) shows 20 m, one-day,
space-time averages of ¢ from within +0.5° of the
equator, plotted in 20 m intervals of depth. The scatter
of these ¢ values at each depth range may be used to
infer the vertical profile of the intermittency of the
space—time average dissipation rate €space_time- 1he in-
dividual 20 m values from each profile are available
in Table 5 of Crawford and Osborn (1981). Using the
same space~time averaging as in Fig. Sa of Crawford
(1982) and fitting data from each of the 20 m layers
from 40-120 m to lognormal distributions indicates a
great deal of variability in the intermittency.

Table | shows the resulting statistics. The intermit-
tency factor o, ranges from 0.62 for the depth interval
of 60-80 m to 7.39 for the 100-120 m interval. This
is a range in mean-to-mode ratios of 2.5 to 65 186,
demonstrating enormous variability in the intermit-
tency of different layers in the Pacific equatorial un-
dercurrent system.

Vibrational noise hypotheses have been proposed
by Gregg (1976) and Crawford (1976, 1982) to explain
the large discrepancies between their estimates of € and
x and those of Williams and Gibson (1974) and Belyaev
et al. (1975b) measured from towed bodies. Such hy-
potheses are inconsistent with direct measurements of
the vibrational accelerations of the towed body by
Schedvin (1979). The discrepancies are statistically in-
significant because the confidence intervals of the €y
and X, estimators overlap when intermittency is taken
into account. Table 1 shows that for Crawford’s Pacific
data, the maximum dissipation occurs in the layer 100-
120 m with an estimated mean value of €y = 4.3
X 1073 cm? s73. The 95% confidence interval is 7.6
X 107° <€ < 2.4 X 107! cm? s72 for the 100-120 m
depth range. The Williams and Gibson (1974) € value,
derived from a horizontal tow at 110 m, is well within
the confidence interval shown in Table 1, even without
correction for the fact that the mean velocity of the
undercurrent was higher than that of Crawford (1982)
by a factor of 2, which should increase ¢ by a factor of
about 8. Correcting for the difference in mean velocities
brings the ratio of mean values to 2.3, which is re-
markably good agreement considering that Crawford’s
mean value is uncertain within a factor of 2500 and
that the Crawford (1982) measurements were above
the core (150 m) and the Williams and Gibson (1974)
measurements were at core depths.

It seems clear that the turbulence and mixing pro-
cesses in the undercurrent have been vastly undersam-
pled, and that estimates of mean values are quite un-
certain. Vertical profiles of ¢” in the undercurrent layers
are needed, based on an appropriate number of inde-
pendent samples of € and x. If the mean values are to
represent space-time averages at some location, the
samples in time must cover a full range of years, seasons
of the year and times of the day, and the samples in
space must cover several horizontal eddy lengths, where
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spondingly numbered simulated CDFs in Fig, 2.

eddy.lengths at this latitude are about 500 km with
convection times at core depths of about 4 days. Ten-
dencies, often observed, for extreme € and X values to
cluster in small regions of space (clouds) and small
regions of time (storms) also complicate the process of
obtaining a representative set of independent samples.

Figures 7a, b, ¢ show lognormal probability plots of
2 m averaged e values from the above-core, core and
below-core regions of the Atlantic equatorial under-
current from Crawford (1976). The sample values for
each region, as defined by Crawford for each profile,
are derived from the profiles of ¢ presented in Crawford
(1976). The fraction of the record at the noise level or
less was only 1% for the above-core region. Confidence
intervals based on arithmetic means of ,, and of,, are
not seriously affected. The core layer measurements
are in the noise for 23% of the total record. This forces
the estimates to be made graphically. The simulation
displayed in Fig. 1 also indicates that the CDF of the
below-core data is significantly effected by noise. The
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confidence intervals displayed for the core and below-
core regions in Fig. 7 are constructed using these
graphical estimates.

The 95% confidence intervals for € based on €, €s-
timates in the core and below-core zones overlap, which
is contrary to the assertion by Crawford and Osborn
(1980) that the core region is effectively nonturbulent
and displays a minimum in dissipation compared to
the shear zones above and below. The 95% confidence
limits for the core and below-core regions are 3.8 X 107>
<€<32X10%and 32 X 1074 <€ <23 X 1073,
respectively. The below-core region has an estimated
€mic Of 8.6 X 107 cm? 573 compared to 1.1 X 107 for
the core. The least-squares fit for the core data indicates
ot is 5.91 which implies a mean-to-mode ratio of 7080
for the core and indicates that a much larger sample
is required for statistically significant statements about
the relative levels of mixing in the layers of the Atlantic
equatorial undercurrent.

According to the noise model discussed in section
5, the droop in the CDF in Fig. 7b below 6 X 1075 cm?®
s~ is probably due to noise effects. If the region above
this droop represents the underlying CDF the model
would predict that of, is probably much larger than
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FIG. 9. As in Fig. 7 except for 0.5 m averaged contignous values
of X in the seasonal thermocline during MILE (high winds), from
Dillon (1982).
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the previously cited (already enormous) value of 5.91
for the core region for this dataset.

b. Seasonal thermocline

Figure 8 displays the lognormal probability plot,
mentioned in section 2, for x measured in the hori-
zontal direction with a towed body during the mixed
layer experiment MILE, from Washburn and Gibson
(1984). About 4 km of data, taken in the seasonal ther-
mocline near ocean station PAPA over a two-hour pe-
riod, are included in the plot, giving 3792 data samples.
The temperature dissipation rate x is averaged over
approximately I-meter segments and detected by a mi-
croconductivity probe. The use of this sensor to detect
small-scale oceanic temperature fluctuations at high
speed is described in Washburn and Gibson (1982).

As discussed in section 2, deviations from lognor-
mality at low and high ends of the distribution can be
attributed to noise, spatial resolution limitations and
undersampling, Curve | demonstrates the effect of in-
cluding noise and curve 2 shows the effect of noise
subtraction. The least-squares fit to the resolved portion
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of the CDF gives of,, = 4.88, o, = —16.74 and esti-
mated mode of 4 X 107% °C? 5™}, The estimated mean
isx =62X1077°C%s7!,

To illustrate the potential hazard of large undersam-
pling errors in oceanic layers with large intermittency,
these values are compared with x values in the seasonal
thermocline of 1078-107° °C? s™! measured by Lange
(1981) from a small number of drops during the same
experiment. Lange’s values are closer to the mode value
of 4 X 1079 °C% 57! indicated by the lognormal fit to
the towed-body data than to the indicated mean of 6.2
X 1077°C? 57!, As shown in Fig. 5 of Gibson (1983),
the individual x profiles reported by Lange (1981) show
a rapid decrease through the seasonal thermocline from
a maximum at the base of the mixed layer, and are
qualitatively different than the profile computed by av-
eraging multiple dropsonde profiles of Dillon (1982),
which shows that a maximum in ¥ actually exists at
the thermocline depth. A profile of o, estimated from
the Dillon (1982) data, in Fig. 7 of Gibson (1983),
shows that the Lange maximum ¥ occurs at a shallower
depth where ¢%, has a minimum value of less than
1.0, whereas the value of aﬁ,x has a maximum (near 5)
in the seasonal thermocline corresponding to minimal
Lange x values. )

Figure 9 shows a lognormal probability plot of con-
tiguous 50 cm averaged x values taken with a drop-
sonde system during MILE, from Dillon (1982). These
values are from a single profile through the ~30-40
m seasonal thermocline depth with wind speeds in ex-
cess of 15 m s™'. Figure 9 indicates an extremely in-
termittent lognormal CDF with o7, of 6.5, highlighting
the intermittency that can be present even within in-
dividual profiles.

Oakey kindly provided us with the individual 10 m
averaged values of x from all the drops and depths
used in Elliott and Oakey (1979) for their fit of the
Cox number to a lognormal. Figure 10 shows a log-

" normal probability plot of those 333 x values. The

depth range is from 35 to 125 m, starting just beneath
the seasonal thermocline. A noise spectrum is estimated
from the data near the termination of each drop. Noise
subtraction is performed after a 10.m averaged spec-
trum is produced and any spectrum with a variance
less than the noise level is set equal to zero, Elliott and
Oakey (1979). About 30% of the 333 samples are in
the noise. Based on the graphical estimates of pp,, of
—19.48 and of,, of 3.56, Xmi is 2.06 X 1078 °C? 57!
with an estimated 95% confidence interval of 1.6 X 107%
< x < 2.7 X 1078, The arithmetic mean is 2.2 X 108
°C? 57!, whether a value of zero, or a value equal to
the smallest value shown in Fig. 10 (6 X 107'9), is as-
signed to the 10 m samples below the noise level.

¢. Main thermocline

The deep main thermocline microstructure mea-
surements of Gregg (1977) from the northern mid-Pa-
cific gyre are often interpreted to estimate the mean
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vertical eddy diffusivity coefficient K, ignoring any in-
termittency effects on the estimator of this quantity.
Such estimates generally give K, values one or two or-
ders of magnitude smaller than canonical estimates of
order 1 cm? s™! from bulk property models such as in
Munk (1966). For example, Jenkins (1980) cites an
average value of K, = 0.01 cm? s™! based on the Gregg
(1977) data. Gregg and Briscoe (1979) state that, “Cox
numbers high enough to support the 107* m? s™! dif-
fusivity obtained in models such as Abyssal Recipes,
Munk (1966), have not been found in midgyre oceanic
regimes.” The following reviews this dataset to see if
such strong conclusions are warranted.

Cox numbers reported by Gregg (1977) are under-
estimates because the microstructure is treated as if it
is completely anisotropic and vertically stratified. Gar-
gett (1984) uniformly applies a thermistor frequency
response correction factor of 2 and isotropic correction
factor of 3 to the Cox numbers in the depth ranges of
0.2-0.6 km and 0.8-1.2 km, reported in Gregg (1977).
This correction factor of 6 yields arithmetic mean Cox
numbers of 42 and 354, respectively. The data from
the deeper depth range, below the salinity minimum
at 600 m, are appropriate for comparison to the ca-
nonical models which balance vertical diffusion with
upwelling such as in Munk (1966). Applying Gargett’s
correction factor to Gregg’s Cox numbers from this
range results in an arithmetic mean Cox number of
276, and a vertical eddy diffusivity K, of 0.4 cm? s™'.
Gargett (1984) claims this value represents an upper
bound on K, because of possible violations of the Os-
born-Cox model assumptions, such as the neglect of
lateral advection of microstructure into the measuring
area. However, the Gargett (1984) upper bound does
not consider the possibility of underestimating the true
mean through intermittency effects discussed above,
or the large uncertainty associated with the use of the
arithmetic mean of a small sample from a skewed dis-
tribution. An upper bound should be the sum of the
maximum estimate of a parameter plus the maximum
positive uncertainty of that estimate. The Gargett
(1984) upper bound contains neither of these elements.

Using Gargett’s factor of 6 to correct the Gregg
(1977) data and using a lognormal probability plot in-
dicates that the Cox number is an intermittent log-
normal CDF with arithmetic estimates pj,c = 4.67 and
ofc = 2.25. The maximum likelihood estimator as-
suming lognormality is Cy,. = 329 with corresponding
K, =0.46. From (7), the 95% confidence interval based
on this estimate is 82 < Cpye < 1327. Therefore, the
correct upper bound indicated by the Gregg (1977) mi-
crostructure data (using the Gargett correction) is K,
= 1.9 cm?s7', not 0.4. As shown earlier, the confidence
interval for the arithmetic mean is even larger, which
increases the upper bound of K, based on this estimator
even further.

Gregg and Meagher (1980) retest the same brand of
thermistor used in the midgyre expeditions and find
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that the data are overcorrected for thermistor response
in Gregg (1977) using the Hacker correction (not un-
dercorrected as assumed by Gargett, 1984). The Hacker
correction is a 2-pole low-pass filter with a time con-
stant of 35 ms. Gregg and Meagher (1980) report a 2-
pole low-pass filter with a time constant of 21.7 ms as
representative of these thermistors. This correction is
used to reevaluate the Gregg (1977) spectra. By means
of overlay and enlargement techniques, the original
spectral values for the depth range of interest, 600-
1200 m, are recovered from Fig. 9¢c, d in Gregg (1977)
and are shown in Fig. 11. From these, the Hacker cor-
rection is removed and the new correction applied to
give the improved spectral estimates shown in Fig. 12.
All of the newly corrected spectra, including the most
active data from MSR 20, now appear to have ade-
quately resolved spectral peaks and show various de-
grees of diffusive rolloff. The spectra, in variance pre-
serving form, are compared to the Batchelor spectrum.
This comparison reveals that the variance computed
from MSR7 (Tasaday 11), MSR 10, and MSR20 require
a 35% correction for unresolved variance. The other
spectra are essentially fully resolved. Because the spec-
tra are normalized by (dT/dz)?, integration of the spec-
tra yield one-dimensional Cox numbers.

Figure 13 is a profile of the temperature gradient
variance, from Gregg (1980). The 150-meter averaged
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FIG. 11. Normalized temperature gradient spectra with original
Hacker thermistor frequency response correction, from Gregg (1977).
Curves long-dash, solid and short-dash correspond to drops from the
Aries 9, Tasaday 1 and Tasaday 11 cruises, respectively. The drop
or MSR number is shown in parenthesis for each curve.
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FIG. 12. Normalized temperature gradient spectra of Fig. 11 re-
corrected using the improved frequency response of Gregg and
Meagher (1980).

Cox number Cso , for this profile reported by Gregg
(1977) is 62. However, the dominant contribution to
the average is from active segments with a summed
length less than 10 meters. In these segments the Cox
number is several hundred and the scales dominating
the temperature gradient variance within these seg-
ments should be isotropic, so that the correct value of
Clso m Should have been 186. Based on such profiles,

all Cyso m larger than 30 are corrected by a factor of 3
to account for isotropy. However, the smallest Csp m
values, some of which are less than 2, are not corrected
for isotropy because the proﬁles are basically inactive
and the “microstructure” is completely vertically
stratified. Corrections for isotropy for C;s; m values in
- the range 2-30 are somewhat arbitrary, but have little
effect on the resulting probability plots and their in-
dicated distribution functions.

Figure 14 displays both normal and lognormal
probability plots for the Cjsy , values of Gregg (1977),
corrected for isotropy and the improved frequency re-
sponse of Gregg and Meagher (1980) as described
above. The fit to normal is exceedingly poor (curved
line), and the fit to a very intermittent lognormal CDF
(straight line) is quite good.

Assuming lognormality, the graphical method for
the corrected values yields Cpye = 181 with pyc = 2.6
and o%¢c = 5.2. The arithmetic method produces Coe

= 179 with g = 2.98 and of,c = 4.41. The corre-
sponding value of K, is 0.25 cm® s™. The 95% confi-
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dence interval for C, based on the values pj,c = 2.98
and of,c = 4.41, is 16 < C < 2003. The corresponding
interval for the vertical eddy diffusivity is 0.02 < K,
< 2.8 cm? s~ Therefore, considering the intermittent
lognormality of the microstructure, no statistically sig-
nificant discrepancy is found between the (microstruc-
ture) K, values indicated by the Gregg (1977) data and
the canonical estimates of K, from bulk property mod-
els such as Munk (1966).

In order to make meaningful comparisons between
K, estimates derived from deep ocean microstructure
measurements and canonical values derived from bulk
properties, much larger microstructure datasets will be
required. If the indicated ¢* of about 5 for Cisg n is
correct, as indicated by the Gregg (1977) data, about
240 independent samples must be collected to give a
factor of 2 uncertainty at the 95% level to estimate C
in the main thermocline by this method. Over 1000
samples would be necessary for a 20% uncertainty.

5. Discussion of results

Why are oceanic dissipations rates lognormal, and
why are they so intermittent? Intermittent lognormality
is a characteristic of nonlinear random variables, such
as high Reynolds number turbulence dissipation,
droplet or particle size, rare metal concentration in the

Tasaday 11 MSR 10
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F1G. 13. Profiles of temperature, temperature gradient and cu-
mulative temperature gradient variance from Gregg (1980). The mean
Cox number is 62 with most of the mean value contributed by regions
where C is several hundred and presumably isotropic.
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values corrected for isotropy and frequency response, for the depth
range 600-1200 m, from Gregg (1977). The data are clearly not nor-
mal, but strongly indicate a lognormal (straight line) CDF. The no-
tation is the same as Fig. 7.

earth crust, or personal income, which are at the end
of a long chain, or cascade, of independent, multipli-
cative events. Lognormality of ¢ in high Reynolds
number turbulence is proposed by Kolmogoroff (1962)
as a refinement to the first and second universal sim-
ilarity hypotheses of Kolmogoroff (1941). The “third
hypothesis” of Kolmogoroff (1962) may be written as

0,12m =p ln[Lenergy/ Ldissipation] (10)

where  is a universal constant. Hot wire measurements
of ¢ in the atmospheric boundary layer over the ocean
by Gibson et al. (1970) show good agreement with the
Kolmogoroff lognormal hypothesis. Maximum values
of o of about 4.0 were detected for the highest winds
at a maximum height of 30 meters above the sea. The
constant u was found to be ~0.5.

Gurvich and Yaglom (1967) show that lognormality
of ¢ follows from the central limit theorem and a cas-
cade model of turbulence covering a wide range of in-
dependent eddy length scales from Lepergy t0 Laissipation-
Gibson (1981) extends the Gurvich and Yaglom cas-
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cade model to explain the observed lognormality of X
= ¢ and x in the ocean. According to the model, iy
in a stratified layer should increase logarithmically with
the range of horizontal eddy scales as

(11)

where p' is a constant =~ g, Lepergy i the largest hori-
zontal eddy scale, usually limited by Coriolis forces,
and Liyoyancy 18 the largest vertical eddy scale, usually
limited by buoyancy forces. Horizontal eddies may
cover meters to megameters in the ocean and thus pos-
sibly account for the wide range of o%x values, using
the above expression. However, at this time none of
the terms on the right-hand side of the expression are
known well enough in any layer of the ocean to provide
better than crude comparisons to measured values on
the left-hand side. The observation that intermittency
factors are maximum in layers with maximum strati-
fication is consistent with the cascade model of inter-
mittency because the ratio Lenergy/Lbuoyancy Should be
maximum in such layers. The observation that inter-
mittency factors are small in the surface mixing layer
and in shear layers is also consistent, because the energy
scale of the horizontal eddies in such layers is relatively
small, comparable to the layer thicknesses, and the
buoyancy scales are relatively large.

In section 4 several microstructure datasets from the
Atlantic and Pacific equatorial undercurrents, the sea-
sonal thermocline and the main thermocline were re-
viewed to test the validity and consequences of the hy-
pothesis of lognormality in the ocean. Each of these
layers is strongly stratified relative to the layers above
and below and, perhaps as a consequence of the strat-
ification, the turbulence and mixing parameters X = e,
x and C are extremely intermittent with ¢f,x in the
range 3-7 and distribution functions that are indistin-
guishable from lognormal. Because the datasets are
small, the confidence intervals for E(X) are generally
very wide, indicating severe undersampling. Several
anomalous results and discrepancies in estimates of
mean values between datasets are resolved when this
undersampling due to intermittency is taken into ac-
count. Except for the Washburn and Gibson (1984)
seasonal thermocline data and the below-core data
from Crawford (1976), the function F(X) also indicates
the remaining reviewed datasets are undersampled.

The most extreme intermittency was found in the
equatorial undercurrent high-velocity core layers.
Maximum values of of,, and ¢, possibly result from
the combined effects of the strong stratification of the
layer, the high velocities of the undercurrent and the
large horizontal eddy scales at this latitude resulting
from large velocities and minimum constraining Co-
riolis forces. Large apparent discrepancies between un-
dercurrent mean dissipation rates indicated by towed-
body and dropsonde measurements have remained
unresolved for over a decade and have been attributed
by Gibson (1981, 1983) to intermittency effects. Anal-

4 lan =y ln[Lenergy/ Lbuoyancy]
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ysis of the intermittency of equatorial microstructure
measurements in section 4 is consistent with this in-
terpretation. Inferred minima in mean dissipation rates
at undercurrent core depths may be artifacts of un-
dersampling errors due to intermittency because, from
the lognormal confidence intervals derived in section
3, these minima lack statistical significance.

The largest available datasets have been collected in
the seasonal thermocline. Apparent minima in the
vertical profiles of mean temperature dissipation rates
x at the seasonal thermocline depth result from max-
imum undersampling errors in this layer of maximum
intermittency. Adequately sampled profiles of X ac-
tually show maximum values at this depth, as shown
in section 4 and in Gibson (1983).

It is commonly accepted that a discrepancy exists
between the vertical eddy diffusivity K, indicated by
the main thermocline microstructure measurements
of Gregg (1977), setting K, = DC, and canonical esti-
mates of K, from bulk properties. Gregg and Briscoe
(1979) and Jenkins (1980) point out this discrepancy
and estimate that K, from the microstructure mea-
surements is one or two orders of magnitude less than
values of K, = 1.0 cm? s™! inferred from bulk property
models such as Munk (1966). When the extreme in-
termittency and lognormal probability distribution in-
dicated by the Gregg (1977) data are taken into account,
the discrepancy is statistically insignificant because the
confidence interval for K, is very wide, due to under-
sampling, and includes both estimates.

6. Conclusions

Presently available microstructure datasets in strat-
ified oceanic layers indicate that the probability distri-
bution functions describing turbulence and mixing pa-
rameters ¢, x, and the Cox number are indistinguishable
from highly intermittent lognormal CDFs. Monte
Carlo simulations show that apparent deviations from
lognormality of the empirical oceanic CDFs are ex-

" plained by a simple model based on noise and sample
size effects. '

For lognormal random variables the arithmetic
mean X,r, is shown (in appendix B) to be an extremely
inefficient estimator of the expected value E(X) = X
compared to the maximum likelihood estimator X,
for intermittency factors ofy > 3.0, and can greatly
underestimate E(X) if small datasets are used. Confi-
dence intervals are derived for X, which indicate that
2600 or 10 000 independent samples are required for
statistically significant estimates of expected values for
oty values of 3 or 7, respectively.

From these confidence intervals, minima in turbu-
lent mixing rates and vertical eddy diffusivities at the
high-velocity core depths of the Atlantic equatorial un-
dercurrent iniferred by Crawford and Osborn (1980)
appear to be artifacts of the sampling technique em-
ployed, which undersamples the turbulence and mixing
processes in such extremely intermittent layers.
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The supposed discrepancy between small values for
the deep main thermocline eddy diffusivity, estimated
from microstructure data of Gregg (1977), and the ca-
nonical values of K, ~ 1 cm? s}, estimated from bulk
flow models such as Munk (1966), is rejected under
the hypothesis that the data are lognormally distributed.
After correction for isotropy and sensor frequency re-
sponse, the Gregg (1977) Cox number values are shown
to be highly non-Gaussian and in good agreement with
an intermittent lognormal CDF. The 95% level con-
fidence interval for C corresponds to a confidence in-
terval for the vertical eddy diffusivity of 0.02 < K, < 2.8
cm?s7!,
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APPENDIX A

Properties of Lognormal Random Variables

If a random variable X is lognormally distributed,
then InX is normally distributed with expected value
u and variance ¢°. The probability density function
(pdf) of X is

1 —(Inx— ﬂ)’]
X)= ex . Al)
S%) oVom) p[ g (
The ith moment of X is
. i%g*
EX)= exp(m + T) ) (A2)
The expected value of X is
2
EX)= exp(u + 5'2—) : (A3)
The mode of X, or the most probable value of X, is
mode(X) = exp(u — o?). (A4)
The median of X is
median(X) = exp(u). (AS)
The variance of X is
var(X) = exp(2u + o)[exp(c?) — 1]. (A6)

Unlike the normal distribution, which has a constant
mean-to-mode ratio of unity, it follows from (A3) and
(A4) that the lognormal distribution has a variable

~ mean-to-mode ratio R,
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R = [mean/mode]inw = exp(36%/2) (A7)
that increases exponentially with the intermittency
factor o. This relation is shown in Fig. Al. By its def-
inition, in (A4), the most probable value of a single
datum (or, approximately, the average of a small sam-
ple set) is the mode, which severely underestimates the
mean if o2 is large, as shown in Fig. Al. Equations
(A3), (A4) and (AS) show that £(X) > median > mode
for the lognormal distribution, in contrast to the re-
lation

E(X) = median = mode

when the distribution is normal.

Figure A2 displays the dramatic effect of of,y on the
shape of the lognormal distribution. In Fig. A2, log-
normal pdfs normalized by their modal values are
shown for several values of o,x. For oty = 1, the mean
value is easily shown on the plot. However, for o
= 5.0, the mean value would be several meters off the
page to the right. Because the shape of the pdf and the
mean-to-mode ratio depend only on oy, ofx deter-
mines the numbers of samples necessary to achieve a
given accuracy in estimating any statistical parameter
of the distribution, and is therefore the parameter which
should motivate the sampling strategy. Increased in-

termittency in X is reflected in larger values of ofy.-

Consequently, of,x measures the intermittency of X
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FIG. Al. Mean-to-mode ratio versus intermittency factor for log-
normal random variables, from (7). This ratio represents the probable
correction factor required for small microstructure datasets used to
estimate mean values neglecting the intermittent lognormality of
oceanic microstructure,
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FI1G. A2. Lognormal pdfs normalized by the peak value of the pdf
that occurs at the mode, for various intermittency factors, plotted
versus the random variable normalized by the modal value.

and is referred to in this paper as the intermittency
factor of the LNrv.

Data may be compared to a normal probability dis-
tribution function by plotting the fraction of the data
less than or equal to various values of x on a “normal
probability plot.” The vertical axis is stretched so that
data from a normal distribution fall about a straight
line. The ordinate is the “standardized normal random
variable” Z = (X — u)/o; that is, the value Z of a Gaus-
sian with zero mean and unity variance with empirical
probability P(Z < x) equal to the measured fraction
of data samples less than or equal to x. The probability
associated with the largest observed sample value, 1.0
for the less than or equal sorting procedure, is arbitrarily
set at 0.9999 in order to allow that sample value to
appear on the probability plot. Lognormal probability
plots replace the linear abscissa with a logarithmic axis.
Such plots enable estimation of ui,x and ofhy. For the
fitted line, the abscissa value, where Z = 0, yields an
estimate of u.x, and the square of the inverse of the
slope provides an estimate of af,y. This method of es-
timating p,x and o2, is referred to as the “graphical
method” in this paper. Each of the oceanic datasets
reviewed in this paper is compared to lognormality on
a lognormal probability plot. The less than or equal
sorting procedure forces the largest sample value to be
excluded from the graphical procedure. For sample
sizes of 100, the cumulative distribution functions of
Xmic €stimates produced by the arithmetic and graphical
procedure are shown in Fig. 4b to be virtually indis-
tinguishable.
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APPENDIX B

Estimation of the Expected Value
of a Lognormal Distribution

Given a pdf for a random variable X, several criteria
may be used to select the best estimator of a statistical
property of X, such as the expected value E(X), from
the possible estimators available. As a minimum set of
criteria, the various estimators should be evaluated as
to their consistency, bias and relative efficiency. If pos-
sible, confidence intervals should be available to express
the degree of uncertainty in the estimate.

A consistent estimator is one that converges in prob-
ability to the true value as the sample size # = c0. An
estimator whose expected value equals the true value
for any sample size is unbiased. An estimator whose
expected value equals the true value as n = oo is
asymptotically unbiased.

The efficiency of an unbiased estimator & relative
to an unbiased estimator £ is a measure of the relative
number of samples reqmred to achieve the same degree
of uncertamty in & as in B. By definition, the relative
efficiency of & compared to 3 is

D*(B)
DX(&)
where D? is used to indicate the variance of an esti-
mator.

According to Freund (1971), if one or both of the
estimators in question is biased the mean-square error
of the biased estimator should be used in (B1) instead

of the variance to evaluate the relative efficiency. The
mean-square error of an estimator is given by

mse(a) = E[(& — a)’] (B2)

where « is the true value. Equation (B2) may be re-
written by substituting the identically zero expression
E(a) — E(a) inside the squared term and rearranging
terms to yield

re(&lp) = (B1)

mse(&) = DX&) + [E(&) — . (B3)

The last term is the square of the bias of &. Note that
for an asymptotically unbiased estimator the mean-
square error and the variance converge as # —> co.

According to Cramer (1946), the method of maxi-
mum likelihood produces, under general conditions,
a consistent estimator that is at least asymptotically
unbiased and possesses minimal variance. The basic
method is to form the likelihood function L for a sam-
ple of n independent values from a population of the
continuous type,

L(xl,-..,xn;0)=f(x1,..-,xn;0)=£llf(x,~;0) (B4)

where f(x,, ..., X,; 0) is the probability of obtaining
the particular sample (x,, ..., Xx,) given that 0 is a
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parameter of the population. Given the sample values,
the likelihood function is only a function of 8, L = L(#8).
The value of 6 for which the likelihood function is
maximum, thereby maximizing the probability of ob-
taining such a sample, is the “maximum likelihood
estimator” 0, which is found where

dInL
e =0. (B5)
The value of 6., depends on the sample x{, ..., x,.

In the case of Nrvs, it may easily be shown that the
maximum likelihood estimators of the true mean and
variance are the arithmetic sample mean and arith-
metic sample variance, respectively.

In the lognormal case, the maximum likelihood es-
timator of E(X) is

12
Xie= exp(m + S—Z—) (B6)
where m is the arithmetic sample mean
1 n
= > InX (B7)
n 1
and s'? is the arithmetic sample variance
l n
s?=— > (InX—m) (B8)

Jj=1

from Kendall and Stuart (1967) The minimum vari-
ance unbiased estimator of of,x is s> = (n/n — 1)s”. In
this paper X is used mstead of X/, where X, is
defined by replacing s by 52 in (B6); that is,

2

Xte= exp(m + %) (B9)
Estimation of umy and ofx by m and s, respectively,
is referred to as the arithmetic method in this paper.

The arithmetic mean, median and mode are all ex-
cellent estimators of the expected value for Nrvs. Be-
cause all three are consistent and unbiased, the arith-
metic mean is chosen as the best estimator on the basis
of relative efficiency. Microstructure parameters are not
Nrvs. Over the range where neither noise, spatial re-
sponse or lack of samples contaminates the sample pdf,
the data are lognormal.

The arithmetic mean of LNrvs, X,n, is unbiased and
converges to the true value if the sample size is large
enough. The variance of X, is

exp(2u + 02)[exp(02) —1]
n

DZ(Xam) =

2(X )

= [exp(c?)— 1] (B10)

and the variance of X is
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2 2 \~[(n—1)/2]
Dz(va]e) = eXp(Zu + %)[exp(i‘nj)(l — %)

_(1- s )_(M)] (B11)
n—1

for [1 — 26%/(n — 1)] > 0, from Sichel (1951).
The expected value of X, is

o2 \-ln-1r2)
ANe=Z) o

(B12)

E(Xmie) = exp(—(;:)

for [1 — ¢®/(n — 1)] > 0. X is positively biased but
asymptotically unbiased.

The mean-square error of X, may be derived by
directly evaluating (B2) or by combining (B3), (B11)
and (B12). The mean square error of X is

mse(X i)

= EZ(X)[I + exp(z—E )(1

— 2 \-l(r—1)/2]
S22 s

n—1

for [1 — 26°/(n — 1)] > 0. Therefore, from (B1), the
relative efficiency re(X,m|Xme) is given by the ratio of
(B13) to (B10), and is shown by the solid curves in Fig.

B1 for several sample sizes as a function of ¢2. Note
that E2(X) divides out of the relative efficiency. Figure
Bl demonstrates that X, is extremely inefficient for
the range of of,x of about 3-7 commonly observed in
oceanic microstructure measurements.

The small effect of the bias of X, on the relative
efficiency is demonstrated by the comparison of the
dotted curves in Fig. Bl with the solid curves. The
dotted curves are generated by the ratio of D*(X.)/
DX ymm).

Finney (1941) derives the minimum variance un-
biased estimator, X,,..., which is a slowly converging
series

252 \“ln=1/2)
n— 1)

-2 exp(

2 22n+1)

+ (n—1)3%$
233!(71 +1)}n+3)

X’mvu,-—“exp(m)[l+ + n—1s*

] (B14)

where m is defined by (B7) and s? is the minimum
variance unbiased estimator of oZ,y.

According to Aitchison and Brown (1957), “Theory
provides no means of obtaining exact confidence in-
tervals for” E(X) and D*X). They suggest the as-
sumption that estimators of E(X) are asymptotically
normal with mean E(X) and variance D*(estimator),
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FI1G. BI1. Relative efficiency of the arithmetic mean vs the maximum
likelihood estimator of the mean for LNrvs: (solid) re = mse [Xmle]/
DA X,] from the ratio of (B13) to (BIO) (dotted) re = DX uel/ D Xar)
from the ratio of (B11) to (B10). N is the sample size.

respectively. The asymptotic variance of X, is given
by (B10) and for both X and Xpwe the asymptotic
variance may be expressed as exp(2 p + o°)}(o? + o/
2)/n, from Kendall and Stuart (1967), so that confi-
dence intervals may be constructed as suggested by
Aitchison and Brown with the familiar form

estimator — D(estimator)z,; < E(X)

< estimator + D(estimator)z,, (B15)

with a (1 — «) confidence coefficient. The large sample
confidence interval based on X,,, may be obtained in
the same manner assuming that X, is normally dis-
tributed for a large sample size. Small-sample confi-
dence intervals for X, are derived in section 3 and
are not presently available for either Xpyye or Xam at
this time.

Based on relative efficiency (which includes bias ef-
fects), its convergence to the true value, and the avail-
ability of confidence intervals even for small sample
sizes, X is selected to estimate E(X) for the inter-
mittent oceanic dissipation parameters considered in
the present paper.
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