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Abstract5

The first set of results in a suite of eddy-resolving Boussinesq, hydrostatic simulations is presented. Each
set member consists of an initially linear stratification and shear as in the Eady problem, but this profile
occupies only a limited region of a channel and is allowed to spin-down via baroclinic instability. The
diagnostic focus is on the spatial structure and scaling of the eddy transport tensor, which is the array of
coefficients in a linear flux-gradient relationship. The advective (antisymmetric) and diffusive (symmetric)
components of the tensor are diagnosed using passive tracers, and the resulting diagnosed tensor reproduces
the horizontal transport of the active tracer (buoyancy) to within ±7% and the vertical transport to within
±12%. The derived scalings are shown to be close in form to the standard Gent-McWilliams (antisymmetric)
and Redi diffusivity (symmetric) tensors with a magnitude that varies in space (concentrated in the horizontal
and vertical near the center of the frontal shear) and time as the eddies energize. The Gent-McWilliams eddy
coefficient is equal to the Redi isopycnal diffusivity to within ±6%, even as these coefficients vary with
depth. The scaling for the magnitude of simulation parameters is determined empirically to within ±28%.
To achieve this accuracy, the eddy velocities are diagnosed directly and used in the tensor scalings, rather
than assuming a correlation between eddy velocity and the mean flow velocity where ±97% is the best
accuracy achievable. Plans for the next set of models in the challenge suite are described.
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1. Introduction8

Computational power will always limit the resolution of ocean models. The oceanic mesoscale eddy9

field is important to the structure and sensitivity of the large-scale ocean (e.g., Danabasoglu and McWilliams,10

1995; Eden et al., 2009; Grooms et al., 2011), and resolving the mesoscale eddy field is not routinely pos-11

sible in oceanic general circulation models (OGCMs). Extrapolating current trends in computation predicts12

that mesoscale eddy parameterizations will be needed for some decades into the future, especially for use in13

high complexity earth system models and long duration or large ensemble scenarios needed for certain prob-14

lems such as obtaining reliable statistics of tropical variability (Wittenberg, 2009; Stevenson et al., 2010),15

biogeochemistry spinup (Key et al., 2004), and paleoclimate (Jochum et al., 2012). As such, optimizing16

and evaluating eddy parameterizations is an important task, but few scenarios are sufficiently and repeatedly17

simulated to serve as a measure against which parameterizations may be tested.18

All mesoscale eddy fluxes must be parameterized in present OGCMs and climate models where the19

oceanic horizontal grid resolution is O(100km)–insufficient for eddy growth in almost all regions. Grids of20

O(10km) or better are needed to adequately resolve most mesoscale motions (McClean et al., 2006), but even21

Preprint submitted to Elsevier December 3, 2012



at these resolutions low stratification and polar regions remain poorly resolved. When eddies are partially22

resolved, parameterizations of the missing eddy fluxes are still needed (Large Eddy Simulation closures,23

e.g., Roberts and Marshall, 1998; Fox-Kemper and Menemenlis, 2008), but here the focus is on evaluat-24

ing parameterizations designed for use when no eddies are resolved and all eddy fluxes are parameterized25

(Reynolds Averaged Model closures, e.g., Gent and McWilliams, 1990).26

It is standard practice to parameterize the effects of subgridscale eddies by including extra terms in27

the equations of motion. At present, the greatest care is taken in modifying the active tracer equations,28

which analysis indicates to be the most likely eddy effects to be important (Grooms et al., 2011). Ideally,29

eddy parameterizations would be compared directly with observations, but the sheer number of observations30

required makes this rare or unfeasible. An evaluation using numerical models compares high-resolution31

models against eddy parameterizations. However, discretion is required in choosing which scenarios to32

simulate at high-resolution. An ideal set of tests would be representative of most likely scenarios and would33

accentuate the differences between parameterizations. A suite of such model results would be very useful in34

understanding and evaluating eddy parameterizations, including those not yet developed.35

This paper discusses the first set of simulations in the construction and implementation of such a test36

bed, or eddy parameterization challenge suite. The transport of tracers in a large-scale, rotating, stratified37

turbulent flow is the focus of this set of challenges. The model scenario simulated here is similar to the Eady38

(1949) problem, in that eddies form from instabilities in constant stratification and shear. One reason for39

choosing this problem is the past work on related problems (e.g., Stone, 1972; Fox-Kemper et al., 2008).40

Other reasons are computational efficiency and a limited number of parameters to completely describe the41

simulation. As in Fox-Kemper et al. (2008) (hereafter FFH), a constant stratification and shear will be42

imposed in the initial conditions at the center of the domain and the shear will be smoothly tapered to zero43

toward the boundaries. This initial configuration will be allowed to evolve as freely as possible with slip,44

conservative, insulating boundary conditions. Unlike FFH, other variations in stratification to demarcate45

a mixed layer or pycnocline are neglected. While this scenario is unlike any particular ocean region, any46

parameterization capable of reproducing eddy tracer fluxes in more complex scenarios should accurately47

handle this simple case over a wide range of simulation parameters.48

For situations where no eddies are resolved, parameterizations amount to approximation of processes49

at fine resolution (subgrid) in terms of coarse resolution (resolved) quantities. A subgrid flux to resolved50

gradient (flux-gradient) relationship is often assumed, which is of the form51

u′b′ = −R∇b̄, (1)

u′τ′ = −R∇τ̄. (2)

These equations relate the subgrid eddy flux of buoyancy b or tracer concentration τ to the resolved gradient.52

In general, the operator ( ) could refer to a spatial, temporal, spectral, or other kind of average; in this paper53

it will indicate a zonal, along-channel average. The eddy component, denoted by the ”prime” symbol, will54

be the local deviation away from this average. The proportionality between the flux vector and gradient55

vector is governed by a 3 × 3 eddy transport tensor, R.56

Throughout, it is assumed that the coordinate system is Cartesian and aligned with the geoid, as is ap-57

propriate for z-coodinate models. For models in other coordinates, conversions can be made (de Szoeke58

and Bennett, 1993; Hallberg, 2000). Furthermore, here all tracers are treated on equal footing; the popular59

method of averaging in density-coordinates singles out density as a special tracer, thus it is avoided despite60

any advantages it may bring. In principle, every tracer might have its own unique transport tensor R, but61

theory (Taylor, 1921; Plumb and Mahlman, 1987; Dukowicz and Smith, 1997; Fox-Kemper et al., 2012b)62

connects R to the correlations of displacements of fluid parcels which are independent of tracer, so long as63
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background tracer concentrations vary smoothly and local sources and sinks of the tracer are weak. For-64

mulations to reduce the contribution of rotational and gauge indeterminacy of R have been proposed (Eden65

et al., 2007), but the R diagnosed by this method differs for each tracer and thus there is not a ready compar-66

ison to correlations of displacement theories (Taylor, 1921)1. Below, it will be shown that using one tensor67

serves to reproduce fluxes of all tracers studied, active and passive, to within a few percent error in these68

simulations. A single tensor for many tracers has been hypothesized or posed in many contexts (Andrews69

and McIntyre, 1978; Plumb, 1979; Plumb and Mahlman, 1987; Bratseth, 1998; Griffies, 1998) and can be70

used to represent a combination of advective and diffusive transport by eddies. Determining this tensor in71

the Eady-like problem is the prime analysis here.72

This paper is organized as follows. Section 2 reviews the background and theory underlying diagnosis73

of the transport tensor using passive tracers. Section 3 details a scaling of the tensor elements based on74

fluid parcel exchanges. Section 4 contains diagnoses of the simulations including empirical scaling laws.75

The final section concludes. Appendices describe the simulation setup in detail, including the shear and76

stratification configuration (Appendix A), tracer initialization (Appendix B), and model setup (Appendix C).77

2. Background and Theory78

The simplest form for the transport tensor, R, is purely diagonal for downgradient Fickian diffusion and79

is often implemented with different vertical and horizontal diffusion rates.2 This simple form is inadequate,80

as it spuriously mixes distinct watermasses (Veronis, 1975). The next simplest form is a symmetric tensor,81

representing diffusion with different rates along different directions, which may be any orthogonal set, not82

just horizontal and vertical. The Redi (1982) isoneutral diffusion parameterization (hereafter Redi) is an ex-83

ample. In incompressible flow, Taylor (1921) shows that a symmetric tensor is sufficient to capture diffusion84

by continuous movements.85

However, a symmetric form is inadequate as well, as not all eddy transport is diffusive. Using a purely86

diffusive parameterization leaves advection unaffected, so the resolved velocity is the only advective trans-87

port. Observational and numerical model studies, especially of the stratosphere (Plumb, 2002) but also in88

the ocean (Gent et al., 1995; Marshall et al., 2006; Zika et al., 2010), have shown that on average trac-89

ers are not advected by the large-scale velocity. Indeed, Andrews and McIntyre (1978) and Dukowicz and90

Smith (1997) show that in compressible flow, or in flow along a two-dimensional subspace surface embed-91

ded within incompressible three-dimensional flow, an additional advective transport due to eddies is likely92

to arise. The Gent and McWilliams (1990) (hereafter GM) mesoscale eddy parameterization specifies this93

additional advective eddy tracer transport, consistent with a release of mean potential energy through baro-94

clinic instability. In the context of the diagnosed eddy transport tensor R, such advective effects will lend an95

antisymmetric contribution.96

2.1. Advective and Diffusive Fluxes97

Griffies (1998) demonstrates that the transport tensor in the flux-gradient relationship can be interpreted98

as contributing both an advective and a diffusive component. This decomposition is uniquely equivalent to99

subdividing R ji into antisymmetric and symmetric parts, respectively,100

R ji = S ji + A ji, S ji =
R ji + Ri j

2
, A ji =

R ji − Ri j

2
(3)

1Although a personal communication with Eden and Griesel indicates that such a synthesis may be forthcoming.
2Recall that true vertical and horizontal are intended, not dianeutral and isoneutral mixing as in an isopycnal model.
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Throughout, the symmetric tensor S will be referred to as the diffusivity tensor, the antisymmetric tensor A101

as the advective tensor, and the combination of both advection and diffusion R will be the transport tensor.102

The diffusivity tensor, S, is symmetric and therefore will have all real eigenvalues. Each eigenvalue cor-103

responds to a diffusivity in a particular (eigenvector) direction. Diffusion in this form is discussed elsewhere104

(Fox-Kemper et al., 2012a; Fox-Kemper et al., 2012b).105

The tracer flux divergence due to the antisymmetric tensor A is identical to an advection by an incom-106

pressible velocity, u† (Griffies, 1998). The association with a velocity follows directly from the antisymmetry107

of A ji, the symmetry of ∇ j∇i, and the fact that the inner product of a symmetric and an antisymmetric tensor108

is identically zero.3109

u†j ≡ ∇iA ji,

∇ ju
†

j ≡ ∇ j∇iA ji = 0,

0 = ∇ j∇i

(
A jiτ̄

)
= ∇ j

(
A ji∇iτ̄

)
+ ∇ j

(
τ̄∇iA ji

)
.

(4)

So, using subscripts on scalars, such as tracer concentration or buoyancy, we find110

∇ · u′τ′ = −∇ jR ji∇iτ̄,

= −∇ j(A ji + S ji)τ̄i,

= −∇ j

(
A ji∇iτ̄

)
− ∇ j

(
S ji∇iτ̄

)
,

= ∇ j

(
τ̄∇iA ji

)
− ∇ j

(
S ji∇iτ̄

)
,

= ∇ j

(
u†j τ̄

)
− ∇ j

(
S ji∇iτ̄

)
,

= u† · ∇τ̄ − ∇ · (S · ∇τ̄) .

(5)

It is convenient to associate this incompressible eddy-induced velocity u† with a streamfunction (∇ × ψ† =111

u†). The components of ψ† are just the reordered nonzero elements of the antisymmetric tensor A (εi jkψ
†

k =112

Ai j, ψ
†

k = 1
2 εki jAi j, where ε is the totally antisymmetric Levi-Civita symbol). In the case of interest here, the113

eddy-induced flow will be in the y− z plane only, so only the x component of the streamfunction is nonzero.114

It is equal to Ayz and opposite Azy.115

With the eddy-induced velocity and symmetric diffusivity tensor, the tracer equation is116

∂τ̄

∂t
+ (ū + u†) · ∇τ̄ = ∇ · S · ∇τ̄. (6)

The usefulness of the symmetric / antisymmetric decomposition is dependent on how well the flux-gradient117

relationship is satisfied. If the flux-gradient inversion for S is underdetermined or noisy, then the symmetric118

/ antisymmetric decomposition is not meaningful. If the flux-gradient relationship itself is not useful, e.g., if119

non-local effects are important, then there is no reason to think the symmetric / antisymmetric decomposition120

will improve matters. It is entirely appropriate to form separate parameterizations for the symmetric and121

antisymmetric tensors, as is done by Redi and GM, respectively. Here, scalings for the eddy fluxes based122

3Einstein summation is implied, so repeated indices indicate a sum over all coordinate directions.
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on problem parameters, and therefore scalings for each tensor element, are determined. These scalings are123

comparable to a diagnosis technique of model results detailed next.124

Some authors (e.g., Eden et al., 2007) prefer not to consider the total, measurable physical flux u′jτ
′
π,125

but instead prefer to contaminate the measurable fluxes with rotational corrections that either are not unique126

(Fox-Kemper et al., 2003) or depend on which tracer in particular is used (e.g., Eden et al., 2007). Determin-127

ing the rotational flux here halves the statistical value of each tracer, by introducing another unknown field128

along with each tracer. As the zonal-mean flux, and therefore the flux divergence, is readily predictable from129

the flux-gradient relationship here, there is little reason to introduce this extra noise into the determination.130

2.2. Tensor Under- and Overdeterminacy131

Often, models are diagnosed or theory is formulated to reproduce the evolution of a single tracer, usually132

potential temperature, buoyancy, or potential vorticity. The idealization is that small-scale turbulent motion133

acts similarly on all conserved tracers, and so the one can act as a “representative” tracer for all mixing. This134

assumption should be considered carefully.135

A fundamental limitation is that for eddy transport in n dimensions, using one tracer in the flux-gradient136

relationship provides only n constraints on n2 elements of the transport tensor. Thus, for n > 1, it is an137

underdetermined system. In a zonal average as here, n = 2. Each tracer gives two constraints (one for each138

flux component), but the transport tensor will consist of four elements. Thus, at least two tracers (giving four139

tracer flux components and four tracer gradient components) are needed to sufficiently determine the system.140

However, since zonal averaging effectively hides a large number of degrees of freedom, it is appropriate to141

overdetermine the system by using extra tracers and to solve for the transport tensor using a least-squares142

approach so that a “representative average” over all of the hidden degrees of freedom is found (Bratseth,143

1998; Fox-Kemper et al., 2012c).144

Why is the least-squares approach useful, rather than considering each tracer flux in turn? Consider for145

a moment a large ensemble of many different tracers that are initialized with the same zonal mean, but differ146

in their zonal variations. Consider also a large ensemble of velocity fields, that again agree in zonal mean147

but differ in zonal variations. Now consider all of the possible fluxes that result from advecting each tracer in148

the ensemble with each eddy field in the ensemble. The mean of all of the fluxes will constitute a weighted149

mean over different eddy features with different weights, because of coincidental correlations of the zonal150

eddy and tracer variations. Fundamentally, such chance correlations limit the reproducibility of tracer fluxes151

with any specific eddy field and tracer field to realize the ensemble flux to zonal-mean gradient relationship.152

However, if the zonal variations of tracer are chosen in a systematic and unbiased manner to sample across153

the eddy features evenly, then simultaneously considering them all (in the least-squares pseudoinverse sense)154

will converge rapidly to the ensemble mean, which is the transport tensor we seek. Appendix B describes155

the systematic method for sampling used here.156

2.2.1. Tracer Inversion157

In this research numerical simulations resolving mesoscale eddies are used to determine the eddy trans-158

port tensor. To do this, a set of passive tracers is initialized in each of the runs (Appendix B) and advected by159

the flow. There are no sources or sinks of these tracers, their explicit diffusivity is zero, and their numerical160

diffusivity is small, so it is assumed that a single, representative transport tensor R can be used for all of161

these tracers (Taylor, 1921; Dukowicz and Smith, 1997). The flux-gradient equation for such a system is162

u′jτ
′
π = −R ji∇iτ̄π, (7)

R ji = −u′jτ
′
π[∇iτ̄π]−1 (8)
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where in three spatial dimensions i and j run from 1 to 3 and π runs from 1 to the number of tracers used163

(Greek symbols are used for tracer number, since a Roman subscript would denote partial differentiation).164

The term ∇iτ̄π forms a matrix, which we will hereafter call the tracer gradient matrix. A two dimensional165

system would require two tracers, with each of their gradients misaligned with respect to one another, to166

uniquely solve for R. In other words, the matrix formed by the gradients of the tracers τ̄ must be nonsingular167

for an ordinary inverse of the bracketed term on the right of (8).168

Often, the system is underdetermined, as either fewer than three tracers are used or the tracer gradients169

are aligned in places, and in such a case the solution for R is not unique. A relevant example arises when170

buoyancy is the only tracer diagnosed. The sole tracer equation is then171

b̄t + ∇ j(ū jb̄) = ∇ j

[
−u′jb

′ + B̄ j

]
, (9)

where B̄ j represents small-scale diffusive fluxes, and boundary sources and sinks such as latent and sensible172

atmospheric heating. If |∇b̄| , 0 everywhere, then multiplying by 1 = |∇b̄|2/|∇b̄|2 ≡ (b̄ib̄i)/(b̄kb̄k) yields,173

b̄t + ∇ jū jb̄ = ∇ j

−u′jb
′b̄i

b̄kb̄k
b̄i + B̄ j

 . (10)

Here the transport tensor is identified with (identical to the isopycnal definition of Ferrari and Plumb, 2003)174

R ji = −
u′jb
′b̄i

b̄kb̄k
, (11)

and we can recover the form above by multiplying by b̄i:175

−u′jb
′ = −

u′jb
′b̄i

b̄kb̄k
b̄i = R jib̄i (12)

Note that a choice was taken in multiplying by (b̄ib̄i)/(b̄kb̄k), which is allowed by the underdetermination176

of this system. The solution for R is not unique; indeed we could add any components we like to R ji for177

additional transport in the directions other than that spanned by the gradient of b̄. Nor are the symmetric178

or antisymmetric parts unique, so diffusion, streamfunction, and eddy-induced velocity are untrustworthy179

when determined with only buoyancy4.180

Likewise, if one sought a unique solution for R using three tracers, the tracer gradients need to be181

everywhere misaligned to avoid singular matrices. Alignment is likely to occur occasionally no matter182

how the tracers are initialized, and indeed, straining by eddies tends to align tracer gradients. Therefore183

the methodology of Bratseth (1998) is adopted, which calls for overdetermination of the system by using184

more than three tracers. In this case, the tracer gradient matrix is inverted in the least squares sense using185

the Moore-Penrose pseudoinverse. If one considers the singular value decomposition of the tracer gradient186

matrix, then187

4The exception is when fluxes are strictly adiabatic and steady, in which case the degrees of freedom are reduced (e.g. Colas et al.
(2012)).
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∇iτ̄π = UikΣk jV∗jπ (13)

[∇iτ̄π]−1 = Vπ j[Σk j]−1U∗ki (14)

R ji = −u′jτ
′
πVπ j[Σk j]−1U∗ki (15)

In three spatial dimensions and with n tracers, U is a 3 × 3 unitary matrix, Σ a 3 × n rectangular diagonal188

matrix, and V a n×n unitary matrix. In the pseudoinversion shown in (14), the new diagonal matrix [Σk j]−1 is189

formed by taking the reciprocal of each of the non-zero diagonal values of Σk j and leaving the zero values5 in190

place. This inverse equals a least-squares fit when the system is overdetermined, or a least-variance solution191

when the system is underdetermined.6192

The present analysis assumes that all passive tracers are diffused similarly, which is not always the193

conclusion drawn by other authors using one-tracer-at-a-time diagnoses (e.g., Lee et al., 1997). Tracer fluxes194

may differ among tracers that have different diffusivities or different sources and sinks. Active tracers are195

particularly prone to variation along these lines, and different flow setups may differ widely in the sources196

and sinks of active tracers. It is beyond the scope of the present paper, which is focused on the Eady-like197

problem alone, to address or overly speculate about why fluxes may differ in different configurations such198

as that of Lee et al. (1997).199

3. Hypothesized Parameter Scaling of Tensor Components200

The simulations comprising the eddy parameterization challenge suite are run using Massachusetts Insti-201

tute of Technology general circulation model (hereafter MITgcm) (Marshall et al., 1997). The hydrostatic,202

Boussinesq equations are solved to simulate a zonally reentrant channel on the f -plane, with a temperature203

front oriented in the cross-channel direction. In this set of simulations, the density gradient is constant in z204

and y inside the front, akin to the Eady (1949) model. The use of the Eady model on the f -plane is simpler205

for the purpose of this research than β-plane models used in previous studies (Eden, 2010, 2011), in that it206

has one fewer parameters and does not form jets.207

The velocity fields are initialized in geostrophic balance, to minimize ageostrophic waves. Stratification208

(N2), rotation ( f ), and front dimension (L f ) and velocity (U) are set according to the desired nondimensional209

parameters: Rossby (Ro = U/ f L f ) and Richardson (Ri = N2/(∂U/∂z)2 ≈ N2 f 2/|∇b̄|2) numbers. Sixty-nine210

simulations are performed spanning a range of these parameters. Each simulation depicts the baroclinic211

spindown of the temperature front (Fig. 1). A few inertial periods after the beginning of the model run the212

alongfront geostrophic shear goes baroclinically unstable7. Restratification will begin as the instabilities213

reach finite amplitude and begin to slump the isopycnals, akin to FFH. The eddies grow out of the frontal214

region and will spread meridionally throughout the domain. The simulation is stopped just before the buoy-215

ancy perturbation of the front reaches the lateral walls in order to prevent sidewall boundary effects. More216

details about the model setup and diagnostic methods can be found in Appendices A and C.217

A new approach taken in this research is the use of transient snapshots in the collection of the eddy218

statistics. Despite the ever-changing nature of the ocean, an equilibrated eddy field is more commonly used219

5Zero is treated numerically as any value less than max(k, j) × ||Σ||2 × ε, where || · ||2 is the L2 matrix norm and ε is the machine
precision. In practice this value tended to be between 10−18 and 10−17.

6Indeed, the buoyancy-only inversion in (12) was a Moore-Penrose pseudoinverse in disguise!
7An initial Richardson number greater than one precludes other instabilities, e.g. symmetric.
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Figure 1: Potential temperature during a typical frontal spindown simulation. Baroclinic instability causes
the front to slump towards the horizontal, releasing potential energy in the process. The eddies grow from
this potential energy release as the front slumps from its initial configutation (a), through a fully nonlinear
turbulent state (b-c), until the simulation is complete (d).
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(Lee et al., 1997; Eden, 2010, 2011) to test eddy parameterizations than snapshots. However, in reaching220

equilibrium, the eddy fluxes are often constrained to reach a balance by satisfying viscous integral budgets221

or by balancing production and dissipation. Such balances depend explicitly and sensitively on unknown222

subgrid parameters and drag coefficients (Fox-Kemper and Pedlosky, 2004; Thompson and Young, 2007).223

The transient simulations used in this research may not be representative of all situations that occur in the224

ocean, but they are not strongly dependent on poorly-known subgrid parameters.225

Following the methods of FFH, statistics are gathered at each snapshot after the vertical eddy kinetic226

energy saturates. The criteria used for this saturation was that the vertical EKE did not change by more than227

3% of its value at the previous snapshot. This criteria is essentially a proxy to ensure that the eddies have228

reached finite amplitude and that the eddy interactions have become saturated by nonlinearity. At each time229

snapshot the velocity, temperature, and tracer fields are zonally averaged and written to file. One iteration of230

an unweighted, sliding-average smoothing algorithm is applied to all fields to reduce biases in the averaging231

from transient, powerful eddies. Finite differencing is used to create the tracer gradient matrices, and the232

inversion for the transport tensor is carried out using the method described in Section 2. Thus, in each run233

a time series of values is generated for each element of the transport tensor at each point in the zonally234

averaged field. Variability in these time series arises from the presence of internal gravity waves as well as235

temporal fluctuations in the eddy statistics, neither of which significantly affect the results of this paper.236

A robust method for initializing the tracers was found by experimentation to require six tracers, initial-237

ized in orthogonal directions and orthogonal functions (see Appendix B). After zonal averaging, the fluxes238

and gradients of the tracer fields are used to solve for R using the tensor inversion method. The accuracy239

of this method is verified by comparing the diagnosed buoyancy fluxes with a set of “reproduced” fluxes240

derived by multiplying the inverted transport tensor R by the buoyancy gradient. That is, the relative error is241

given by242

E(u′jb
′) =

∣∣∣∣u′jb′ + R ji∇bi

∣∣∣∣∣∣∣∣u′jb′∣∣∣∣ , (16)

and is evaluated for both v′ and w′ (Fig. 2a-b). These errors are calculated by averaging over the region243

defined in Appendix C. Even though buoyancy fluxes and gradients are not used in calculating R ji (only244

those of passive tracers are), the 95% confidence interval in reproducing buoyancy fluxes has less than 7%245

relative error for the horizontal fluxes and 12% for the vertical fluxes. Thus, even though buoyancy and246

buoyancy fluxes are not used to constrain the calculation of R, the buoyancy fluxes are reproduced from the247

mean buoyancy gradient to high accuracy. While passive and active tracers differ in whether they affect the248

evolution of the flow, the comparison here is whether they differ given the same flow. Thus, all components249

of R are constrained to agree with the eddy-induced evolution of the 6 tracers, and buoyancy advection250

is accurate for free. Ideally, fluxes of potential vorticity, salinity, or any other nearly-materially-conserved251

scalar tracers active or passive would be similarly accurate, so long as the diagnosis of R has converged.252

However, numerically buoyancy and passive tracers are exactly conserved by the finite-volume code used,253

while potential vorticity is not. Indeed, reconstructed potential vorticity fluxes are noisier than those of254

buoyancy, so are not used as a check on the accuracy of R.255

Previous numerical experiments (Rix and Willebrand, 1996; Roberts and Marshall, 2000; Eden et al.,256

2007) have found low correlations between the diagnosed eddy diffusivity and the actual eddy fluxes, with257

the distributions of diffusivity often being noisy and permitting unphysically large or even negative values.258

This can be due in part to the presence of a large rotational component that does not affect the dynamics, but259

has the potential to contaminate the diagnosis of the eddy diffusivity (Gille and Davis, 1999; Bryan et al.,260
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1999; Eden, 2006; Griesel et al., 2009). A good diagnostic method for R should therefore yield both good261

quantitative accuracy via (16) as well as an excellent representation of the dynamics in the flux divergence262

equation263

∇ · u′b′ = −∇ · R∇b̄. (17)

The latter can be compared in a fashion similar to (16), except now the error of the flux divergence is264

measured as265

E(∇ ju′jb
′) =

∣∣∣∣∇ ju′jb
′ + ∇ jR ji∇bi

∣∣∣∣∣∣∣∣∇ ju′jb
′

∣∣∣∣ , (18)

and is shown in panel c) of Fig. 2. The error in divergence is larger than the error in flux components,266

consistent with the added derivatives in (18) over (16). However, it is clear from the results based on (18)267

that the reproduction of fluxes by R also has skill in reproducing the flux divergences, not just rotational268

components of the fluxes.269

Since Marshall and Shutts (1981), it has been appreciated that large rotational fluxes can arise when270

tracer gradients and variations in eddy variability take on specific configurations. The use of multiple tracers271

to determine a single transport operator alters this connection, and a detailed discussion of such alterations272

while maintaining a connection to the displacement theory of Taylor (1921) requires substantial mathemat-273

ical detail intended for a future publication. For this reason, because the fluxes are ultimately not unique274

(Fox-Kemper et al., 2003), and because (17) and Fig. 2 make it clear that the diagnosis here correctly cap-275

tures the flux divergence, separate rotational and divergent fluxes are not presented.276

3.1. Tensor Scaling277

Because of the high accuracy in the buoyancy flux reconstruction (Fig. 2), a scaling for the inverted tensor278

components can follow the dimensional scaling of the transport tensor for buoyancy. The dependence of279

each tensor element on both dimensional and nondimensional parameters is sought. This can be considered280

an extension of FFH, who used dimensional arguments to scale the buoyancy fluxes in terms of coarse-281

resolution gradients. First, a rough estimation of the expected scalings is presented, then the experimental282

results are used to look for numerical constants and corrections to the scaling. In the FFH approach, the283

gradients and fluxes were time-averaged after the eddy kinetic energy u′2 became saturated in the domain.284

Here spatially-averaged results are taken at each snapshot instead of temporal averaging, allowing transient285

eddy effects and subtle scaling dependencies to be found.286

For the tensor components, proportionalities are sought of the form287

R ji ∝ F(Na,Mb,Hc, f d, v′2
e
,w′2

f
, . . .), (19)

so that all dependencies are on coarse-grid quantities. Here F represents some multiplicative function of288

the vertical buoyancy frequency N, horizontal buoyancy frequency M, fluid depth H, Coriolis parameter f ,289

Reynolds stresses, and possibly other flow variables. Lowercase letters represent unknown exponents. FFH290

use kinematic arguments to derive scalings for the buoyancy fluxes in terms of these coarse-grid quantities,291

and these scalings can be used along with the flux-gradient relationship to scale the elements of the transport292

tensor. That is,293
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Figure 2: (a-b) The relative error in reconstructing the horizontal and vertical buoyancy fluxes, spanning all
snapshots taken from all 69 simulations. Higher relative errors tend to occur at lower values of Ri. c) The
relative error in reconstructing the eddy flux divergence. The dashed vertical lines in all panels indicate the
95% confidence interval.
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[
v′b′

w′b′

]
=

[
Ryy Ryz

Rzy Rzz

] [
b̄y

b̄z

]
∝


N2H2 M2

| f |

M4H2

| f |

 , (20)

Ryyb̄y + Ryzb̄z ∝
N2H2M2

| f |
, (21)

Rzyb̄y + Rzzb̄z ∝
M4H2

| f |
, (22)

[
Ryy Ryz

Rzy Rzz

]
∝


N2H2

| f |
M2H2

| f |

M2H2

| f |
M4H2

N2 | f |

 , (23)

where the constant of proportionality can be different for each element. Note that the scaling for the off-294

diagonal elements are found from (21-22) by assuming that both terms in those equations contribute equally295

and that b̄y ∝ M2 and b̄z ∝ N2.296

Breaking the tensor into its symmetric and antisymmetric parts preserves the scale of the off-diagonal297

elements, so298

ψ ∝
M2H2

| f |
, S ∝


N2H2

| f |
M2H2

| f |

M2H2

| f |
M4H2

N2 | f |

 , (24)

where ψ is the eddy advection streamfunction from section 2.1. The scaling for ψ is identical to that of FFH.299

The eddy diffusivities may be associated with S, the symmetric part of R, which for the zonally-averaged300

case will have two real eigenvalues with orthogonal eigenvectors (for 3 degrees of freedom). The eigenvalues301

represent diffusivities in different directions, so they will be denoted κ1 and κ2.302

The transport, streamfunction, and diffusivities tend not to be constant in the vertical (Fig. 3). One303

expects Ekman effects near the surface and bottom boundaries, but perhaps it is less obvious that variations304

will occur in the interior of the fluid even though stratification and shear are constant. At the surface and305

bottom, w′ = 0, which impacts the vertical fluxes, and interior values are smoothly connected to these306

boundary values. Griffies (2004) summarizes a variety of ways that the eddy transport streamfunction is307

thought to vary in the vertical, noting that many such methods require an ad hoc upper limit on the isopycnal308

slope in order to preserve numerical stability. More recently, methods have been developed to match the309

streamfunction between the boundary layers and the interior (Ferrari et al., 2008, 2010) and have been310

shown to greatly improve simulation results compared to other methods (Danabasoglu et al., 2008).311

Physical rationales for the vertical structure of ψ in the Eady problem have appeared in a variety of312

locations (Stone, 1972; Branscome, 1983a,b; Fox-Kemper et al., 2008; Ferrari et al., 2008, 2010), but vertical313

variations of diffusive fluxes occur as well. Indeed, here the effect is to give both fluxes a matching vertical314

profile. In this research the vertical structures are calculated by taking the cross-channel, basinwide averages315

of each quantity and plotting these averages as functions of z. Fig. 3d shows the vertical structures of316

ψ, κ1, and κ2 averaged over all of the snapshots from all runs, each normalized by their maximum value317

in the vertical. The near-parabolic vertical structure for ψ is in agreement with those appearing in the318

aforementioned papers concerning the Eady problem. The diapycnal diffusivity κ2 tends to have a similar319

vertical structure while the larger eigenvalue κ1 tends to be uniform in the vertical.320

From here on multiplicative separability in the vertical is assumed for the tensor component scalings.321

That is, it is assumed that one can recover the value of any tensor component at any depth level by multiplying322
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Figure 3: (a-c) Example snapshots during a typical simulation, taken after x-averaging. Shown here are
mean isopycnals (solid white lines) and eddying region (enclosed within the dashed white line). The colored
backgrounds represent fields for a) Ryy, b) Rzy, and c) Rzz. d) Vertical structures of ψ (green), κ1 (isopycnal
eddy diffusivity, black dotted line), κ2 (diapycnal eddy diffusivity, black dashed line), isopycnal slope (blue),
and κ1 multiplied by isopycnal slope (red), averaged over all time snapshots and all runs. Each is normalized
to have a maximum value of 1.
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that component’s scaling by its vertical structure function. Also, the y-dependence of eddy variables is taken323

to be similar across eddy variables, as it decays to zero outside of the region of eddy activity and occur over324

roughly same portion of the front (Fig. 3b-d). Therefore, averages in y are taken over the region where the325

value of w′b′ at that y is greater than one-tenth of the maximum value of w′b′ found anywhere in the domain.326

This region is taken to represent the eddying zone. Values of M2 are also obtained by averaging over this327

region. With these assumptions, scaling relations for the tensor components independent of y and z may be328

sought, and vertical dependences of a parameterization are recovered by multiplying the scaling relations by329

their corresponding structure functions.330

3.2. Diffusivity Tensor: Mixing Length Scales331

A purely diffusive tensor can be cast in terms of autocorrelation and cross-correlation functions of La-332

grangian parcel displacements (Taylor, 1921; Plumb, 1979; Plumb and Mahlman, 1987). Defining the hori-333

zontal and vertical displacements (η, ξ), this tensor is written334

S =


∂
∂t

(
1
2η

2
)

∂
∂t

(
1
2ηξ

)
∂
∂t

(
1
2ξη

)
∂
∂t

(
1
2ξ

2
)
 . (25)

It is appropriate to approximate ∂
∂t

(
1
2η

2
)

= v′η by either of the expressions v′2δt or
√

v′2δy, where v′2 is the335

Eulerian RMS eddy velocity and (δt, δy) are unknown time and length scales, respectively. An unambiguous336

measurement of δt or δy is unlikely, since eddies here span an entire spectrum of wavelengths and time337

scales. One possibility is the statistical moments of the spectra to “measure” the energy-containing scales338

(Stammer, 1997; Scott and Wang, 2005; Tulloch et al., 2011). However, even if such measurements are339

made, none of this information about eddy scales would be available in a coarse OGCM run. Lacking340

turbulence statistics, geometric scaling considerations are needed to reproduce the missing quantities. The341

focus of the next section will be on an appropriate choice for the eddy length scale δy.342

These mesoscale eddies are dominated by baroclinic instability, so one might assume that a reasonable343

length scale that approximates δy is the first baroclinic deformation radius, which is proportional to NH/ f344

(Stone, 1972). The deformation radius appears as a crucial dimension in linear baroclinic instability, with345

unstable modes appearing near this scale. In nonlinear calculations, however, the zone of eddy activity346

quickly expands past the deformation radius. Green (1970) argues that a more suitable choice of length347

scale is the baroclinic zone width, which here is N2H/M2, since the horizontal scale of the eddies is limited348

by the availability of mean PE. In fact, in the real ocean the inverse cascade of horizontal KE is halted349

somewhere wider than the instability scale yet narrower than climatological gradients (Scott and Wang,350

2005; Thompson and Young, 2007; Tulloch et al., 2011).351

Therefore, given that the majority of the eddy kinetic energy (EKE) is trapped in a wavenumber range352

between the deformation radius and the time-evolving front width, it is convenient to choose one of these353

length scales and rely on nondimensional parameters to reconcile the difference. For the remainder of354

this paper the assumed scaling will be δy ∝ N2H
M2 , with a focus on using a power of Ri to improve the355

approximation. The front width, N2H/M2 is larger than the deformation radius by a factor of
√

Ri, so it is356

reasonable to expect that a good scaling for δy might involve a power of Ri between −0.5 and 0. Finally,357

since the eddies here (in constant stratification) extend the full depth of the water column, the vertical length358

scale δz is chosen be proportional to the full fluid depth H.359

It is now straightforward to replace (η, ξ, ∂
∂t ) with the scalings above. In summary, the following choices360

have been made for these scales:361
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η ∼ δy ∝
N2H
M2 ,

∂η

∂t
∼
δy
δt
∝

√
v′2, (26)

ξ ∼ δz ∝ H,
∂ξ

∂t
∼
δz
δt
∝

√
w′2. (27)

The resulting scaling for each component of S is362

S yy =
∂

∂t

(
1
2
η2

)
∝

N2H
M2

(√
v′2

)
, (28)

S yz = S zy =
1
2

η∂ξ
∂t

+ ξ
∂η

∂t

 ∝ H
M2

(√
v′2M2 +

√
w′2N2

)
, (29)

S zz =
∂

∂t

(
1
2
ξ2

)
∝ H

(√
w′2

)
, (30)

so that363

S ∝
 N2H

M2

(√
v′2

)
H

M2

(√
v′2M2 +

√
w′2N2

)
H

M2

(√
v′2M2 +

√
w′2N2

)
H

(√
w′2

)  . (31)

The scaling (31) differs from the FFH-based scaling (24) in that eddy velocity scales appear explicitly.364

3.3. Advective and Diffusive Tensor Scalings365

FFH focuses on formulating a ψ such that the vertical buoyancy flux and extraction rate of mean potential366

energy (PE) are captured. They form a scaling law for w′b′ by considering an exchange of fluid parcels over367

a decorrelation distance (∆y,∆z) in time ∆t, so that368

w′b′ ∝
∆z(∆yM2 + ∆zN2)

∆t
, v′b′ ∝

∆y(∆yM2 + ∆zN2)
∆t

. (32)

This approach is appropriate for scaling ψ only, since isoneutral diffusion does not affect the APE of the369

system (Griffies, 1998). Therefore, it suffices to consider the symmetric Taylor tensor to be contributing370

the diffusive part of the eddy flux. For the reasons explained above, FFH did not uniquely diagnose the371

symmetric and antisymmetric parts of the tensor (they used only buoyancy as a tracer), but Fox-Kemper372

and Ferrari (2008) did find that the residual horizontal flux, which could not be explained by ψ alone, was373

of similar magnitude to the flux capture by ψ. This implies that the symmetric and antisymmetric tensors374

might have similar off-diagonal components. Griffies (1998) notes that this occurs when the GM coefficient375

and the Redi isopycnal diffusivity are equal, a result consistent with the stochastic theory of Dukowicz and376

Smith (1997). The two-dimensional eddy transport tensor is thus377

R = S + A =


∂
∂t

(
1
2η

2
)

∂
∂t

(
1
2ηξ

)
∂
∂t

(
1
2ξη

)
∂
∂t

(
1
2ξ

2
)
 +

[
0 ψ
−ψ 0

]
. (33)

15



The scalings above assuming equal GM and Redi coefficients lead to378

R ∝
 N2H

M2

(√
v′2

)
0

H
M2

(√
v′2M2 +

√
w′2N2

)
H

(√
w′2

) , (34)

v′b′ ∝ N2H
(√

v′2
)
. (35)

w′b′ ∝ H
(√

v′2M2 + 2
√

w′2N2
)
. (36)

It may not be the case that GM and Redi coefficients exactly equal one another, but it will be assumed that379

the scaling for all the off-diagonal component of S and ψ is nonetheless the same. To confirm, it suffices to380

show that either Rzy dominates Ryz, or that Rzy ≈ −2ψ. Fig. 4 shows that indeed the Ryz component is quite381

small and that the relationship between ψ and κ1S is as predicted by GM, Redi, and Dukowicz and Smith382

(1997). Furthermore, Fig. 3 shows that the vertical structure function for ψ and κ1S are very similar, so the383

GM coefficient equals the Redi isopycnal diffusivity at every depth as well as in scale. Below, the scaling384

for tensor element Ryz is taken to be the same as for Rzy, only the leading coefficient is found to be near385

zero. The results from the models support this point except at small Richardson numbers (< 2500), when386

we anticipate greater vertical excursions due to coherent vortices crossing the density surfaces (McDougall,387

1987b). The above scalings form the basis for the scaling laws sought in the model runs, anticipating that a388

nondimensional numerical constant and potentially small powers of Ri or Ro will be necessary to optimize389

them.390

The same logic provides the scalings here and in FFH, except here it is not assumed that the horizontal391

eddy velocity scales as the mean thermal wind velocity. Fig. 5 shows the time-evolving ratio of eddy to392

mean velocity varies during simulations and according to the initial Richardson number. Likewise, Fig. 5b393

shows that the eddy velocity slope differs from the isopycnal slope and with Richardson number. Therefore,394

EKE and Ri contain distinct information about the instantaneous state of the turbulence in a way that a naive395

scaling using only M2 and N2 does not. Using eddy velocity statistics in conjunction with powers of Ri lends396

accuracy to the scalings, but to realize this extra accuracy in a model requires successful parameterization397

of the EKE. Some authors have proposed prognostic methods for EKE (Eden and Greatbatch, 2008; Eden398

et al., 2009), and such approaches are common in engineering applications (Pope, 2000). The next section399

concludes with suggestions about how to incorporate these scaling ideas into a model depending on which400

diagnostics are available, and the implications that each has on the robustness of a parameterization.401

4. Empirical Parameter Dependence of Tensor Components402

As noted previously, dimensional scalings for each of the diffusivities do not rule out the possibility of403

dependence on nondimensional parameters. In particular, nondimensionalization of the Boussinesq, hydro-404

static primitive equations (see Appendix A) reveals that the Rossby, and Richardson numbers are relevant in405

this problem. At the oceanic mesoscale the Reynolds and Peclet numbers are dynamically unimportant due406

to small viscosity and molecular diffusivity, and are not included in this analysis.407

FFH suggest that the Rossby number inside the front becomes irrelevant as soon as the eddies expand408

beyond the front width in the horizontal, which occurs not long after finite amplitude is achieved. The409

results from these models results agree with this claim (not shown). The Richardson number, however, is410

central to the problem, and can be used to properly scale the buoyancy fluxes and elements of the transport411

tensor. Fig. 6 shows the dimensional scalings of Section 3 compared to the diagnosed values of each tensor412

element. The leading constant and power of Richardson number on each term are obtained by performing a413

logarithmic least-squares fit of the dimensional scalings to the true values of each element.414
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Figure 4: a) Comparison of Ryz and Rzy, confirming that Ryz is essentially equal to zero relative to Rzy. b)
The equality suggested in Dukowicz and Smith (1997), ψ = κS , is true to within 6%. in all snapshots except
at small Ri. Dashed lines indicate the 95% confidence intervals.

Figure 5: a) The horizontal RMS eddy velocity divided by the mean thermal wind. The degree to which a
parameterization would suffer from approximating the eddy velocity with the mean velocity depends on the
initial conditions. b)

√
v′2
√

w′2
/ N2

M2 ∝ Ri−0.15.
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Figure 6: Diagnosed tensor components versus those parametrically scaled. a) Ryy,s, b) Ryz,s, c) Rzy,s, d) Rzz,s.
In all panels black shows (34) with an empirical Ri correction, dark grey shows (34) without an empirical Ri
correction, and light grey shows FFH scalings (24). Scalings are given in Tables 1-2. Dashed lines indicate
95% confidence intervals.

Quantity Optimized (34) with Ri Optimized (34) without Ri

Ryy,s (0.35 ± 0.10)Ri−0.18±0.06 N2H
M2

(√
v′2

)
(0.07 ± 0.05) N2H

M2

(√
v′2

)
Ryz,s (0.002 ± 0.01) H

M2

(√
v′2M2 +

√
w′2N2

)
(0.002 ± 0.01) H

M2

(√
v′2M2 +

√
w′2N2

)
Rzy,s (0.33 ± 0.08)Ri−0.32±0.10 H

M2

(√
v′2M2 +

√
w′2N2

)
(0.03 ± 0.07) H

M2

(√
v′2M2 +

√
w′2N2

)
Rzz,s (0.32 ± 0.03)Ri−0.35±0.03H

(√
w′2

)
(0.03 ± 0.08)H

(√
w′2

)
Table 1: Empirical optimized tensor element scalings with eddy statistics corresponding to Fig. 6, Fig. 7, and
(34), with 95% confidence intervals. Note that the reported error of the component diagnosis is 28% from
the Ryy,s leading coefficient uncertainty. Note also that based on the observed scatter there is no dependence
on Ri for Ryz,s, and so we fix the exponent on Ri to be zero for that scaling.
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Quantity Optimized (24) with Ri Optimized (24) without Ri

Ryy,s (0.77 ± 0.75)Ri−0.18±0.18 N2H2

| f | (0.17 ± 0.48) N2H2

| f |

Ryz,s (0.01 ± 0.09) M2H2

| f | (0.01 ± 0.09) M2H2

| f |

Rzy,s (0.85 ± 0.77)Ri−0.22±0.23 M2H2

| f | (0.17 ± 0.68) M2H2

| f |

Rzz,s (0.30 ± 0.21)Ri−0.20±0.14 M4H2

N2 | f | (0.06 ± 0.07) M4H2

N2 | f |

Table 2: Empirical optimized tensor element scalings without eddy statistics, i.e., following FFH, corre-
sponding to Fig. 6, Fig. 7, and (24), with 95% confidence intervals. Note that the Rzy,s agrees with the FFH
estimate of 0.06 − 0.06M2H2/| f | if GM and Redi coefficients are the same so that Rzy,s = 2ψ. Note also that
the coefficient for the FFH scaling is uncertain beyond ±97%.

Figure 7: Reconstructions of a) v′b′ and b) w′b′ using the tensor scalings from Fig. 6 and Table 1-2. The
solid lines indicate the true values of each flux. Black indicates reconstructions from the scalings from (34),
with a power of Ri. 95% of the black data points are contained in the region bounded by the dashed lines.
Dark grey indicates reconstructions from the scalings from (34), without a power of Ri; light grey indicates
reconstructions from the FFH scalings (24) with a power of Ri.
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Figure 8: The ratio between S yy multiplied by isopycnal slope and the offdiagonal elements of S. The Redi
form of S would have that this ratio would be equal to one in both plots, which is not the case here. The
observed ratio is greater than expected in comparison to the Redi along-isopyncal scaling by a factor of 3 on
average. Thus, the eigenvectors of S are oriented at a slightly shallower angle than the isopycnal slope.

The symmetric part of the diagnosed tensor does not exactly agree with the Redi isoneutral diffusion415

tensor, which is, in 2D and making the small angle approximation,416

SRedi ∝

[
κ1 κ1S

κ1S κ1S
2

]
, (37)

where κ1 is the along-isopycnal diffusivity and S =
∣∣∣M2/N2

∣∣∣ is the absolute value of the local isopycnal417

slope. The S yy component obtained from the model results tends to be a factor of 3 larger (Fig. 8), so that418

S ≈
[
3κ1 κ1S

κ1S κ1S
2

]
(38)

The time dependence of the spin-down problem can be used to understand both the excess of S yy and the419

small diapycnal diffusivity κ2. The buoyancy variance equation is420

D
(

1
2 b′2

)
Dt

= −u′b′ · ∇b̄ − u′ · ∇
(

1
2

b′2
)

(39)

Assuming the term on the far right is small and using the preceding nondimensionalization and scaling421

results, as well as a proportionality for the flux direction compared to the isopycnal slope direction (not422

shown),423

v′b′ · ∇b̄ ∝ N2M2H
√

v′2, w′b′ · ∇b̄ ∝ N2M2H
√

v′2Ri−0.09 (40)
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Figure 9: The ratio R(S) between the isopycnal slope and the slope of the diffusive flux. R(S) is above the
value of 2 predicted by linear theory across the full range of Ri in the simulations.

Thus, the resulting scaled buoyancy variance budget is unable to be exactly along isopycnals for all Ri. The424

w′b′ term’s contribution to the variance decreases relative to the v′b′ term as Ri increases. For the range425

of Ri in our simulations (from 136 to 128,760), the relative contribution of the w′b′ term is from 1.6 to 2.9426

times smaller, with a mean of 2.5. This is close to the excess of S yy over Redi of 2.8.427

It is often argued that κ2 should be zero in steady, adiabatic situations (McDougall and McIntosh, 1996).428

In such situations the Redi flux should also be exactly along the isopycnals, matching the form of (37).429

The solutions here are nearly adiabatic, but they are not steady as both eddy variance and isopycnal slope430

evolve during the course of each simulation.The buoyancy flux clearly has some diapycnal flux, presumably431

associated with the neglected triple correlation and time dependence of eddy variance, since the terms on the432

right hand side do not balance exactly.433

Linear theory suggests that the diffusive flux should be oriented at half the isopycnal slope to maximize434

potential energy extraction (Haine and Marshall, 1998). However, this result cannot be expected to hold pre-435

cisely in a nonlinear, time-evolving simulation set. The model results suggest that the ratio of the isopycnal436

slope to the diffusive flux slope, calculated as437

R(S) =
〈S〉〈

S zy M2+S zzN2

S yy M2+S yzN2

〉 , (41)

remains consistently close to 2.5 across the full spectrum of Richardson numbers in the simulations (Fig. 9).438

Here the angle brackets indicate an average over the eddying region defined in Appendix C. This value is439

consistent with the above finding that the growth of eddy variance is responsible for the small diapycnal440

component of the diffusive flux. It also suggests that the excessively large value of S yy can largely be441

attributed to the flux being directed below the true isopycnal slope.442

Many current OGCM’s use a combination of the GM and Redi tensors in calculating diffusivities. The443

diffusivities are often set to be equal to each other (Griffies, 1998) for numerical convenience, leaving a full444

mixing tensor of the form445
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Option E(u′b′) κGM−Redi

1 0.188 Table 1, second column, or (44)
2 0.270 GM-Redi with κ1 = 0.32Ri−0.31 N2H

M4

(√
v′2M2 +

√
w′2N2

)
, or (46)

3 0.551 Table 2, second column, or (45)
4 0.703 GM-Redi with κ1 = 0.58Ri−0.22 N2H2

| f | , or (47)

Table 3: The relative errors based on different approximations to the scalings for R. These errors are calcu-
lated by averaging over the region defined in Appendix C.

R = S + A ≈
 κ1 0

2κ1S κ1S
2

 . (42)

Note that in the GM-Redi formulation κ1 is described fully by the Ryy tensor element. All other elements are446

obtained by multiplying this value by some power of the isopycnal slope.447

Overall, the principle result of this paper is a set of scalings for the eddy diffusivity tensor that vary448

according to the coarse-grained stratification. Each scaling represents the sum of classical Taylor diffusion449

with a GM-style skew diffusion, with leading constants and powers of Richardson numbers optimizing the450

results across a wide range of scales. A modeler wishing to incorporate the results of this research into a451

flow model is left with multiple choices: 1) use the ”best” diagnosed R suggested by these model results,452

which would require some prescription of
√

v′2 and
√

w′2; 2) use a GM-Redi optimized version of these453

results, wherein a modeler could simply plug in a choice for κ calibrated from these results; 3) use an FFH-454

style κ, which would not require calculating
√

v′2 or
√

w′2; or 4) use a GM-Redi optimized version with an455

FFH-style κ. These options, with their corresponding relative errors as defined in (43), are shown in Table 3,456

with457

E(u′b′) =

∣∣∣∣u′b′ + R∇b̄
∣∣∣∣∣∣∣∣u′b′∣∣∣∣ (43)

Option 1 is clearly optimal insofar as accuracy is concerned, but a GM-Redi diffusivity using the κ from458

option 2 is a good alternative. Any FFH-style implementations carry with them a nontrivial loss of accuracy,459

but the diagnostics required for these would be readily available in an OGCM.460

In summary, the optimal full tensor, which uses the RMS eddy velocities
√

v′2 and
√

w′2, is461

R ∝

 0.35Ri−0.18 N2H
M2

( √
v′2

)
0

0.33Ri−0.32 H
M2

( √
v′2M2 +

√
w′2N2

)
0.32Ri−0.35H

( √
w′2

) (44)

462

The best FFH-style full tensor, which uses only the buoyancy gradients, is463
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R ∝
0.77Ri−0.18 N2H2

| f | 0
0.85Ri−0.22 M2H2

| f | 0.30Ri−0.20 M4H2

N2 | f |

 (45)

For codes using the GM/Redi tensor, the optimal choice for the diffusivity is given by464

κ1 = 0.32Ri−0.31 N2H
M4

(√
v′2M2 +

√
w′2N2

)
. (46)

If the eddy velocities required for this κ are not available, a good alternative is465

κ1 = 0.58Ri−0.22 N2H2

| f |
. (47)

5. Conclusion and Future Work466

Spin-down of a frontal feature by geostrophic turbulence in the Eady problem has been simulated as467

part of a suite of challenges for parameterizations. Using a diagnostic method (Plumb and Mahlman, 1987)468

allows each component of the eddy transport tensor to be directly measured by utilizing a set of passive469

tracers in the flow field. Scalings have been derived for the advective and diffusive components of the470

transport tensor, and the vertical structure of each of these pieces has been found. We contend that all471

parameterizations used in GCMs should give similar fluxes when configured for a similar scenario.472

The optimal scaling arguments used in this paper are motivated by classical Taylor diffusivity, with large473

diffusivity axis oriented along isopycnal slope as proposed by Redi, and a matching Gent-McWilliams skew474

flux with the same coefficient as the Redi isoneutral diffusivity as suggested by Dukowicz and Smith (1997).475

Using the eddy velocities directly in the scaling, rather than the mean velocities, reduces scatter about the476

scalings to within 28% rather than 97% found for the FFH scaling. However, a separate prognostic parame-477

terization for the eddy velocities is required to provide these eddy statistics in coarse GCMs. These scalings478

may be useful in the Mesoscale Ocean Large Eddy Simulation (MOLES) regime, where eddy velocities can479

be directly diagnosed from the resolved eddies (Fox-Kemper and Menemenlis, 2008). Alternative scalings480

presented here, which are based on FFH and do approximate the eddy velocity by the mean velocity, offer the481

modeler a set of scalings which are likely easier to implement. That is, they use quantities readily available482

in GCMs, namely the horizontal and vertical buoyancy frequencies and total fluid depth. The RMS eddy483

velocities used in the optimized scalings offer improved accuracy if they are available, but forecasting these484

quantities in a model is an area of ongoing research (Eden and Greatbatch, 2008; Eden et al., 2009).485

Scatter is further reduced by reducing temporal averaging of the eddy quantities during the simulations.486

Once the eddies are finite amplitude, their behavior is fully nonlinear. Utilizing these scalings in an OGCM487

approximates a subgridscale eddy field that is never in the linear growth phase, or whose kinetic energy does488

not dominate the mean. Conceptually, this regime is more familiar in comparison to observations where489

eddies are ubiquitous and powerful. The advantage of nonlinear simulation scalings is realism, but unlike490

linear theory the nonlinear results here favor empiricism over derivation.491

This work leaves open many avenues for future research. More complex physical interactions involving492

submesoscale eddies, Rossby wave formation, frontogenesis, and deep convection might be explored. In the493

near future, the challenge suite will be expanded to include flows that better approximate the stratification494

and shear of the real ocean, whereupon the scalings shown here will be compared and re-evaluated.495
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Of principle interest in future research is the vertical structure of the advective and diffusive parts of496

the tensor. Here the scalings are derived by factoring out the vertical structures before the averaging, but497

they must be incorporated if a full picture of depth-dependent diffusivity is to emerge. Recent progress498

proposing vertical structures of eddy parameterizations (Ferrari et al., 2008, 2010) has brought physical499

thinking to dominate over the numerically-motivated tapering schemes of the past, but evaluation of these500

vertical structures in eddy-resolving models is insufficient at present.501

The generality of the scalings here is limited to only the Eady-like flow configuration; only after a broader502

challenge suite is completed with many different configurations can such scalings be deemed robust. If these503

prove to be consistent across all the simulations in the suite, they may form the basis of a mesoscale eddy504

parameterization that goes beyond the traditional GM and Redi forms by specifying a flow-dependent κ1.505

Ultimately, this series of fine-resolution models will provide a set of reliable scaling rules for many flow506

regimes that any new parameterization must obey.507
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Appendix A. Eady Spindown Configuration511

The MITgcm (Marshall et al., 1997) is used to solve the Boussinesq, hydrostatic primitive equations on512

a 900 × 150 × 60 grid. The dimensional form of these equations are513

D~vh

Dt
+ f~k × ~vh + ∇zφ = 0 (A.1)

Db
Dt

= 0 (A.2)

∇z · ~vh +
∂w
∂z

= 0 (A.3)

∂φ

∂z
= b (A.4)

ρ = ρ0 + α(θ − θ0) (A.5)

where the material derivative D/Dt = ∂/∂t + u∂/∂x + v∂/∂y + w∂/∂z and the operator ∇z = (∂/∂x, ∂/∂y). In514

this equation set vh is the horizontal velocity, f is the Coriolis parameter, φ = p/ρ0 is the density-normalized515

pressure, w is the vertical velocity, θ is the potential temperature, and α is a nondimensional constant.516

Consider the nondimensional scalings517

x, y ∼ L z ∼ H (A.6)

φ ∼ φ0 = max(U f L,U2) b ∼
φ0

H
(A.7)

u, v ∼ U t ∼
L
U

(A.8)

w ∼
φ0U

N2HL
(A.9)
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and the nondimensional parameters518

Ro =
U
f L

Ri =
N2 f 2

M4 , (A.10)

where N2 = bz and M2 = by. With the above scalings the nondimensionalized form of A.1 - A.3 becomes519

∂ṽh

∂t̃
+ ṽh · ∇̃ṽh +

1
Ro Ri

w̃
∂ṽh

∂z̃
+

1
Ro

f̃~k × ṽh = −
1

Ro
∇̃φ̃ (A.11)

∂b̃
∂t̃

+ ṽh · ∇̃zb̃ +
1

Ro Ri
w̃
∂b̃
∂z̃

= 0 (A.12)

∇̃z · ṽh +
1

Ro Ri
∂w̃
∂z̃

= 0, (A.13)

thus opening the possibility of scaling dependencies on Ro and Ri.520

The Rossby adjustment simulations begin with a temperature front above a stratified interior. The initial521

stratification is522

b̄ = N2(z + H) +
L f M2

2
tanh

[
2(y − y0)

L f

]
+ b0 (A.14)

The channel is 300 m deep. The initial vertical stratification has parameters H,M, N, and L f . The front523

width varies inversely with the Rossby number in the front, which itself varies from O(10−4) to O(10−1).524

Values for the time-varying Richardson number are found by averaging the local values of N2 f 2/M4 over525

the eddy activity region, which is defined as the part of the flow where w′b′ is greater than one-tenth of the526

largest w′b′ found at any y, z location in the domain. The actual values of Richardson number used in the527

analysis ranged from O(103) to O(105).528

Ro =
U

f L f
(A.15)

L f =
U

f Ro
=

M2H
f Ro

=
H
Ro

(A.16)

QG linear instability solutions are used to tune the parameters so that the most unstable modes fit in the529

domain. The horizontal resolution tends to be very close to the first baroclinic deformation radius, consistent530

with the fact that baroclinic instability occurs at scales larger this (Nakamura, 1993).531

Appendix B. Tracer Initialization532

A zonal average is taken over all of the eddy variability in the along-channel direction and thus allows533

one to consider the results in the yz-axis only. The tracers are initialized pairwise so that the tracer gradients534

for each pair are orthogonal at time t = 0. Some experimentation was required to determine how to initialize535

the tracer fields so that their gradients would remain misaligned through the duration of each run. Bratseth536

(1998) initialized the tracers to be products of Chebyshev polynomials because of their wavelike character-537

istics on the interval [−1, 1], and because higher-order polynomials would effectively sample smaller eddies.538
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Loosely following his approach, the tracer fields in this research are initialized sinusoidally. That is, the539

tracer concentrations at time t = 0 satisfy540

τ2i−1(y, z) = sin
(
i
πy
Ly

)
τ2i(y, z) = sin

(
i
πz
H

)
(B.1)

These tracer fields are qualitatively similar to Chebyshev polynomials in their obvious wavelike char-541

acteristics, but also because both sets of functions are orthogonal on a closed subset of R. A set of tracers542

initialized with the gravest wavenumbers i = {1, 2, 3} (Fig. B.1) was found to produce the best results. Ini-543

tializing the tracers in this way maintained misalignment of the tracer gradients until the simulation stopping544

criterion was reached. This misalignment was measured by the accuracy to which the reconstructed buoy-545

ancy fluxes approximated the actual buoyancy fluxes. Initializing the tracers sinusoidally led to no significant546

degradation of this approximation by the time the front had slumped to the lateral wall.547

The authors also experimented with initializing the tracers linearly, so that548

τ2i−1(y, z) =
i y
Ly

τ2i(y, z) =
i z
H
. (B.2)

However, this did not do as well to keep the tracer gradients misaligned through the duration of the runs.549

As a result, the reconstructed buoyancy fluxes were not as good of an approximation to the true buoyancy550

fluxes (not shown).551

There is some subtlety in choosing how many tracers to implement. Using a large number of tracers,552

which by (B.1) initializes sine functions of large wavenumber, tends to accentuate progressively smaller553

eddies. Because the buoyancy is transported primarily by the largest eddies, such sampling suffers a loss554

of accuracy with respect to reconstructing the buoyancy fluxes (Fig. B.2). Ensemble averaging over all555

possible sets of n tracers did show an improvement in accuracy as more tracers were used; however, the556

postprocessing time increased substantially and no ensemble was as accurate as simply using a modest557

number of tracers at low wavenumber. Six tracers were determined to be sufficient for a good approximation558

of the buoyancy fluxes.559

Appendix C. Model Setup and Diagnostics560

To initialize the grid, a numerical solver is used to determine the linear growth rates of the baroclinic561

waves for the chosen stratification. The grid spacing is set roughly equivalent to the largest possible wave-562

length that is anticipated to play a role on in the slumping of the front; this is taken to be the smallest wave563

whose growth rate is at least 10% of the maximum growth rate in the domain. The front width is automat-564

ically scaled so that at least ten deformation radii lie within the front. This essentially guarantees that the565

effects of barotropic instability will be avoided, and that several gridpoints will be available to resolve each566

mesoscale eddy.567

To be fair in the informing of an eddy parameterization, pointwise values of the transport tensor are568

not as useful as domain-averaged values, since the entire domain in these fine-resolution runs is ipso facto569

below the grid scale of a non-eddy-resolving model. Care must be taken in how one chooses to average570

these quantities, however. Averaging over the entire basin is the most realistic method for the sake of a571

parameterization, in that the horizontal grid is fixed in time. However, this leads to inconsistencies between572

quantities that are nonzero over the whole domain (such as M2 and N2) and those that are nonzero only in the573

”eddying region” (such as the tensor components and tracer fluxes). At any given timestep the eddies will574
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Figure B.1: Initialization of tracer fields in y and z. All fields were constant in the zonal direction.
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Figure B.2: (a-b) Example of a time series reconstruction of a) v′b′ and b) w′b′ during one simulation, using
{6, 8, 10, . . . , 20} tracers. The solid black line is the true value of the flux, while the dashed lines are the
reconstructions. The reconstruction for both fluxes becomes less accurate as more tracers are used. (c-d)
The same time series reconstruction using an ensemble average over all possible sets of n tracers out of
20 total. In this case the reconstructions become more accurate as more tracers are used, but none are as
accurate as using six tracers initialized at lowest wavenumber (dotted line).
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be most active in those parts of the domain experiencing potential energy release; these quantities quickly575

taper to zero as one travels horizontally away from the center of the front, or vertically towards the top or576

bottom boundaries. The chosen solution was to average over those points of the domain where the vertical577

buoyancy flux w′b′ is greater than 10% of its global maximum value. All averaging operations in this paper578

are taken over this region. In this way, the averaging only includes regions undergoing significant PE release,579

the overall area of which grows as energy cascades to graver scales.580

Overall, sixty-nine model runs were conducted to generate the results in this paper. The time interval581

for each snapshot was chosen empirically based on the initial stratification so that each model run would582

generate about one hundred snapshots before completion. The stopping criteria for a given run was satisfied583

when the front slumped far enough so that the leading edges of it nearly reached the lateral boundary. This584

criteria was tracked at each snapshot by calculating the buoyancy perturbation, b̂ = b̄ − b̄y. The value of b̂ at585

the center of the front was defined to be identically zero at the start of the run, so the frontal passage at any586

location was imminent when b̂ began to approach zero there. The runs were halted when b̂ became zero at a587

point ten gridpoints from the edge of the domain and along the bottom boundary.588

These runs used free slip boundary conditions along the lateral and bottom boundaries. The strain-589

tension form of the viscous terms in the primitive equations was used, with the Laplacian Smagorinsky590

viscosity was set to be ν = (∆x/π)2 √(∇kui + ∇iuk) (∇kui + ∇iuk) /4. Implicit numerical diffusion and im-591

plicit viscosity were both used.592
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