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Abstract 
A field experimental study of wave energy dissipation is presented. The experiment 
was conducted at Lake George, Australia and allowed simultaneous measurements of 
the source functions in a broad range of conditions, including extreme wind-wave 
circumstances. Results revealed new physical mechanisms in the processes of spectral 
dissipation of wave energy, which are presently not accounted for in wave forecast 
models. 

The spectral dissipation was measured for the first time. Frequency distributions both 
for the wave breaking probability and breaking severity were obtained.  

The breaking of waves at a particular frequency was demonstrated to cause energy 
damping in a broad spectral band above that frequency, and thus causes a cumulative 
dissipative effect for waves of smaller scales. At the small scales (high frequencies), 
this cumulative dissipation appears to dominate compared to inherent wave-breaking 
dissipation. 

It was found that at moderate winds the dissipation is fully determined by the wave 
spectrum whereas at strong winds it is also a function of the wind speed. This result 
indicates that at extreme wind-forcing conditions a significant part of the extra energy 
flux is dissipated locally rather than being available for enhancing the wave growth. 

The new spectral dissipation function also accommodates the threshold wave-
breaking behaviour discovered earlier. The dissipation term is parameterised and the 
new parameterisation is presented in a form suitable for spectral wave models. 
 
1. Introduction 

The dissipation term dsS  is one of the three most important source functions of the 
radiative transfer equation employed by all spectral wave models to predict the wave 
spectrum F: 

...+++= dsnlin SSS
dt
dF  ,    (1) 

where the two other sources of wind input inS  and resonant nonlinear four-wave 
interactions nlS  are also explicitly mentioned. In a general case, all the source terms 
as well as the spectrum itself, are functions of wavenumber k, frequency ω, time t and 
spatial coordinate x. 

Since the major, if not the dominant part of dsS  is attributed to energy losses due to 
wave breaking, and the breaking has been regarded as a poorly understood and 
basically unknown phenomenon, formulations of the term have always been loosely 
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based on physics and served as a residual tuning knob (e.g. Cavaleri et al., 2007). In 
this Introduction, we will follow the recent review from Babanin and van der 
Westhuysen (2007) to demonstrate that, following recent experimental advances, such 
an approach is no longer satisfactory. 

The tradition  was laid by Komen et al. (1984) and has persisted throughout more than 
20 years. Attempts to improve the dsS  parameterisation such as those of Polnikov 
(1991), Banner and Young (1994), Tolman and Chalikov (1996), and Alves and 
Banner (2003), among others, rest firmly within this tradition. While highlighting 
some serious limitations of this approach, the most recent efforts by Van der 
Westhuysen et al. (2007) and Ardhuin et al. (2007) are still, to an extent, based on the 
residual tuning. 

To date, when modelling Eq.(1),  there is almost no flexibility in formulating nlS  and 
some limited flexibility in formulating inS , whereas a function to represent dsS  can be 
chosen with a great degree of arbitrariness and are used in the models without much 
objection from the wave modelling community. There is no consistency and 
sometimes even little similarity between terms of Komen et al. (1984), Polnikov 
(1991), Tolman and Chalikov (1996), and Alves and Banner (2003), all of which are 
incorporated in models and used to forecast the waves, alongside some standard terms 
for inS  and nlS . 

The latter two are based on more or less defined physics, but how is physics placed in 
the dsS  formulations? Obviously, all the formulations refer to some physics, but 
theoretical and experimental guidance had been very uncertain in the past. 

Existing theories of the wave-breaking dissipation, both their advantages and 
shortcomings, were analysed in detail by Donelan and Yuan (1994), Young and 
Babanin (2006), and Cavaleri et al. (2007) and the analysis will not be repeated here. 
In short, the set of theoretical models provide the dissipation functions which, if 
expressed in terms of the wave spectrum, i.e. 

m
ds FS ~ ,     (2) 

range from m=1 to m=5. At the WISE-2007 meeting in Lorne, Australia, Zakharov, 
Dyachenko and Prokofiev suggested a new theoretical formulation which, if 
converted into a spectral representation in the form of (2), even gives m=8. 

It should be fair to mention that, in spite of such a broad choice of the theoretical 
models, it is the theory by Hasselmann (1974) which is most frequently referred to in 

dsS  formulations. From the very beginning, however, (i.e. Komen et al., 1984), this 
theory was employed only conditionally – that is, speculative properties and 
parameters were added to meet tuning needs. Over the years, this term has undergone 
a significant number of similarly speculative editions and additions, a review of which 
is available in Appendix A of Ardhuin et al. (2007). 

Contrary to the theory of dissipation, recent experimental advances in wave 
dissipation studies have brought about much more certainty on behaviour of dsS . In 
our view, the notion that the dissipation function is a great unknown and that any 
formulation which helps to satisfy the energy balance is considered legitimate, is no 
longer satisfactory. Over the past decade, many physical features of the dissipation 
performance were discovered experimentally and described. Among them, the 
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threshold behaviour of wave breaking (Banner et al., 2000, Babanin et al., 2001, 
Banner et al. 2002), the cumulative effect of wave dissipation at smaller scales 
(Donelan, 2001, Babanin and Young, 2005, Young and Babanin, 2006), the quasi-
singular behaviour of the dissipation in the middle wavelength range (Hwang and 
Wang, 2004), the two-phase behaviour of the dissipation (Babanin and Young,  2005, 
Manasseh et al., 2006), and the alteration of wave breaking/dissipation at strong wind 
forcing (Babanin and Young, 2005).  

Many of the mentioned features were revealed or additionally highlighted during the 
Lake George field experiment (Young and Babanin, 2001, Young et al., 2005). These 
included both spectral dissipation effects mentioned above and integral dissipation 
(Babanin et al., 2005). New parameterisations of the wave energy dissipation were 
suggested and presented in forms suitable for spectral wave models (Babanin and 
Young, 2005, Young and Babanin, 2006, Babanin et al., 2007a).  

In the present paper, the Lake George dissipation study outcomes will be reviewed 
and summarised. New experimental results on the frequency distributions of breaking 
events are presented that support and highlight the importance of the cumulative 
effect which appears to dominate the spectral dissipation at small scales (higher 
frequencies). Results of an implementation of the new dissipation spectral function in 
a research spectral wave model are also presented in a companion paper at this 
conference (Babanin et al., 2007a). 

 

2. The experiment 

The field experiment to study the spectral balance of the source terms for wind-
generated waves in finite water depth was carried out in Lake George, Australia 
(Fig.1). This experiment was designed to study the spectral balance of the source 
terms for wind-generated waves in finite-depth water. The atmospheric input, 
whitecap dissipation and bottom friction were measured directly and synchronously 
by an integrated measurement system. In addition, simultaneous data defining the 
directional wave spectrum, atmospheric boundary-layer profile and atmospheric 
turbulence were available. The energy balance of the source functions was verified by 
means of independent redundant checks. 

The measurements were made from a shore-connected platform at varying water 
depths from 1.2 m down to 20 cm. Wind conditions and the geometry of the lake were 
such that fetch-limited conditions with fetches ranging from approximately 10 km 
down to 1 km prevailed. The resulting waves were intermediate-depth wind waves 
and their inverse wave ages, measured by the ratio of wind speed at 10 m height 
above the sea level, 10U , to the speed of the dominant (spectral peak) waves, pc , were 
in the range of 8/1 10 << pcU . 

As mentioned above, the atmospheric input, whitecap dissipation and bottom friction 
were measured directly and synchronously (Young et al., 2005). The contribution to 
the spectral evolution due to nonlinear interactions of various orders was investigated 
by a combination of bispectral analysis of the data and numerical modelling. The 
relatively small scale of the lake enabled experimental conditions such as the wind 
field and bathymetry to be well defined. The observations were conducted over a 
three-year period from September, 1997 to August, 2000. High data return was 
achieved (Young et al., 2005). 
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Figure 1. (top) Location of the Lake George site; (bottom) Onshore view of the site. 
Elevated walkway, computer shed, measurement bridge and anemometer mast are 
seen. 

 

3. Measuring the spectral dissipation 

Spectral wave energy dissipation represents the least understood part of the physics 
relevant to wave modelling (e.g. Cavaleri et al., 2007). There is a general consensus 
that the major part of this dissipation is supported by the wave breaking, but the 
physics of this breaking process, particularly for the spectral waves, is poorly 
understood. The issue is complicated by the fact that, apart from the breaking, there 
are other physical mechanisms which definitely provide significant contributions into 
the spectral dissipation. At dominant wave scales, for example, Ardhuin et al. (2007) 
demonstrated that wave-breaking dissipation cannot account for all the observed 
effects of wave attenuation.  At the spectrum tail, there is a growing evidence that the 
eddy-viscosity dissipation can be essential or even dominating (e.g. Babanin and 



 5

Young, 2005). 

This paper is dedicated mainly to the spectral dissipation because of wave breaking. 
Apart from general difficulties due to poor knowledge of the physics of the process 
and therefore understanding of what actually needs to be measured, such studies have 
always been limited by lack of experimental techniques capable of even detection, yet 
alone of measurement and quantification the breaking events. There are vast amounts 
of wave records accumulated over the past decades and undoubtedly most of them 
contain breaking waves embedded, but conventional wave data analyses do not allow 
identification of the breaking events. It is only recently that some methods, based on 
Hilbert-Transform and wavelet techniques, were suggested to find breaking waves in 
the surface elevation time series (Zimmermann and Seymour, 2002, Liu and Babanin, 
2004), but they are still to be broadly proven and implemented. 

In the meantime, what was originally the only direct method of detecting breaking, 
visual observations (Holthuijsen and Herbers, 1984, Katsaros and Atakturk, 1992, 
Stolte, 1994, Babanin, 1995), has gradually been overtaken by more innovative 
methods using acoustic, optic or other properties of breaking waves. Lowen and 
Melville (1991), Ding and Farmer (1994), Babanin et al. (2001), Manasseh et al. 
(2006) employed various kinds of acoustic signatures of breaking waves to single 
them out. Jessup et al. (1997) invented an optical method of quantifying breaking 
events based on infrared imaging of the skin layer temperature changes associated 
with the breaking. Gemmrich and Farmer (1999) used void fraction conductivity 
measurements at sea to describe the scale and occurrence of breaking waves. Phillips 
et al. (2001) studied the speed distribution of breaking events by means of high range 
resolution radar.   

While less manually intensive compared to the visual observation, and arguably more 
reliable, most of the new methods, however, are very expensive. Deployment, 
maintainance and exploitation of those sophisticated devices in open ocean 
conditions, particularly at the extreme wind seas which are of the most interest, is 
often a challenging task, which is clearly impossible on a long-term or even regular 
basis. 

In this regard, the passive acoustic methods have a potential advantage. Hydrophones 
are cheap, robust and easy to maintain, their energy consumption is low, they can be 
deployed below the surface and escape the destructive power of breaking waves, and 
can be operated on long-term basis. Pioneered by Farmer and Vagle (1988) in the 
field and Melville et al. (1988) in laboratory, the acoustic signature of wave breaking  
has been used over many years to identify the breakers, to obtain statistics of breaking 
occurrences, durations, dimensions, and propagation speeds, to show breaking 
dependence on environmental conditions (wind), and to find a link between acoustic 
energy radiated and wave period and wave energy loss. The latter (laboratory 
experiments by Melville et al., 1992) seemed particularly promising because in theory 
they provided the technical means to measure frequency distributions of both breaking 
probabilities and breaking severity. However, it was found impossible to employ the 
laboratory methodology in field conditions where high level of variable ambient noise 
hides the effect (Babanin et al., 2001, 2007b). 

Two different passive-acoustic methodologies were developed within the Lake 
George study to investigate the dissipation function (Babanin et al., 2001, Manasseh 
et al., 2006). The first method employed acoustic noise spectrograms to identify 
segments of breaking and non-breaking dominant wave trains (Section 3.1 below). 
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We should emphasise that this method is only applicable for detecting waves in the 
vicinity of the spectral peak, i.e. pp ff 3.0± . The second method is based on detecting 
individual bubble-formation events and is capable of registering breaking waves of 
different scales (Section 3.2 below). It was also found promising in investigating 
frequency distributions of the breaking severity. 

 

3.1 Spectrogram method, cumulative dissipation effect and directional-spectrum 
effect of the breaking 

As a result of applying the spectrogram method to Lake George data, a threshold-like 
behaviour of the breaking probability was highlighted (Babanin et al., 2001). If some 
characteristic wave steepness is below the threshold, the waves will not break (and 
whitecapping dissipation will be zero). If the steepness threshold is overcome, the 
breaking rates Tb  are proportional to the steepness excess over this threshold, all 
squared. This feature is very important for formulations of the spectral dissipation 
function and  Function (2) now has to be rewritten as 

                                                 n
thrds FFS )(~ −                                                 (3) 

where the exponent n and threshold spectrum thrF  have to be determined (see Section 
3.3 below).  

The most important outcome of the spectrogram method, however, was the discovery 
of the cumulative effect, i.e. the dependence of dissipation at higher frequencies on 
breaking/dissipation taking place on lower frequencies. This was first found when 
analysing a wave record with ~50% breaking rate. The average power and directional 
spectra for breaking and non-breaking (i.e. those which have just broken) waves were 
obtained by segmenting the record, and the difference was attributed to the dissipation 
due to wave breaking (Young and Babanin, 2006). This was the first direct estimate of 
the spectral dissipation effects, both in frequency and directional domains. The 
approach is illustrated in Fig.2 where the difference between the frequency spectra of 
breaking waves and broken waves is clearly seen. 

The obvious broadband difference of the two spectra in Fig.2 provides the direct 
experimental evidence of the cumulative dissipation effect, the most important topic 
of the present paper. The cumulative effect signifies such behaviour of the spectral 
dissipation at frequencies higher than peak, which is very different to present versions 
of the dissipation term employed by spectral wave models.  

As mentioned above, the spectrogram method provides detection of the dominant 
breaking wave only. Therefore, the broadband spectrum difference, revealed by the 
segmenting of wave record and shown in Fig.2, is due to the breaking of peak waves. 
If, within the segments, shorter waves were breaking too, this breaking would not 
contribute to the observed difference unless it correlates with the dominant breaking, 
i.e. is induced. 

Thus, breaking of larger waves causes wave energy dissipation from entire frequency 
band above such breaking waves. This cumulative effect was verified and supported 
by independent measurements of total dissipation of kinetic energy in the water 
column at the measurement location, based on the turbulence spectra (Young and 
Babanin, 2006). The dissipation rate at each frequency, caused by the dominant 
breaking, was found to be linear in terms of the wave spectral density at that 



 7

frequency, with a correction for the directional spectral width. 

The broadband dissipation brought about by the dominant breaking suggests a two-
phase behaviour of the spectral dissipation function. At the spectral peak, the 
dissipation should be linear in terms of the peak spectral density: when the dominant 
waves break due to their inherent reasons, this causes some 20% loss of this density 
(Fig.2, bottom panel). Simultaneously, it induces 20% loss of spectral density at 
higher frequencies across the spectrum. Combined with wave breaking due to inherent 
reasons (other than being induced by the larger breakers), the dissipation at the 
smaller scales will thus be larger than 20% and therefore not linear in terms of the 
spectral density at that frequency. In the absence of the larger breakers, obviously, the 
dissipation at a particular scale is caused by inherent reasons only and will stay linear 
in terms of the spectrum. Thus, the dissipation at each frequency f other than the peak 
frequency pf  should consist of two terms: the linear term which describes the 
dissipation due to inherent breaking at frequency f and a cumulative term which is 
responsible for an accumulated induced dissipation due to the average number of 
breakers occurring at frequencies less than f. 

 
Figure 2. (top) Spectrum of breaking waves (Fp, blue) and broken waves (Fi, red 
dashed line); (bottom) Ratio of the two spectra. 
Directional spectra of the breaking and non-breaking waves were also considered. 
They showed that directional dissipation rates at oblique angles are higher than the 
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dissipation in the main wave-propagation direction and therefore the breaking tends to 
make the wave directional spectra narrower (Fig.3). If confirmed, this conclusion may 
have very significant implications for the directional shape of dsS : unlike inS , it 
would be bimodal with respect to the wind direction, and the main wave direction 
would be characterised by a local minimum of the directional spectrum of dissipation. 

  
Figure 3. (left) Spectrum of breaking waves (blue) and broken waves (red); (right) 
Ratio of the two spectra. 
 

3.2 Bubble-detection method, cumulative effect and breaking/dissipation at stronger 
winds 
As an independent second approach, a passive acoustic method of detecting individual 
bubble-formation events was developed. This method was found promising for 
obtaining both the rate of occurrence of breaking events at different wave scales and 
the severity of wave breaking (Manasseh et al., 2006). A combination of the two 
methods should lead to direct estimates of the spectral distribution of wave 
dissipation.  

This approach registers breaking waves of different scales based on detecting 
formations of individual bubbles when whitecapping is produced by the breaker 
(Manasseh et al., 2006). Immediately on formation, the bubbles ring, and when such 
events are detected, they are assumed to be related to synchronously recorded surface 
waves. The period and other characteristics of such waves can be estimated by means 
of zero-crossing or riding wave removal techniques (see Section 3.4 below), and thus 
the rate of occurrence of wave breakers at different wave scales can be obtained.  

The method also showed promise for measuring the breaking severity – the absolute 
amount of energy lost during a breaking event. With support from a separate, 
laboratory experiment, the estimated mean bubble size R , obtained from the acoustic 
frequency, was argued to be dependent on the severity of wave breaking (the bigger is 
the mean bubble size, the greater the energy loss). This is illustrated in Fig.4 where R 
is plotted versus the directly measured loss for a monochromatic waves with height 

beforeH  immediately before and height afterH  immediately after the breaking. Thus, the 
approach can provide information on the energy loss due to the breaking at the 
measured spectral frequencies. A combination of the breaking-probability distribution 
and the bubble size across the spectrum can lead to direct estimates of the spectral 
distribution of wave dissipation once the bubble size is calibrated in terms of the 
energy loss. 

Frequency distributions of both the breaking probabilities and the surrogate 
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dissipation )( fbT ·R(f), obtained by the zero-crossing technique, are shown in Fig.5 
for 6 records summarised in Table 1. Distributions of the breaking probabilities 

)( fbT  at different wind speeds (top panel) demonstrate that, in bottom-limited Lake 
George conditions, the highest breaking rates occur around the spectral peak and they 
gradually decrease towards higher frequencies.  

 
Figure 4. Bubble size versus breaking severity. 95% confidence intervals are shown. 
The middle plot is most essential for the main topic of the present paper. It clearly 
shows two-phase behaviour of the breaking rates. Once )( fbT  is normalized by the 
local spectral density F(f), the distributions collapse at the peak frequency and diverge 
elsewhere where the cumulative effect is expected to contribute. This observation 
provides convincing support for the two-phase behaviour suggested on the basis of the 
spectrogram-method observations above. It will be further investigated in Section 3.4 
below. 

Table 1. Summary of wave records used. Here, pf  is peak frequency, sH  is 
significant wave height, 10U  is wind speed at 10 m height 

No. Record No. pf , Hz sH , m 10U , m/s Figure 2 

1 311823.oc7 0.36 0.45 19.8 circle 

2 311845.oc7 0.33 0.40 15.0 cross 

3 312021.oc7 0.40 0.39 13.7 diamond 

4 312048.oc7 0.37 0.37 13.2 triangle 

5 311908.oc7 0.35 0.37 12.9 asterisk 

6 311930.oc7 0.38 0.34 12.8 square 

The bottom plot shows the frequency distribution of )( fbT R(f)/F(f). This product of 
the breaking probability and the bubble size gives a surrogate energy dissipation at 
frequency f, which is then normalised by the spectrum F(f) at this frequency. Again, 
such a normalised dissipation collapses at the spectral peak, thus indicating a linear 
dependence of the dissipation on F(f) at pf . At higher frequencies, dissipation rates 
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are greater than those which could be expected if the dissipation was still linear in 
terms of the wave spectrum. This behaviour is consistent with the influence of the 
cumulative term inferred above and is further evidence of the two-phase spectral 
dissipation function.  

 
Fig. 5. Six wave records, see Table 1. (top panel) Breaking probability )( fbT  versus 
relative frequency. (middle panle) )( fbT  normalized by F(f). (bottom panel) Product 
of bubble size R(f) and )( fbT , normalized by F(f). 

Another feature of the spectral dissipation function seen in Fig.5 demonstrates a 
peculiarity of the dissipation behaviour at strong winds. According to Eq.(3), the 
dissipation function is expected to be determined by the spectrum. The wind influence 
on wave breaking and energy attenuation is indirect: the wind changes the wave 
spectrum first, and this change brings about alterations of the breaking as a 
consequence. In Fig.5 (top) the breaking distributions merge together for moderate 
winds and are clearly enhanced for the two stronger-wind cases across the entire 
spectral band. Therefore, we could expect that if the wave spectra solely define the 
breaking/dissipation, the wave spectra for the last two cases should also be enhanced 
as a result of the stronger wind forcing. 

  
Figure 6. Wave spectra of Table 1. (left) Full spectra in log-log scale. (right) Spectra 
in pp fff 38.0 ÷≈  range in linear scale. 

This is, however, not the case. Fig.6 shows the full spectra in log-log scale in the left 
panel and in the right panel are shown in expanded linear scale in the range of 

pp fff 38.0 ÷≈ . The wave spectra do merge as expected for the moderate winds, but 
at strong winds of smU /1410 >  a further increase of the wind speed and the wind 
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input does not cause noticeable changes of the wave spectrum except at the peak. The 
excessive wind input, or at least a significant part of it, appears to be dissipated 
locally through the enhanced breaking. This should be true unless the dominant-
breaking-induced dissipation exceeds the inherent dissipation at high frequencies in 
which case spectral levels at these frequencies are not an indicator of the respective 
breaking rates. 

 

3.3 Dissipation function and the breaking threshold 
A parametric form of the dissipation function which accommodates both the threshold 
behaviour and the cumulative effect was suggested in Babanin and Young (2005), and 
Young and Babanin (2006): 

∫ −−−−=
f

f

n
thrw

n
thrwds

p

dqqAqFqFgafAfFfFgfafS ))())()((())())()((()( 21 ρρ .    (4) 

Here, ρ w  is the water density, g is the gravitational constant, A(f) is the integral 

characteristic of the inverse directional spectral width (Babanin and Soloviev, 1998): 

    ∫
−

− =
π

π

ϕϕ dfKfA ),()( 1 ,       (5) 

where φ is the wave direction, ),( ϕfK  is the normalised directional spectrum: 

     1),( max =ϕfK  ,     (6) 

ia  are experimental constants yet to be comprehensively estimated, and )( fFthr  is the 
spectral threshold function.  

Such dissipation at a particular frequency above the peak depends on the rates of 
spectral dissipation at lower frequencies. Thus, the dsS  term accommodated the two-
phase behaviour: being a simple function of the wave spectrum at the spectral peak 
and having an additional cumulative term at all frequencies above the peak. 

If m ≠ 1, the formulation has apparent dimensional problems, but in Young and 
Babanin (2006) it was found that the dissipation is linear in terms of the excess of the 
wave spectrum. Since only one 50%-breaking rate was available for the analysis, a 
single value was obtained for both experimental parameters: 0065.021 == aa . These 
parameters, their inter-relationship and dependence on background environmental 
conditions are investigated in detail in the companion numerical-modelling paper by 
Babanin et al. (2007a).  

The most significant uncertainty in the dissipation function (4) is the unknown 
threshold spectrum )( fFthr . Babanin and Young (2005) investigated this threshold in 
dimensionless terms, i.e. in terms of the saturation spectrum σ(f) normalised by the 
directional spectrum parameter (5): 

    )()()( fAff Phillipsσσ = ,    (7) 
where )( fPhillipsσ  is as introduced by Phillips (1984): 

    2

54

2
)()2()(

g
fFffPhillips

πσ = .    (8) 
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If a universal dimensionless saturation-threshold value thrσ can be established, the 
dimensional threshold can then be obtained at every frequency: 

54

2

)()2(
2

ffA
gF thr

thr
σ

π
= .     (9) 

Based on Lake George data (Fig.7) and data from Banner et al. (2002), Babanin and 
Young (2005) concluded that the saturation (7)-(8) is not the most suitable parameter 
for wave-breaking dependences in a general case. The saturation is the fifth moment 
of the spectrum, and any variations of the spectral shape, particularly at higher 
frequencies, cause large scatter of this characteristic. Its threshold value, however, 
was found to be a rather indicative and robust property in the range of  

( ) 0.0223 0.0254thr fσ = − .                          (10) 

When tuned in the spectral model (Babanin et al., 2007a), the threshold was chosen as  

.035.0)( == constfthrσ                                          (11) 

As seen in Fig.7, this value agrees with the bulk of Lake George data. 

 
Figure 7. Breaking probability )( fbT  versus saturation parameter )( fσ . Asterisks 

denote spectral peak points. Threshold 0.035 is shown with the solid line. 
 

3.4 Frequency distribution of breaking probability 

Lately, frequency distribution of the breaking probability )( fbT  has been a sought 
after function (e.g. Ding and Farmer, 1994, Phillips et al., 2001, Banner et al., 2002, 
Melville and Matusov, 2002, Gemmrich, 2005). There is an expectation in the wave-
modelling community that, once some universal function for )( fbT  is obtained, such 
parameterisation will provide a major step forward towards an experimental, rather 
than a speculative dissipation function. 

In this sense, results of the Lake George measurements are not very encouraging 
mainly due to the significance of the cumulative effect at high frequencies. At these 
scales, theamount of induced breaking is so large that it renders little connection 
between )( fbT  and wave spectrum F(f). As seen in Fig.7, if an analogy is drawn with 
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the experiments of Banner at al. (2000), Babanin et al. (2001), and Banner et al. 
(2002), with the saturation spectrum now playing the role of the spectral steepness, 
certainly no universal dependence is plausible in terms of such saturation.  

In Fig.8, the Lake George data, in a search of the universal dependence of )( fbT  on 
wave spectrum F(f), are separated into narrow spectral bins ppp fiff 1.02.0 ±+  where 
i=0,1…4. Only records with breaking rates in excess of 2% across all the frequencies 
were chosen to avoid bias due to zero-breaking contributions when the rates are low. 
A Riding Wave Removal (RWR) procedure was used to identify periods of the 
breaking waves. The zero-crossing analysis employed above becomes naturally 
noisier towards higher frequencies when the riding shorter waves may not necessarily 
cross the mean level. The RWR technique works, once the bubble detection signals a 
breaking, by finding the shortest riding waves first, and then removing all of them 
from the signal before reprocessing the signal to look for the next largest riding 
waves.

 
Figure 8. Breaking probabilities (from left to right) for frequencies of pf , 1.2 pf , 
1.4 pf , 1.6 pf , 1.8 pf  in the pf1.0±  frequency range. Solid line in all plots identifies 
the linear dependence obtained in the first panel. Dashed lines, from left to right, are 

2)(~ thrT FFb − , 3)(~ thrT FFb − , 4)(~ thrT FFb − , 5)(~ thrT FFb − . 

At the spectral peak (first panel), consistent with the two-phase behaviour of the 
breaking/dissipation discussed above, the dependence is linear:  

)(2 thrT FFb −≈ .               (12) 

If, however, this dependence, as shown with solid lines in subsequent subplots, is 
applied to the breaking rates at higher frequencies, it exhibits a progressively larger 
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underestimation. Such result is fully consistent with our expectations that follow from 
the documented cumulative behaviour. Inherent (linear) dependence of the wave 
breaking rates on the spectrum excess should be present at each frequency. However, 
at every next frequency away from the spectrum, the contribution of the induced 
breaking (due to waves breaking at lower frequencies) has to become progressively 
larger. 

What happens if the cumulative effect is disregarded, as it is now in most of 
breaking/dissipation parameterisations? It is still possible to draw a linear dependence 
at each frequency bin, but at every subsequent frequency such dependence will 
become steeper and the intersect will move further from the origin (i.e. the threshold 
value will be growing). This is exactly what is observed, for example, by Banner et al. 
(2002). 

In the case of our Fig.8, the universal threshold value has been already subtracted at 
the bottom scale, and therefore all the dependences have to go through the zero. If we 
now try to fit a best exponential function (3) at each frequency, this will result in a 
quadratic function at f=1.2 pf , a cubic function at f=1.4 pf , a fourth power at 
f=1.6 pf , and a fifth power at f=1.8 pf  as shown in the Figure.  

Thus, fitting of Equation (3)-like functions can be done across the spectrum as a 
matter of tuning, but as a matter of physics such approach appears to be misleading. 
In our view, there are no simple algebraic dependences for the spectral 
breaking/dissipation, and integral functionals have to be employed to account for the 
cumulative contributions across the spectrum as is done in Eq.(4). It will be shown 
below that the role of the cumulative term has principal importance, because it will 
dominate at higher frequencies where, in fact, the contribution of the inherent 
breaking becomes so small that it can be neglected. 

 

4. Conclusions and Discussion 

Until now, the physics of spectral wave dissipation is regarded as very poorly 
understood and the corresponding term in Eq.(1) is mainly treated as a tuning knob. 
Recent experimental advances, however, have brought about much more certainty on 
the behaviour of dsS  and, in our view, the notion that the dissipation function is a 
great unknown and that any formulation which helps to satisfy the energy balance is 
considered legitimate, is no longer satisfactory.  

Among the main features of the dissipation physics, experimentally discovered and 
consistently confirmed, are its threshold behaviour and the induced cumulative 
dissipation at smaller scales (higher frequencies). This paper is mainly dedicated to 
reviewing, highlighting and analysing these features, and parameterising them in a 
form suitable for use in wave spectral models.  

Having no threshold included in Equation (2)-like formulations of the whitecapping 
dissipation terms implies that the wave breaking ceases only when the waves 
disappear, which is certainly not the case. The waves only break if their steepness (or 
corresponding spectral density for smooth spectra) is great enough. If the wave energy 
dissipation at each frequency were due to whitecapping only, it should be a function 
of the excess of the spectral density above a threshold spectral level, below which no 
breaking occurs at this frequency. This was found to be the case around the wave 
spectral peak.  
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A more complex mechanism appears to be driving the dissipation at scales different to 
those of the dominant waves. Dissipation at a particular frequency above the peak 
demonstrates a cumulative effect, depending on the rates of spectral dissipation at 
lower frequencies. In terms of the dissipation function dsS  such an effect will mean a 
two-phase behaviour: dsS  being a simple function of the wave spectrum at the 
spectral peak and having an additional cumulative term at all frequencies above the 
peak (4). 

The nature of the induced dissipation above the peak can be due to either enhanced 
induced wave breaking or additional turbulent eddy viscosity or both. While study of 
cumulative effects in Manasseh et al. (2006) relied on the induced wave breaking 
only, the study of Young and Babanin (2006) did not, and it is instructive to compare 
the dissipation function (4) with known results on the purely whitecapping spectral 
wave dissipation. 

One of the purely whitecapping properties, which can be easily converted into the 
spectral dissipation, is Λ(c), the average length of breaking crests per unit area per unit 
interval of phase speed c (Phillips et al., 2001). Experimental dissipation functions 
obtained this way will automatically account for the induced/cumulative breaking at 
higher frequencies and will automatically not include the induced/cumulative 
turbulent viscosity. Therefore, comparison of such a dissipation term with function (4) 
will provide information on the importance of dissipation, other than that due to 
whitecapping, across the spectrum. 

Melville and Matusov (2002) experimentally obtained the spectral distribution of Λ(c) 
as a function of c: 

    ce
U

c 64.043

10

103.3)10)(( −−×=Λ ,             (13) 

which can then be converted into a dissipation function   

    3

10

51 )10)(()(
U

ccgbcS wds Λ= −ρ  ,             (14) 

and 

    )(1
2

)( 2 cS
f

gfS dsds π
= .              (15) 

Here, b is an empirical constant which has been shown to vary in a very broad range, 
by a few orders of magnitude (Melville and Drazen, presentation at WISE-2007, 
Lorne, Australia).  

Given such uncertainty, dissipations (15) and (4) will be compared by assuming that 
they are equal at the spectral peak. Indeed, the two-phase behaviour of the dissipation 
function means that at the spectral peak most of the dissipation is due to the dominant 
breaking. Results of the comparison are demonstrated in Fig.9.  

The coefficient b=0.1 was chosen in (14) to make the two dissipations match at the 
peak. The two dissipations agree quite well while the cumulative term is small, but 
diverge very significantly at the scales where the induced dissipation dominates 
(plateau in Young & Babanin dsS ). As is mentioned above, the experimental 
coefficients in both (4) and (14) need further investigation, but in any case the 
importance of the turbulent viscosity contribution to the cumulative dissipation is 
evident. 
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Figure 9. (top panel) Wave spectrum (No.1, Table 1) and dimensional spectral 
threshold (dashed line). (middle panel) Close up of the bottom panel. (bottom panel) 
Young & Babanin (2006), solid line, and Melville & Matusov (2002), dashed line, 
dissipation functions. 

To summarise, we should like to conclude that while one can argue about functional 
forms and characteristic variables of the newly suggested parameterisation of the 
dissipation function, the threshold and cumulative dissipation in real wave fields 
appear to be definite physical features. Therefore, having no such parameterisations 
included in the dsS  terms, most likely makes physics of these terms inadequate in a 
general case. As it has already been shown, role of both the threshold and cumulative 
behaviour is not marginal, but is principal. 
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