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ABSTRACT

Wave breaking is observed in a laboratory experiment with waves of realistic average steepness and di-

rectional spread. It is shown that a modulational-instability mechanism is active in such circumstances and can

lead to the breaking.

Experiments were conducted in the directional wave tank of the University of Tokyo, and the mechanically

generated wave fields consisted of a primary wave with sidebands in the frequency domain, with continuous

directional distribution in the angular domain. Initial steepness of the primary wave and sidebands, as well as

the width of directional distributions varied in a broad range to determine the combination of steepness/

directional-spread properties that separates modulational-instability breaking from the linear-focusing

breaking.

1. Introduction

Wave breaking has routinely been perceived as a phe-

nomenon hard to understand, predict, and describe. Al-

though the limiting steepness for two-dimensional surface

waves has been analytically obtained long ago (i.e.,

Stokes 1880; Michell 1893), this steepness of

ak ’0.44 (1)

was not treated by oceanographers in any consistent way

(here a is wave amplitude and k is wavenumber). Some

believed it indeed to be the breaking criterion; for in-

stance, an entire set of wave-dissipation theories was

built on this criterion (see review of probabilistic theo-

ries in Donelan and Yuan 1994). Others argued that such

steepness of individual waves is unrealistic for oceanic

wave fields whose typical average steepness is

ak ;0.1, (2)

particularly as the waves were, indeed, reported as

breaking while having steepness much lower than (1)

[e.g., Holthuijsen and Herbers (1986) in the field and

Rapp and Melville (1990) in the laboratory]. Search for

more plausible geometric, kinematic, and dynamic cri-

teria has continued, partly because a criterion based

on steepness alone also seemed to be not sophisticated

enough (i.e., observations would reveal that breaking

waves often had steepness smaller than those nonbreaking

within the same wave train, etc.). A review of this topic is

given, for example, by Babanin (2009).

Recently, however, both experimental and theoretical

evidence started reinstating the steepness (1) as both

realistic and, in fact, a robust criterion for wave break-

ing. Brown and Jensen (2001), for the breaking achieved

by linear focusing, and Babanin et al. (2007), for break-

ing due to modulational instability, both showed that in

their laboratory experiments the waves would break

when Hk/2 ’ 0.44, where H 5 2a is the wave height. In

Babanin et al. (2007), where the front and rear troughs

were not symmetric, the criterion is based on the rear
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steepness: that is, height H is estimated as the vertical

distance between the crest and rear trough. The same

limiting steepness was revealed in numerical simulations

by means of fully nonlinear wave models (Dyachenko

and Zakharov 2005; Babanin et al. 2007).

The contradictions between these new results and the

earlier measurements mentioned above, however, seem

to be rather straightforward to reconcile. Babanin et al.

(2010) argued that the breaking onset is an instanta-

neous, that is, very short-lived, stage of wave evolution

to the breaking; thus, both before and after the moment

when the water surface starts to collapse, the steepness

of the wave to break and the breaker in progress is below

that specified by (1). Therefore,so as to detect steepness

(1), the very instant of the breaking onset has to be

measured rather than any other phase of wave breaking,

which is apparently not the case in experiments other

than those explicitly dedicated to studying the incipient-

breaking point. For example, Brown and Jensen (2001),

who used ‘‘essentially the same experimental setup to

generate and study breaking waves’’ as Rapp and Melville

(1990), indeed found that ‘‘wave breaking occurs when

the instantaneous local wave steepness (ka)max exceeds

;0.44,’’ whereas Rapp and Melville did not observe

such large steepness as mentioned above.

The field experiments, as far as observations of the

breaking onset are concerned, suffer from even more

serious shortcomings. As discussed in detail in Babanin

et al. (2010), the absolute majority of such measurements

rely on whitecapping and associated features to detect the

breaking, and the waves only produce whitecapping when

the breaking is already well in progress. Therefore, most

of the field observations deal with the developing and

subsiding phases of the breaking process (Liu and Babanin

2004), and steepness of breakers at these phases can be

well below the limiting steepness (1) and even below the

mean steepness of the wave field (Liu and Babanin 2004;

Babanin et al. 2010).

Therefore, while measuring the breaking onset in

controlled laboratory conditions is difficult, measuring it

in the field is a challenge, given the sporadic and random

nature of breaking occurrence. That is, if a wave is al-

ready detected as breaking, then it is unknown what

its steepness was before. When the steepnesses of non-

breaking waves are measured, they cannot be readily

associated with the breaking inception. Limiting steep-

ness of the value of (1), however, is observed in the field.

V. A. Dulov (2008, personal communication) monitored

a wave starting to break within an array of wave probes,

and at the incipient point its rear steepness was Hk/2 ’

0.45. Toffoli et al. (2010a) investigated the probability

distribution of the steepness of individual waves, based

on two different field datasets and two sets obtained in

different directional wave tanks, and found a threshold

for the ultimate steepness as

H
front

k

2
5 0.55 (3)

for the front steepness and

H
rear

k

2
5 0.45 (4)

for the rear steepness. Since the probability function is

terminated at the threshold value, that is, does not ex-

tend into the higher values of steepness, this result

should be interpreted as the ultimate steepness beyond

which the directional waves will certainly break.

Both (3) and (4) steepness obtained in the directional

wave fields are somewhat higher than the limiting steep-

ness (1) of two-dimensional waves. We see two possible

reasons behind this. First, there can be some mechanism of

stabilization of wave crests in three-dimensional wave

fields leading to a shift of the breaking onset to higher

slope values. Second, the ultimate values (3) and (4) may

be indicative of transient maximal steepness rather than

the breaking onset as such: that is, even if the water-surface

collapse starts once steepness (1) is reached, some waves

can keep growing for some time and reach higher steep-

ness, up to those of (3) and (4), while already breaking.

Once the breaking starts, the wave height will inevi-

tably drop eventually, but both the superposition and

modulational-instability scenarios may allow for the tran-

sient interim wave growth.

Which of the two reasons mentioned above—or maybe

another one or perhaps all of them together—are re-

sponsible for the steepness (3) and (4) reached cannot be

answered now and is not essential here. As far as the water-

surface collapse is concerned, it is not an instability of wave

trains or wave superpositions that cause the wave to break.

Any physical mechanism that makes two-dimensional

waves higher than (1) or directional waves higher than (3)

and (4) will result in wave breaking. The same mechanism,

if it only leads to a steepness below the critical, will not

bring about a breaking.

Here we have very broadly placed such potential

mechanisms into two groups: instability mechanisms and

superposition mechanisms. However, within these two

phenomenological groups further subdivisions are ob-

vious, which will also correspond to different physics.

For example, the classical Benjamin–Feir/McLean in-

stability (Zakharov 1966, 1967; Benjamin and Feir 1967;

McLean 1982) does result in very tall waves rising within

wave groups, provided the average wave steepness is

large enough, but once an individual-wave steepness is

higher than 0.42, the wave crest instability (also called
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second-type instability) becomes important (Longuet-

Higgins and Dommermuth 1997; Longuet-Higgins and

Tanaka 1997). It is not, however, the first or second type

of instability that causes the wave to break; it is the ul-

timate steepness that they help to achieve.

In terms of wave superpositions, these can be sub-

divided into frequency focusing (e.g., Longuet-Higgins

1974; Rapp and Melville 1990; among many others), am-

plitude focusing (Donelan 1978, Pierson et al. 1992), and

directional focusing (e.g., Fochesato et al. 2007). Inves-

tigation of the breaking by means of such superpositions

have been a useful tool for decades (for a review see

Babanin 2009), but how likely are they in the field? The

answer is perhaps not that encouraging.

The linear focusing is a superposition taking place

due to different phase speeds of waves with different

frequencies. In a wave field with continuous spectrum,

these can happen often, but the problem is that waves

with different speeds have very different amplitudes. As

an approximate rule if the Phillips spectrum of f 25 is

used as a scale, then, if frequency f is doubled (i.e., phase

speed is decreased 2 times), the amplitude a on average

will drop by some
ffiffiffiffiffi
32
p

’ 5.7 times. With the typical

mean steepness of ocean waves of (2), this would require

superposition of a great number of individual waves to

make a dominant wave reach steepness (1), which then

appears a low-probability event.

The amplitude focusing and directional focusing bring

together waves of close frequencies and, thus, amplitudes.

Such focusing, therefore, would require fewer waves su-

perposed to achieve the ultimate steepness (1), (3), or (4).

The current paper looks into the issue of the directional

focusing and demonstrates that it does happen randomly

in directional wave fields, but superposition of more than

two waves is not observed. It is not impossible of course

but it is unlikely, which means that, in order to break, such

waves have to be at least Hk/2 5 0.22 steep initially. In the

field, individual waves with similar steepness are a rare

occurrence; hence, their random superposition is again

a low-probability event.

If the superposition breaking is possible but unlikely,

then the instability-caused breaking appears the feasible

mechanism responsible for majority of the field waves

breaking. Indeed, in two-dimensional wave trains steep-

ness (2) would be sufficient for waves inevitably starting

to break within such trains. In fact, the breaking caused by

a linear superposition and that due to the modulational

instability bear a variety of signatures and impacts, which

allows one to distinguish between them. These start from

shrinkage of the wavelength prior to the breaking onset

in the case of instability growth and end with different

spectral distribution of the breaking-caused dissipation,

with many options in between. A great part of breaking

features observed in the field point to the modulational-

instability cause (see Babanin et al. 2010). There is, how-

ever, a serious scientific argument against the nonlinear

wave group instability in directional fields, which needs to

be investigated and answered before any conclusions

about the plausibility of such mechanism are made.

The convincing modulational-instability breaking on-

set simulations (Dyachenko and Zakharov 2005; Babanin

et al. 2007) are strictly two dimensional, and the corre-

sponding measurements (Babanin et al. 2007, 2010) are

quasi two dimensional. In the meantime, there are theo-

retical and experimental evidences (Onorato et al. 2002,

2009a,b; Waseda et al. 2009a,b) that demonstrate the non-

Gaussian properties; therefore, the modulational insta-

bility in directional fields is impaired or perhaps even

suppressed. If so—that is, if the focusing is unlikely and

the modulational instability is suppressed in pure condi-

tions (i.e., in absence of shoaling, adverse currents and

other physical interactions)—then how do waves in a wave

field with average steepness (2) reach the steepness (3)

and (4) identified by Toffoli et al. (2010a)?

The current paper presents results of a laboratory ex-

periment in a directional wave tank, which was intended

to answer the question whether the modulational insta-

bility is still active in directional wave fields with typical

angular spreads and typical mean steepness. The steep-

ness is a recognized key property for this instability that

is routinely identified by the modulational index (i.e.,

Benjamin and Feir 1967; Onorato et al. 2002; Janssen

2003; among others),

M
I
5

ak
0

D f / f
0

, (5)

where k0 and f0 are characteristic wavenumber and

frequency in a wave train or wave field and Df is the

bandwidth that defined the wave groups in this field. As

an approximate rule, for the instability to develop, there

should be

M
I

* 1. (6)

Babanin et al. (2007, 2010) argued, based on two-

dimensional experiments with no initial sidebands im-

posed, that the bandwidth in (5) is not an independent

property and that it is determined by the steepness. Thus,

steepness appeared as the singlemost important param-

eter that defined whether and what kind of instability

develops. In directional fields, however, Waseda et al.

(2009a,b) demonstrated that for typical Joint North Sea

Wave Project (JONSWAP) frequency spectra the mod-

ulational instability also depended on the directional

spread and was only detected if the inverse integral of

this spread was
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A . 4. (7)

Here A is the inverse normalized directional spectral width,

defined according to Babanin and Soloviev (1987, 1998a) as

A( f )�1
5

ðp

�p

K( f , u) du (8)

in which u is the wave direction and K( f, u) the nor-

malized directional spectrum,

K( f , u
max

) 5 1; (9)

that is, higher values of A correspond to narrower di-

rectional distributions. Experimental conclusion (7) was

also consistent with numerical simulations of Onorato

et al. (2002) [for correction of a typo made in the original

paper by Onorato et al., see Babanin et al. (2010)].

Thus, Babanin et al. (2010) suggested a directional

analog of MI as the directional modulational index

M
Id

5 Aak
0
, (10)

which is effectively a ratio of steepness and normalized

directional bandwidth and would signify whether the

modulational instability takes place in the directional wave

fields. That is, if the directional spreading broadens, this

can be compensated by increasing characteristic steepness,

and vice versa.

In a way, this logic is indirectly supported by obser-

vations of behavior of the modulational instability at sur-

face currents. Tamura et al. (2008), Janssen and Herbers

(2009), and Toffoli et al. (2010b) all showed that this kind

of instability is enhanced in the presence of wave currents.

Janssen and Herbers (2009) explicitly demonstrated that

such activation of the nonlinear group behavior can be

caused by the directional wave spectra becoming narrower

due to focusing effects over the currents.

In this paper, we are attempting to answer this issue

directly. Section 2 describes the experimental facility and

setup. Section 3 is dedicated to the investigation of lim-

iting characteristics of short-crested waves at breaking

and the connection between directionality and breaking

probability and, most importantly, to identifying para-

metric limits of existence of the linear focusing and

modulational-instability breaking events. Section 4 for-

mulates conclusions.

2. Experimental facility, setup, and observations

The experiments were conducted in the Ocean Engi-

neering Tank of the Institute of Industrial Science of the

University of Tokyo (Kinoshita Laboratory and Rheem

Laboratory). It is described in detail by Waseda et al.

(2009a), and here we will only mention features and

specifications of the facility that are most important for

the present study.

The tank is 50 m long, 10 m wide, and 5 m deep. It is

equipped with a multidirectional wave maker, which con-

sists of 32 triangular plungers that are 31 cm wide. The

plungers are computer controlled to generate waves of

periods of 0.5–5 s initially propagated with predetermined

spectrum and directional spread. In our experiments, no

periods longer than 1.1 s were used; therefore, deep water

conditions were always satisfied.

The directional wave array employed is shown in Fig. 1.

This is a centered pentagon, with radius r 5 10 cm, which

allows very good resolution of wavelengths l ; 1 m used

in this study. Numbering the array’s wires have to be

noted as they will be used below when discussing partic-

ular examples of oblique wave propagation through this

array. Additionally, a one-dimensional array consisting of

7 wire probes was deployed along the tank. The sensors

were positioned 2.3 m from one of the sidewalls at 5-m

intervals to monitor the wave train evolution along the

tank. The directional array was situated on the mobile

bridge and could be moved both along and across the

tank. In most observations employed here, it was posi-

tioned in the center. Capacitance wire sensors measured

surface elevations with an accuracy of ;1 mm, and a

sampling rate of the wave profile at 100 Hz resolution was

nearly continuous for the purposes of this study. Dura-

tions of the records were typically 10 minutes. A set of

video cameras looking down, up, and across the tank were

also used, and their records were synchronized with the

wave records.

In the reported experiment, a very simple setup was

adopted to avoid complications caused by a variety of

physical interactions present at the same time. That is, for

the majority of the records, in the frequency/wavenumber

domain wave trains were generated monochromati-

cally, with small sidebands. Different values of the fre-

quency (in the range of wavelengths from 0.8 to 2 m)

were used, as well as a set of magnitudes for sidebands

and modulational indexes MI, but what was varied broadly

were the initial monochromatic steepness ak and di-

rectional spreading A: it is the combined effect of the

last two properties on the cause of the breaking that

was investigated.

Apart from recording the waves, the main observa-

tional task was to distinguish the breaking between those

caused by linear directional focusing and by modulational

instability. This was done visually, and visual observations

were verified and confirmed by other means directly and

indirectly as described below.
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As discussed in the introduction, the wave breaking

expected was due to either focusing or evolution of non-

linear wave groups. These two types were easy to distin-

guish visually. In the case of linear superposition, the two

directionally converging wave trains provide a critical

steepness at some location, and then every subsequent

wave coming to the area of this location breaks. In the

case of modulational instability, on the contrary, only one

or two waves that break at the top of subsequent groups;

for example, if the group consists of seven waves, the

observer watching a breaking location will see one or two

breakers followed by six or five nonbreaking waves, and

then the pattern is repeated.

As one could expect, there were records when both

linear focusing and modulational instability were pres-

ent. These would be either coexisting or replacing each

other patterns. Such records were labeled transitional.

Thus, in the logging journal, the wave trains that did bring

about breaking events were classified into modulational-

instability, linear-focusing, or transitional records. The

transitional records, therefore, now represent the third

group of data. It should be mentioned, however, that for

an individual breaking there was no ambiguity, and it was

apparent whether it is due to modulational instability or

linear focusing.

As a side remark, it is interesting to mention that in

such a simple setup some other geometric/dynamic be-

haviors of the directional focusing and modulational

breaking were easily observed. In Fig. 2 (left) numerical

simulation of directional superposition by Fochesato

et al. (2007) is reproduced. Such concave/convex pat-

terns were abundant visually in cases that were classified

as the linear-focusing breaking: one of the photos is shown

in Fig. 2 (right). If a strong enough modulational breaking

happened underneath the observation bridge, it was very

interesting to visually see the downshifting (i.e., Tulin

and Waseda 1999; Babanin et al. 2010). Prior to break-

ing, the wave length in such case is expected to shorten

(i.e., Babanin et al. 2007, 2010), which it apparently did.

Then, visually, it rapidly accelerated in the course of

breaking as its wavelength rebounded—increasing to

the point of catching up and merging with the preceding

individual wave. The number of waves in the group, thus,

was reduced; that is, the downshifting occurred.

Attempts were also made to directly identify the class

of a record based on statistical or dynamic properties

that can be attributed to the modulational instability.

Most prominent of the statistical properties and most

frequently employed is kurtosis K, the fourth-order

moment of the probability density function of surface

elevations (e.g., Yasuda et al. 1992; Onorato et al.

2009a,b; Waseda et al. 2009a). If the wave field is ran-

dom phased and

K . 3, (11)

then nonlinear wave groups are present, whose dy-

namics is thus driven by the modulational instability.

Such a criterion, however, did not appear robust in the

wave tank records where initial phases are not random

and marginal on/off cases are exercised. In such condi-

tions, strongly nonlinear groups are not uniformly dis-

tributed along the surface of the tank, and their locations

are few. As will be shown below, the transition from

quasi linear to a very skewed group is rapid, and there-

fore detecting such groups with a limited number of

wave probes in the tank is not easy. In other words, if

(11) is true, the modulational instability is indeed pres-

ent but, if (11) is not measured, this fact cannot prove its

absence.

As an example, kurtosis estimated by the probes of

the wave array shown in Fig. 1 can be given. This is done

for record 63, which was visually determined as such

where the breaking happened due to modulational in-

stability. Kurtosis measured at probes 1–6 was K 5 3.17,

3.51, 2.95, 2.69, 3.13 and 3.73, respectively.

This means that abnormally high waves were coming

through the array obliquely, first through probes 6 and 2,

then 5 and 1, then 3, and finally probe 4. At probes 6 and

2 their non-Gaussianity was massive (K 5 3.7 and 3.5),

at probes 5 and 1 marginal K ; 3.1, and then it dis-

appeared. Visually, differences in the surface elevation

records were not striking by any means, even when the

kurtosis was high.

The entire observed transformation of the wave train

kurtosis happened within the 20-cm expanse of the array,

which is some 1/8 of the wavelength. Obviously, there is

a good amount of luck necessary to detect the high kur-

tosis. Out of the other seven wave probes deployed along

the 50-m tank, only two exhibited kurtosis greater than 3

in this record; that is, K 5 3.2 and K 5 3.46 at probes 5

and 6 of the long array, respectively.

FIG. 1. Directional array configuration.
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When maximal kurtosis appeared at any of the 13

probes in the respective wave records was used, it did

not help to separate the modulational-instability from

the linear-focusing breaking. No statistically significant

correlation with wave steepness and directionality was

established; in fact, the trend was actually negative to-

ward high initial values of ak and akA. This means, most

likely, that the frequent breaking, which decreases the

background wave steepness, affects the modulational

instability and reduces the kurtosis, as higher values of ak

and akA should signify higher breaking rates (verified in

section 3).

A dynamic property that can identify active modula-

tional instability in monochromatic wave trains is the

growth of sidebands. In most of the tests run in our ex-

periments, sidebands were seeded such that their am-

plitude b was b 5 0.01a. A limited number of records

were conducted unseeded, to allow the sidebands to grow

from the background noise, and in the other records it

was set b 5 0.1a so as to accelerate the nonlinear evo-

lution of wave groups. The latter experiment was in-

tended to accelerate the modulational growth and, in fact,

led to very rapid breaking within the first 10 m: therefore,

it was excluded from subsequent analysis because initial

steepness of such waves was not measured by the probes

located farther along the tank. Frequency separation of

the sidebands and primary wave was dictated by MI 5 1

in (5), unless other values of the modulational index are

explicitly stated.

In Fig. 3, the spectrum measured at the seventhmost

distance (40 m) from the wavemaker probe is shown. In

the left panel, the modulational instability is very strong

and the sideband has grown to nearly the same energy as

the carrier wave. Almost no growth of the initial side-

bands is visible in the right panel, and the middle panel is

apparently transitional. The upper and lower horizontal

lines signify 20% and 5% of the energy of the primary

wave peak and were used as an approximate indicator

for separating the modulational instability, transitional,

and linear cases.

In the majority of situations this separation agreed

with visual observation classification of the breaking

mentioned above. The wave breaking due to modula-

tional instability and the instability itself, however, is not

the same feature. The instability may be present and ac-

tive but does not necessarily lead to breaking, that is, if

the mean wave steepness is below the threshold (e.g.,

Babanin et al. 2007). Also, obviously, in the presence of

initially steep waves with broad angular distribution, lin-

ear superposition of the directionally propagating crests

can bring about the linear-focusing breaking, while the

modulational instability is also active. Therefore, in our

paper the dynamic feature of sideband growth will be

used to identify the instability, transitional, and linear

evolutions in the general investigation below (the dataset

including 9, 7, and 8 records, respectively); however, when

it comes to analysis of the breaking, the separation of

breaking mechanisms will be based on the visual obser-

vations (dataset of 13, 14, and 18 records, respectively; in

Fig. 8).

3. Experiment

One of the key arguments used above was based on

the existence of limiting steepness: that is, since the

waves break when they reach such steepness, then, as far

as a breaking occurrence is concerned, it does not matter

which physics caused such steepness. The waves break

not because of these physical mechanisms but, rather,

because the water surface cannot sustain slopes higher

than critical. Therefore, the first subsection of this exper-

imental section will be dedicated to analysis of geometrical

characteristics of the short-crested waves observed in our

directional trains.

FIG. 2. (left) Directional focusing/defocusing (reproduced from Fochesato et al. 2007) and (right) photo of the

directional focusing/defocusing (from the Ocean Engineering Tank).
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The second subsection is the main part of the paper. It

is intended to answer the question of whether the mod-

ulational instability can occur in typical, that is, not-so-

narrow directional wave fields. The last subsection will

describe connection between directionality, steepness,

and breaking probability.

a. Limiting characteristics of short-crested
directional waves at breaking

As a short notice in the beginning of this subsection,

we would like to mention that short crestedness and

directionality are often used interchangeably in litera-

ture but are not the same property in a general case.

Indeed, linear superposition of long-crested directional

waves leads to a short-crested appearance of the surface.

However, short-crested waves are not necessarily di-

rectional: for example, steep unidirectional waves in wave

tanks and their counterparts in nature (nonlinear quasi-

unidirectional wave groups that consist of short-crested

individual waves). Since in this paper we are particularly

interested in the latter, we should make this distinction.

Therefore, the question whether the limiting steep-

ness (1) found in two-dimensional wave trains is appli-

cable to three-dimensional waves was the first question

to answer: it was done by Toffoli et al. (2010a) based on a

comprehensive field/laboratory dataset, which also in-

cluded the data of this experiment. The answer was lim-

iting criteria (3) and (4) for the front and rear steepnesses,

both somewhat higher than two-dimensional steepness

(1) [note that this limiting steepness (1) is applicable to

unidirectional waves regardless whether they are short

(Babanin et al. 2007) or long crested (Brown and Jensen

2001)].

Here, we would like to see whether the geometrical

properties of directional waves, including their steep-

ness ak, skewness Sk, and asymmetry As, are different

in case of prebreaking waves and breaking in progress.

For precise definitions of the geometrical properties, we

refer the reader to Babanin (2009), and here mention

that (i) skewness characterizes asymmetry of a wave

with respect to the horizontal axis (i.e., positive skew-

ness means crests sharper than troughs) and (ii) As is

asymmetry with respect to the vertical axis (i.e., negative

asymmetry means a wave is tilting forward). In this pa-

per, these geometrical properties were obtained by means

of zero-crossing analysis, that is, for each individual wave

separately. Since the sampling rate of the wave profile

was very high, estimates of the steepness, skewness, and

asymmetry of individual waves are precise.

In Fig. 4 (left), such individual wave data points are

shown for three records that included breaking events.

The scatter is large, but for the skewness the trend is

positive, for asymmetry it is negative, and for asymmetry

versus skewness the trend is negative (i.e., as the crests

grow sharper, the waves are leaning forward). The lat-

ter, in particular, indicates that breaking-in-progress

waves are embedded in the data points used, at different

phases of their breaking progress (Babanin et al. 2010).

Steepness ak of some waves reaches beyond the value

of 0.5.

For record 101 it was noticed that waves were break-

ing immediately after the directional array. Therefore,

this record does not contain breaking events, but rather

prebreaking waves very close to the breaking onset.

Individual characteristics of those are shown in view

graphic Fig. 4 (right set of panels). The most obvious

feature is the reduced scatter of skewness. Thus, skew-

ness is some asymptotic indicator of the breaking onset.

Once the waves start breaking, their skewness can be

anything, as in the left set of panels in Fig. 4, but, when

a wave is approaching breaking onset, its skewness

narrowly asymptotes to

S
k

; 0.7. (12)

This is somewhat lower than the limiting skewness Sk ;

1 observed in two-dimensional breaking onset (Babanin

et al. 2007).

FIG. 3. Spectral energy density P vs frequency f measured at distance 40 m from the wavemaker. The upper (lower) horizontal line

signifies 20% (5%) of the carrier-wave peak. (left) Strong growth, (middle) transitional growth, and (right) marginal growth of the

modulational sidebands.
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Also, when the waves break (left set of panels in Fig.

4), their steepness can be above 0.5, but for the breaking

onset a more robust limit seems applicable,

Hk

2
5 0.46� 0.48. (13)

In this regard, the higher ultimate steepness values ob-

served by Toffoli et al. (2010a) should relate to transient

waves already breaking, as discussed above. That is,

short-crested directional waves start breaking if the

steepness (13) is reached, but in the course of breaking

they can achieve even higher steepness (3). The limiting

steepness (13) for directional waves, however, is only

slightly higher than that of (1) for two-dimensional wave

trains.

b. Directionality and steepness thresholds
for the modulational instability and
directional superposition

As discussed in the introduction, Waseda et al. (2009a,b)

concluded that in a full-spectrum wave field modula-

tional instability ceases to be active if directional spread

is so broad that A , 4, Eq. (7). When measuring di-

rectional spectra in various field conditions, Babanin

and Soloviev (1987, 1998a) demonstrated that typically

in field conditions A ; 1 and for dominant waves it can

reach up to A ; 1.8. In both cases, directional spectra

were measured by means of wave arrays, but differ-

ent methods of data processing were used: the wavelet

directional method (WDM) (Donelan et al. 1996) in

Waseda et al. (2009a,b) and the maximum likelihood

method (MLM) (Capon 1969) in Babanin and Soloviev

(1987, 1998a). Therefore, before conclusions are made,

comparisons of the two methods need to be done.

This is conducted in Fig. 5. For the Ocean Engineering

Tank directional records, values of A were obtained

both by means of WDM and MLM, and for WDM A on

average is 3 times larger. This means that, based on the

same directional-array input data, WDM indicates much

narrower spectra. Although the WDM estimates should

be more accurate and have other advantages (e.g., Waseda

et al. 2009a; Young 2010), here we will use the MLM es-

timates so as to compare with field-observed di-

rectional spectra of Babanin and Soloviev (1987, 1998a),

which were done by means of MLM.

An important implication of the difference observed in

Fig. 5 is immediately obvious if we boldly divide criterion

(7) of Waseda et al. (2009a,b), obtained with WDM,

by 3: then the transition from no visible modulational

FIG. 4. (left) Characteristics of individual waves from records that include breaking events. (right) Wave array data of record 101,

prebreaking waves. In each tripanel subset is shown (left) skewness Sk vs steepness ak, (right) asymmetry As vs steepness ak, and (bottom)

As vs Sk.

152 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



instability to detected modulational instability happens

at A ; 1.3, which, according to Babanin and Soloviev

(1987, 1998a), falls into the range of directional spreads

typical for dominant waves [and the modulational in-

stability should only be considered for the dominant

waves because waves in other parts of the spectrum may

not exhibit narrow-banded behavior; for discussion, see

Babanin (2009)]. In Fig. 6, this limit is investigated on

the basis of directional data of the present experiment.

In the top subplot, directional-spread parameter A is

plotted versus ak. Clearly, the instability exists at values

of A as low as

A ’ 0.8, (14)

which are quite realistic directional widths in field

conditions—in fact quite broad by any standards, cer-

tainly at the spectral peak where the modulational in-

stability is expected to work. In terms of MId 5 Aak in

the bottom panel, the modulational instability limit is

Aak ’ 0.18, (15)

which is again absolutely feasible. With A ; 1, there

should be ak ; 0.2, which is possible, and, for A ; 1.8,

there should be ak ; 0.11, which is a typical steepness of

ocean waves.

It is instructive to notice that the linear focusing only

exists at ak . 0.24, which signifies superposition of two

waves leading to the breaking at limiting steepness (13).

Thus, superposition of three waves is unlikely—at least

it did not happen in the course of our records, which

encompassed some 500–700 waves—whereas breaking

did happen. This is an important observation since, in

typical conditions with much less steep waves and dis-

persive rather than directional focusing, superpositions

of even much greater number of waves would be re-

quired, as discussed above. Such observation indicates

that the probability of linear superposition, which would

lead to the limiting steepness (13), is low: therefore, the

linear focusing is hardly to be expected as the main cause

of wave breaking in directional fields. On the other ex-

treme, the directional focusing does not happen for very

narrow (i.e., near unidirectional) spectra of A . 2.25

(A . 9.4 for WDM-estimated spectra).

Since MI 5 1 was imposed in most of the records,

influence of the imposed modulation was further veri-

fied. In Fig. 6, squares signify records with MI 5 2 and

pentagrams those with MI 5 0.5. These enforced mod-

ulations of different scales and different instability rates

did not lead to any outliers. The squares and pentagrams

are in the middle of the overall scatter, which means that

FIG. 5. Comparison of AMLM and AWDM for the Ocean Engi-

neering Tank records. Circles correspond to modulational-instability,

diamonds to linear-focused, and stars to transitional cases.

FIG. 6. Plot of (top) A vs ak and (right) Aak vs ak: symbols as in

Fig. 5. Squares signify MI 5 2 and pentagrams MI 5 0.5.
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the choice of a type of the nonlinear group is not a prin-

cipal matter as long as instability is active, but on average

the MI 5 2 data points are below those with MI 5 0.5.

Feasibility of the new experimental threshold (15) is

now verified in Fig. 7 against the average wave-age field

dependences of Babanin and Soloviev (1998a,b). As

already mentioned, Babanin and Soloviev (1998a) pro-

vided such dependence for the directional wave spectra,

and Babanin and Soloviev (1998b) for frequency spec-

tra based on JONSWAP shape. Owing to steepness and

directional spread, the key properties of threshold (15),

they are therefore expected to vary as a function of

wave age.

Although default average dependences (left) give Aak

marginally under the threshold, the maximal possible

(within 95% confidence limit) dependences give Aak

much greater than the threshold across the entire range

of wave ages. This makes the modulational instability,

as a course of the wave breaking in realistic field con-

ditions, again quite feasible.

c. Breaking probability

Distance to breaking D was estimated by measuring

the closest distance from the wavemaker to the first vi-

sually observed breaker in a record. If presented in

terms of carrier wavelength D/l, this property is in-

versely related to the traditional breaking probability,

that is, the percentage of breaking crests in a wave train

(Babanin et al. 2007; Babanin 2009).

Figure 8 verifies dependence of distance to breaking

D/l on ak and Aak. The plot for ak exhibits such a de-

pendence, whereas the Aak graph does not show any

clear connection on average. This means that, although

the combination Aak is important to determine whether

the modulational instability happens, once it does, the

breaking probability only depends on steepness regard-

less of the directional spreading. As before, the breaking

conditions are separated into those due to modulational-

instability, directional-superposition, and transitional

breaking (or both types present in the same record) but,

as discussed above, the separation of the breaker types is

now based on visual observations.

In Fig. 8 (top), for the modulational-instability circles,

the distance to breaking is clearly correlated with steep-

ness. This dependence is approximated by the straight

dashed line, and the best fit is

D/l 5�144ak 1 62. (16)

As a consistency check, in this panel dependence (16),

obtained for the three-dimensional waves, is compared

with the empirical parameterization of the distance to

breaking versus steepness obtained by Babanin et al.

(2007) for quasi-two-dimensional waves (solid line). The

latter imposed low- and high-steepness limits, which

correspond to no-breaking/immediate-breaking physi-

cal circumstances rather than being the best fit like de-

pendence (16).

The two parameterizations are consistent in general,

but the 3D dependence is steeper in the relevant range

of parameters. When extrapolated to D 5 0, that is,

instantaneous breaking, this dependence crosses the

line at ak 5 0.43, which is somewhat lower than (13).

When extrapolated to ak 5 0, this dependence gives

modulational-instability breaking at D 5 62l, which is

of course unphysical. Therefore, extrapolations of this

dependence into extremes have obvious limitations and

should be done with caution.

FIG. 7. The straight solid line is the experimental threshold (15), the curved solid line is the Babanin and Soloviev

(1998a,b) parameterization for the JONSWAP and directional spectra combined and the dashed line corresponds to

the isotropic directional spread: (left) default average dependences and (right) maximal dependences (within 95%

confidence limit).
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Most interesting, however, Fig. 8 (bottom) finally pro-

vides means to separate directional-focused breaking

from the modulational-instability breaking. The line ap-

proximately goes through the fit to asterisk points only,

that is, through the data points even visually detected as

transitional,

D 5�53akA 1 39. (17)

As before, since MI 5 1 was imposed in most of the

records, cases with MI 5 2 (squares) and MI 5 0.5

(pentagrams) are highlighted for comparison. These

cases do not exhibit any essential trend, being basically

in the middle of the data cloud. Marginally, perhaps,

higher MI cases (longer groups) lead to transitional

points being under the curve (i.e., in the focused-

breaking area) and MI 5 0.5 to the transitional points

being in the modulational-breaking area, but this needs

further statistically significant verification.

4. Discussion and conclusions

In the paper, the main question was whether the

modulational instability can still be active in directional

wave fields with broad enough angular distribution.

Wave breaking was observed in a laboratory experiment

with waves of realistic average steepness and directional

spread. Intentionally, so as to isolate the impact of pa-

rameters of interest, a very simple experimental setup

was chosen: that is, wave trains monochromatic in fre-

quency domain, with small initial sidebands. Parameters

of interest were steepness and width of the directional

distribution of such wave trains, and these parameters

were varied broadly. It was expected that the combina-

tion of these parameters, that is, the directional modu-

lation index (10), will allow us to define a threshold for

the instability breaking to occur in directional fields.

This threshold was identified as (15), which permits

both steepness and directional spreads to be quite realistic

for typical oceanic conditions. We realize, of course, the

potential difference between quasi-monochromatic waves

investigated here and continuous-spectrum oceanic fields

and the need for the conclusions made herein to be veri-

fied in full-spectrum circumstances. With some caution,

we mention that the modulational index (5), analytically

proposed for monochromatic modulated wave trains, was

also applied to wave fields by analogy and appeared valid

(e.g., Onorato et al. 2002; Janssen 2003).

The issue of modulational instability present/absent

in directional wave fields is of major importance for the

topic of wave breaking. Lately, a number of experimental

studies pointed to a limiting steepness around the value of

(13) as a condition for wave breaking onset (i.e., Brown

and Jensen 2001; Babanin et al. 2007; Toffoli et al. 2010a).

In the presented experiments, even for waves with the

close frequency and amplitudes, superposition of more

than two waves—to reach this steepness—appeared un-

likely. Therefore, in the absence of other apparent phys-

ical mechanisms capable of providing steepness of (13)

magnitude, we would expect the modulational instability

to be the main cause of breaking for the dominant waves.

The breaking also provides a possibility to distinguish

modulational-instability and directional-focused cases. The

steepness ak, directional spreading A, and their combina-

tion MId 5 Aak0 identify limits beyond which breaking due

to one cause or another does not happen. That is, if A , 0.8

or Aak , 0.18, modulational instability did not lead to

breaking, and linear focusing did not happen if ak ,

0.24 or A . 2.25. Between these limits, the breaking

due to either cause is possible. The breaking probability

dependence (17), however, appears to separate the two

major reasons for the dominant breaking in its parametric

space.

FIG. 8. Distance to breaking vs (top) steepness ak and (bottom)

Aak for the 2D (solid line), Babanin et al. (2007), and 3D (dashed

line) dependence (16) in the top panel and for dependence (17)

(solid line in the bottom panel). Symbols as in Fig. 6.
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