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The paper extends pilot study by Babanin et al. (2007a) into a detailed investigation
of properties of breaking waves and processes responsible for breaking. Simulations of
evolution of steep-to-very-steep waves to the point of breaking are undertaken by means
of the fully-nonlinear Chalikov-Sheinin model (Chalikov & Sheinin 2005). Particular at-
tention is paid to evolution of nonlinear wave properties, such as steepness, skewness
and asymmetry, in the physical, rather than Fourier space, and to their interplay leading
to the onset of breaking. The role of superimposed wind is also investigated. Instanta-
neously, the capacity of the wind to affect the breaking onset is minimal unless the wind
forcing is very strong. Wind is, however, important on longer time scales in increasing
the wave steepness and ultimately altering the breaking statistics.

Detailed laboratory study is subsequently described. The theoretical predictions are
verified and quantified. In addition, some features of the nonlinear development not
revealed by the model (i.e. reduction of the wave period which further promotes an in-
crease in steepness prior to breaking) are investigated. Physical properties of the incipient
breaker are measured and examined, as well as characteristics of waves both preceding
and following the breaker. The experiments were performed both with and without a
superimposed wind, the role of which is also investigated.

Since these idealised two-dimensional results are ultimately intended for field applica-
tions, tentative comparisons with known field data are considered. Limitations which the
modulational-instability mechanism can encounter in real broad-band three-dimensional
environments are highlighted. Also, substantial examination of existing methods of break-
ing onset detection are discussed and inconsistencies of existing measurements of breaking
rates are pointed out.

1. Introduction

The breaking of deep-water surface waves represents one of the most interesting and
most challenging problems of fluid mechanics. Such breaking is a strongly nonlinear
intermittent random process, very rapid compared to other processes in the system of
surface waves in general and wind-generated waves in particular. The distribution of
breaking on the water surface is not continuous, but its role in maintaining the energy
balance within the continuous wind-wave field is critical. Despite the significant research
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effort devoted to the subject in the past decades, a compelling physical understanding
and mathematical description of the phenomenon remain elusive.

Ocean wave breaking plays the primary role in air-sea exchange of momentum, mass
and heat, and constitutes the major element of one of the most significant mechanisms
which drive wave evolution - wave energy dissipation. It is also of importance for ocean
remote sensing, coastal and maritime engineering, navigation and other practical appli-
cations.

In this paper, we will be mostly interested in hydrodynamic rather than air-sea in-
teraction aspects of wave breaking. Whilst important for a variety of air-sea interaction
processes, breaking is obviously mainly due to processes in the water rather than in the
air. Waves are known to break even in the total absence of wind forcing, provided hydro-
dynamic conditions are appropriate (e.g. Melville 1982; Rapp & Melville 1990; Babanin
et al. 2007a). Why and when will such breaking occur? Breaking waves are not only
steep but have been found to also exhibit such distinct features as vertical and hori-
zontal asymmetries (e.g. Caulliez 2002; Young & Babanin 2006), some of which cannot
be reproduced by perturbation theories. Therefore, fully nonlinear theories have to be
employed in the search for mechanisms leading to breaking onset.

Beyond the point of onset, breaking occurs very rapidly, lasting only a fraction of the
wave period (Rapp & Melville 1990), but the wave may lose more than a half of its height
(Liu & Babanin 2004). Thus, the wave energy that slowly accumulated under wind action
and through weak nonlinear transfer over hundreds of wave periods is suddenly released
in the space of less than one period. Obviously, this process, the breaking-in-progress
process of wave collapse, is also a highly nonlinear mechanism. Conceptually, however,
it is different from the processes leading to breaking onset and should be considered
separately. It will not be the focus of the present paper.

Apart from the nonlinearity and the rate of energy change, intermittency is a distinct
difference between breaking and other processes involved in wave evolution. Not every
wave breaks whereas every wave experiences continuous energy input from the wind and
continuous nonlinear energy exchange with other components of the continuous wave
spectrum. It is only under very strong winds that the percentage of breaking crests in a
time series can reach 50% or more. Normally it is well below 10% (Babanin et al. 2001).
This means that on average it is only every 20th or even every 50th wave in a train that
breaks. This intermittent process is, however, still sufficient to balance the continuous
process of wind input and nonlinear evolution.

As stated above, breaking is primarily a hydrodynamic process. It is important to
mention, however, that the three major processes which control wave evolution in field
conditions: i.e. wind energy input, energy redistribution due to resonant nonlinear inter-
actions and energy dissipation because of breaking — are closely coupled, and do affect
each other. While the effect of a breaking event on the instantaneous wind input can be
very significant (Babanin et al. 2007b), the very large density difference between the air
and the water means that instantaneously the wind can only play a minor role in de-
termining breaking onset and the subsequent breaking progress. On a longer time scale,
however, the role of the wind is very important in increasing, albeit slowly, wave steep-
ness (nonlinearity) which can then lead to wave breaking. The wind also appears to play
a role in altering wave modulation properties and subsequent energy loss due to wave
breaking. These multiple roles of wind forcing will also be investigated in the paper.

This paper extends our pilot numerical /laboratory study of wave breaking onset (Ba-
banin et al. 2007a). As outlined in Babanin et al. (2007a), the topic is not new and over
the last 30 years, theoretical (e.g. Longuet-Higgins & Cokelet 1978), experimental (e.g.
Melville 1982) and numerical (e.g. Dold & Peregrine 1986) approaches have been applied
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to investigate instability mechanisms active in nonlinear wave fields, which lead to wave
breaking. These mechanisms relate to the Benjamin-Feir-like (BF) instability (Benjamin
& Feir 1967) which controls the modulation of trains of weakly nonlinear waves, and as
a result, some waves can become very large and ultimately break (e.g. Chalikov 2007).
In this regard, the significant conceptual difference between the current paper and most
of the previous research is that this study is done in terms of free-surface wave properties
in physical rather than Fourier space. We do not rely on existence of wave groups (side
bands) in the initial wave field because the formation of the appropriate wave groups
accompanying wave breaking is an internal process in the nonlinear wave field subject
to physical instabilities. Rather, our initial conditions consist of steep monochromatic
waves which are allowed to evolve naturally and this evolution appears to inevitably
lead to breaking if the initial waves are sufficiently steep. Sidebands naturally grow from
the background noise and are expected to be defined by the ratio of characteristic wave
steepness € = akg to spectral bandwidth Aw/wg, where kg and wp are some characteristic
wavenumber and angular frequency respectively, and a is the mean amplitude at this

wavenumber:
€

= Awjoy (1.1)
This ratio was shown important in the original studies of instabilities of weakly modu-
lated trains of monochromatic carrier waves of small amplitudes. Here, we denote this
ratio as M; (Modulational Index). Our study mainly deals with slowly modulated two-
dimensional monochromatic waves, which are, however, even initially not of the small
amplitude, and therefore, analogy of the observed empirical modulational interplay with
the small-amplitude near-monochromatic theoretical BF process should be treated with
caution. In our paper, M7 signifies the fact that the wave steepness and length of wave
modulation (or number N of waves in the modulation where 1/N ~ Ak/ky) are not in-
dependent quantities, i.e. steeper waves will correspond to fewer waves in a modulation.
Thus, if nonlinear waves are allowed to evolve naturally, they will form groups where NV
is not a free parameter, but will be defined by the initial steepness €.

In Babanin et al. (2007a), prediction of the breaking onset of two-dimensional waves in
deep water was attempted first by means of a fully nonlinear numerical model and then
tested in a laboratory experiment. Distance to the point of breaking could be controlled
by varying the Initial Monocromatic Steepness (IMS) €. Thus, the incipient breaker was
measured and found to asymptote at the Stokes steepness limit of 2¢p,. =~ 0.88.

This paper extends the pilot study into a detailed investigation of the properties of
breaking waves and the processes responsible for breaking. In Section 2 of the present
paper, simulations of the evolution of steep-to-very-steep waves to the point of breaking
are undertaken by means of the fully-nonlinear Chalikov-Sheinin model (Chalikov &
Sheinin 2005). Particular attention is paid to the evolution of nonlinear wave properties,
such as steepness, skewness and asymmetry, in the physical, rather than Fourier space,
and to their interplay leading to the onset of breaking. The role of the superimposed
wind is also investigated. Instantaneously, the capacity of the wind to affect the breaking
onset is minimal unless the wind forcing is very strong. Wind is, however, important on
longer time scales in increasing the wave steepness and ultimately altering the breaking
statistics.

In Section 3, the detailed laboratory study is described. The theoretical predictions
are verified and quantified. In addition, some features of the nonlinear development not
revealed by the model (i.e. reduction of the wave period which further promotes an
increase in steepness prior to breaking) are investigated. Since the location of the incipient
breaker can be controlled, its physical properties are examined as well as characteristics
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of waves both preceding and following the breaker. The experiments were performed both
with and without a superimposed wind, the role of which is also investigated.

Since these idealised two-dimensional results are ultimately intended for field appli-
cations, in the Discussion Section 4 tentative comparisons with known field data are
considered. Limitations which the BF mechanism can encounter in real broad-band
three-dimensional environments (e.g. Brown & Jensen 2001; Onorato et al. 2002) are
highlighted. Also, substantial examination of existing methods of breaking onset detec-
tion are discussed and the inconsistency of existing measurements of breaking rates is
pointed out. Finally, overall conclusions of the study are summarised.

2. Numerical simulations

Numerical computations of nonlinear surface waves have previously been undertaken
based on solutions of the potential flow equations (e.g. Watson & West 1975; Longuet-
Higgins & Cokelet 1976; West et al. 1987) and with a Cauchy-type integral algorithm
(Dold 1992). Both schemes have no limitation in terms of wave steepness, and both were
capable of simulating the initial phase of wave breaking (the later stages are rotational
and remain extremely difficult to simulate directly). More recently, a method based on
a Taylor expansion of the Dirichlet-Neumann operator was developed by Craig & Sulem
(1993). Capabilities of this method were illustrated by computing the evolution of mod-
ulated wave packets and a low-order approximation of a Stokes wave for relatively short
periods of time. We should point out that this appears to be a principle limitation of all
the above schemes: for a steep wave field, they have only been used for simulations of
relatively short time/space evolution.

A numerical scheme for direct hydrodynamical modelling of 1D nonlinear gravity and
gravity-capillary waves was developed by Chalikov & Sheinin (1998)(see also Chalikov &
Sheinin 2005; Chalikov 2005, 2007). This approach is based on a nonstationary conformal
mapping, which allows the equations of potential flow with the inclusion of a free surface
to be written in a surface-following coordinate system. This transformation does not
impose any restrictions on the shape of the surface, except that it has to be possible to
represent this surface in terms of a Fourier series.

Let us consider periodic one-dimensional deep-water waves whose dynamics is de-
scribed by principal potential equations. Due to the periodicity condition, the conformal
mapping for infinite depth can be represented by the Fourier series (see details in Chalikov
& Sheinin 1998, 2005):

r=&+ D> nr(m)eap(kQ)Ix(), (2.1)
—M<k<M,k#0

2=C+ >, m(n)exp(kQ)Ik(E); (2:2)
—M<k<M,k#0

where x and z are Cartesian coordinates, £ and ¢ a conformal surface-following coordi-
nates, 7 is time, 7y are coefficients of the Fourier expansion of free surface n(¢, 7) with
respect to the new horisontal coordinate (:

n(¢T) =h@(E=0,7)t=7)= Y m(m)(), (2:3)
—M<k<M
¥, denotes the functions

coské for k>0,

k(&) = { sinkfé for k<0 (2.4)
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and M is truncation number.

Nontraditional presentation of the Fourier Transform with the definition (2.4) is, in
fact, more convenient for computations with real numbers, such as (Jx)¢ = kY_j and
S (ApVk)e = — > kA_O%. So, the Fourier coefficients Ay, form a real array A(—M : M),
thus making possible a compact programming in Fortran90. Such presentation can be
generalised for 2D case.

Note that the definition of both coordinates & and ( is based on Fourier coefficients
for surface elevation. It then follows from (2.1) and (2.2) that time derivatives z; and z,
for Fourier components are connected by a simple relation:

et i 25

Due to conformity, the Laplace equation retains its form in (&, () coordinates. It is
shown in Chalikov & Sheinin (1998, 2005) that the potential wave equations can be
represented in the new coordinates as follows:

Pee + B¢ =0, (2.6)
2y = G + 2 F, (2.7)
1
O = Fog—J H®F — 9F) - =, (2.8)

where (2.7) and (2.8) are written for the surface ¢ = 0 (so that z = 7, i.e. the surface
elevation), J is the Jacobian of the transformation:

J:xg—ﬁ—zg:xg—i-z?, (2.9)
G is an auxuliary function:
G=(J'®)cz0, (2.10)

and F' is a generalisation of the Hilbert transform of G, which for £ # 0 may be defined
in Fourier space as

G = { —F_, fork>0, (2.11)

Fy, for k <0,

actually following from (2.5). Above, ® is the velocity potential (and ®¢ is the derivative
of the potential with respect to the ‘vertical’ coordinate ¢ at the surface), z represents
the shape of the surface.

Equations (2.6) — (2.11) are written in non-dimensional form with the following scales:
length L, where 27/L is the (dimensional) horisontal wavenumber, time L'/2g~1/2 and
the velocity potential L3/2g—"/2 (g is the acceleration of gravity). Capillar effects and ex-
ternal pressure were not taken into account in this investigaion. Note that the adiabatic
equations for surface waves outside the capillary interval are self-similar: they are invari-
ant over length scale L, what makes the numerical approach very effective and allows for
broad interpretations of laboratory experiments.

The boundary condition assumes vanishing vertical velocity at infinite depth

(€, ¢ — —o0,7) =0. (2.12)

Solution of the Laplace equation (2.6) with boundary condition (2.12) yields to Fourier
expansion which reduces the system (2.6) — (2.8) to a 1D problem:

O= > pr(r)exp(k)In(S), (2.13)

—M<k<M
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where ¢y, are Fourier coefficients of the surface potential ®(£,{ = 0,7). Egs. (2.6) —
(2.8), (2.10) and (2.11) constitute a closed system of prognostic equations for the surface
functions z(&,¢ = 0,7) = n(§, 7) and the surface velocity potential ®(&,¢ = 0, 7). For
more detailed descriptions of the analytical and numerical model, we refer to Chalikov
& Sheinin (1998, 2005).

Remarkably, this new formulation is also simpler than the original set of equations since
the nonlinear conformal coordinate transformation removes a number of nonlinear terms.
For the stationary case, this method coincides with the classical complex variable method,
e.g. Crapper (1957), and an efficient numerical scheme (CS) for this was developed by
Chalikov & Sheinin (1998). Note that this scheme is more precise than the popular surface
integral scheme (Dold 1992). In addition, compared to the CS scheme, the surface integral
method is too complicated: a complete set of its equations occupy several pages. For the
CS scheme, the equations take 3 lines and the core of the numeric scheme takes 11 lines
in Fortran90.

The accuracy of this scheme was demonstrated by a long-term simulation of very steep
Stokes waves (ak = 0.42). The stability of Stokes waves has been a subject of significant
speculations. The reality is quite simple: Stokes waves are always unstable to any distur-
bances, but the rate of development of the instability depends on the amplitudes of the
perturbations and their phases. In general terms, a Stokes wave is always unstable if it
has any perturbation from the pure Stokes form. In the CS case, 11 decimal places of pre-
cision and a 4th order Runge-Kutta scheme were sufficient to simulate the propagation
of a virtually undisturbed Stokes wave for up to one thousand periods.

The conformal mapping even made it possible to reproduce the initial stages of the
breaking process where the surface ceases to be a single-valued function. Thus, the CS
scheme has a number of important advantages: (1) comparison with an exact solution
showed that the scheme has extremely high accuracy; (2) it preserves integral invariants;
(3) it is very efficient: its computation time scales as Mlog(M) where M is the number of
modes, whereas the Dold scheme scales as as M?; (4) the scheme demonstrates stability
over millions of time steps (thousands of periods of the dominant wave). This scheme is
able to reproduce a nonlinear concentration of energy in physical space resulting in wave
breaking and potentially in the appearance of freak waves.

In the CS model, the wave model is coupled with an atmospheric boundary layer model.
In the present investigation, in order to speed up the computations, the coupling was
conducted by means of a -function which parameterised the connection of the surface
pressure and the surface shape on the basis of an exhaustive set of numerical simulations
by means of the coupled model. The real and imaginary parts of this g-function are
functions of non-dimensional frequency. Thus, it is possible to introduce wind forcing of
the waves. This option will be actively employed in this study.

2.1. Testing the Chalikov-Sheinin model

For the purposes of the present study, the model’s ability to reproduce wave evolution
without limitations in terms of steepness or duration of propagation is crucial. For this
reason, the CS model was chosen for the detailed numerical simulations of physical char-
acteristics of strongly nonlinear waves leading to the onset of breaking. Before being
employed in the present study, the CS model had previously been extensively verified
and tested (Chalikov & Sheinin 1998, 2005) and used in a number of strongly nonlinear
applications (e.g. Chalikov 2005, 2007). It was now additionally checked in terms of its
capacity to model nonlinear wave features associated with wave breaking.

One of early motivations for the present study was to search for a theory able to
describe wave asymmetry with respect to the vertical axis. Definitions of the asymmetry
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FIGURE 1. Geometric definition of wave skewness and asymmetry. The wave propagates from left
to right. b; and bz are horizontal distances from the breaker crests to the zero-downcrossing and
-upcrossing respectively. a1 and a2 are the breaker crest height and trough depth respectively.
Solid line - numerically simulated incipient breaker. Dashed line - harmonic wave of the same
wavelength and wave height. Dash-dotted line - Stokes wave of the same length and height.
Dotted lines are the mean (zero) water level (horizontal) and the line drawn from the breaker
crest down to the level of its trough (vertical).

and skewness (asymmetry with respect to the horisontal axis) are given in figure 1,
reproduced with modifications from Babanin et al. (2007a). In mathematical terms, these
definitions are:
by a

As = By 1; 5, = ” 1. (2.14)
Thus, positive skewness represents a wave with a crest height greater than the trough
depth and negative asymmetry represents a wave tilted forward in the direction of prop-
agation.

Intrinsically, both the asymmetry and the skewness are natural features of steep deep-
water waves regardless of their size, crest length, forcing or generation source. Impor-
tantly for this study, experimentally observed asymmetry A has been broadly associated
with the wave breaking (e.g. Caulliez 2002; Young & Babanin 2006). Perturbation theo-
ries, being essentially spectral theories, cannot reproduce such asymmetry for deep-water
waves, and therefore, since we intended to study physical features of near-breaking waves,
a fully-nonlinear theory was obviously required. Figure 1 illustrates the capacity of the
CS model in this regard. In the figure, three types of waves of the same height and
length, i.e. of the same mean steepness, are shown. Once the skewness is non-zero and
the amplitude a is not clearly defined, a definition of the wave steepness in terms of ak
becomes ambiguous. Therefore, unless otherwise specified, the steepness will be expressed
in terms of wave height H = a1 + ag rather than wave amplitude a, as e = Hk/2. In
these terms, a steepness € = 0.335 of the wave shown in the figure far exceeds the limits
of a perturbation analysis.

The dashed line in figure 1 represents a steep sinusoidal wave (S = As = 0). Such a
wave will immediately transform itself into a Stokes wave (e.g. Chalikov & Sheinin 2005),
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FI1GURE 2. Numerical simulation of a steep wave developing asymmetry, as predicted by the CS
model. The wave propagates from left to right. The ratio of horisontal and vertical scales is 1.

an example of which is shown in the figure by the dash-dotted line. This steep Stokes
wave is highly skewed (S; = 0.39), but remains symmetric (i.e. A; = 0). The incipient
breaker in figure 1 (solid line, S, = 1.15, A; = —0.51) was produced by the CS model,
in a simulation which commenced with an initially monochromatic wave of IMS =
0.25 (Initial Monochromatic Steepness). Such a wave profile visually looks realistic for
a breaker and corresponds to, or even exceeds, experimental values of skewness and
asymmetry for breaking waves previously observed (e.g. up to A; = —0.5 instantaneously
in Caulliez (2002) or A, = —0.2 on average in Young & Babanin (2006)). It is worth
noting that the steepness of the individual wave has grown very significantly at the point
of the breaking: from IMS = 0.25 to € = 0.335. Result shown in figure 1 was obtained for
initially assigned harmonic wave at wave number & = 1 and number of modes M = 1024.
All other computations described below were conducted for an harmonic wave assigned
at k = 16 and number of modes M = 2048.

Disturbance seen at the crest of the incipient breaker in figure 1 has to be mentioned.
For waves of very high steepness, instabilities of the local flow near wave crest, which are
different from instabilities of the whole wave, are known to develop (e.g. Longuet-Higgins
& Dommermuth 1997). Disturbance seen in figure 1 appears to be due to an instability of
this kind - i.e. crest instability. Such instabilities, i.e. the crest instabilities of the waves
approaching the limiting steepness, is a large topic in its own right and a topic different
to the modulational instability of waves which leads to the growth of very high waves
and ultimately to the breaking and accompanying crest instabilities. This topic will not
be discussed in the present paper.

The capacity of the CS model is further demonstrated in figure 2. Here, the rapid
growth of asymmetry Ay of a very steep harmonic wave with steepness € = ak = 0.32 is
shown in terms of dimensionless time (in the horizontal scale, 27 corresponds to the wave
period). This is effectively a developing breaker, as in the two-dimensional CS model such
waves break within one period (see figure 6 below).

2.2. Simulating the evolution of nonlinear waves to breaking

In numerical simulations of the fully nonlinear evolution of steep two-dimensional waves
to the point of breaking, we will concentrate on three physical properties: wave steepness,
skewness and asymmetry, and their inter-relationships. We will then try to reproduce and
investigate these properties in a laboratory experiment with two-dimensional waves. If
these properties are indeed linked to wave breaking, but the percentage of breaking waves
is small, as it usually is (see Section 1 above), then examination of average steepness,
skewness or asymmetry is likely to be of little use. Therefore, the majority of our analysis
will concentrate on nonlinear properties of individual waves.

In figure 3, development of an unforced wave (no wind) to the point of breaking is
shown. When modelling, a wave is regarded as breaking (simulations stop) when the
water surface becomes vertical at any point. The wave shown had IMS = 0.16 and is
regarded as moderately steep in terms of BF instability. This moderate steepness will
allow a reasonably long evolution before breaking occurs. Therefore, the simulation will
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produce a general, rather than detailed picture to begin with (the time scale is expressed
in wave periods, i.e. the wave breaks after 82 periods).

As seen in the figure, the steepness of individual waves stays reasonably constant
for a significant number of periods (~30), before it starts oscillating noticeably. The
magnitude of the oscillations increases significantly beyond the 60th period, and from
this point grows rapidly until the simulation ceases (wave breaks) after the 80th period.

Similar behaviour is exhibited by the skewness and asymmetry. The simulation starts
from a Stokes wave of Sy = 0.18 and As = 0. It is informative to note that prior to
breaking, the magnitude of the skewness oscillation is so large that at times the wave
even becomes negatively skewed, i.e. trough is deeper than crest. At the termination of
the simulation, however, Sy & 1, that is the crest is twice is high as the trough (2.14).
In section 3.2, it is shown that laboratory waves asymptote to this value of skewness at
the onset of breaking. The asymmetry also oscillates through the simulation and reaches
the experimentally observed breaking magnitude of A5 ~ 0.5 (i.e. Caulliez 2002).

As mentioned above, the simulations shown in figure 3 were conducted without wind
forcing applied, and therefore this is the hydrodynamic instability that leads the waves
to breaking. It should be noted that comparisons of such numerical simulations with
experiments can only be qualitative. At the initial stages of development, the necessary
BF modes, if they are absent, should grow from the continuous background noise. Such
noise is suppressed in a discretised numerical model, particularly if the model is very
precise.

Figure 4 shows the simulated evolution of the nonlinear wave properties to the point of
breaking in the presence of wind forcing. The wind forcing is expressed in terms of ratio
U/c where U is the wind speed and c is the phase speed of the wave with wavenumber k.
Three sets of subplots correspond to three wind-forcing conditions: U/c = 2.5 (moderate
forcing), U/c = 5.0 (strong forcing) and U/c = 10.0 (very strong forcing). The initial
steepness chosen is IMS = 0.26, which should lead to a faster evolution to breaking
onset. Note that the minimum value plotted on the steepness scale is ¢ = 0.25 and not
zero, and that the simulation starts from a harmonic wave with Sy, = A, = 0.

The top three panels correspond to a moderate wind-forcing condition of U/c = 2.5.
Under such wind, it takes approximately 32 wave periods to reach the point of breaking.
The period of the modulation is equal to twice the wave period, which is consistent with
the theoretical expectations for BF instability (Longuet-Higgins & Cokelet 1978). With
the wind forcing applied, the maxima of instantaneous steepness keep growing and reach
a value of € = 0.34 at the point which is interpreted as incipient breaking by the model.

The skewness and asymmetry oscillate with the same double-wave period, but without
a noticeable increase in magnitude of the oscillation. For example, the value of S = 0.84
of the skewness at breaking is repeatedly reached by the wave in its progress without
breaking. Therefore it appears that of the parameters shown here, it is the local steepness
that determines the point of breaking. Visually, skewness is in phase with the steepness
oscillations, and it relaxes back to zero when the steepness is at its minimum (although
the wave does not become sinusoidal again as the asymmetry is not zero at this point).

The oscillations of asymmetry are shifted in phase with respect to steepness and skew-
ness. The asymmetry oscillates about zero in the range +0.45 which means that the waves
are periodically tilted backward and forward. When steepness (skewness) is a maximum,
asymmetry is zero, i.e. the wave is symmetric with respect to the vertical. If the point
of maximum steepness (skewness) is passed without breaking, the asymmetry becomes
negative. That is, the wave begins to lean forward. If this point signifies the breaking
onset, the wave is apparently still continuing to tilt forward, and this explains why all
the breaking waves exhibit negative asymmetry. In these simulations, the negative asym-



Page 10 of 39

FIGURE 3. Numerical simulation of evolution of a wave with M S = 0.16 to the point of breaking
(no wind). Time scale is in wave periods. (top) wave slope (steepness where minus sign signifies
the forward face slope); (middle) skewness; (bottom) asymmetry.
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FIGURE 4. Simulations of steepness (a,d,g), skewness (b,e,h); asymmetry (c,f,i) of the wave of
IMS = 0.26 as it evolves from the initial conditions to the point of breaking. Top three panels:
U/c = 2.5; middle three panels: U/c = 5.0; bottom three panels: U/c = 10.0. X-label shown at
the bottom is the same for all panels.

metry does not appear an indication of the breaking but is rather an indication of the
modulation phase at which breaking-in-progress may or may not occur.

The second set of three panels correspond to wind forcing of U/c = 5.0. Such forcing
is quite strong, and therefore the steepness growth rate is much faster than above. Apart
from the steepness growth, almost all the other properties of the nonlinear evolution
remain similar to the previous test. Steepness (e = 0.36) and skewness (S; = 0.82) values
at breaking are close to those of the above test, asymmetry at breaking approaches zero.
Thus, it can again be concluded that it is some critical value of local steepness which
defines the breaking onset.

It is interesting to note that, according to known results on the wave amplification by
wind, the wave growth increment at non-extreme conditions should be approximately a
quadratic function of the wind (e.g. Donelan et al. 2006). If indeed there is some critical
steepness signifying the breaking onset, then doubling of the wind speed in our numerical
tests should lead to this limiting value being reached four times faster. This conjecture
produces a result close to that simulated: the duration of the evolution to breaking has
now been reduced from 32 to 9 wave periods (almost 4 times).

A further doubling of the wind input, as shown in the bottom set of three panels,
led to another reduction of the evolution duration - from 9 to 3 periods. This is again
consistent with Donelan et al. (2006) who showed that at very strong winds the relative
wave growth actually slows down. The other patterns of the wave nonlinear evolution
appear unaltered. The test again indicates a critical local steepness as the parameter
responsible for the onset of the water surface collapse. The maximum values of steepness
e = 0.36 and skewness S = 0.83 are almost the same as previously. These values also
demonstrate that the instantaneous effect of the wind on the breaking onset is negligible.
The wind forcing of U/c = 10.0 is now very strong, but this wind is still not capable of
pushing the wave over and reducing, even marginally, the critical steepness at breaking.

We now conduct a similar set of numerical simulations for a wave with initially half
the steepness IMS = 0.13 (figure 5). A very strong forcing of U/c = 10.0 is applied
in order to achieve breaking in a reasonably short period of time. The wave steepness
grows under the U/c = 10.0 wind forcing so rapidly that its oscillations are barely visible
over the strong mean trend. The value of steepness ¢ = 0.33 at the point of breaking,
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FIGURE 5. Simulations of a) steepness, b) skewness; ¢) asymmetry - of the wave of
IMS =0.13,U/c = 10.0 as it evolves to breaking.

similar to the previous tests. This again supports the concept of a limiting breaking-onset
value. Compared with for the same wind forcing in figure 4, it now takes much longer (19
wave periods versus 3) to achieve this steepness, but as soon as this value of steepness is
reached, the wave breaks.

It should be mentioned that the limiting steepness in the numerical simulations can
only be treated in a statistical rather than in absolute sense. In individual computer runs,
steepness of waves at the point where the simulations stop (i.e. the water surface becomes
vertical at least in one point) is scattered. This is due to the carrying wave being distorted
by nonlinear interactions with bound waves and by modulations which grow from the
background noise. In the laboratory experiment described below such limiting steepness
was obtained as an asymptotic value for measurements approaching the breaking onset.

It is instructive to observe the behaviour of the skewness and asymmetry of these
initially much less steep waves. Since nonlinearity is now obviously weaker, the oscillations
start with much smaller magnitudes of Sy = 0.33 and As = 0.18. They do eventually
grow to maxima of S = 0.77 and A = 0.41 similar to those values observed previously.
These may be indicative of limiting values of the wave skewness and asymmetry, but
they are obviously not a breaking criterion as in the previous test they did not lead to
breaking unless limiting steepness was also reached. Kinematics leading to the observed
oscillations and limiting values of Si and A; is very complex and will be discussed in a
separate paper.

Figure 6 shows a composite set of fetch-versus-steepness dependences for different val-
ues of wind forcing U/c = 1—11. The fetch is expressed in dimensionless terms of number
of wavelengths (wave periods) to the breaking at a particular IM S. Dependences appear
quasi-linear in the range of parameters shown, but as discussed in Babanin et al. (2007a),
they are best approximated by the function of hyperbolic tangent. That is, waves with no
superimposed wind forcing and IMS < 0.1 will never break, even though they will ex-
hibit oscillations of steepness, asymmetry and skewness similar to those discussed above.
Evolution of such waves is not shown in the figure, and in fact we do not plot IM S < 0.17
because such development to breaking is too slow for the purpose of demonstration. The
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upper limit of steepness included is IMS = 0.28 as waves with IMS > 0.3 will break
immediately, within one period.

Figure 6 is the most important result of Section 2. It allows the estimation, based on
the numerical simulations with the CS model, of when a two-dimensional wave breaks.
As has been mentioned, quantitative application of these numerical results to laboratory
waves may be limited, but as it will be shown in Section 3, qualitatively this picture
agrees well with experiment.

2.3. Breaking onset

In the numerical simulations, a wave is regarded as breaking if the water surface becomes
vertical at any point. Criterion for terminating the model run was defined by the first
appearance of a non-single value of surface in the interval z = (0, L):

z(i+1) <a(i),i=1,2,3..,N—1, (2.15)

where N is the number of points on the wave profile over its length L.

Figure 7 shows simulated wave profiles prior to breaking at the point when the wave
of IMS = 0.26 reached its maximum values of negative asymmetry (left) and skew-
ness/steepness (right). Note that these points are separated by three quarters of the
oscillation period. Nonlinear evolution of this wave has been analysed in figure 4 of sec-
tion 2.2 above. As in figure 4, cases of U/c = 2.5,5.0 and 10.0 are shown.

The shape of the wave on the left corresponds well to the common notion of a breaker.
Its negative skewness of A, = —0.42 (for all the three winds) is high by all standards (e.g.
Caulliez 2002). As indicated by figure 4, however, this is not yet an incipient breaker.
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IMS = 0.26,U/c = 2.5 (solid line), 5.0 (dashed line), 10.0 (dash-dotted line). Initial wave
is shown with dotted line.

This wave will continue to develop to the shape shown on the right which is interpreted
within the model as incipient breaking. If compared with the dashed profile of the initial
wave, one can see that the trough is flatter, the crest is much sharper.

Both in figure 7a and 7b, wave profiles evolved significantly from the initial harmonic
wave shown by the dashed line. Despite the fact that evolution occurred under very
different wind forcing conditions, and took very different times to reach the breaking
point, the magnitudes of the asymmetry (As; = —0.42), skewness (S, = 0.84,0.82,0.83)
and steepness (e = 0.34,0.36,0.36), as well as the profiles of the three waves, are virtually
identical. This highlights again the important role of the hydrodynamic mechanism in
forming the nonlinear wave profile, whereas the wind appears to serve merely as the
source of energy to the wave system.

2.4. Influence of wind and initial steepness

The role of the wind in the wave breaking has already been mentioned. It is apparently
very important in growing the wave steepness (i.e. figures 4, 5, 6). In this section, we will
discuss the capacity of the wind to instantaneously affect the breaking onset. That is:
can the wind push a steep wave over and thus reduce the limiting steepness at breaking?

Due to the very large density difference between the water and the air, such a possibility
seems unlikely. This conjecture is supported by figures 4, 5, 7. In figure 8, the nonlinear
features of the incipient breaker are shown as a function of IM .S for a variety of wind-
forcing conditions. Note that the simulations were run for a limited number of wave
periods (i.e. a simulation was stopped after some 400 wave periods regardless of whether
the wave has reached breaking onset or not). Thus, in these numerical experiments, some
waves may not break (e.g. for U/c = 3, the waves do not have enough time to break if
IMS < 0.25).

In figure 8a, the limiting steepness at breaking onset is plotted for U/c = 3 (dotted
line), 5 (dashed line), 8 (dash-dotted line) and 11 (solid line). The incipient-breaking
steepness actually grows, rather than being reduced, with stronger wind forcing. Even
though the growth is marginal, the four lines clearly separate and therefore instantaneous
steepness at breaking appears to be somewhat larger at stronger winds. The skewness
and asymmetry of the incipient breakers (figure 8bc) do not depend on wind except at
the extreme wind forcing of U/c = 11. Thus, it is only at extreme conditions that the
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FIGURE 9. The influence of wind on the nonlinear properties of incipient breakers. a) steepness;
b) skewness; ¢) asymmetry - versus U/c for IMS = 0.20 (dash-dotted line), 0.24 (dashed line)
and 0.28 (solid line).

wind is capable of influencing the wave shape at breaking, and even then the effect is
marginal.

The same properties of the incipient breaker are plotted versus U/c for three different
IM S values of 0.20, 0.24 and 0.28 in figure 9. The value of IM .S = 0.28 is extreme and
the wave grows to the limiting steepness almost instantaneously - within 1 — 3 periods
(see figure 6). Note that the simulation was again run for a limited number of wave
periods. As a result, in the case of IM.S = 0.20, the waves do not have enough time to
break if U/c < 5.
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Apart from the mentioned above slow growth of the limiting steepness as a function of
wind, the effects are weak and only noticeable when IMS = 0.28. Thus, the numerical
simulations of the breaking onset do reveal some influences which the wind forcing and
initial-steepness conditions have on the onset of breaking, but those are marginal and
some can only be noticed at extreme winds and critical initial steepness.

3. Laboratory experiment

To begin this section, it should be emphasised that comparisons of the numerical sim-
ulations of nonlinear wave evolution described above with the laboratory experiments
in this section can only be qualitative. Firstly, no matter how sophisticated the model
is, it is still a simplification of the physical environment and disregards or possibly sup-
presses some natural features. One of such features is the three-dimensionality of wave
motion. Even in the quasi-two-dimensional environment of the wave tank, some direc-
tional features may still play an essential role. For example, Melville (1982) showed that
at steepness ¢ > 0.3 the wave crests develop a crescent-shaped perturbation and such
wave behaves in a more complicated way compared to the strictly 2D BF case. This has
a significant consequence for our simulations. The two-dimensional CS model predicts
immediate breaking onset for € > 0.29 whereas in the laboratory experiments of Melville
(1982) such waves become short-crested but can persist without breaking for some time.

Another significant difference between the laboratory and model is the continuous
nature of modes in the experimental environment, even if those modes are only minor
background noise, and the discrete nature of numerical modes. It is important to un-
derstand that at the initial stages of development, the necessary modes, defined by My
(1.1), should grow from the continuous noise. These modes, however, can be suppressed
or even removed completely in a discretised numerical model. In such circumstance, the
waves, even if they are steep Stokes waves, will propagate for an indefinitely long period
without breaking, as was described in Section 2.

If the model is constructed so as to allow multiple modes, another numerical feature
still distinguishes the model from nature. The background noise, the source of the nec-
essary modes dictated by Mj, cannot be completely reduced to zero in nature. In a
digitised medium it can, however, be made very small. For example, in the CS numeric
scheme, the 11th order decimal accuracy is employed. Such accuracy is essential for pre-
cise simulations, but since it is the only source of noise in the system, it can obviously
slow down the development of the initial BF modes. As is sometimes done in numerical
simulations (e.g. Dold & Peregrine 1986), the modes can be deliberately introduced as
initial conditions. Such an approach was not, however, employed in the present study,
since in this scenario M; of the system is pre-defined, and wave development to breaking
may be altered.

A further implication of the numerical modelling, essential for the present study, has
been mentioned in section 2.3 above. The model has obvious limitations in simulating
the final stages of incipient breaking and was stopped when the water surface became
vertical at any point. Strictly speaking, this geometrical property of the surface can be
used as a physical definition of the breaking onset. In the numerical simulations it was
noticed that the local steepness can be very large, but the carrier wave can still recover
to a non-breaking state. If, however, a negative slope appears locally, the wave never
returns to a non-breaking scenario because the water volume intersecting the vertical
line tends to collapse. Apparently, the same considerations are applicable to the physical
waves t0o.

At present, the concept of incipient breaking or breaking onset is poorly defined and
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even ambiguous. Traditionally, the initial phases of a breaker-in-progress are treated as
incipient breaking. As an example, let us consider how ‘near-breaking’ was defined in the
paper by Caulliez (2002), whose investigation of the asymmetry of such near-breaking
waves motivated, to some extent, the present study. In Caulliez (2002), surface elevations
were recorded, differentiated, and the wave was regarded as a ‘near-breaker’ if its slope
exceeded 0.586 anytime between two subsequent zero-downcrossings. This criterion is
an estimate of the highest slope which a Stokes wave can reach (Longuet-Higgins &
Fox 1977). But if this slope is exceeded, then the wave is not about to break — it is
already breaking. This is not an incipient breaker, but represents breaking in progress.
Features and physics of breaking-in-progress, however, may be very different to that
of incipient breaking. Thus, investigation of geometric, kinematic, dynamic and other
properties of breaking-in-progress, such as whitecapping, void fraction, acoustic noise
emitted by bubbles etc., will be of little assistance if we are seeking to understand the
causes of breaking.

In this paper, as in Babanin et al. (2007a), we suggest that the incipient breaker is
defined dynamically as a wave which has already reached its limiting-stability state,
but has not yet started the irreversible breaking process. That is, breaking onset is the
ultimate point at which the wave dynamics caused by initial instabilities is still valid.
This definition allows the identification of incipient breakers and, once the location of the
breaking onset can be predicted, allows measurement of the physical properties of such
waves. The state of breaking onset is instantaneous unlike breaking-in-progress which
can be further subdivided into a number of stages with different properties and different
dynamics (Liu & Babanin 2004).

3.1. Laboratory setup

The laboratory experiment was conducted in the Air-Sea Interaction Salt water Tank
(ASIST) at RSMAS, University of Miami (http://peas.rsmas.miami.edu/groups/asist).
The tank is a stainless-steel construction with a working section of 15m x Im x 1lm.
Its programmable fan is capable of generating centreline wind speeds in the range of 0
to 30m/s. Immediately downstream of the fan, extensive flow straightening devices are
installed to condition the air flow and introduce appropriately scaled turbulence. Values
of wind speed U used in this paper will be those extrapolated to 10m height.

ASIST includes a fully programmable piston wave maker able to produce both monochro-
matic waves and waves with a predefined spectral form. A set of dedicated measurements
showed that amplitude of the first harmonics is of the order of 1% of the amplitude of si-
nusoidal waves generated by the piston in the range of steepness ak between 0.25 and 0.3.
These waves are dissipated at the opposite end of the facility by a minimum-reflection
beach. The ASIST beach design has been a subject of a special research project. A gently-
sloping (10 degrees) grid of 2.5cm diameter acrylic rods is used. A perforated acrylic plate
is placed beneath the rods to split wave orbital velocities into multiple turbulent jets to
increase viscous dissipation. The energy of the reflected component is approximately 5%
of the incident energy depending on the initial wavelength.

In ASIST, sloshing motion becomes increasingly important at wave frequencies ex-
ceeding 2.2 Hz. For frequencies below 2Hz, the waves remain two-dimensional with phase
fronts perpendicular to propagation direction. Therefore, our laboratory experiments
with 2D waves were limited to frequencies below 2Hz.

In the present experiment, monochromatic deep-water two-dimensional wave trains
were generated by the wave paddle. The water depth was held at 0.4m, providing deep-
water conditions for the wave frequencies involved. With a tank length of 13.24m, surface
elevations were recorded at 4.55m, 10.53m, 11.59m and 12.56m from the paddle. For each
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FIGURE 10. Time series of surface elevations n measured at the first wave probe. a) Waves of
U/c=0and IMF = 1.6Hz for different IMS: 0.31 (solid line), 0.25 (dashed line), 0.23 (dotted
line). b) Waves of IMS = 0.23 and IMF = 1.6Hz under different wind forcing: U/c = 0 (solid
line), U/c = 1.4 (dashed line), U/c = 11 (dotted line). The waves propagate from right to left.

record, IM S was varied in such a way that the waves would consistently break just after
one of the wave probes. In this way, the dimensional distance to breaking, wave train
properties immediately prior to breaking and detailed properties of the incipient breaker
could be measured. Note that this breaker is a result of nonlinear wave evolution, rather
than being forced or simulated by means of, for example, coalescing wave packets.

In figures 10 and 11, time series of surface elevations n at the first and the second wave
probes are shown. All the waves in these time series are generated with the same Initial
Monochromatic Frequency IM F = 1.6Hz, but with different initial steepness IM.S and
wind forcing U/¢, as indicated.

Subplot a) of figure 10 corresponds to zero wind forcing. Since the initial steepness
of IMS = 0.31 (solid line), 0.25 (dashed line) and 0.23 (dotted line) is quite high,
modulation is already visible developing at the first probe (figure 10), 4.55m from the
wavemaker. At this stage, the modulation is still quite weak, and differences other than
those due to the initial wave height are hardly distinguishable.

In subplot b), waves of IM.S = 0.23 are plotted with no wind forcing (solid line, for
cross-reference with the top panel), U/c = 1.4 (dashed line) and a very strong wind
of U/e = 11 (dotted line). The effect of the wind on the profile of the mechanically-
generated waves is not noticeable at this first probe, except for the extreme forcing case,
where wind-generated ripples are clearly visible in the time series.

The wave profiles look very different at the second probe, 10.53m from the paddle, some
10 wavelengths downstream (figure 11). In all the cases, breaking still has not occurred.
Waves in the top three panels evolve without wind forcing, and in the bottom subplot
waves are shown strongly forced (U/c = 11).

Figure 11a shows initially very steep waves of IMS = 0.31. By the time they reach
probe 2, they have developed into very strongly modulated groups of 6 waves. Less
initially steep waves (IMS = 0.25, figure 11b) evolve into more elongated modulated
groups of some 7 waves. Even less steep waves (IMS = 0.23, figure 11c) evolved into
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FiGURE 11. Time series of surface elevations 7n measured at the second wave probe,
IMF = 1.6Hz. a) IMS = 0.31,U/c = 0. b) IMS=0.25, U/c=0. ¢) IMS=0.23, U/c=0. d)
IMS=0.23, U/c=11. The waves propagate from right to left.

weaker modulated groups of approximately 7.5 waves (15 waves in two modulations).
Note that no initial modulation was introduced. This interesting observation is, however,
not unexpected and is in full qualitative agreement with the discussion in Section 1: i.e.
if My for the system does not change, a larger initial steepness should lead to fewer waves
in the modulation.

The effect that the wind forcing has on BF modulation is demonstrated in figure 11d.
Here, we define the modulation depth R to be

Hpy
R=1 (3.1)
where Hp, and H; are the heights of the highest and lowest waves in the group. In figure 11c
and 11d waves of IM S = 0.23 are shown without wind and with wind, respectively. The
influence of wind is revealed in the reduction in R from 2.1 without wind, to 1.3 with a
wind of U/c = 11. As pointed our by our Reviewer, it is the crests’ change that appears
the main reason for the sharp decrease in R.

It was observed that this change also led to a very significant reduction in the breaking
severity (section 3.4 below). The severity (energy loss in a breaking event) is a very im-
portant breaking property as, along with the frequency of breaking occurrence (breaking
rate), it defines the energy dissipation in a wave field.

3.2. Measurements of the evolution of nonlinear waves to breaking

Nonlinear evolution of two-dimensional laboratory waves to breaking will now be inves-
tigated in a fashion similar to the numerical study of Section 2. The nonlinear char-
acteristics of interest (i.e. individual wave steepness, skewness and asymmetry), will be
obtained by means of zero-crossing selection and analysis of individual waves. In addition
to these three characteristics, we will scrutinise the behaviour of the period (frequency)
of individual nonlinear waves. This feature was not identified in the dimensionless nu-
merical simulations, but in the laboratory it appears to be quite variable, even in the
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FIGURE 12. Segment of a time series with IMF = 1.8Hz, IMS = 0.30,U/c = 0. a) Surface
elevation 7. b) Rear-face steepness €. ¢) Skewness Sy (rear trough depth is used). d) Asymmetry
As. e) Frequency. IMF = 1.8Hz is shown by the solid line. The waves propagate from right to
left.

train of waves of initially uniform frequency. The effect of such local frequency variation
is significant for the breaking-onset study since, when wave height growth is accompanied
by a synchronous reduction of wave period, this has a combined impact on the local wave
steepness.

It should be noted that there is a conceptual change in the frame of reference compared
to the numerical model results. In the case of the model, a single wave was followed
as it approached the point of breaking. Here, observations are made at a single point
as a succession of waves passes. One can approximately move from the fixed frame of
reference in the figures of this section to the moving frame by considering the waves
shown propagating from right to left, rather than from left to right as in the figures of
Section 2.

Figure 12 shows a wave record with ITF'M = 1.8Hz, IM .S = 0.30 and no wind forcing,
measured at the second probe. In figure 12a, the measured water surface elevation 7 is
plotted as a function of time in seconds, and in all the other subplots the dots correspond
to the successive waves selected by zero-crossing means. The highest waves in each mod-
ulation are incipient breakers as IM S was chosen such that the point of breaking was
located immediately after the probe at a distance of 10.73 & 0.1m from the wavemaker.
The apparent consistency of the shape of these near-breakers allows an investigation of
characteristic geometric properties of the breaking onset (see section 3.3 below). Here,
we should mention that the forward- and rear-face troughs of waves often have different
depths. H is always defined in terms of the rear height, and thus the local steepness and
skewness are defined as the rear-face steepness and skewness.

Each successive wave passing the wave gauge was analysed to determine its steepness,
skewness, asymmetry and frequency, which are shown in the bottom four panels of fig-
ure 12. The major features seen in the numerical model are confirmed by the laboratory
data. In figure 12b, the steepness ¢ = kH/2 of the 22 individual waves is shown. As
expected from the numerical simulations, the incipient breakers are the steepest waves
in the train, and the individual steepness oscillates in a periodic fashion. Skewness (fig-
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ure 12¢) and asymmetry (figure 12d) oscillate with the same period, in phase and in
quadrature respectively. At the point of breaking, skewness is positive and maximum
(i.e. wave is peaked up) whilst asymmetry is small (i.e. wave is not tilted forward) and
keeps decreasing.

It is worth mentioning that oscillations of the skewness and asymmetry obtained in our
two-dimensional simulations and experiments are also observed in directional wave fields.
In Agnon et al. (2005), a methodology was developed to describe fine-scale inhomogeneity
of wave-field skewness and asymmetry. Continuous time series of skewness were obtained
as a running average of the third moment of surface elevation, and asymmetry as a
running average of the third moment of the Hilbert Transform of the surface elevation.
It was found that in field conditions wave skewness and asymmetry oscillate at a scale
of a few wave periods.

A feature which was not determined from the dimensionless numerical model is that
there is also a modulation of the frequency of individual waves (figure 12e). This modu-
lation takes place at the same scale as oscillations of the other nonlinear characteristics.
At the point of breaking the frequency increases rapidly, further increasing the steepness
and hastening the onset of breaking. Since the time series, rather than space series are
measured, the observed shortening of the period can mean that either the waves crest is
travelling faster or the wavelength is decreased, or both.

The permanent nature of the patterns in figure 12 highlights a deterministic, rather
than random character of the breaking onset in our experiments, driven by the initial
nonlinearity of the waves. The combined sudden increase in the wave height and contrac-
tion of the wave period prior to breaking is a significant feature of the breaking onset.
If, as suggested in Section 2, loss of water-surface stability rather than anything else
defines the breaking, then this feature certainly contributes to reaching the critical local
steepness. Once detected, for example by wavelet techniques, it may signify the imminent
onset of breaking.

This change of frequency prior to breaking is further illustrated in figure 13a where the
spectrum of the time series of figure 12 is plotted. If the wave of IMF = 1.8Hz simply
evolved into a steep Stokes wave, a 1.8Hz peak of the spectrum would bring about
1st, 2nd and 3rd harmonics indicated by the vertical solid lines. In figure 13a, however,
the harmonics, as well as the peak itself are now defined by the incipient breaker. The
harmonics are located at double, triple and quadruple frequencies of this breaker whose
frequency is about 2Hz (vertical dashed lines).

Therefore, immediately prior to breaking, a frequency upshift of the spectral energy
occurs in the laboratory two-dimensional situation. This feature has also been previ-
ously observed in the field for breaking directional waves (Liu & Babanin 2004). As with
the field observation of skewness/asymmetry oscillations mentioned above, this is indi-
rect, but encouraging corroboration that the present two-dimensional study may have
relevance for real three-dimensional waves.

In addition, independent observations report a frequency downshift due to breaking
(e.g. Tulin & Waseda 1999; Meza et al. 2000). Wave series immediately before and after
the breaking are compared in figure 14. In this figure, the solid line shows the waves of
IMF =1.8Hz, IMS = 0.30,U/c = 0 at the second probe (10.53m from the wavemaker),
as in figure 12, and dashed line — at the third probe (11.59m from the paddle). Breaking
of the three incipient breakers seen at probe 2 happened (started and finished) between
the two probes. The wave which is seen following the incipient breaker at the second
probe also broke between the two probes. This consistent double-breaking, with a small
time delay, is again in agreement with field observations (e.g. Donelan et al. 1972). These
breaking processes happened in a period of 1.2s, the time required by the 1.8Hz waves
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FIGURE 13. a) Spectra P of the time series of IMF = 1.8Hz, IMS = 0.30,U/c = 0. Solid
line corresponds to the pre-breaking spectrum measured at the second probe (see time series
in figures 12). Dashed line is post-breaking spectrum measured at the third probe (time series
in figure 14). Multiples of IMF are shown with solid vertical lines. Multiples of the incipi-
ent-breaker 2Hz frequency are shown with dashed vertical lines. b) Ratio of the pre-breaking
and post-breaking spectra. Solid horisontal line signifies ratio of 1, vertical lines have the same
meaning as in the top panel.
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FIGURE 14. The influence of breaking on the time series. A segment of the surface elevation
time series with TMF = 1.8Hz, IMS = 0.30,U/c = 0. Solid line - surface elevations at the
second probe prior to breaking. Dashed line - same waves 1.2s later at the third probe. The
waves propagate from right to left.

to travel the distance between the probes. Therefore, the record made at the third probe
is time-shifted by 1.2s in an attempt to superimpose what should have been the same
waves, if the breaking did not take place.

Now that breaking has occurred, the correlation between the two time series is poor.
The incipient breaker and wave following it practically disappeared, as well as the entire
modulation. The only waves which can still be tracked are the second and the third wave
after the incipient breaker at probe 2. The number of waves in the segment has also
changed. Between the three incipient breakers at probe 2 one can count 17 waves, at
probe 3 this number is closer to 16, i.e. frequency downshifting has occurred.

This frequency downshift is analysed in spectral terms in figure 13a where, along with
the spectrum at probe 2, the probe-3 spectrum is also plotted. The downshift from the
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2Hz peak of the incipient breaker is very significant, and is also noticeable with respect
to IMF = 1.8Hz which was the peak frequency in the wave field before the point of
breaking onset. As indicated above, this feature has been observed before (e.g. Tulin
& Waseda 1999). In our experiments, the downshift occurs on a time scale of tens of
wave periods. This is is much faster than the scale of thousands of wave periods for the
four-wave resonant nonlinear interactions are usually attributed with the downshifting.

Apart from the frequency downshift, a significant loss of wave energy is observed
between the two spectra shown in figure 13a. In figure 13b, the ratio of the pre-breaking
spectrum to the post-breaking spectrum is plotted. In the range of relevant frequencies
up to 11Hz, the average ratio is 1.8, which translates into a loss of 45% of the energy. It
is most instructive to analyse where this loss comes from.

In both absolute and relative terms, most of the loss came from the peak which was
reduced by a factor of 5. With the exception of the second harmonic (shifted to 3.6Hz), the
other harmonics have almost completely disappeared. For frequencies above the spectral
peak, the average ratio is approximately 1.7.

This result contradicts observations by Meza et al. (2000) who studied the dissipation
of energy of laboratory two-dimensional waves with a narrow spectrum. They found that
the energy is lost almost entirely from the higher frequencies whereas the spectral peak
remained unchanged after breaking. In Meza et al. (2000), as in many other laboratory
investigations, breaking was simulated by means of coalescing wave packets - i.e. disper-
sive linear waves were generated by the wave paddle such that, due to their phase speed
differences, superposition occurred at the point of the measurements. The superposition
formed a high wave which broke. The limiting steepness of such waves ak = 0.44 (Brown
& Jensen 2001) is the same as the steepness of the incipient breaker measured in this
study (section 3.3), but the physics of this breaking appears to be quite different to the
physics of our experiment. In the present experiment, the breaking results from nonlinear
evolution of non-dispersive waves. Thus, issues of the wave breaking and the wave energy
dissipation need to be separated as will be further discussed in Section 4 below.

Under field conditions, Young & Babanin (2006) observed that when the dominant
waves break they lose some 30% of their energy and a similar amount of energy is also
lost proportionally across the spectrum, the so-called cumulative effect. By obvious anal-
ogy, such observation again suggests the nonlinear evolution mechanism, rather than
wave superposition, as a likely cause of wave breaking in the field. The modulational
instability may have limitations in directional fields (see discussion in Section 4), and
it is clear that at least some part of the cumulative effect in the field spectral environ-
ment is due to induced breaking (Manasseh et al. 2006) and residual turbulent viscosity
(Babanin & Young 2005), i.e. reasons other than removal of bound energy observed in
figure 13 above. It is obvious, however, that the modulational-instability mechanism is
more consistent with field results than the linear-superposition breaking, which does not
provide a satisfactory explanation of the observed field features.

3.3. Measurements of the breaking onset

While the properties of waves breaking due to focusing coalescing packets have been
previously described in great detail (e.g. Rapp & Melville 1990), physical characteristics
of breaking resulted from the nonlinear wave evolution have rarely been measured. This
is despite the fact that a great number of geometric, kinematic and dynamic criteria have
been proposed for such breaking over the years (e.g. Longuet-Higgins 1969; Holthuijsen
& Herbers 1986; Caulliez 2002).

As the location of the breaker can be controlled by varying the IM S at the wavemaker,
the waves were made to break immediately after a wave probe and thus the properties
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FIGURE 15. IMF=1.8Hz, IMS = 0.30, U/c=0. a) The steepest incipient breaker. b) Five steepest
incipient breakers. c¢) Twenty steepest incipient breakers. d) Fifty steepest incipient breakers.
The waves propagate right to left.

of incipient breakers could be directly measured. Figure 15 shows one, five, twenty and
fifty steepest breakers in consecutive panels. No normalisation has been applied and the
waves are plotted as they appear in physical space, from the front zero-crossing of the
wave preceding the breaking to the rear zero-crossing of the following wave. Typical fea-
tures of waves just prior to breaking can now be analysed. The nearly-breaking wave is
the highest and most skewed, and is only slightly asymmetric. The two waves immedi-
ately preceding and following the breaker are asymmetric: the preceding wave is tilted
backward (positive asymmetry) and the following wave is tilted forward (negative asym-
metry). The preceding wave is smaller than the following wave, and, at least in these
observations, the preceding trough is shallower.

Quantitative characteristics of these waves are further analysed in figures 16-17. Fig-
ure 16 shows a comprehensive set of statistics of the properties of the 20 highest incipient
breakers and their relationship with the preceding and following wave. Figure 16a is a
plot of skewness versus steepness. Values of limiting local steepness, the property which
was revealed by the model as the likely indicator of breaking, is in the range of 2¢ ~ 0.8.
For a real wave, even if two-dimensional, such steepness is extremely high. Noting that
near the crest the wave is even steeper, it is not surprising that the wave is on the point
of collapse.

The skewness of the 20 highest waves in subplot (a) scatter from almost 0 to almost 1.
As indicated in the simulations in Section 2, we would expect the skewness to also have a
limiting value. Clearly, however, such a limit is not a very robust breaking characteristic.
Also in the top row of subplots, asymmetry is scattered from Ay = —0.33 to A; = 0.75
(b), with a possible dependence of Sj, on A in panel (d).

A robust property of the breaking, in panel (c), is the wave frequency. The scatter of
this property is small, with all the values falling into a range from f = 2 to 2.08 Hz (from
1.11 to 1.16 IMF'). Thus, the wave clearly reduces in length prior to collapse. We should
mention that the measured steepness ¢ = kH/2 is the physical rear-face steepness, and
therefore the effect of period contraction has already been accounted for.

In the second row of plots, the skewness of the wave following the incipient breaker
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FIGURE 16. Laboratory statistics for the incipient breaker (20 steepest breakers). IM F = 1.8Hz,
IMS = 0.30,U/c = 0. In the figure, Sks and Sk, correspond to the skewness of the following
wave and preceding wave respectively, Asy and Agp to the asymmetry of the following wave
and preceding wave respectively, fr and f, to the frequency of the following wave and preceding
wave respectively. (a) Skewness versus steepness. (b) Asymmetry versus steepness. (c) Frequency
(inverse period) versus steepness. IMF = 1.8Hz is shown with solid line. (d) Asymmetry versus
skewness. (e) Sis versus steepness of the breaker. (f) Ass versus steepness of the breaker. (g) Sk
versus skewness of the breaker. (h) Ay versus skewness of the breaker. (i) Sk, versus steepness
of the breaker. (j) Asp versus steepness of the breaker. (k) Skp versus skewness of the breaker.
(1) Asp versus skewness of the breaker. (m) A,y versus asymmetry of the breaker. (n) A, versus
asymmetry of the breaker. (o) fr versus frequency of the breaker. IMF = 1.8Hz is shown with
solid lines. (p) fp versus frequency of the breaker. IMF = 1.8Hz is shown with solid lines.

(e) and its asymmetry (f) are much less scattered than the skewness and asymmetry of
the breaker itself: Siy = 0.32 to 0.70, A,y = —0.29 to -0.33. We have already discussed
the double-breaking in section 3.2, which means that this following wave will break soon
after the incipient breaker. Thus, its physical shape is not random and should exhibit
some characteristic properties leading to breaking. The skewness and asymmetry of the
following wave, however, do not correlate with the skewness and asymmetry of the breaker
(g, b, m).

In the third row, the skewness of the wave preceding the breaker is even less scattered:
Skp = —0.55 to +0.12 (i). Remarkably, it is essentially negative, i.e. rear trough of the
preceding wave is always deeper than its crest. The asymmetry A, = 0 to 1.33 is never
negative (a couple of large A;, = 1.33 values are offscale in panel (j) and not shown),
that is this wave is tilted backward. There is no correlation of skewness and asymmetry
of this preceding wave with those of the near-breaker (k, 1, n). The fact that the three
waves, surrounding the breaking event, obviously exhibit some quasi-universal form, but
that variations of their shape are not correlated with each other, means that these shape
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FIGURE 17. As the top four subplots in figure 16, for 5 steepest breakers

distortions are random. Therefore, it is not the mean characteristics of the observed
shapes, but rather their limiting values which should produce asymptotic universal form
parameters. These will be investigated for the highest breakers in figure 17.

The last two subplots (o, p) show the local frequency of the following f7 and preceding
fp waves versus the frequency of the breaker f,. IMF = 1.8Hz is shown with two solid
lines. The local frequency was found to be a robust characteristic for the incipient breaker
above, and we can expect a reasonable correlation of these properties. Although f; and
fp are more scattered than f; the correlation is present. In the last panel, all the data
points are in the second quadrant and thus the preceding wave is decreasing in length
along with the incipient breaker. In panel (o), the points are on average in the fourth
quadrant. Therefore, while the incipient breaker is decreasing in length, the following
wave is actually longer than its initial value defined by IMF = 0.18Hz. Since we know
that double-breaking will occur, i.e. this following wave will break shortly after the current
breaker, then it should now be rapidly shrinking. Thus, some very active physics must
be involved in the short-time scale evolution of this set of very nonlinear waves.

Figure 17 shows asymptotic, rather than statistical properties of the incipient breaker.
In this figure, the characteristics of the 5 steepest waves are plotted. As discussed above,
transition to breaking happens very rapidly, and breaking onset and its location may
be somewhat modulated due to, for example, uneven number of waves in the nonlinear
oscillations. Thus, we would expect that it is the highest waves measured that would be
closest to the ultimate limiting characteristics of the incipient breaker.

For the steepest five waves shown in figure 17, the asymptotic dependence of skewness
on steepness is very clear (a). Note that they indeed approach some limit and we had
to zoom in to see the variation. Therefore the scale of this subplot is different to that
of figure 16. For the 20 steepest incipient breakers, skewness was broadly scattered, now
that onset is close, it asymptotes to a value of 1, i.e. crest of the wave which is just about
to start breaking is twice as high as its trough (2.14).

The steepness appears to approach an asymptotic limit of ¢ = kH/2 =~ 0.44 which
apparently represents an absolute steepness limit (Babanin et al. 2007a). We should
point out that this limit is remarkably close to the theoretical steady limiting steepness
of ak = 0.443, i.e. the Stokes limit H/A = 1/7 where A = 2x/k is the wavelength. Such an
observation is very important because it signifies that the waves break once they achieve
this well-established state, beyond which the water surface cannot retain its stability. This
limit was established as a stationary solution, and further theoretical investigations are
needed into the limiting state of non-stationary waves. From this experiment, however,
it is obvious that a wave of such extreme steepness is unstable and will start collapsing.
Thus the limiting steepness, rather than anything else, will trigger the breaking. We can
postulate that the other geometric, kinematic and dynamic criteria of breaking, explored
in the literature, are indicative of a wave approaching this state, but are not a reason or
a cause for the breaking. As this limit is approached, the skewness increases very rapidly
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FI1GURE 18. As in figure 12, with wind forcing. A segment of the time series with IM F' = 1.5Hz,
IMS = 0.30,U/c = 3.9. a) Surface elevation 7. b) Rare-face steepness e. ¢) Skewness Sy (rare
trough depth is used). d) Asymmetry As. ). Frequency (inverse period). IMF = 1.5Hz is shown
with solid line. The waves propagate from right to left.

(a) and the asymmetry starts to decrease and becomes negative (subplots (b) and (d)),
i.e. the wave starts tilting forward at the point of breaking.

3.4. Laboratory investigation of the influence of wind forcing

Following the same approach as in the numerical simulations in Section 2, we now investi-
gate the influence of wind on the nonlinear wave evolution and breaking onset. The wind
has been shown to play multiple roles in the wave evolution to breaking. At larger scales,
the wind generates and pumps energy into the waves, increasing their steepness and thus
leads to more frequent breaking. At moderate wind conditions, doubling the wind speed
resulted in the breaking occurring four times faster (e.g. figure 4). Instantaneously, at the
point of breaking onset, the capacity of the wind to push the wave over and thus affect
the onset is small, even if the wind is very strong and a wave is very steep (figures 8-9).
At medium scales, however, the wind changes the modulational depth R (3.1) of already
existing waves (figure 11), which changes appear to be linked with alterations of the
breaking severity.

Figure 18 is similar to figure 12, but moderately strong wind forcing of U/c = 3.9 is
now applied to the mechanically generated waves. Note that IMF = 1.5Hz is different
from IMF = 1.8Hz in figure 12. This is done in order to have incipient breakers, as
before, at the probe 2 where data is recorded. With the wind superimposed, the waves of
IMF = 1.8Hz, IM S = 0.30 would break before this probe (see discussion in sections 2.2
and 4, and figures 6 and 24).

In figure 12, R = 4 whereas in the current figure 18 R = 2.9, i.e. the difference in the



28 Alexander V. Babanin, Dmitry Chalikov, Ian R. Young and Ivan Savelyev

004 ! ! ! ! ! ! !
AN : 1, 4 : ! :
0.02M f ““l“‘,“”'\‘”” “r‘”,‘\‘ 4 ‘|‘|‘~‘ ] ARy
1 :‘ i i, " i :ll X oAy
] \ h 1 N 10 . 1 - A -
I iyi: N [ N AN N .
Er 0 VARAT 14 i\ \ 'l‘, 1 \ " i1, . H|H Ml :H :
= | AN NRERY FRIRLRUAY Y Jf |
\ ‘ ‘l \ U A 1 v
i i h R :
-0.04 | | | | | | | |
0 2 4 6 8 10 12 14 16

time, sec

FIGURE 19. As in figure 14, with wind forcing. A segment of the time series with IM F = 1.5Hz,
IMS = 0.30,U/c = 3.9. Solid line - surface elevations at the second probe prior to breaking.
Dashed line - same waves 1.04s later at the third probe. The waves propagate from right to left.

modulation depth is 1.4 times. Thus, we observe the expected feature of smearing of the
modulation by the wind. This smearing is reflected in all the other nonlinear properties
shown in the figure. The steepness (b), skewness (c) and asymmetry (d) are intentionally
plotted at the same scale as those in figure 12 even though their range of oscillations is
now noticeably reduced. Because of the IM F' change, the scale of the frequency plot (e)
could not be left the same, but scale limits were kept proportional to those in figure 12.
Reduction of the local frequency oscillations, moderated by the wind, is also apparent.

Influence of the smearing on the wave breaking is demonstrated in figure 19. This figure
is analogous to figure 14 except the wind forcing is now superimposed and IM F = 1.5Hz
is different as explained above. The wave time series are compared immediately before
and after breaking. The solid line shows the waves of IMF = 1.5Hz, IM S = 0.30,U/c =
3.9 at the second probe (10.53m from the maker) and the dashed line at the third
probe (11.59m from the paddle). Breaking of the four incipient breakers seen at probe 2
occurred (started and finished) between the two probes. The breaking was very gentle
when visually observed. The wave following this gentle incipient breaker now does not
break, i.e. the wind cancelled the double-breaking effect. With IMF = 1.5Hz, the time
necessary to travel the distance between the two probes is estimates as 1.04s and therefore
the record made on the third probe is shifted back by 1.04s in order to superpose what
should be the same waves if the breaking did not take place.

Since gentle breaking did occur, matching the two series is not exact. In figure 14, the
incipient breaker and the wave following it practically disappeared, as well as the entire
modulation. Here they are all present and each wave in the modulation can be tracked
at the third probe. In contrast to figure 14, after breaking the number of the waves did
not change and no downshifting is visible. As seen in the figure, the breaking resulted
in truncation of the crest of the breaker and smoothing of the modulation. It should
be pointed out that the individual waves and the group propagate with different speeds
which fact also accounts for some differences observed.

The major features of the breaking onset in the presence of wind forcing are shown
in figures 20, 21 and 22. Visually, the breakers in figure 20 did not qualitatively change
compared to those in figure 15 with no wind. Quantitative properties, however, were
altered by the wind.

In figure 21, analogous to the no-wind figure 16, the statistics of a comprehensive set
of properties for the 20 highest incipient breakers and their links to the preceding and
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FIGURE 20. As in figure 15, with wind forcing. IMF = 1.5Hz, IMS = 0.30,U/c = 3.9. a)
The steepest incipient breaker. b) Five steepest incipient breakers. ¢) Twenty steepest incipient
breakers. d) Fifty steepest incipient breakers. The waves propagate right to left.
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FIGURE 21. As in figure 16, with wind forcing. IMF = 1.5Hz, IM .S = 0.30,U/c = 3.9.

s

Laboratory statistics for 20 steepest incipient breakers.

following wave are shown. For the 20 waves approaching breaking, the wind influence
generally brought more order to their shapes, as the scatter of almost all the properties
is reduced and the marginal dependences became clearer. Qualitatively, the wind changed
the shape of the preceding wave which is now not skewed negatively on average (i) and
increased the steepness of the following wave from € = 0.19 to € = 0.27 on average (not

shown).
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FIGURE 22. As the top four subplots in figure 17, with wind forcing. /M F = 1.5Hz,
IMS =0.30,U/c = 3.9. Laboratory statistics for 5 steepest incipient breakers.

With regard to the asymptotic shape of the breaker, the wind in figure 22 has a scatter-
ing rather than stabilising influence. In this figure, analogous to figure 17, characteristics
of the 5 steepest waves are plotted in the presence of wind. Apparently, at these very
last pre-breaking stages, the wind is capable of modifying the wave, which is about to
lose its stability, and to somewhat randomise its characteristics.

In subplot (a), the limiting skewness is plotted versus limiting steepness. Skewness
no longer approaches 1, but steepness extends beyond the 2¢ = 0.88 limit and reaches
2¢ = 0.97. The asymmetry is no longer negative, that is, the breakers do not tilt forward
(b). Frequency remains a robust property and stays in almost the same range of f, = 1.11
to 1.19IM F (c).

Therefore, whilst the breaking is mainly a hydrodynamic process, wind, if present,
does influence the incipient breaking. As was noticed in the numerical simulations, this
influence is small, but it is noticeable and diverse — from the shape-stabilising effect when
approaching breaking onset to the shape-randomising effect at the point of breaking.

4. Discussion and Conclusions

In the numerical simulations of Section 2, figure 6 was declared the main result because
it allowed to predict distance to breaking in dimensionless terms: number of wavelengths
to breaking N = Tpreqr/A as a function of wave steepness and wind forcing, where xpreqk
is the dimensional distance. Examination of its laboratory analogue was moved to this
Section as its appicability to field conditions will also be discussed.

The laboratory dependence of the distance-to-breaking on IMS was obtained and
parameterised in Babanin et al. (2007a). Respective figure of Babanin et al. (2007a) is
reproduced with modifications as figure 23a here. Number N is plotted versus IM .S for
three different initial frequencies of IM F = 1.6Hz (circles), IM F = 1.8Hz (crosses) and
IMF = 2.0Hz (pluses). All the measurements shown are conducted without wind.

In accordance with the numerical simulations, for each wavelength an increase of its
initial steepness resulted in the breaking occuring closer to wavemaker. In dimensionless
terms, this dependence was parameterised as follows:

N = —11 - atanh(5.5(c — 0.26)) + 23 for 0.08 < € < 0.44. (4.1)

Consistent, with the model results, the formula imposes two threshold values of IMS.
For € > 0.44, the wave breaks immediately (compared to € = 0.3 for the model) and if
€ < 0.08 the wave, in the absence of wind forcing, will never break (compared to e = 0.1
for the model).

In the figure, two points (squares) are shown which were derived from figures 1 and
2 of Melville (1982) for comparison. The two measurements were conducted by Melville
(1982) for initially uniform wave trains, their initial steepness and approximate dimen-
sionless distance to breaking is known. Although recorded independently under different
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FIGURE 23. a) ASIST laboratory data. Number N of wavelengths to breaking versus IM.S. No
wind forcing. o - IMF = 1.6Hz; x - IMF = 1.8Hz; + - IMF = 2.0Hz. The parameterisation
(4.1) is shown with solid line. Squares are data points derived from Melville (1982). b) Black
Sea. Properties of individual waves in the range of frequencies f = f, £ 0.3f, of a Black Sea
record with f, = 0.25Hz. Frequency (inverse period) f versus steepness €. 4+ - all waves, * -
those waves with € > 0.08, squared - those waves exhibiting whitecapping. Solid lines show peak
frequency fp = 0.25Hz (horisontal) and the breaking threshold ¢ = 0.08 (vertical).

conditions and with a different purpose, these points agree very well with the above
parameterisation and provide an additional support to our results.

Comprehensive wind-forcing picture similar to the numerical result in figure 6 could
not be obtained in ASIST where available range of distances and wavelengths was limited
by the tank dimensions. Besides, as pointed out by our Reviewer, presence of a sustained
wind in the tank may cause a significant shear layer and vorticity field in the water. The
latter can lead to steeper steady free surfaces and thus make direct quantitative com-
parisons problematic. Qualitatively, however, the laboratory results are in full accord
with numerical simulations. In figure 24, number N is plotted versus wind-forcing pa-
rameter U/c for four different IM F's: IMF = 1.5Hz (circles), IM F = 1.55Hz (crosses),
IMF = 1.6Hz (pluses) and IMF = 1.7Hz (asterisks). At each IMF', initial steepness
IMS was kept constant, and therefore the apparent trend of reduction of distance-to-
breaking is due to wind only.

Before summarising conclusions of the paper, we would like to discuss possibility of
application of its results to waves observed in the field. A number of features of nonlinear
wave behaviour leading to the breaking, which were revealed both in our 2D simula-
tions/measurements and in known field observations have been mentioned above. Such
is the double-breaking found in our laboratory experiments and observed in the field by
Donelan et al. (1972). Such are upshifting of spectral energy (figures 13, 14) observed in
Liu & Babanin (2004), oscillations of the skewness/asymmetry (figures 4, 12) —in Agnon
et al. (2005), cumulative effect (figure 13) — in Young & Babanin (2006). Gemmrich &
Farmer (2004) analysed velocity field under the passing breaker and found upshifting
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FIGURE 24. Number N of wavelengths to the breaking versus wind forcing U/c. o -
IMF =1.5Hz; x - IMF = 1.55Hz; + - IMF = 1.6Hz; * - IMF = 1.7Hz.

of wave energy followed by downshifting (their figure 12), which is qualitatively similar
to the upshifting-downshifting observed in this paper (figures 13, 14). Similarly, conclu-
sion of Melville & Matusov (2002) about breaking waves propagating at some 80% of
the characteristic linear phase speed can be interpreted as an indirect support of the
pre-breaking wave shrinkage. The fact that doubling the wind input brings about wave
breaking four times as fast (section 2.2, figure 4) is consistent with field experiments
on wind input (Donelan et al. 2006). Although all these evidences are indirect, the very
quantity of them indicates some quality.

What is against direct extrapolation of outcomes of the present paper into field condi-
tions is known experimental and theoretical results on limitations which BF mechanism
has in broad-band, and particularly in three-dimensional fields (e.g. Brown & Jensen
2001; Onorato et al. 2002, 2008; Waseda et al. 2008). We concluded that modulational
instability is the driving force behind nonlinear evolution of our waves to breaking, and
since our study was initially-monochromatic and two-dimensional, and field waves are
spectral and directional, this issue has to be addressed before applying our results to
such waves.

Brown & Jensen (2001) studied the focusing of unidirectional waves and found that
BF instability is impaired in focusing (i.e. spectral) wave trains. Such study needs to be
extended into spectra typical of field waves and examined further. There is a reasonable
expecation, however, that the modulational mechanism may work for reasonably steep
waves with a narrow spectrum (e.g. Waseda et al. 2008). For unidirectional spectral
waves, Alber (1978) derived a requirement which can be expressed as

M; > 1, (4.2)

and this condition can be satisfied for spectra of young wind waves (e.g. Onorato et al.
2001).

There is no analogue of M; and condition (4.2) available for three-dimensional charac-
teristics of the modulational instability mechanism. In Onorato et al. (2002), directional
effects were investigated and quantitative criterion 8 was obtained in terms of width of
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directional spectrum D(f) where 6 is angle:
D(O) = cosz(%ﬁ) (4.3)

— i.e. if the directional width is greater than g = 15, then the modulational instabiltiy
appears to be suppressed. There was a typing error in Onorato et al. (2002), and value
of 8 has to be actually multiplied by 7/180, that is the criterion is 5 ~ 0.26 (Onorato,
2007, personal communication). Since the Onorato et al. (2002) model is weakly nonlinear
rather than fully nonlinear, the criterion should only be regarded as an approximation,
but we will use it as a reference point here.

To compare width of the (4.3) spectrum with observations, integral value A was esti-
mated:

B
A= /_ BD(Q)dH (4.4)

which was used in the field study of Babanin & Soloviev (1998a) to measure directional
distributions (the higher is A, the narrower is the spectrum). For 8 = 0.26, A = 3.8
which is well above the experimentally observed values. It should be mentioned that this
theoretical value is in excellent agreement with the laboratory experiment of Waseda
et al. (2008) who concluded that the critical directional spread is A ~ 4.

Modulational instability, however, may still be found applicable, at least for the dom-
inant waves if they are steep enough. It is not unreasonable to expect a directional
condition analogous to (4.2) being relevant. Parameter A (4.4) can be used for this pur-
pose as it has the proper physical meaning of the inverse relative width of the directional
spectrum whose peak is normalised to be 1.

At the spectral peak, a relative steepness (as the wave spectrum develops) is defined
by /7 where v is the peak enhancement of the JONSWAP spectrum. That is, for the
peak, we can define a directional analogue of M7 as

Mg = AA. (4.5)

Now, it is informative to look at how this Index evolves over the wave development.
From (Eq.19) of Babanin & Soloviev (1998a), at the spectral peak

Uio

A=1.12(—)"%" ¢ (2m) 1, (4.6)
Cp
and from (Eq.44) of Babanin & Soloviev (1998b)
76U
T Cp
that is
U
V7= 1.10(%)050. (4.8)
P
Therefore,
1. U
Mg = 1.23 + —(=22)0-50 (4.9)

2m° ¢p

is a weak function of the wind forcing, and its value at the spectral peak varies from 1.40

to 1.79 for % in the range from 0.89 to 10 where % = 0.89 signifies full developemnt
P “P

(Pierson-Moscowitz limit).
Now, if the M4 assumption is valid and the critical value for this Index is in the range
of M4 = 1.4 — 1.8, the ‘focusing’ effect of directionality can be overcome by a stronger
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nonlinearity if waves grow steeper. It is worth noting here that the directional spectra
broaden towards frequencies above the peak (e.g. Babanin & Soloviev 1998a). This means
that, even if applicable at the peak, the directional modulational instability may not be
working at higher frequencies and some other causes of breaking and dissipation will have
to be found in that spectral band. In this regard, two-phase behaviour of the breaking
has indeed been observed in field experiments of Babanin & Young (2005); Manasseh
et al. (2006) - i.e. the direct dependence of breaking on spectral density at the peak and
an induced breaking/dissipation at higher frequencies.

In any case, the issue of modulational instability in real spectral directional fields can-
not be solved now, but with caution we will try to apply our results to the field data.
Another problem, of the technical kind, still prevents direct comparisons of breaking
rates obtained by means of (4.1) and field observations. Relationship (4.1) predicts the
probability of incipient breaking, whereas in the field it is impossible to directly measure
whether a wave is an incipient breaker or not. At best, we can detect quantities which
result from the breaking process, that is we count waves already breaking. Common mea-
sures of this type include the acoustic signature of breaking waves, void fraction or surface
whitecap coverage. However, a breaking wave emits sound and forms whitecaps over a
substantial part of its period whereas the incipient breaking is an instantaneous state,
and therefore the probability of encountering such sound or whitecaps is significantly
higher than the probability of breaking onset (Liu & Babanin 2004).

Qualitative comparisons of the laboratory and field breaking-probability dependences
were done in Babanin et al. (2007a) and featured well. Here, in figure 23 (bottom) we
plot frequency (inverse period) of individual dominant waves (from frequency range of
f = fp £0.3f,) versus steepness of these individual waves. This is done for a Black Sea
record with f, = 0.25Hz used by Babanin et al. (2001) to obtain field breaking rates in
the same frequency band. If there was no shrinking of the wavelength prior to breaking,
as described in this paper, at each steepness the distribution of the frequencies around
fp = 0.25Hz would be approximately even. It is so for waves of € <~ 0.12. For steeper
waves, and some of these detected deep-water wind-generated three-dimensional waves
have an enormous by field standards steepness up to € = 0.27, the distribution is clearly
biased towards higher frequencies. Waves with € > 0.17 are all shorter than those of the
peak frequency f, = 0.25Hz, and the higher is the individual steepness, the higher is
the individual frequency. Since on average the highest waves are observed at the peak
frequency, and the peak is very sharp, the only plausible explanation for this observation
is that these abnormally steep, but rare waves are those in transition towards or just
after the incipient breaking. As deep-water waves below the peak do not break, and if
the near-breakers shorten, distribution of the incipient breakers has to be characterised
by higher-than-peak frequencies at abnormally high steepnesses as it is. Thus, the very
existence of such abnormally high and shrunk waves indicates that the modulational
instability mechanism is most likely still active in these field conditions.

It is very informative to see in this plot which waves are detected as breaking by
observing whitecaps. Such waves are indicated by squares. Liu & Babanin (2004) classified
phases of the wave breaking process into incipient, developing, subsiding and residual
stages. At the incipient phase, waves are at their steepest and the surface has already
lost its stability, but there are no whitecaps formed. Whitecaps are observed at developing
and subsiding stages. The latter phase is characterised by very broken shape of waves
and their steepness measured as ratio of wave height to length may be well below the
field average. The last, residual stage was introduced formally following Rapp & Melville
(1990) as such phase of breaking progress when the whitecap is already left behind, but
the turbulent front is still moving downstream.
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In figure 23 (bottom), vertical solid line identifies the threshold of ¢ = 0.08 below
which even two-dimensional waves are not expected to break. Yet, a significant number
of them, some with steepness as low as ¢ = 0.03 are detected as whitecapping. This
is the subsiding (not breaking) phase, still detected as breaking if relied on whitecap
observations. On the other end, out of two waves with ¢ ~ 0.27, one wave does not
exhibit whitecaps and another does, that is the first one is on its way up to the limiting
steepness and another is on its way down while collapsing. This observations highlights
uncertainties and ambiguity of existing definitions of breaking rates.

Finally, we would like to summarise main results, findings and conclusions of the nu-
merical and laboratory investigations of the deep-water breaking in two-dimensional cir-
cumstances. Modulational-instability mechanism was found the driving force behind non-
linear evolution of steep waves, but it is not the cause of the breaking, as it may or may
not lead to the breaking. The breaking will occur if the wave in the course of its nonlinear
evolution reaches the limiting steepness, that is the water surface becomes unstable and
collapses. Evolution of nonlinear wave properties was mainly investigated in the physi-
cal rather than Fourier space. Particular attention was paid to steepness, skewness and
asymmetry of individual waves, and to their interplay leading to the breaking onset. In-
dividual wave steepness was found to be the single parameter which determines whether
the wave will break immediately, never break or take a finite number of wavelengths to
break. Dimensionless distance to the breaking can be parameterised in terms of the wave
steepness as the primary parameter. Properties of the incipient breaker were measured
in detail.

If the wind forcing is superimposed, it can play multiple roles in affecting the wave-
breaking dependences. Wind action is important on longer scales in altering breaking
statistics because of enahcing the wave steepness. At moderate winds, doubling the wind
speed leads to the limiting steepness and breaking four times as fast. At stronger wind
forcing, this effect slows down. Instantaneously, wind capacity to affect the breaking onset
is marginal unless the wind forcing is very strong.

Detailed laboratory observations revealed a number of additional features of the break-
ing process. At the breaking onset, wave period decreases (frequency increases) which
further instigates the steepness growth towards the limiting state. Wave preceding the
breaker is tilted backward and negatively skewed. Wave, following the breaker is tran-
sient. Its steepness, skewness, asymmetry and frequency are all growing, and it breaks
soon after the first breaker (double-breaking). Features of the shape of the three waves
appear to be inter-connected, particularly as the breaking onset is approaching, which
fact indicates strong and rapid nonlinear interactions in the system. At the breaking on-
set, upshift of the spectral energy takes place. After the breaking, downshifting occurs.
Superimposed wind influences the wave modulation and breaking severity. Strong wind
makes the breaking more frequent, but smoothens the modulation, cancels the double-
breaking and reduces the breaking strength. As a result, it affects the total dissipation
in an unknown way. This very important issue needs further research.

Nature of breaking process, resulted from the nonlinear evolution and from the coalesc-
ing linear waves, is essentially different. While the limiting steepness of e = ak = Hk/2 =
0.44 appears to be the same in both cases, energy loss and distribution of this loss across
the spectrum are completely dissimilar. This conclusion implies significant consequences
for wave dissipation studies: i.e. research of the breaking and the dissipation have to be
separated. While any process which leads to the critical steepness will cause the wave col-
lapse, their end result in terms of the spectral dissipation will have principle differences.
In other words, the breaking is in a way a kinematic effect (i.e. moving water surface
becomes unstable, no matter what is a balance of forces other than gravity) whereas
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the energy dissipation following the breaking is a dynamic process which remembers the
history (i.e. depends on the driving forces both before and after the breaking onset).

Significant number of features typical of ocean breaking waves was reproduced in this
two-dimensional fully-nonlinear study which points out to the modulational instability
as a likely mechanism active in the field, at least at the scale of dominant waves. Most
important further research, however, is needed into the role of this mechanism in broad-
band and three-dimensional wave fields, particularly at the shorter wave scales. Since
there are theoretical and experimental indications that this mechanism can be suppressed
if frequency and directional spectra are broad, nature of wave energy dissipation and
breaking can be different in three-dimensional wave fields, particularly at smaller scales
characterised by broader angular distributions.

Alex Babanin and Dmitry Chalikov conducted this research with the support of an
RDS (Research Development Scheme) grant of the Swinburne University of Technology.
The authors are thankful to Alastair Jenkins and Yulia Troitskaya for useful discussions.
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