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Abstract. Why do ocean waves break? Understanding this important and obvious property of 9

the ocean surface has been elusive for decades. This paper investigates causes which lead 10

deep-water two-dimensional initially monochromatic waves to break. Individual wave 11

steepness is found to be the single parameter which determines whether the wave will break 12

immediately, never break or take a finite number of wave lengths to break. The breaking will 13

occur once the wave reaches the Stokes limiting steepness. The breaking probability and the 14

location of breaking onset can be predicted, properties of incipient breakers measured. The 15

approach is then extended to field conditions. 16

17



Introduction 18

One of the most elusive questions in fluid mechanics surrounds the mechanism responsible for 19

the breaking of water waves. Wave breaking is ubiquitous on the ocean surface and is 20

manifested by the appearance of sporadic white-caps. A full understanding of such wave 21

breaking and an ability to predict its onset has been hindered by the strong nonlinearity of the 22

process, together with its irregular and intermittent nature. 23

Three general processes are believed responsible for the evolution of wind-generated waves: 24

atmospheric input from the wind, nonlinear interactions between components of the spectrum 25

and dissipation due to wave breaking. All three processes are important in the energy balance. 26

Of the three, breaking is by far the least understood. As will be described below, even basic 27

definitions of breaking rates and incipient breaking, used in the literature, are ambiguous and 28

often not compatible.  29

The importance of the breaking process, however, is difficult to overestimate. The sporadic 30

and violent breaking of waves results in major energy loss to the wave due to work done in 31

injecting turbulence and bubbles into the upper-ocean layer. Hence, in addition to its direct 32

impact on the wave field, breaking plays a significant role in determining the fluxes of energy, 33

momentum and gases between the atmosphere and ocean. Therefore, breaking is also 34

important in processes such as global weather and climate change. 35

A detailed understanding of the breaking process has been delayed by both theoretical and 36

experimental challenges. Intuitively, it is clear that wave steepness plays a role in wave 37

breaking – steep waves are more prone to break. But steep waves also exhibit enhanced 38

nonlinearity and therefore cannot be described by traditional perturbation theories where 39



investigation of nonlinear wave properties starts from the assumption that the nonlinearity is 40

small.  41

Experimental investigations of breaking are very difficult due to the erratic nature of the 42

breaking event. Although breaking waves are common on the wave surface, placing 43

instruments in the appropriate location to investigate the breaker poses a number of logistical 44

issues.45

In the present study, we initially investigate the onset of breaking using a fully nonlinear 46

numerical model. Based on the insights provided by this model, we then investigate the 47

physical properties of the wave which determine whether breaking will occur. These 48

experimental investigations are performed in a laboratory wave tank, where initial conditions 49

can be tightly controlled. This insight then enables us to suggest a parameterisation of wave 50

breaking probability in terms of its initial monochromatic steepness (IMS) and to test our 51

theories for open ocean data. 52

Over the last 30 years, theoretical [eg. Longuet-Higgins and Cokelet, 1978], experimental [eg. 53

Melville, 1982] and numerical [eg. Dold and Peregrine, 1986] approaches have been applied to 54

investigate instability mechanisms in nonlinear wave fields, which potentially lead to wave 55

breaking. Although these studies have advanced the theoretical understanding of wave 56

instabilities, there has been a clear lack of progress in our ability to predict breaking rates as a 57

function of the physical characteristics of real wave fields and to describe these mechanisms in 58

a form suitable for application to the continuous wave spectrum found in the field.  59

The investigation of the properties of the incipient breaking wave is another important 60

outcome of the present paper. The form of the incipient breaker has been predicted by 61

analytical theories of wave breaking and is the input for practical, (ie. engineering) 62



applications. It is important to define, however, what is meant by an incipient breaker. 63

Traditionally, the initial phases of a breaker-in-progress are treated as incipient breaking [eg. 64

Caulliez, 2002, Liu and Babanin, 2004]. Here, we suggest that the incipient breaker is defined 65

as a wave which has already reached its limiting-stability, but has not yet started the 66

irreversible breaking progress. This definition allows the identification of incipient breakers 67

and, once location of the breaking onset can be predicted, measurement of the physical 68

properties of such waves. 69

Theoretical Model and Simulations of the Onset of Breaking 70

The numerical model employed to obtain the fully nonlinear solution of the Euler equation is 71

the two-dimensional Chalikov-Sheinin Model (CSM) [Chalikov and Sheinin, 2005]. The CSM 72

numerical approach is based on a nonstationary conformal mapping. This allows the principal 73

equations of potential flow, with a free surface, to be written in a surface-following coordinate 74

system. The Laplace equation retains its form, and the boundary of the flow domain, (ie. the 75

free surface) is the coordinate surface in the new coordinate system. Accordingly, the velocity 76

potential over the entire domain receives a standard representation based on its Fourier 77

expansion on the free surface. As a result, the hydrodynamic system (without any 78

simplifications) is represented by two evolutionary equations that can provide numerical 79

solutions, stable for many hundreds of wave periods, with very high precision [Chalikov and 80

Sheinin, 2005]. Most important for this study, is the model’s ability to describe the evolution 81

of very steep waves and to reproduce known strongly nonlinear features of real waves, such as 82

wave asymmetry with respect to the vertical, which has been shown to be an inherent 83

characteristic of wave breaking [Caulliez, 2002, Young and Babanin, 2006]. In the CSM, the 84



wave model is coupled with an atmospheric boundary layer model. Thus, it is possible to 85

introduce wind forcing of the waves, which tends to accelerate the breaking process.  86

Two of the most commonly reported nonlinear features of a breaking wave are its asymmetry 87

(i.e. the front face of the wave is steeper than the rear face) and its skewness (i.e. the crest 88

elevation above the mean water level is greater than the trough elevation below the mean water 89

level). Geometric definitions of skewness, kS  and asymmetry, sA  are shown in Figure 1. 90

Following the definitions in Figure 1, the skewness and asymmetry can be defined as: 91

1/ 21 aaSk , (1) 92

1/ 21 bbAs . (2) 93

Hence, positive skewness represents a wave with a crest height greater than the trough depth 94

and negative asymmetry represents a wave tilted forward in the direction of propagation. 95

The incipient breaker in Figure 1 (solid line, 1.15kS , 0.51sA ) was determined from the 96

CSM by commencing the simulation with a sinusoidal (linear) wave (dashed line, 0kS ,97

0sA ) with initial monochromatic steepness 0.25IMS ak . Here, a is the wave amplitude 98

and k is wavenumber. Such a value of steepness is well above the limits of perturbation theory. 99

The model is then allowed to evolve from this initial condition. It has been previously shown 100

[Chalikov and Sheinin, 2005] that such a steep sinusoidal wave immediately transforms into a 101

Stokes wave (i.e. dash-dot wave of Figure 1, 0.39kS , 0sA ) whose further evolution is 102

controlled by the Benjamin-Feir instability mechanism (BFM) [Chalikov, 2006]. The BFM 103

leads to modulation of the initially monochromatic wave train, and as a result some waves can 104

become very large at the expense of others and ultimately break. 105



It should be pointed out that the BFM has been extensively applied to the study of the 106

evolution of nonlinear wave groups which can lead to the breaking of a wave within the group 107

[Longuet-Higgins, 1978, Melville, 1982, Dold and Pereginre, 1986]. The significant 108

conceptual difference between this study and other applications of the BFM is that we do not 109

rely on the existence of wave groups (side bands) in the initial wave field. Rather, the initial 110

conditions consist of steep monochromatic waves and hence allow a relationship between the 111

IMS and the onset of breaking to be developed. Side bands appear naturally and do evolve in 112

the way described in the literature, but the cause of the side bands and therefore the key to the 113

wave breaking rests with the IMS.114

In the case shown in Figure 1, 0.25IMS , however, at the point of the incipient breaker 115

shown in the figure the BFM has resulted in an increase in the wave steepness to 116

335.02/Hk . Note that due to the nonlinear wave profile, definition of the wave steepness as 117

ak  becomes confusing ( a  is not now clearly defined) and hence the value / 2Hk  has been 118

used, where H is the wave height defined as the vertical distance between crest and trough 119

( 21 aaH ).120

Figure 2 shows the evolution of the steepness, skewness and asymmetry for an individual 121

wave. The wave is initially sinusoidal with 0.26IMS . Computations are shown for two wind 122

forcing conditions / 2.5U C  (moderate forcing) and / 5.0U C  (strong forcing), where U123

is the wind speed and C  is the phase speed of the wave with wavenumber k . Simulations 124

cease when the water surface becomes vertical at any point (simulating breaking). In the case 125

of the lighter wind, it takes 32 wave lengths before the wave breaks, whilst for the stronger 126

wind this is reduced to 9 wave lengths.  127



The most obvious features of the simulation are the oscillations in the values of steepness, 128

asymmetry and skewness. These values oscillate at a frequency half that of the underlying 129

wave frequency which is consistent with theoretical expectations for BFM instability 130

[Longuet-Higgins and Cokelet, 1978]. The simulation begins with both skewness and 131

asymmetry zero (sinusoidal wave). These values oscillate between their maximum and 132

minimum values but remain bounded, their maximum and minimum values do not increase in 133

magnitude. In contrast, the oscillations in the steepness progressively increase in amplitude 134

until a point is reached where breaking takes place. It is evident from Figure 2 that it is the 135

steepness which is the limiting parameter for breaking to occur. 136

There is a clear phase relationship between the three quantities. The steepness and skewness 137

are in phase, whereas the asymmetry is 
090  out of phase. The wave crest increases in height, 138

resulting in an increase in the steepness. At the point of maximal steepness and skewness, 139

however, the asymmetry is approximately zero (i.e. not tilted forward). As the peakedness 140

decreases the asymmetry becomes negative (i.e. wave tilts forward). 141

Further simulations demonstrated that IMS plays a critical role in determining whether or not 142

breaking will occur. The numerical modelling showed that if 0.3IMS  the wave will break 143

immediately, within one wave length. If 0.1IMS , however, the wave with no superimposed 144

wind forcing will never break, even though it will exhibit the oscillations of steepness, 145

asymmetry and skewness shown in Figure 2. Between these two limits, the dimensionless 146

distance to breaking decreases with increasing IMS .147

The wind plays a dual role in this process. Firstly, it accelerates the growth of individual wave 148

steepness. In the simulations shown in the figure, doubling the wind speed resulted in the wave 149

growing to its critical height almost four times faster. This result is consistent with known 150



wave growth measurements where the growth increment was shown to be a quadratic function 151

of the wind [eg. Donelan et al., 2006]. Secondly, the wind can push the wave over and thus 152

reduce the critical steepness, but this reduction was found to be small and only relevant at very 153

strong wind forcing (U/C>10, not shown in the Figure). 154

Based on the numerical simulations, it can be postulated that there is a critical steepness 155

( IMS ) above which breaking will always occur. Even if the wave is initially sinusoidal and 156

linear, the nonlinear evolution of the wave will ultimately lead to breaking. The distance to 157

breaking will be a function of this initial steepness. It is these basic features which will be 158

investigated experimentally in the following sections. 159

Experimental Investigation 160

The experimental investigations were conducted at the Air-sea interaction tank at RSMAS, 161

University of Miami (http://peas.rsmas.miami.edu/groups/asist). Near-monochromatic deep-162

water two-dimensional wave trains were generated with the wave paddle. With a tank length of 163

13.24m, surface elevations were recorded at 4.55m, 10.53m, 11.59m and 12.56m from the 164

paddle. For each record, the IMS  was varied in such a way that the waves would consistently 165

break just after one of the wave probes. In this way, the dimensional distance to breaking, 166

wave train properties immediately prior to breaking and detailed properties of the incipient 167

breaker could be determined. The fact that breaking could be predicted and controlled by 168

manipulating only IMS  is a powerful corroboration of the numerical model. 169

It should be pointed out that qualitative agreement between numerical model and experiment is 170

expected, rather than an exact quantitative confirmation. Although sophisticated, the model is 171

still a simplification of the real case and disregards contaminating features such as the natural 172

presence of additional modes within the tank. Importantly, the two-dimensional model predicts 173



an immediate breaking onset at 0.3IMS  whereas it has been previously shown that at 174

ak>0.3 waves can exist, but a three-dimensional instability will dominate BFM [Melville, 175

1982]. 176

Figure 3 shows a wave record with an initial monochromatic frequency, 1.8IMF Hz and an 177

0.30IMS , with no wind forcing. It should be noted that there is a conceptual change in the 178

frame of reference compared to the numerical model results. In the case of the model, a single 179

wave was followed as it approached the point of breaking. Here, observations are made at a 180

single point as a succession of waves passes. One can approximately move from the fixed 181

frame of reference in Figure 3 to the moving frame by considering the waves shown 182

propagating from right to left, as indicated by the arrow in the figure.  183

The top panel in Figure 3 shows the measured water surface elevation ( ) as a function of 184

time (horizontal axis). Interpreting this as a wave moving from right to left shows that, within 185

each wave group, the maximum value of the water surface elevation gradually decreases and 186

then suddenly increases until a point, where breaking occurs. This point of breaking was 187

located immediately after the probe at a distance of 10.73 0.10m from the wave maker. Each 188

successive wave passing the wave gauge was analysed to determine its steepness, skewness, 189

asymmetry and frequency, which are shown in the four panels of Figure 3.  190

The major features seen in the numerical model are confirmed by the laboratory data. The 191

incipient breaking waves are the steepest waves in the wave train, with the steepness 192

oscillating in a periodic fashion. Skewness and asymmetry also oscillate, but behave in a less 193

ordered fashion. However, at the point of breaking skewness is positive (i.e. peaked up) and 194

asymmetry is small (i.e. not tilted forward). A feature which could not be determined from the 195

numerical model is that there is also a modulation in the frequency. At the point of breaking 196



the frequency increases rapidly, further increasing the steepness and hastening the onset of 197

breaking. 198

These visual observations are summarised in Figure 4, which shows data for the five steepest 199

breakers. The analysis is limited to these steepest cases as wave quantities close to the breaking 200

point change rapidly, as shown in Figure 3. These steepest cases are considered to be on the 201

point of breaking. As for the numerical simulations, steepness seems to be the single robust 202

criteria for breaking. For the 20 steepest breakers (not all shown in Figure 4), steepness was 203

confined to the narrow range / 2Hk 0.37 to 0.44, whilst skewness was scattered over the 204

wide range kS 0 to 1 and asymmetry sA 0.8 to -0.4. Considering only those waves at the 205

point of breaking, however, as in Figure 4, shows a clearer trend. The steepness appears to 206

approach an asymptotic limit of 2/Hk 0.44, which may represent an absolute steepness limit. 207

We should point out that this limit is remarkably close to the theoretical steady limiting 208

steepness of ak=0.443 (ie. the Stokes limit 7/1/H , where =2 /k is the wavelength). Such 209

an observation is very important because it signifies that the waves break once they achieve the 210

well-established state beyond which the water surface cannot sustain its stability. It is 211

postulated that the other geometric, kinematic and dynamic criteria of breaking, explored in the 212

literature, are indicative of a wave approaching this state, but are not a reason or a cause for the 213

breaking. As this limit is approached, the skewness increases very rapidly and immediately 214

after the limit is reached the asymmetry becomes negative (ie. the wave starts tilting forward at 215

the point of breaking). 216

These laboratory results are summarised in Figure 5 (top), which shows the non-dimensional 217

distance to breaking, /bN x as a function of IMS, where bx  is the distance to breaking. A 218

range of values of IMS are shown, along with cases with and without wind forcing. As 219



expected, the addition of wind forcing reduces the non-dimensional distance to breaking. 220

However, this reduction is not so great that the data points deviate markedly from the 221

functional relationship between N and IMS, the nonlinear effect dominating over the wind 222

forcing. 223

This result can be approximated by the relationship 224

11atanh 5.5 0.26 23N IMS . (3) 225

Consistent, with the model results, the formula imposes two threshold values of IMS. For 226

IMS>0.44, the wave breaks immediately (compared to IMS 0.3 for the two-dimensional 227

model) and if IMS<0.08 the wave, in the absence of wind forcing will never break (compared 228

to IMS 0.1 for the model). 229

In Figure 5 (top) two points (squares) are shown which were derived from Figs. 1 and 2 of 230

Melville [1982] for comparison. The two measurements in Melville [1982] were conducted for 231

initially uniform wave trains, their initial steepness and approximate dimensionless distance to 232

breaking being known. Although recorded under different conditions, these points agree very 233

well with the above parameterisation and provide strong support for our results. 234

Discussion  and Conclusions 235

The relationship (3) potentially provides a means of predicting the onset of breaking in the 236

open ocean, although some further modification is required for application to such a case. In a 237

field situation, the notion of an initial monochromatic steepness does not exist. However, the 238

above analysis suggests that should waves reach some critical steepness then they will 239

ultimately break. It does not matter whether this limiting steepness occurred due to sustained 240

wind forcing, wave group modulation or other means, as long as the limiting value is reached.  241



Clearly, the breaking process is associated with individual waves, and hence a local measure of 242

the steepness of each wave is the desired quantity. For applications (eg. in a wave prediction 243

model), such time-domain information is impractical and a spectral or average value of the 244

steepness of the wave field is the only possible quantity available.  245

A further complication in comparing available field data with predictions of the current 246

parameterisation is due to the fact that the relationship above predicts the probability of 247

incipient breaking, whereas in the field it is impossible to directly measure whether a wave is 248

an incipient breaker or not. At best, we can measure quantities which result from the breaking 249

process. Common measures of this type include the acoustic signature of breaking waves or 250

surface white-cap coverage. Although these quantities are indirect measures, they are related to 251

the breaking process. However, a breaking wave emits an acoustic signature and forms white-252

caps over a substantial part of its period, and therefore the probability of encountering such 253

sound or white-caps would be higher than the probability of breaking onset [Liu and Babanin, 254

2004]. 255

Given the uncertainties, comparison of the present parameterisation with field data can only be 256

qualitative at this stage, as the quantities being compared are not identical. In order to conduct 257

the comparison, the Black Sea dataset of Babanin et al. [2001] has been considered. Based on 258

visual observations of white-capping, this dataset provides information on the probability of 259

breaking, Tb  of dominant waves. Dominant waves are defined in the spectral sense as 260

frequencies near the spectral peak frequency, pf  (ie. 0.3p pf f f ). In the present context, 261

Tb  can be approximately related to N  by 1/Tb N .262



Figure 5 (bottom) shows 1/ Tb  as a function of the peak spectral steepness, , where 263

/ 2p pH k ,

1.3

0.7

4 ( )

p

p

f

p
f

H F f df , pk  is the wavenumber of the spectral peak and ( )F f  is 264

the frequency spectrum. An approximation to the data shown in the Figure, consistent with the 265

functional form of relationship (3) between N and IMS is 266

1/ 10atanh 13.3 0.13 17Tb . (4) 267

The lower limit (no breaking if <0.055) is obtained from the experimental data [Babanin et 268

al., 2001] and the upper limit ( =0.205) is obtained by extrapolating the parameterisation 269

developed in Babanin et al. [2001] to the 100% breaking condition. 270

Thus, we conclude that based on a combination of a nonlinear numerical model and laboratory 271

and field data, a theory for the onset of the breaking of ocean waves has been developed and 272

validated. Once waves reach a limiting steepness, they will ultimately break. The distance 273

before breaking occurs is a function of the wave initial steepness. This condition holds, even in 274

the absence of wind forcing. The final steepness limit reached by these waves is very close to 275

the Stokes limit, / 1/ 7H . Benjamin-Feir instability mechanism appears to be the main 276

hydrodynamic process which leads to achieving this limit if initial waves are steep enough. 277

Application to field data shows that a spectral measure of wave steepness can be substituted 278

for the local steepness limit inherent in the model and laboratory data. As a result, a parametric 279

relationship can be developed which predicts the probability of breaking as a function of the 280

wave spectrum rather than other properties such as wave groups. 281
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Figure Captions 306

Figure 1: Three waves of different non-linearity. In all cases the waves propagate from left to 307

right, as shown by the arrow. All three waves have the same height and wave length.  308

Figure 2: CSM computations of steepness (first panel), skewness (second panel) and 309

asymmetry (third panel) for a wave with 0.26IMS . Two wind speeds are shown – top three 310

panels, / 2.5U C , - bottom three panels, / 5.0U C .311

Figure 3: Segment of a time series with 1.8IMF Hz, 0.30IMS  and / 0U C  . The top 312

panel shows the water surface elevation,  as a function of time in seconds. The highest wave 313

in each group is an incipient breaker at the measurement point, breaking immediately after the 314

wave probe. The subsequent panels show properties determined for each of the waves: 315

steepness (second panel), skewness (third panel), asymmetry (forth panel) and frequency 316

(bottom panel, solid line signifies IFM=1.8Hz).  317

Figure 4: Laboratory statistics for the incipient breakers (5 steepest waves). IMF=1.8Hz, 318

IMS=0.30, U/C=0. (top left panel) Skewness versus steepness. (top right panel) Asymmetry 319

versus steepness. (bottom panel) Frequency (inverse period) versus steepness. IMF=1.8Hz is 320

shown with the solid line. 321

Figure 5: Parameterisation of the breaking probability. (top panel) Laboratory data. Number of 322

wave lengths to breaking versus IMS. No wind forcing: o - IMF=1.6Hz; x - IMF=1.8Hz; + - 323

IMF=2.0Hz. Filled circles represent - IMF=2.0Hz, with wind forcing applied. The 324

parameterisation (3) is shown with solid line. (bottom panel) Field data. Inverse breaking 325

probability Tb , measured by visually detected whitecaps, versus the peak spectral steepness, 326

. Triangles signify measured Tb =0. The line identifies the approximation (4) (the dotted part 327

is the extrapolation based on parameterisation of Babanin et al. [2001]. 328
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