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Abstract 

Similarity theory of isotropic turbulence induced by waves on the water with free surface is proposed. Scaling is obtained 
from experimental and numerical observations of dissipation rates for surface waves, and then used to estimate the turbulent 
viscosity of the locally-isotropic turbulence.  
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Water motion induced by waves excited at the free surface should produce turbulence at large enough 
Reynolds Numbers, like every other motion in viscous fluids with velocity gradient. The concept of wave-
induced turbulence is not new [eg. 1-6], but since the early 60s it has been neglected and largely forgotten. This 
can be explained by breakthroughs in new potential wave theories which at about the same time demonstrated 
remarkable success in describing previously elusive or even unknown dynamic features such as instabilities and 
resonances in nonlinear wave fields [7-12]. The potential theories assume zero viscosity, their respective motions 
by definition produce no vorticity and hence turbulence, and such approaches have dominated the wave science 
ever since.  

This includes the oceanography where the turbulence, however, is of great importance for the upper ocean 
dynamics. Various other phenomena were held responsible for this upper-ocean turbulence, such as breaking of 
surface and internal waves, wind and current shear, Langmuir circulation. In the meantime, the wave orbital-
motion turbulence research continued in background, both experimental and theoretical [eg. 13-18]. It remained 
quite marginal until recently when the apparent need for more accurate description of wave-coupled effects in the 
lower atmosphere and upper ocean revived the interest to the missing source of turbulence [eg. 19-25].  

Here we will propose a Kolmogorov-Obukhov theory for the locally isotropic turbulence due to such water 
motion, i.e. due to waves on the free surface of the water. For the general case of viscous fluids, original concepts 
and similarity theory were offered in [26-29], and here we will follow [30] for a modern fluid mechanics 
interpretation.  

Like any similarity theory, the Kolmogorov theory is qualitative, subject to an unknown proportionality 
coefficient. For the water waves, we will try and determine this coefficient on the basis of available experimental 
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and field observations, as well as numerical simulations. This way, we will also be able to offer quantitative 
conclusions of the Kolmogorov turbulence theory for the orbital motion of surface water waves (unrelated to 
wave breaking), which may have important practical value in the ocean modelling. 

Dimensionally, volumetric dissipation rate ε of the Kolmogorov turbulence is defined by velocity scale Δu and 
length scale l, where Δu specifies change of the mean velocity over distance l:  

ε ~
(Δu)3

l
=

(b2Δu)3

b2l
= b2

2 (Δu)3

l
.     (1) 

In [30], it was argued that while Δu and l are meant to be the external (largest) scales of the turbulence induced 
by a mean motion, in reality these scales of the largest turbulent fluctuations are several times less. As a result, a 
substantial proportionality coefficient b2  can be expected in (1), which depends on this ratio (note that we 
reserve parameter b1  for the swell-decay coefficient in (3) as it had been introduced before). 

For the water particles participating in wave orbital motion with radian frequency ω, velocity in any direction 
changes from u=aω to 0 over the orbit radius a, i.e. the scales are Δu = u = aω  and l=a. Therefore 

ε = b2
2 (aω)3

a
=

b2
2

ak
ka3ω 3      (2) 

where k is wavenumber connected with frequency, in the deep water, by dispersion relationship ω 2 = gk  (g is 
gravity constant), s=ak is wave steepness. Note that wave amplitude (orbital radius a) decays exponentially away 
from the surface z=0, as a = a0 exp(−kz)  where a0  is wave amplitude (radius of wave orbit) at the surface. 

In [22], based on a broad range of laboratory experiments [31], numerical simulations [24], satellite  
observations of swell propagation in the ocean [32,33], it was argued that  

ε = b1ka0
3ω 3 = 0.0014ka0

3ω 3 .    (3) 

Hence, b1 ≅ 0.0014 =
b2

2

ak
, i.e. the main velocity and spatial scales of wave-induced turbulence have to be 

b2 = b1ak = 0.12− 0.13  assuming mean steepness of wind-generated waves of s=0.1-0.12. Thus, the main 

velocity and spatial scales of wave-induced turbulence scales are of the order of b2 =
1

10
th of the external scales 

adopted in (1).  
Now, we are prepared to apply the Kolmogorov theory to the wave-induced turbulence quantitatively. 

Coefficient of turbulent viscosity is 

K = b2Δu ⋅b2l = b2
2a2ω = (b1ak)a2ω = b1

a3ω 3

g
=

b1

g
uorb

3    (4) 

where uorb  is wave orbital velocity.  
Figure 1 demonstrates magnitude of K in the full range of wave conditions, H=2a=0.02-20 m and 

f =ω / (2π ) =0.05-1 Hz, ie. from very small to full-scale ocean seas. Obviously, the small waves produce 

negligible eddy viscosity, and for large and steep waves it reaches K~10−2  m2 / s =102  cm2 / s . Experimental 
guidance for such wave-induced turbulence viscosity is not available, but numerical large-scale ocean-circulation 
models, e.g. [21], suggest values of ~100 cm2 / s  in the ocean areas with large waves, such as the Southern 
Ocean, in summer when the wave-induced mixing should prevail over vertical convection. 
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Fig. 1. Dependence of the coefficient of turbulent viscosity on (left) wave height for frequency f=0.05-1 Hz; (right) frequency for wave 
heights H=0.02-20 m 

 
Summary. In the paper, a similarity theory of turbulence induced by waves on the water with free surface is 
proposed, based on the Kolmogorov-Obukhov theory for the locally isotropic turbulence. Scaling is obtained 
from a broad range of observations of wave dissipation rates unrelated to the breaking, and then used to estimate 
the turbulent viscosity. The estimates are consistent with values of the wave-induced eddy viscosity in ocean-
circulation models. 
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