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[1] Theoretically, potential waves cannot generate the vortex motion, but scale
considerations indicate that if the steepness of waves is not too small, Reynolds number
can exceed critical values. This means that in presence of initial non-potential disturbances
the orbital velocities can generate the vortex motion and turbulence. In the paper, this
problem was investigated numerically on basis of full two-dimensional (x-z) equations of
potential motion with the free surface in cylindrical conformal coordinates. It was assumed
that all variables are a sum of the 2D potential orbital velocities and 3D non-potential
disturbances. The non-potential motion is described directly with 3D Euler equations, with
very high resolution. The interaction between potential orbital velocities and non-potential
components is accounted through additional terms which include the components of
vorticity. Long-term numerical integration of the system of equations was done for
different wave steepness. Vorticity and turbulence usually occur in vicinity of wave crests
(where the velocity gradients reach their maximum) and then spread over upwind slope and
downward. Specific feature of the wave turbulence at low steepness (steepness was kept
low in order to avoid wave breaking) is its strong intermittency: the turbulent patches are
mostly isolated and intermittency grows with decrease of wave amplitude. Maximum
values of energy of turbulence are in agreement with available experimental data. The
results suggest that even non-breaking potential waves can generate turbulence, which thus
enhances the turbulence created by the shear current.
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1. Introduction

[2] The concept of the wave-induced non-breaking tur-
bulence was recently proposed by Qiao et al. [2004] and
Babanin [2006] and then confirmed by measurements in the
laboratory [Babanin and Haus, 2009, Dai et al., 2010] and
in the field [Toffoli et al., 2011; A. Toffoli et al., The effect
of wave-induced turbulence on the ocean mixed layer: Field
observations on the Australian North-West Shelf, submitted
to Journal of Geophysical Research, 2011]. Dai et al.
[2010], for example, showed that, in presence of gently
sloped non-breaking waves, initially stratified fluid became
uniform by two orders of magnitude faster than in absence of
the waves, that is in case of pure molecular diffusion. The
experiment was supported by a one-dimensional turbulence-
diffusion model which showed consistent results. Still, the

mixing happened at the scale of thousands wave periods for
such gentle and short waves. In this regard, experiment of
Beya et al. [2012] should be mentioned, who reproduced the
experimental setup of Babanin and Haus [2009] and used
dye to see whether it will be dissolved due to wave turbu-
lence over some 30 wave periods. It was not, but apparently
for such short and small waves this cannot be expected.
[3] Essential importance of this turbulence for the

dynamics of the upper ocean and for air-sea interactions in a
broader sense has also been clearly demonstrated lately. In
finite-depth environments and at the shelves, this turbulence
produces mixing all the way to the bottom in response to a
single storm, and this contribution is critical in adequate
modeling of the sediment suspension [e.g., Pleskachevsky
et al., 2011]. When employed in ocean-circulation and
general-circulation models, agreement between the model-
ing of sea-surface temperature and upper-ocean temperature
profiles, and the data, improved by up to 35%, depending on
wave climate at a particular location and on latitude [Qiao
et al., 2004, 2010; Huang et al., 2008]. In modeling the
current climate, account for such turbulence led to a sig-
nificant increase of magnitudes of seasonal variation of
main hydro-meteorological properties such as temperature,
pressure, winds and precipitation [Babanin et al., 2009].
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[4] While the concept appears new and the wave-induced
turbulence is missing from most of the ocean-mixing
schemes, because the waves are routinely treated as irrota-
tional and therefore not-generating turbulence, the idea was
in fact well-familiar to oceanographers over 50 years ago.
The book of Kinsman [1965] has a chapter on rotational
wave motion, i.e., linear and nonlinear wave theory in
presence of viscosity, with references to Stokes [1845],
Longuet-Higgins [1953], Phillips [1961], and a section on
wave-induced non-breaking turbulence. We should add
Kitaigorodskii [1961] to this early list of papers.
[5] It is the success of potential theories of nonlinear

waves, introduced in the 60s, which made the applications of
non-potential wave theories seem redundant and eventually
even led to them being nearly forgotten. Such theories cer-
tainly provide a rich range of useful physics, both deter-
ministic and stochastic, i.e., for example, kinetic equation
[Hasselmann, 1962; Zakharov, 1968; Krasitskii, 1994;
Janssen, 2003; Annenkov and Shrira, 2006; Zakharov,
2010], modulational instability [Zakharov, 1966, 1967;
Benjamin and Feir, 1967; McLean, 1982], Nonlinear
Schrödinger Equation [Benney and Newell, 1967; Zakharov,
1967, 1968; Dysthe, 1979; Stiassnie, 1984; Akhmediev and
Korneev, 1986; Shemer and Dorfman, 2008], Zakharov
Equation [Zakharov, 1968; Gramstad et al., 2011], Zakharov-
Kolmogorov weak-turbulence solutions [Zakharov and
Filonenko, 1966; Zakharov and Zaslavskii, 1982; Badulin
et al., 2007; Gagnaire-Renou et al., 2011], Alber Equation
[Alber, 1978; Stiassnie et al., 2008], among others. In other
respects, however, irrotational theories are inadequate. We
will quote Kinsman [1965] on one such application:

Careful measurements of the mass-transport velocity associated with
waves… all suggest that the Stokes wave is unsatisfactory model so
far as the mass-transport velocity associated with water waves is
concerned. It would seem that the argument on which Stokes chose
irrotationality was crucially unsound, if a study of water waves was
his object… You do not arrive at the same place by setting the viscous
terms to zero to begin with as you do if you retain them and then let
the viscosity tend to zero at the end of your analysis.

[6] Another reason for the disrepute of the old rotational
wave theories was a relatively small rate of production of
vorticity within these approaches. Such low rates, however,
were a consequence of the two-dimensionality of the old
analytical solutions, and this issue was well-appreciated by
the old school of oceanographers: “Unfortunately, the anal-
ysis of turbulence is very difficult, since the process is
essentially three dimensional. This means that nothing
remotely useful will result from a two-dimensional analysis
of the sort we have used with infinitely long-crested waves”
[Kinsman, 1965].
[7] This problem was later investigated by means of a

linear-instability theory, and it was shown that this is not
long-crestedness of the waves, but two-dimensionality of the
turbulence which is the setback in 2D approaches. This
instability problem was formulated first by Benilov and
Losovatskiy [1977]. Later, the idea was further developed
by Kitaigorodskii and Lumley [1983] and Benilov et al.
[1993]. Within such theory, it was shown that pure
two-dimensional motion remains potential because one-
dimensional vortex (in vertical plane) does not interact with
the wave orbital motion. If the turbulence is treated in three-
dimensional sense, however, and the real turbulence is nearly

always three-dimensional, the waves can generate the vortex
in horizontal plane. Such vortex is unstable and further
development of vorticity occurs due to exchange of energy
between the components of vorticity. Then, due to nonline-
arity, motion at smaller scales and more or less developed
turbulent regime arise on behalf of the wave energy.
[8] Other theoretical and experimental studies should also

be highlighted in this context, even if briefly. Jacobs [1978]
introduced additional turbulent viscosity which remains after
the mean orbital wave motion is averaged out, what
Pleskachevsky et al. [2011] called the ‘symmetric effect’.
Anis and Moum [1995], employed both the symmetric and
‘asymmetric’ effects, the latter being production of the
turbulence due to waves being irrotational. In the field,
the wave turbulence, unrelated to the breaking, was explic-
itly observed and even parameterized by Yefimov and
Khristoforov [1971a, 1971b].
[9] Significance of such wave-induced turbulence, in the

meantime, is hard to overestimate. The waves produce tur-
bulence for the upper ocean in a number of ways, i.e., by
breaking [e.g., Chalikov and Belevich, 1993], by interacting
with background turbulence through the Stokes current [e.g.,
Ardhuin and Jenkins, 2006], through triggering Langmuir
circulation [e.g., Langmuir, 1938; McWilliams and Sullivan,
2000] and through the wave orbital motion (see, e.g.,
Babanin [2011] for a review of these issues). While the
former three mechanisms rely on downward diffusion or
advection of the near-surface turbulence, the last one gen-
erates turbulence directly through the water column at the
scale of the wavelength (100 m) if the associated Reynolds
numbers (wave heights) are large enough.
[10] Thus, as have already been mentioned above, role of

this turbulence in the upper-ocean mixing is very essential. It
is interesting, however, to quote Kinsman [1965] also in the
following regard: “… while the vorticity field induced by
wave motion is of second order and affects the mean motion
to second order, its effect on the fluctuating motion is of
third order…” This is the order at which the potential-theory
solutions for nonlinear wave interactions are obtained [e.g.,
Hasselmann, 1962], and therefore importance of the account
of viscosity in fact can perhaps be extended much further.
[11] In the present paper, a new wave-turbulence model is

discussed, results of its application are demonstrated and
compared with experiment. This wave-turbulence model is
based on full two-dimensional (x-z) equations of potential
motion with the free surface in cylindrical conformal coor-
dinates. These equations constitute a fully nonlinear model
of 2D waves which is coupled with a 3D model for the
turbulence. This latter non-potential motion is described
directly with 3D Euler equations, with very high resolution.
The interaction between potential orbital velocities and non-
potential components is accounted through additional terms
which include the components of vorticity. The effects of
turbulence are incorporated with a use of subgrid turbulent
energy evolution equation. The turbulent scale is assumed to
be proportional to grid resolution (LES technique). The
results suggest that even non-breaking potential waves can
generate the turbulence, which thus enhances the turbulence
created by the shear currents.
[12] In the paper, sections 2 through 5 are the description of

different aspects of the model. Surface-following coordinates
are introduced in section 2, followed by equations for vortical
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motion in section 3. Section 4 describes LES approach
employed for simulating the turbulence and section 5 the
fully nonlinear wave model. Section 6 demonstrates com-
putational results, and conclusions are formulated in final
section 7.

2. Surface-Following Coordinates

[13] Let us introduce curvilinear surface-following con-
formal in plane (x = x1, y = x2) cylindrical coordinates
(x, J, z) connected with Cartesian coordinates (x, y, z) by
relations (axis z is directed upward):

x ¼ x þ x0 tð Þ þ
X

�M≤k<M ;k≠0
sign kð Þ h�k tð Þ cosh kj j V þ Hð Þ

sinh kj jH qk xð Þ;

ð1aÞ

z ¼ z þ h0 tð Þ þ
X

�M≤k<M ;k≠0
hk tð Þ sinh kj j V þ Hð Þ

sinh kj jH qk xð Þ; ð1bÞ

y ¼ J; ð1cÞ

t ¼ t; ð1dÞ

where the factors containing hyperbolic functions allow us
to introduce a finite depth z = H, k is wave number, M is a
truncation parameter, t is time, hk are Fourier amplitudes in
presentation of the two-dimensional surface h(x, J)

h x;J; tð Þ ¼
X

�M≤k≤M
hk tð Þqk xð Þ; ð2Þ

and qk(x) denotes the function

qk xð Þ ¼ cosk x; k ≥ 0
sink x; k < 0

:

�
ð3Þ

[14] The metric coefficients for transformation (1a), (1b),
(1c), (1d) take the form

xx ¼ 1þ
X

�M≤k≤M
kj jhk cosh kj j z þ Hð Þ

sin kj jH Jk xð Þ; ð4aÞ

zx ¼ �
X

�M≤k≤M
kh�k

sinh kj j z þ Hð Þ
sin kj jH Jk xð Þ; ð4bÞ

xt ¼
X

�M≤k≤M
htð Þ�k

cosh kj j z þ Hð Þ
sin kj jH Jk xð Þ; ð4cÞ

zt ¼
X

�M≤k≤M
sign kð Þ htð Þk

sinh kj j z þ Hð Þ
sin kj jH Jk xð Þ: ð4dÞ

[15] Conformal coordinates satisfy the conditions:

xx ¼ zz ¼ J�1xx ¼ J�1zz ; ð5aÞ

xz ¼ �zx ¼ �J�1xz ¼ J�1zx; ð5bÞ

xt ¼ J�1 �zxzt � xxxt
� �

; ð5cÞ

z t ¼ J�1 zxxt � xxzt
� �

; ð5dÞ

∂J
∂t

þ ∂Jxt
∂x

þ ∂Jz t
∂z

¼ 0; ð5eÞ

∂J
∂t

þ ∂
∂x

�zxzt � xxxt
� �þ ∂

∂z
zxxt � xxzt
� � ¼ 0 ð5fÞ

where J is a Jacobian of transformation

J ¼ x2x þ z2x : ð6Þ

[16] Note that all metric coefficients do not depend on
coordinate J. Below, rules of transformations are written
out:

∂ðÞ
∂x

¼ xx
∂ðÞ
∂x

þ zx
∂ðÞ
∂z

¼ J�1 xx
∂ðÞ
∂x

� zx
∂ðÞ
∂z

� �

¼ J�1 ∂ðÞxx
∂x

� ∂ðÞzx
∂z

� �
; ð7aÞ

∂ðÞ
∂z

¼ xz
∂ðÞ
∂x

þ zz
∂ðÞ
∂z

¼ J�1 zx
∂ðÞ
∂x

� xx
∂ðÞ
∂z

� �

¼ J�1 ∂ðÞzx
∂x

� ∂ðÞxx
∂z

� �
; ð7bÞ

∂ðÞ
∂t

¼ ∂ðÞ
∂t

þ xt
∂ðÞ
∂x

þ z t
∂ðÞ
∂z

: ð7cÞ

3. Equation for Vortical Motion

[17] Let us now consider Euler equation in the Gromeko-
Lamb form

∂�u
∂t

¼ � ∂
∂x

�pþ �E þ zð Þ þ �w y�w� �w z�v; ð8aÞ

∂�v
∂t

¼ � ∂
∂x

�pþ �E þ zð Þ þ �w z�u� �w x�w; ð8bÞ

∂�w
∂t

¼ � ∂
∂x

�pþ �E þ zð Þ þ �w x�v� �w y�u; ð8cÞ

where �u;�v; �wð Þ are full components of velocity, �wx; �wy; �wz are
components of vorticity, �p is a deviation of pressure from the
hydrostatic pressure, �E ¼ 1=2 ⋅ �u2 þ �v2 þ �w2ð Þ is kinetic
energy. Since vorticity �Wi of potential flow is zero, analo-
gous equation for potential motion described by variables
(U, V, W, P) has the form
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∂ �U
∂t

¼ � ∂
∂x

�P þ �E þ zð Þ; ð9aÞ

∂�V
∂t

¼ � ∂
∂y

�P þ �E þ zð Þ; ð9bÞ

∂ �W
∂t

¼ � ∂
∂z

�P þ �E þ zð Þ: ð9cÞ

[18] Full variables can be represented as a sum of vortical
(u, v, w, p) and potential (U, V, W, P) components:

�u ¼ uþ U ; �v ¼ v; �w ¼ wþW ;
�p ¼ pþ P; �wi ¼ wi þ Wi Wi ¼ 0

ð10Þ

and from (8a), (8b), (8c), it follows that

∂u
∂t

¼ � ∂
∂x

pþ E þ uU þ wW þ zð Þ þ w y wþWð Þ � wzv; ð11aÞ

∂v
∂t

¼ � ∂
∂x

pþ E þ uU þ wWð Þ þ wz uþ Uð Þ � wx wþWð Þ;
ð11bÞ

∂w
∂t

¼ � ∂
∂x

pþ E þ uU þ wWð Þ þ w xv� w y uþ Uð Þ: ð11cÞ

[19] Converting (11a), (11b), (11c) to the standard form,
we obtain

∂u
∂t

þ ∂uu
∂x

þ ∂vu
∂y

þ ∂wu
∂x

¼ � ∂
∂x

pþ uU þ wWð Þ þ w yW ; ð12aÞ

∂v
∂t

þ ∂uv
∂x

þ ∂vv
∂y

þ ∂wv
∂x

¼ � ∂
∂y

pþ uU þ wWð Þ þ w zU � w xW ;

ð12bÞ

∂w
∂t

þ ∂uw
∂x

þ ∂vw
∂y

þ ∂ww
∂x

¼ � ∂
∂z

pþ uU þ wWð Þ þ w yU : ð12cÞ

[20] Equations (12a), (12b), and (12c), together with
continuity equation

∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

¼ 0; ð12dÞ

describe the fluid motion at low Reynolds numbers, pro-
vided velocity components (U, W) of potential motion are
known. Solving these equations in presence of curvilinear
interface is generally impossible, and these equations should
be rewritten in surface-following coordinate system, in our
case – cylindrical conformal coordinates. After such trans-
formation, equations (12a), (12b), and (12c) take the form

dJu

dt
¼ wJW � xx∏x þ zx∏x þ Fx; ð13aÞ

dJv

dt
¼ wzU � wxW � J∏J þ FJ; ð13bÞ

dJw

dt
¼ �wJU � zx∏x � xx∏z þ Fz : ð13cÞ

[21] Here wx, wJ, wz are vorticity components wx, wy, wz

multiplied by Jacobian J, and P is generalized pressure

∏ ¼ pþ uU þ wW þ 2

3
e: ð14Þ

[22] Operator d
dt in (13a), (13b), (13c) denotes the full

temporal derivative

dðÞ
dt

¼ ∂ðÞ
∂t

þ ∂ðÞû
∂x

þ ∂ðÞv̂
∂J

þ ∂ðÞŵ
∂z

ð15Þ

where v is a lateral component of velocity and û; ŵð Þ are
contravariant components of velocity defined by equations:

û ¼ xt þ J�1~u; ŵ ¼ z t þ J�1~w ð16Þ

[23] Here, û; v̂ð Þ are covariant velocity components

~u ¼ uxx þ wzx; ~w ¼ �uzx þ wxx; ð17Þ

connected with Cartesian velocity components (u, v) by
relations:

u ¼ J�1 ûxx � ŵzx
� �

; w ¼ J�1 ûzx þ ŵxx
� �

: ð18Þ

[24] Components of vector wx, wJ, wz in curvilinear
coordinates take the form

wx ¼ J
∂w
∂y

� ∂v
∂z

� �
¼ J

∂w
∂y

� ∂zxv
∂x

þ ∂xxv
∂z

; ð19aÞ

wJ ¼ J
∂u
∂z

� ∂w
∂x

� �
¼ ∂zxu

∂x
þ ∂xxu

∂z
� ∂xxw

∂x
þ ∂zxw

∂z
; ð19bÞ

wz ¼ J
∂v
∂x

� ∂u
∂y

� �
¼ ∂xxv

∂x
� ∂zxv

∂z
� J

∂u
∂y

: ð19cÞ

[25] Equation of continuity can be represented through the
contravariant velocity components as

∂J
∂t

þ ∂J û
∂x

þ ∂Jv
∂J

þ ∂Jŵ
∂z

¼ 0 ð20Þ

and through covariant velocity components as

∂~u
∂x

þ ∂v
∂J

þ ∂~w
∂z

¼ 0: ð21Þ
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[26] Equation (20) provides an accurate approximation of
advection terms in (15), and continuity equation in form (21)
served for derivation of Poisson equation for pressure. Let
us represent equations (13a), (13b), and (13c) in the fol-
lowing form

∂Ju
∂t

¼ � xx∏x � zx∏z
� �

Fz ; ð22aÞ

∂Jv
∂t

¼ �J
∂
Q
∂J

þ FJ; ð22bÞ

∂Jw
∂t

¼ � zx∏x þ xx∏z
� �

Fz ð22cÞ

where (Fx, FJ, Fz) are

Fx ¼ � ∂Ju~u
∂x

� ∂Juv
∂J

� ∂Ju~w
∂z

þ JwJW þ T x; ð23aÞ

FJ ¼ � ∂Jv~u
∂x

� ∂Jvv
∂J

� ∂Jv~w
∂z

þ JwzU � JwxW þ TJ; ð23bÞ

Fx ¼ � ∂Jw~u
∂x

� ∂Jwv
∂J

� ∂Jw~w

∂z
� JwJU þ T z ; ð23cÞ

and (T x, T J, T z) are the terms describing the turbulence

T x ¼ � ∂J xxu′u′ þ zxu′w′
� �

∂x
� ∂u′v′

∂J
� ∂J �zxu′u′ þ xxu′w′

� �
∂z

;

ð24aÞ

TJ ¼ � ∂J xxv′u′ þ zxv′w′
� �

∂x
� ∂v′v′

∂J
� ∂J �zxv′u′ þ xxv′w′

� �
∂z

;

ð24bÞ

T z ¼ � ∂J xxu′w′ þ zxw′w′
� �

∂x
� ∂v′w′

∂J
� ∂J �zxu′w′ þ xxw′w′

� �
∂z

:

ð24cÞ

[27] The second-order turbulent moments are represented
as follows

�u′u′ ¼ 2KmJ
�1F11 ¼ 2KmJ

�1 ∂xxu
∂x

� ∂zxu
∂z

� �
; ð25aÞ

�u′v′ ¼ KmJ
�1F12 ¼ Km

∂u
∂y

þ J�1 ∂xxv
∂x

� ∂zxv
∂z

� �� �
; ð25bÞ

� u′w′ ¼ KmJ
�1F13 ¼ KmJ

�1 ∂ uzx þ wxx
� �

∂x
þ ∂ uxx � wzx

� �
∂z

� �
;

ð25cÞ

�v′v′ ¼ 2KmJ
�1F22 ¼ 2KmJ

�1 ∂v
∂y

; ð25dÞ

�v′w′ ¼ KmJ
�1F23 ¼ Km

∂w
∂y

þ J�1 ∂zxv
∂x

þ ∂xxv
∂z

� �� �
; ð25eÞ

�w′w′ ¼ 2KmJ
�1F33 ¼ 2KmJ

�1 ∂zxw
∂x

þ ∂xxw
∂z

� �
: ð25f Þ

[28] Let us approximate the time derivative by the forward
difference. Then, the new values of velocities (ut+1, vt+1,
wt+1) are defined by expressions

utþ1 ¼ �Dt J tþ1
� ��1

xx∏x � zx∏z
� �þ J tþ1

� ��1
J tut þDtFx� �

;

ð26aÞ

vtþ1 ¼ � ∂
Q
∂J

þ J tþ1
� ��1

J tvt þDtFJ� �
; ð26bÞ

wtþ1 ¼ �Dt J tþ1
� ��1

zx∏x þ xx∏z
� �þ J tþ1

� ��1
J twt þDtFz� �

ð26cÞ

where Jt and Jt+1 are previous and new values of Jacobian.
Equations (26a) and (26c) both contain gradients of pressure.
For derivation of Poisson equation in curvilinear coordinates,
we will transform the Cartesian velocity components into
covariant velocity components using (17):

~utþ1 ¼ �Dt∏x þ Fx; ð27aÞ

vtþ1 ¼ �Dt∏u þ FJ; ð27bÞ

~wtþ1 ¼ �Dt∏z þ Fz ð27cÞ

where (Fx, FJ, Fz) are combinations of right-hand sides of
equations (26a), (26b), and (26c).
[29] Now,

∂~utþ1

∂x
þ ∂vtþ1

∂J
þ ∂~wtþ1

∂z
¼ 0 ð28Þ

and after substituting (27a), (27b), (27c) into (28), we obtain
the Poisson equation for diagnostic calculation of pressure

D∏ ¼ Dtð Þ�1 Fuð Þx þ Fvð ÞJ þ Fwð ÞJ
� �

: ð29Þ

[30] Hence, using the cylindrical conformal mapping
allows us to obtain the standard scheme for calculation of
generalized pressure (14). Equation (29) is solved in Fourier
space with Three Diagonal Matrix Algorithm (TDMA).
Equations (26a), (26b), and (26c) are solved by standard
Fourier-Transform method. For approximation of vertical
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operators, the second order scheme was used. Equations (22a),
(22b), and (22c) are solved with high resolution which
allows us to reproduce directly the large-scale part of tur-
bulence by means of the Large Eddy Simulations technique.

4. Large-Eddy Simulation Approach

[31] The LES approach imposes spatial filtering on
instantaneous fields such that all flow structures bigger than
the imposed filter scales are resolved, and smaller ones are
filtered-out. Now, in order to compensate for these filtered-
out scales, a subgrid turbulence model must be imposed in
order to have correct representation of the original turbulent
field. For LES approach to the near-wall modeling, different
versions of modeling the subgrid turbulence contributions
will be applied. Those include the classical [Smagorinsky,
1963] and dynamic [Germano et al., 1991] approaches.
Smagorinsky models as well as recently proposed coherent-
structure scheme [Kobayashi, 2005] are schemes based on
minimization of the theoretical subgrid dissipation [Vreman,
2004]. The turbulent boundary layer over a flat plate (with
zero pressure gradient) was simulated by Spalart [1988] by
employing DNS techniques over range of Reynolds numbers
225 < Re < 1410. For this particular case, a numerical
database is provided (ERCOFTAC database) which makes it
possible to perform very detailed comparison for first and
second moments as well as for budgets of the second
moments. In addition, effects of different numerical grid
resolutions can be easily estimated and validation of LES
results can be performed. More recently, Porté-Agel et al.
[2000] proposed a scale-dependent dynamic subgrid-scale
LES model. In contrast to the standard dynamic model, it
does not rely on the assumption that the model coefficient is
scale-variant. The new model introduces secondary test filter
which, in addition to the standard test filter, is used to
determine the model coefficient. The new model showed
improvements of spectral slopes in the near-surface region
where the standard Smagorinsky and standard dynamic

model are either too dissipative or not dissipative enough,
respectively. In order to demonstrate the applicability of the
presented method to flows in non-orthogonal geometries,
configurations with a wavy horizontal wall are selected next.
This investigation are compared with DNS and LES results
of Kreltenauer and Schumann [1992], Tseng and Ferziger
[2004], and Choi and Suzuki [2005] and with experimental
results of Guenther and von Rohr [2003] and Kruse et al.
[2003].
[32] In the present work, the effects of subgrid turbulence

are taken into account through coefficient of subgrid turbu-
lent viscosity, which is used for calculations of second-order
moments (25a)–(25f). The coefficient of turbulent viscosity
is estimated with formula

Kx;y ¼ Cs J�1DxDJDz
� �1=3

e1=2; Cs ¼ 0:1; ð30Þ

where lt = (J�1DxDJDz)1/3 is a turbulent length scale and e
is kinetic energy of subgrid turbulence. The evolution of e is
calculated with equation

dJe

dt
¼ ∂

∂x
Ke

∂e
∂x

þ ∂
∂z

Ke
∂e
∂z

þ P � ɛ ð31Þ

where P is a rate of production of e and ɛ is dissipation rate,
defined by relation

ɛ ¼ CDe
3=2l�1

t : ð32Þ

[33] Expression for P is obtained from equations (25a)–(25f).

5. Model of Potential Waves

[34] The metric coefficients xx, zx and potential-velocity
components U and W were calculated on basis of full
potential equations which can be represented in the coordi-
nates (1a), (1b) for z ≤ 0 and the deep water as follows:

Fxx þ Fzz ¼ 0; ð33Þ

zt ¼ �xxxt � zxV t ; ð34Þ

Figure 1. Distribution of energy Ek = Ev + Et in near-
surface layer in relative units (top view, the vertical scale
is the lateral direction). The black areas correspond approx-
imately to 0.001 gHs. At the bottom, the wave profile is
indicated.

Figure 2. Volume distribution of energy Ev = Ek + Et. Vol-
ume which corresponds to the 0.2 max(Ev) energy level is
drawn. White line indicates the shape of long-crested waves.
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8t ¼ �z t8x � 1

2
J�1 8�

2 � F2
z

� �
� z� p0; ð35Þ

where (34) and (35) are written for the surface z = 0 (so that
z = h, as represented by expansion (2)), p0 is the surface
pressure, J is the Jacobian, and xt and Vt are connected
through the following relationship:

z t ¼ � J�1Fz
� �

z¼0
; ð36Þ

and 8 = F(z = 0).

[35] The capillarity was not taken into account in this
investigation. The boundary condition assumes attenuation
of the vertical velocity at depth:

Fz x; z →�∞; tð Þ ¼ 0: ð37Þ

[36] Solution of Laplace equation (33) with the boundary
condition (35) is represented through the Fourier expansion,
which reduces the system (33)–(35) to a 1D problem:

F ¼
X

�M≤k≤M
fk tð Þ exp kzð ÞJk xð Þ; ð38Þ

Figure 3. Distribution of energy Ev
y
averaged over y-axis for the case of initially monochromatic waves

with steepness ak = 0.24.

Figure 4. Evolution of volume-averaged kinetic energy of vortical motion Ev
xJz

(dashed line) and kinetic
energy of subgrid turbulence (solid line) for initially monochromatic wave of different steepness
(indicated as legend in each subplot).
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where fk are Fourier coefficients of the surface potential
F(x, z = 0, t). Equations (33)–(35) and (36) constitute a
closed system of prognostic equations for the surface func-
tions z(x, z = 0, t) = h(x, t) and the surface velocity potential
F(x, z = 0, t). For integration in time the fourth-order
Runge-Kutta scheme was used, and selection of a suitable
time step was done empirically. Details of the numerical
scheme can be found in Chalikov and Sheinin [1998, 2005],
Chalikov [2005, 2007, 2009], and Chalikov and Rainchik
[2011]. Equations (33)–(35) were now integrated simulta-
neously with equations for vortical motions (24a), (24b),
(24c). Components of potential velocity U and W were cal-
culated using (37) and relations:

U ¼ J�1 xxFx þ zxFz
� �

; ð39Þ

W ¼ J�1 zxFx þ xxFz
� �

: ð40Þ

6. Results of Simulations

[37] The coupled waves/turbulence model was used first
for simulation of generation of turbulence in a train of
monochromatic waves with steepness ak = 0.03 � 0.24. The
simulations were initially performed in a 2D version of
model, when the lateral disturbances were absent. In this
case, the imposed vortical motion was promptly dissipated,
and turbulence did not develop. These features follow
directly from equations (13a), (13b), and (13c), but such
computations were still conducted for validation of the entire
model.
[38] Figures in this section demonstrate outcomes of the

3D version. Initial conditions were assigned on a basis of
linear theory as a train of harmonic waves with nondimen-
sional wave number kp = 4 (such setup corresponds to four
waves in the domain). To be sure that the model is correct,
the first simulations were done for purely potential flow in
absence of non-potential disturbances. As expected, the
vortical motion and turbulence were not generated. Other

numerical experiments were then conducted with super-
imposed small random noise introduced as initial vortical
velocity field. The waves remain two-dimensional, i.e., long-
crested and do not change in the lateral y-direction. Note that
monochromatic waves with steepness larger than 0.12 create
new modes which finally result in disintegration of main
modes and breaking. For the steepest wave with steepness
ak = 0.24, breaking happens at periods which are still longer
than those considered in the current work. Typical distribu-
tion of the sum E of the energy of explicitly simulated tur-
bulent motion Ev

En ¼ 1

2
u2 þ v2 þ w2
� � ð41Þ

and the energy of subgrid turbulence Et in a top layer with
thickness of 0.01 Lp (Lp is wavelength) is shown in Figure 1.
This is a view from above, and the curve at the bottom
indicates the shape of the long-crested wave. As seen, the
largest disturbances are concentrated along wave crests.
These disturbances move with the phase velocity of carrying
waves, which fact confirms that the dissipation time scale is
small, and areas of increased vortical motion are tied with
the zones of maximum gradients of orbital velocities.
[39] Figure 2 outlines shape of the volume below the water

surface which corresponds to energy level of 0.2 max(En).
This figure demonstrates the volume distribution of the total
energy of disturbances for the case ak = 0.24. White curve
indicates the surface elevation, which is again the turbulent
energy is concentrated along the long wave crests. For
convenience, the vertical scales for energy and surface shape
are chosen different.
[40] Distribution of y-averaged energy of wave-produced

disturbances Ēy is shown in Figure 3. As seen, the dis-
turbances are concentrated near the surface and rapidly
attenuate with depth. Such behavior is determined by prop-
erties of orbital velocity field: the squared Fourier compo-
nents of velocity deformations (which are responsible for
generation of vorticity) have their maxima at the surface and
attenuate as exp(2kz) with the depth z negative if counted
from surface.
[41] Time evolution of volume-averaged energy of

explicitly simulated vortex motion and energy of turbulence

Ev
xJz

are shown in Figure 4 (solid and dashed curves,
respectively) for different steepness. As seen, both quantities
grow with time and to the end of calculation reach more or
less stationary conditions at time t = 6 periods. Further
integration was not performed since we reproduced the exact
conditions of laboratory experiments. The data on vertical
distribution of turbulent viscosity coefficient normalized by
molecular viscosity coefficient ~K ¼ K=n are given for
waves with initial steepness ak = 0.24 (dotted curves),
ak = 0.18 (dashed curves) and ak = 0.12 (dash-dotted curves)
in Figure 5.
[42] Thin curves correspond to maximum values of ~K in

the domain at each level, thick curves correspond to aver-

aged values of ~K
xJ
. Maximum values of viscosity for all the

three cases typically one decimal order of magnitude larger
than averaged values, which fact points to large intermit-
tency of horizontal distribution of turbulent viscosity. Note
that for the case ak = 0.08 the average viscosity is very close

Figure 5. Vertical profiles of mixing coefficient ~K ¼ K=n
under initially monochromatic waves for initial steepness
ak = 0.24 (dotted curves), ak = 0.18 (dashed curves) and
ak = 0.12 (dash-dotted curves), ak = 0.08 (dash-double-
dotted curves). Thin lines correspond to maximum values
of ~K in the domain at each level, thick lines correspond
to averaged values of ~K .
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to molecular viscosity, this indicates that wave motion is
laminar. However, even in this case, very narrow patches of
turbulence in vicinity of wave peaks are still generated.
[43] In absence of breaking (that is for waves with small

steepness and transitional Reynolds numbers) [see also
Babanin, 2006], the turbulence in the model is strongly
intermittent as seen in Figures 1–3, and it concentrates at the
rear face of the waves. This is what was also observed in
laboratory experiments of Babanin and Haus [2009] with
such turbulence.
[44] The intermittence of turbulence is confirmed by

vertical profiles, in Cartesian coordinates, of averaged and
instantaneous maximal total energy Ev

xy (i.e., sum of

energy of the vortical motion and energy of subgrid tur-
bulence), shown in Figure 6. The records used for calcu-
lations were obtained toward the end of the 6th period of
integration. Thin horizontal lines in these subplots corre-
spond to the depths of wave troughs z = hmin. Above this
level, the averaging was done over the area occupied by the
water. The dotted line indicates the maximum values observed
at the 6th period of integration. Both curves suggest a con-
siderable growth of the energy above wave troughs. As seen,
the average values of energy are lower at least by a decimal
order than their maximum values (see also Figure 1). Starting
from the largest wave steepness, at the surface the kinetic
energy is 10�2 and drops by two orders of magnitude at the

Figure 6. Vertical distribution of kinetic energy of the non-potential motion, average (solid line) and
instantaneous maximal (dotted line), for a range of wave steepness from ak = 0.24 (top left corner) down
to ak = 0.03 (bottom right corner), as shown in the legend of each subplot (RE is respective Reynolds
numbers). The scales are dimensionless, the vertical scale is distance to the surface, the horizontal scale
is the turbulence energy.
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Figure 7. Vertical profiles of nondimensional rates of volumetric dissipation rate (m2s�3) for different
steepness, as shown in the legend of each subplot (a is amplitude of 1.5 Hz waves, RE is respective
Reynolds numbers). Solid curves correspond to average profiles and dashed curves indicate the variation.
Figure is reproduced from Babanin [2011] (copyright Cambridge University Press, reprinted with
permission).

BABANIN AND CHALIKOV: WAVE-TURBULENCE COUPLED MODEL C00J17C00J17

10 of 14



vertical scale of p/8, i.e., quarter of the wavelength, and then
remains approximately constant. At the lower end of steep-
ness, the surface energy is �10�7, and the two-order-of-
magnitude drop occurs over 1/8th of wavelength vertical dis-
tance too. Thus, in the range of realistic water-wave steepness,
intensity of the non-breaking wave-induced turbulence
changes by 5 orders of magnitude. At ak � 0.1, the surface
turbulence energy is �10�5. While such energy is apparently
small as a dissipation source of the surface waves, it plays
very essential role in the upper-ocean processes [Qiao et al.,
2004, 2010; Huang et al., 2008; Babanin et al., 2009], mix-
ing of the stratified fluid [Dai et al., 2010], sediment sus-
pension in finite-depth seas [Pleskachevsky et al., 2011],
swell attenuation [Babanin, 2011], as described in section 1.
[45] Vertical profiles of nondimensional volumetric dissi-

pation rate (solid curves) and its variance (dashed curves)
obtained by averaging in Cartesian coordinate system are
shown in Figure 7. Here, wavelength corresponds to fre-
quency f = 1.5 Hz used in the laboratory experiment of
Babanin and Haus [2009] and therefore amplitude a shown
in the legend is an indicator of steepness. Different subplots
show profiles for different wave amplitudes a and corre-
sponding Wave Reynolds Numbers [Babanin, 2006]:

Rew ¼ a2w
n

ð42Þ

denoted as RE, as indicated within these different panels.
Here aw signifies orbital velocity, i.e., the velocity scale in
the Reynolds Number (w is radian frequency), and v is
kinematic viscosity of the water. It is quite obvious that due
to intermittency the production of turbulence does not
actually stop at low amplitudes/Rew, but magnitude of the
dissipation rates becomes so marginal (ɛ � 10�8 m2/s3 at

Rew = 84) that it is hardly possible to measure. The lowest
dissipation which Babanin and Haus [2009] were still able
to detect above the noise level with their PIV method was of
the order ɛ � 10�4 m2/s3. If this is chosen as a reference,
then Rew ≈ 2000 can be regarded as the critical Wave Rey-
nolds Number, close to the estimate Rew ≈ 3000 of Babanin
[2006].
[46] Comparison of the volumetric dissipation rates pro-

duced by the model and those measured by Babanin and
Haus [2009] are given in Figure 8. Such dissipation rates
max(Diss) are plotted as a function of dimensional wave
amplitude a(m), like volumetric dissipation rate ɛ (m2s�3)
[Babanin and Haus, 2009, Figure 2]. It is, however, not
exactly the same property as ɛ in Babanin and Haus [2009].
Those were measured below the troughs of the highest
waves, i.e., always at some distance below the surface and
even below the mean water level. Values of max(Diss) in
Figure 8 indicate the maximum dissipation in the wave-
induced-turbulence dissipation profile. In practice, this is an
estimate of the volumetric dissipation rate near the surface
and above the mean water level.
[47] Since the wave-induced turbulent energy is known to

concentrate within wave crests [Gemmrich, 2010], it is
expected that such max(Diss) should be greater than ɛ in
Babanin and Haus [2009]. In the model, this happens
because the generation of turbulence has maximum at the
surface as mentioned above. In Figure 8, the shaded area
corresponds to the range of measurements and scatter of the
observational data of Babanin and Haus [2009]. There is
quantitative agreement for wave amplitudes of �1.5 cm
(wavelength here, as was in the experiment, corresponds to
the frequency 1.5 Hz), and for the higher waves max(Diss)
within the crests is greater than that measured below the
troughs.
[48] Next set of calculations were done for initially

assigned multimode wavefield corresponding to Pierson-
Moskowitz spectrum. The size of domain in x, y, z directions
was 1024 � 128 � 30 knots. The RMS steepness of this
wavefield equals to 0.06, and explicit breaking events never
happened. Some dissipation of wave energy occurs due to
flux of energy into high wave number range, what was
simulated through special algorithm [see Chalikov and
Sheinin, 1998, 2005]. In order to keep the energy in wave
system constant, the loss of energy was compensated by
energy input from wind (details of such simulations can be

Figure 8. Maximal volumetric dissipation rates max(Diss)
versus wave amplitude a. The shaded area corresponds to
the range of measurement and scatter of the observational
data of Babanin and Haus [2009]. Vertical segments indi-
cate standard deviation of the dissipation estimates. Figure
is reproduced from Babanin [2011] (copyright Cambridge
University Press, reprinted with permission).

Figure 9. Evolution of volume-averaged turbulent kinetic
energy Ek (solid curve) and energy of subgrid turbulence
Et (dashed curve). Both energies are normalized by the
total wave energy and multiplied by length scale which is
equal to 1.
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found, for example, in Chalikov [2009]). Initial modes were
assigned, again, with small-amplitude theory, and energy of
random noise was about 1% of wave energy.
[49] Temporal evolution of volume-averaged kinetic

energy Ek (solid curve) and energy of subgrid turbulence Et

(dashed curve) during first 120 periods of integration is
shown in Figure 9. As seen, both energies are growing with
decreasing rate, and to the end of the integration period the
energy is close to some quasi-stationary level.
[50] An example of y-averaged distribution of total energy

Ev
y
is given in Figure 10. Energy in Figure 10 is represented

in nondimensional units. The turbulent kinetic energy and
wave energy have different magnitudes, so in order to judge
on absolute values of energy generated by potential waves it
is reasonable to compare the integrated over depth total
turbulent kinetic energy

Exyz
v ¼

Z0

H

Exy
v dz; ð43Þ

with total energy of waves equal to sum of potential and
kinetic energy Ew [see Chalikov and Sheinin, 1998, 2005].
According to the current calculations, the total turbulent
kinetic energy Ev

xyz is within the range (0.03–0.04)Ew.
Hence, the energy of non-potential motion in fully devel-
oped waves is not small.
[51] The most important problem of wave-turbulence

theory is the rate of wave energy dissipation (which on
average is equal to production of non-potential energy Pv).
The last numerical experiment with multimode wavefield
gives a possibility to calculate this production rate of non-
potential motion energy Pv on the basis of equations (22a),
(22b), (22c), (23a), (23b), and (23c):

Pv ¼ wzu� wxv
� �

W þ wzvþ wJw
� �

U ð44Þ

where (wx, wJ, wz) are components of vorticity in cylindrical
conformal coordinates, (u, v, w) are velocity components of
the vortical motion and (U, W) are components of the wave
orbital velocity. Fortunately, when averaged over horizontal
coordinates, these characteristics turned out to be essentially
positive, otherwise the calculations could predict the inverse
flux of energy from turbulence to potential waves, which is
unlikely. The local profiles of averages over horizontal coor-
dinates of production Pv

xy, as a function of nondimensional

depth l = z/Hs for the last period of integration, are shown in
Figure 11 (Hs is significant wave height, see (48)). These
profiles are shown by gray lines and the mean profile Pv

xy by
solid curve.
[52] Any estimation of Reynolds number (42) here gives

values by orders magnitude exceeding the critical values of
Re ≈ 2000 ÷ 3000. It means that real wavefields should gen-
erate the fully developed turbulence, where a direct depen-
dence of its intensity on Re number is absent. This is why the
dependence of nondimensional variable Pv

xy on nondimen-
sional depth can be approximated by a simple relation

Pv
xy ¼ 6:60 ⋅ 10�8 exp 17:47zþ 6:76z2

� �
: ð45Þ

[53] We should note that this parameterization is for the
Pierson-Moscowitz spectrum, i.e., for fully developed
waves. For developing waves, which are steeper, relative
production of turbulence will be larger, but here such spectra
were not modeled because steep waves also involve occa-
sional breaking which was to be avoided in this study.

Figure 11. Vertical distribution of nondimensional dissipa-
tion rate P (see equation (46)) of the vortical motion as func-
tion of nondimensional depth ~z ¼ z=Hs.

Figure 10. Distribution of averaged over y-axis energy Ev
y
(nondimensional) for the case of waves with

initially assigned Pierson-Moskowitz spectrum.

BABANIN AND CHALIKOV: WAVE-TURBULENCE COUPLED MODEL C00J17C00J17

12 of 14



[54] Taking into account the scaling accepted in the cur-
rent work, the dimensional rate of production P(m2s�3) can
be represented as follows

H�1=2
s g�3=2P ¼ 3:87 ⋅ 10�7 exp 0:506~z þ 0:0057~z2

� �
; ð46Þ

and we should remind that significant wave height Hs can be
defined by integration over the wave spectrum

Hs ¼ 4

Z
w;q

S w; qð Þdwdq

0
B@

1
CA

1=2

; ð47Þ

where w is frequency and q is angle.
[55] Dependence of type of (47) can be used for calcula-

tions of the volume input of energy from waves in the
equation of turbulent energy evolution. Being integrated
over depth, the equation gives the rate of dissipation of wave
energy due to generation of turbulence.

7. Conclusions

[56] Numerical model for turbulence, unrelated to wave
breaking and produced by orbital motion of potential waves
is developed. The model consists of three parts: fully non-
linear potential model of two-dimensional (i.e., long-crested)
waves, LES three-dimensional model based on full Reynolds
equations with subgrid turbulence, three-dimensional model
of evolution of subgrid turbulence. Three-dimensionality of
the turbulence is of principle importance as the two-
dimensional (in vertical plane) vortex does not interact with
the wave orbital motion. The last two modules of the model
are new and written in cylindrical conformal coordinates.
Small perturbations of the potential motion are introduced
and then allowed to develop as dictated by the theory.
[57] Long-term numerical integration of the system of

equations was done for different wave steepness. The vor-
ticity and turbulence usually occurs in vicinity of wave
crests (where the velocity gradients reach their maximum)
and then spreads over upwind slope and downward. If
modeled at low wave steepness, which is necessary to avoid
breaking, a specific feature of such wave turbulence is its
strong intermittency: the turbulent patches are mostly iso-
lated and intermittency grows with decrease of the wave
amplitude. The maximum values of energy of turbulence are
in agreement with available experimental data.
[58] The results suggest that even non-breaking potential

waves can generate the turbulence, which thus enhances the
turbulence created by the shear current or by breaking events.
Importance of such turbulence has already been shown across
a broad range of the upper-ocean processes, that is the upper-
ocean mixing and circulation, sediment suspension in finite
depths, swell attenuation, among others. The new model can
be used to investigate the phenomenon in broad range of
conditions and to produce parameterizations necessary in
simulations which cannot reproduce the turbulence explic-
itly. The wave-turbulence model can be used for qualitative
and even quantitative investigation of the phenomenon.
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