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A B S T R A C T

Waves propagate in a free-surface ocean due to compressibility and gravity (and surface tension at much
smaller scale). Analytical solutions have long been derived independently for acoustic and gravity waves, i.e.,
acoustic waves or internal-gravity waves in an unbounded ocean, surface-gravity waves in a free-surface-ocean,
and acoustic or internal modes in a bounded ocean. In the present study, surface tension and earth-rotation
are neglected and a simple, unified model based on inner and boundary dispersion relations is derived
for waves propagating in a compressible, stratified, free-surface ocean. Branches of acoustic gravity wave
solutions are identified and visually analysed in phase-space. Taylor developments are then carried out with
respect to small parameters describing stratification and compressibility and are compared with numerical
approximations of the intersection of inner and boundary dispersion surfaces. Finally, the model recovers the
known approximations for swell, long-surface waves, internal-gravity waves, internal modes, acoustic waves or
acoustic modes, and also provides information on the modifications of these solutions due to stratification and
compressibility and on the coupling of acoustic and gravity waves. Two peculiar regions of the acoustic-gravity
wave phase-space are more specifically highlighted and studied in detail: one for long waves shedding new
light on the distinction between surface waves and low-order internal modes, the other for marginally stable
surface waves of intermediate length-scale.
. Introduction

Oceanographers have now access to high-performance numerical
odes to explore and forecast the dynamics of a free-surface, com-
ressible, non-hydrostatic ocean in a LES1 context (Hilt et al., 2020;
archesiello et al., 2021). Compressibility has not been reintroduced

er se (acoustic waves remain at least a priori a nuisance for classical
eso-scale configurations) but rather to avoid the resolution of large
D numerical systems required to simulate non-hydrostatic dynamics
nder the Boussinesq assumption (Auclair et al., 2011, 2018). The
ompressible ocean codes are ‘‘local’’ (in the sens that the evolution
f the dynamics at a point is only influenced by its neighborhood)
nd they are thus by nature well-adapted to massively-parallel process-
ng; besides, computing costs can be drastically reduced by adjusting
rtificially the velocity of sound waves. Such an approach has al-
eady been implemented in weather forecasting models for nearly two
ecades (Skamarock et al., 2001) but several reasons can explain its
ate arrival in ocean modelling: the large gap between the velocities
f ocean currents and sound waves but also the numerical treatment

∗ Corresponding author.
E-mail address: francis.auclair@aero.obs-mip.fr (F. Auclair).

1 For Large Eddy Simulation.

of the free-surface through time-splitting algorithms in ocean mod-
els (Shchepetkin and McWilliams, 2005) and the difficulty to adapt
these algorithms to non-hydrostatic, compressible modelling (Auclair
et al., 2018).

A much wider spectrum of acoustic-gravity waves (AG waves) can
consequently be simulated numerically in realistic configurations of
complex bathymetries, stratifications, forcing or ocean circulations rais-
ing fundamental questions not only about the dynamics itself of AG
waves but also about their impact on low-frequency ocean circulation.
Simple process-oriented ocean configurations are required to further
explore the dispersion of AG waves and to evaluate the accuracy of
their numerical representation in up-to-date ocean models. To achieve
this, much can be learned from studying well-controlled propagations
in laboratory water flumes: Dossmann et al. (2013) or Auclair et al.
(2014) investigate for instance large internal waves induced above
bathymetry simultaneously in laboratory and numerical configurations.
More fundamental, analytical models remain nevertheless both neces-
sary and essential. The objective pursued in this case is not only to
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document the propagation of AG waves in complex, realistic ocean
configurations (numerical models are designed to do so) but also to
treat fundamental, simple process-oriented configurations in order to
gain a better understanding of the dynamics of AG waves and to provide
simple solutions to evaluate the accuracy of numerical models. The
present study is an original step in these directions.

Ocean AG waves cover a large variety of propagating mechanisms,
and textbooks (LeBlond and Mysak, 1981; Gill, 1982; Pedlosky, 2013)
have detailed the derivation of analytical solutions for decades. These
waves can be classified in several categories depending on the type of
mechanisms directly involved in their propagation. Neglecting Earth’s
rotation and associated planetary waves, two fundamental categories
are of particular interest in the present study: acoustic (sound) waves,
which are a consequence of ocean compressibility, and gravity waves,
which are sustained by the gravity force. Table 1 gives a short (and
necessarily incomplete) list of such waves. A particular type of waves
is most often characterized by a space–time dispersion relation, linking
its time frequency (or period) with its space wave-number (or wave-
length). The phase and group velocities and wave dispersion capacity
can be derived from the dispersion relations.

If ocean waves are short enough and generated far enough from
surface and bottom boundaries, they can propagate in the ocean over
a few wavelengths and during a few periods as in any unbounded
medium. However, ocean waves can also take specific forms and propa-
gate as wave-modes over the ocean wave-guide. For example, a stratified
ocean is known to allow the propagation of internal gravity modes
with ‘‘long’’ horizontal wavelengths compared to the ocean depth.
Another example is given by the acoustic modes which are associated
with compressibility effects (Jensen et al., 2011) and which have been
recently revisited (Smith, 2015). Such internal and acoustic waves are
qualified as ‘‘modes’’ because their vertical wavelength is constrained
by the vertical extent of the domain. The ocean free-surface is
permanently shaken by a myriad of horizontally propagating waves and
it is not always clear whether these waves are modes or just ‘‘vertically-
evanescent waves propagating horizontally’’. Capillary waves, swells,
tidal waves, tsunamis are well-known examples of such free-surface
waves.

Deriving a dispersion relation for acoustic waves or for internal
waves in an unbounded ocean is rather straightforward. The method
generally includes two steps: small amplitude is assumed; only specific
wave-restoring mechanisms and medium characteristics are retained
in the simplest possible wave dispersion model (compressibility and
pressure force for acoustic waves, gravity and vertical advection of
isopycnal surfaces for internal waves) (Lighthill, 1967).

The introduction of a free-surface brings more complexity. Small-
amplitude is postulated in this case also and both gravity and free-
surface motions are retained in the dispersion model. Surface waves
are ‘‘edge waves’’ propagating at the interface between the atmosphere
and the ocean, and the surface kinematic relation (the free-surface
general boundary condition) leads to a transcendental dispersion rela-
tion with trigonometric terms. As a result, further simplifications are
needed and specific analytical solutions can then be found in the
literature depending, for example, on relative depth, i.e., the product
of horizontal wave-number 𝑘𝑥 and ocean depth 𝐻 (Table 1). Long
gravity waves are particular solutions of small aspect ratio 𝑘𝑥𝐻 , well-
known to propagate horizontally with

√

𝑔𝐻 phase and group velocities
(where 𝑔 is the acceleration of gravity and 𝐻 a reference depth).
Interestingly enough, such waves occur in at least two distinct contexts.
Shallow-water waves (SHW) are propagating solutions of shallow-water
models, their vertical wave-length is then viewed as infinite (much
larger than their horizontal wave-length). Long swells (LSW) are also
propagating with the same phase and group velocities but, in this case,
they retain some of the properties of swells and their horizontal and
vertical wave-lengths have similar magnitudes.

SHW and LSW are often considered as similar since their wave
velocity (𝛺∕𝑘 ) are equal. However due to the underlying assumptions
𝑥 c

2

made in the models leading to these solutions, LSW horizontal and
vertical wave-numbers have equal absolute values (|𝑘𝑧,𝑙𝑠𝑤| = |𝑘𝑥|)
whereas SHW have a vanishing vertical wave-number (𝑘𝑧,𝑠ℎ𝑤 = 0).

Dukowicz (2013) tackled the description of AG waves and proposed
review of ‘‘Various approximations in atmosphere and ocean models
ased on an exact treatment of gravity wave dispersion’’. In that paper,
coustic-gravity waves were shown to satisfy a system of two dispersion
elations and the impact of several usual assumptions of ocean models
as evaluated. The present study builds on Eckart (1960) and Dukow-

cz (2013)’s results and more specifically focuses on the impact of both
tratification and compressibility on AG-wave solutions in the ocean.
he objective is not to provide a full description of AG waves in any re-
listic configurations (up-to-date numerical models being developed for
his) but rather to focus on a simple and classical configuration leading
o a unified, as-general-as-possible, analytical model. Taylor expansions
f dispersion relations and resulting expressions for wavelength and fre-
uency are more systematically derived in terms of compressibility and
tratification. Surface waves are systematically studied together with
nternal and acoustic modes. Long-wave solutions are investigated here
n detail. Another original aspect of the present study is that acoustic
odes are discussed in the frame of classical ocean acoustics (Jensen

t al., 2011) and additional ‘‘poles’’ (singularities) of the dispersion
elations induced by stratification and gravity are found. A peculiar
egion of phase-space is also identified where surface acoustic-gravity
urface wave are ‘‘marginally stable’’ and gravity and compressibility
re both important. To the authors knowledge, the existence of such a
egion has never been discussed in the literature. A graphic analysis of
ave solutions is proposed in 3D frequency/wave-number phase-space,
nfolding their dependency on the vertical wave-number.

In the Section 2, a linear model of ocean wave propagation is
roposed with bottom and surface boundary conditions, and a system
f two dispersion relations (the inner and boundary dispersion rela-
ions) is derived. The inner dispersion relation and the wave solutions
ropagating in an unbounded ocean are studied in detail in Section 3.
aves propagating in a bounded ocean are investigated in Section 4

nd conclusions are drawn in Section 5.

. Linear model for surface and internal acoustic-gravity waves

.1. General model for a compressible, viscous ocean

Ocean dynamics can be described with a small number of macro-
copic variables: velocity (𝐯), pressure and density (𝑝 and 𝜌), temper-
ture and salinity (𝑇 and 𝑆). The general equations governing the
otion of a compressible, viscous ocean are then:

𝜕𝜌
𝜕𝑡

= −𝛁 ⋅ (𝜌𝐯) (1a)
𝜕𝜌𝐯
𝜕𝑡

= −𝛁 ⋅ (𝜌𝐯⊗ 𝐯) − 2𝜌 𝜴 × 𝐯 − 𝛁𝑝

+ 𝛁 ⋅
(

𝜇(𝛁𝐯 + 𝛁𝐯 𝑇 ) + 𝜇2(𝛁 ⋅ 𝐯) 𝐈
)

+ 𝜌𝐠 (1b)
𝜕𝜌𝑇
𝜕𝑡

= −𝛁 ⋅ (𝜌𝑇 𝐯) + 𝛁 ⋅ (𝜅𝑇𝛁𝑇 ) (1c)
𝜕𝜌𝑆
𝜕𝑡

= −𝛁 ⋅ (𝜌𝑆𝐯) + 𝛁 ⋅ (𝜅𝑆𝛁𝑆) (1d)

= 𝜌(𝑇 , 𝑆, 𝑝) (1e)

here 𝐈 is the identity matrix, superscript 𝑇 indicates transposition,
and 𝜇2 are the kinetic and bulk (or second) viscosities, 𝜴 is earth

ngular velocity, 𝜅𝑇 and 𝜅𝑆 are the heat and salt diffusivities. These
quations are written in a conservative form. They specify basic con-
ervation principles: conservation of mass for Eq. (1a), conservation of
omentum for Eq. (1b) and conservation of heat and salt for Eqs. (1c)

nd (1d). Eq. (1e) is a functional relation describing the thermodynamic
quation of state (EOS).

At the bottom (𝑧 = −𝐻) and surface (𝑧 = 𝜁 ) of the ocean, boundary
onditions must be specified for each variable (or for its derivatives). A
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Table 1
Simplified models of ocean waves and modes and their dispersion relations in a vertical section, for an unbounded ocean
(top) and for a bounded ocean (bottom). 𝛺 is the angular frequency of the wave, 𝑘𝑥 and 𝑘𝑧 are the horizontal and vertical
wave-numbers, 𝑔 is the acceleration of gravity, 𝐻 a reference depth, 𝑁 a reference Brunt-Väisälä angular frequency and 𝑐𝑠
the speed of sound. 𝑛 and 𝑚 are two strictly positive integer numbers.

Waves Assumptions Angular frequency(𝛺) Vertical wave-number (𝑘𝑧)

Acoustic waves Compressible, unbounded 𝛺2
𝑎𝑤 = 𝑐2𝑠 (𝑘

2
𝑥 + 𝑘2𝑧) Independent

Internal gravity waves Stratified, unbounded 𝛺2
𝑖𝑔𝑟 =

𝑁2𝑘2𝑥
𝑘2𝑥 + 𝑘2𝑧

Independent

Acoustic gravity modes Compressible, bounded 𝛺2
𝑎𝑚 = 𝑐2𝑠 (𝑘

2
𝑥 + 𝑘2𝑧) 𝑘𝑧,𝑎𝑚 = 𝜋

2𝐻
+ 𝑚𝜋

𝐻
Swell Free-surface 𝛺2

𝑠𝑤 = 𝑔𝑘𝑥 tanh(𝑘𝑥𝐻) |𝑘𝑧,𝑠𝑤| = |𝑘𝑥|

Swell (long) Free-surface 𝛺2
𝑙𝑠𝑤 = 𝑔𝐻 𝑘2𝑥 |𝑘𝑧,𝑙𝑠𝑤| = |𝑘𝑥|

Shallow water waves Free-surface, shallow 𝛺2
𝑠ℎ𝑤 = 𝑔𝐻 𝑘2𝑥 𝑘𝑧,𝑠ℎ𝑤 = 0

Internal gravity modes Stratified, bounded 𝛺2
𝑖𝑚 =

𝑁2𝑘2𝑥
𝑘2𝑥 + 𝑘2𝑧

𝑘𝑧,𝑖𝑚 = 𝑛𝜋
𝐻
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simple condition of no penetration and no-slip at the ocean flat-bottom
can be written:

𝐯(𝐱𝐇, 𝑧 = −𝐻, 𝑡) = 𝟎 (2)

In an inviscid flow, this latest relation is that of no normal velocity.
Neglecting surface-tension pressure drop, surface pressure is given by:

𝑝(𝐱𝐇, 𝑧 = 𝜁, 𝑡) = 𝑝𝑎𝑡𝑚 (3)

with 𝑝𝑎𝑡𝑚 the atmospheric pressure imposed at the surface of the ocean.
Surface capillarity waves are consequently filtered out and will be
neglected in the remaining of this work.

Relation (2) corresponds to Jensen et al.’s ‘‘hard-bottom condition’’
ith no propagation nor penetration of acoustic waves in sediment
nd geologic layers beneath the ocean floor (Jensen et al., 2011).
he authors additionaly recover Relation (3) by assuming that the
tmosphere behaves as a vacuum medium for acoustic waves. This
eans that acoustic waves propagating from the ocean toward the

cean floor or toward the atmosphere are integrally reflected back to
he ocean.

The surface kinematic condition expresses the motion of the free-
urface and relates the free-surface displacement 𝜁 to the surface verti-
al velocity 𝑤:

d𝜁 (𝐱𝐇, 𝑡)
dt = 𝑤(𝐱𝐇, 𝑧 = 𝜁, 𝑡) (4)

This kinematic boundary condition allows the propagation of surface
gravity waves.

2.2. EOS based on pressure and density decomposition

Waves are defined as small disturbances to a motionless thermo-
dynamic equilibrium state, and both pressure and density can be de-
composed into an equilibrium component and a small increment. In
addition, as a first approximation, the impact of atmospheric pressure
𝑝𝑎𝑡𝑚 can be neglected — it can take an active part in wave generation,
but only plays a minor role during propagation.

The usual decomposition is now formalized for pressure (5a) and
density (5b):

𝑝(𝐱, 𝑡) = 𝑝𝑎𝑡𝑚(𝐱𝐇, 𝑡)
⏟⏞⏞⏟⏞⏞⏟

≈0

+𝑔 ∫

𝜁

𝑧
𝜌ℎ(𝐱𝐇, 𝑧′, 𝑡) 𝑑𝑧′

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑝ℎ(𝐱,𝑡)

+𝛿𝑝(𝐱, 𝑡)

= 𝑔 ∫

𝜁

𝑧
𝜌̂ℎ(𝑧′) 𝑑𝑧′

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑝̂ℎ(𝑧)

+ 𝑔 ∫

𝜁

𝑧

(

𝜌ℎ(𝐱𝐇, 𝑧′, 𝑡) − 𝜌̂ℎ(𝑧′)
)

𝑑𝑧′

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑝′ℎ(𝐱,𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑝ℎ(𝐱,𝑡)

+ 𝛿𝑝(𝐱, 𝑡) (5a)

(𝐱, 𝑡) = 𝜌̂𝑇𝑆 (𝑧) + 𝜌′𝑇𝑆 (𝐱, 𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜌𝑇𝑆 (𝐱,𝑡)=𝜌(𝑇 ,𝑆,𝑝=0)

+ 1
𝑐2𝑠

(

𝑝̂ℎ(𝑧) + 𝑝′ℎ(𝐱, 𝑡) + 𝛿𝑝(𝐱, 𝑡)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

+O(𝑝2)
𝜕𝜌∕𝜕𝑝|𝑇 ,𝑆 𝑝(𝐱,𝑡)

3

≈ 𝜌̂𝑇𝑆 (𝑧) +
𝑝̂ℎ(𝑧)
𝑐2𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
≈𝜌̂ℎ(𝑧)

+ 𝜌′𝑇𝑆 (𝐱, 𝑡) +
𝑝′ℎ(𝐱, 𝑡)
𝑐2𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜌′ℎ(𝐱,𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≈𝜌ℎ(𝐱,𝑡)

+
𝛿𝑝(𝐱, 𝑡)

𝑐2𝑠
(5b)

with 𝜕𝜌∕𝜕𝑝|𝑇 ,𝑆 = 𝑐2𝑠 at constant temperature and salinity, 𝜕𝑝̂ℎ∕𝜕𝑧 =
−𝜌̂ℎ(𝑧)𝑔, 𝜕𝑝′ℎ∕𝜕𝑧 = −𝜌′ℎ(𝑧)𝑔. The first decomposition 𝑝 = 𝑝ℎ + 𝛿𝑝 is
efined by an hydrostatic component 𝑝ℎ and a nonhydrostatic pressure
ncrement 𝛿𝑝. It is based on a division of the pressure field into a
low varying component in hydrostatic equilibrium and a fast varying
onhydrostatic component. Density can then be obtained from the
OS (1e) and a first-order Taylor development is carried out for small
otal pressure. Its Lagrangian evolution can be directly related to the
agrangian evolution of pressure under the assumption of heat and salt
onservation (𝑑𝜌𝑇𝑆∕𝑑𝑡 = 0) when both heat and salt diffusions can be
eglected:

d𝜌
dt =

d𝜌𝑇𝑆
dt + 1

𝑐2𝑠

d𝑝
dt = 1

𝑐2𝑠

d𝑝
dt (6)

The Brunt-Väisälä frequency for a compressible ocean (Gill, 1982,
p169) is defined by:

𝑁2 = −𝑔∕𝜌̂ℎ(𝑧)𝜕𝜌̂ℎ∕𝜕𝑧 − 𝑔2∕𝑐2𝑠 (7)

Note that 𝜌̂ℎ(𝑧) includes compressibility effects but not 𝑁2 and that,
n (5b), we made the further assumption that:

𝑇𝑆 +
𝑝ℎ
𝑐2𝑠

≈ 𝜌ℎ = 𝜌̂ℎ + 𝜌′ℎ (8)

This relation is indeed an approximation since the non-hydrostatic
component of density, leading for instance to convective instabilities,
has been neglected at the right-hand-side.

Relations (5a), (5b), (6) and (8) are central to the derivation of the
present model of AG waves, they also provide the basis for a rather
complete analysis to identify and evaluate the approximations made
in more realistic, compressible, non-hydrostatic, free-surface numerical
models of the ocean.

2.3. Linear inviscid, non-rotating wave model

In the following, ocean is supposed to remain flat-bottomed, Cori-
olis pseudo-force is neglected and viscosities and diffusivities 𝜇, 𝜇2, 𝜅𝑇
and 𝜅𝑆 are vanishing in an inviscid ocean. Combining mass conserva-
tion (1a) and equation of state (6):

−𝜌∇ ⋅ 𝐯 = 1
𝑐2𝑠

d𝑝
dt (9)

Without loss of generality, the present study can now be restricted to
the (𝑂, 𝑥, 𝑧) vertical plane (𝑂 being the origin) to simplify notations.
Eq. (9) can then be expanded to:

−𝜌
( 𝜕𝑢 + 𝜕𝑤)

= 1
2

(

𝜕𝑝
+ 𝑢

𝜕𝑝
+𝑤

𝜕𝑝
)

(10)

𝜕𝑥 𝜕𝑧 𝑐𝑠 𝜕𝑡 𝜕𝑥 𝜕𝑧
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A Taylor expansion of model equations can now be carried out in the
vicinity of the reference profiles (𝑝̂ℎ(𝑧), 𝜌̂ℎ(𝑧)) and of a resting fluid
(𝑢 = 𝑤 = 0). Small amplitude wave-induced increments are given by
𝛿𝑉 = (𝑝′ℎ + 𝛿𝑝, 𝜌′ℎ + 𝛿𝑝∕𝑐2𝑠 , 𝑢, 𝑤). At first order in 𝛿𝑉 , conservation of
mass and vertical advection of pressure and density can be rewritten.
The left-hand side of (10) becomes:

−𝜌
( 𝜕𝑢
𝜕𝑥

+ 𝜕𝑤
𝜕𝑧

)

= −
(

𝜕𝜌̂ℎ𝑢
𝜕𝑥

+
𝜕𝜌̂ℎ𝑤
𝜕𝑧

−𝑤
𝜕𝜌̂ℎ
𝜕𝑧

)

+ O(𝛿𝑉 2)

while the right-hand side of (10) becomes:

1
𝑐2𝑠

(

𝜕𝑝
𝜕𝑡

+ 𝑢
𝜕𝑝
𝜕𝑥

+𝑤
𝜕𝑝
𝜕𝑧

)

= 1
𝑐2𝑠

(

𝜕𝑝
𝜕𝑡

+𝑤
𝜕𝑝̂ℎ
𝜕𝑧

)

+ O(𝛿𝑉 2)

= 1
𝑐2𝑠

(

𝜕𝑝
𝜕𝑡

− 𝜌̂ℎ𝑔𝑤
)

+ O(𝛿𝑉 2)

leading to:

𝜕𝑝
𝜕𝑡

= −𝑐2𝑠

(

𝜕𝜌̂ℎ𝑢
𝜕𝑥

+
𝜕𝜌̂ℎ𝑤
𝜕𝑧

)

+

(

𝑔 +
𝑐2𝑠 𝜕𝜌̂ℎ(𝑧)∕𝜕𝑧

𝜌̂ℎ(𝑧)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
−𝑐2𝑠𝑁2∕𝑔

𝜌̂ℎ𝑤 + O(𝛿𝑉 2) (11)

At first order in 𝛿𝑉 , pressure at 𝑧 = 0 can be related to the
free-surface displacement through the hydrostatic relation:

𝑝(𝑧 = 0) = 𝜌̂ℎ(0)𝑔𝜁 + O(𝛿𝑉 2) (12)

and the kinematic boundary condition can be rewritten for pressure:
𝜕𝑝
𝜕𝑡

(𝑧 = 0) = 𝑔𝜌̂ℎ(0)𝑤(𝑧 = 0) + O(𝛿𝑉 2) (13)

Based on the pressure and density decomposition proposed in Sec-
ion 2.2, a simpler, inviscid, linear, rotation-free 𝑝 − 𝜌 model can be
sed to model acoustic, internal and surface waves. At first order in
ave-induced increment 𝛿𝑉 , the conservation of momentum and mass
nd the EOS read:
𝜕𝜌̂ℎ𝑢
𝜕𝑡

= −
𝜕𝑝
𝜕𝑥

(14a)

𝜕𝜌̂ℎ𝑤
𝜕𝑡

= −
𝜕𝑝
𝜕𝑧

− 𝜌𝑔 (14b)

𝜕𝜌
𝜕𝑡

= −
(

𝜕𝜌̂ℎ𝑢
𝜕𝑥

+
𝜕𝜌̂ℎ𝑤
𝜕𝑧

)

(14c)

𝜕𝑝
𝜕𝑡

= −𝑐2𝑠

(

𝜕𝜌̂ℎ𝑢
𝜕𝑥

+
𝜕𝜌̂ℎ𝑤
𝜕𝑧

)

−

𝑐2𝑠𝑁
2∕𝑔

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝑐2𝑠
𝐷(𝑧)

− 𝑔

)

𝜌̂ℎ𝑤 (14d)

with the (flat) bottom condition (under the inviscid flow assumption)
and the surface condition:

𝑤(𝑧 = −𝐻) = 0 (15a)
𝜕𝑝
𝜕𝑡

(𝑧 = 0) = 𝜌̂ℎ 𝑔 𝑤(𝑧 = 0) (15b)

ollowing Dukowicz (2013), a vertical length scale (written 𝐷(𝑧))
ssociated with stratification is defined by 𝐷(𝑧) = −

𝜌̂ℎ(𝑧)
𝜕𝜌̂ℎ(𝑧)∕𝜕𝑧

=

∕

(

𝑁2(𝑧)
𝑔

+
𝑔
𝑐2𝑠

)

.

2.4. General propagation equation and polarization

Form of wave solutions. Dispersion relations can be derived by postu-
lating and specifying the wave form. Horizontally-propagating surface
waves, wave modes propagating in the ocean wave guide, internal
waves and acoustic waves all satisfy the following ‘‘polarization’’
relations:
⎛

⎜

⎜

⎜

⎜

𝜌̂ℎ𝑢
𝜌̂ℎ𝑤
𝜌

⎞

⎟

⎟

⎟

⎟

=

⎛

⎜

⎜

⎜

⎜

𝑈 (𝑧)
𝑊 (𝑧)
𝜌(𝑧)

⎞

⎟

⎟

⎟

⎟

𝑒𝑖(𝑘𝑥𝑥−𝛺𝑡) (16)
⎝

𝑝
⎠ ⎝

𝑝(𝑧)
⎠

4

here 𝑘𝑥 and 𝛺 are respectively the horizontal wave-number and wave
requency.

nner propagation equation & polarization. The polarization relations
(16) can then be substituted in the propagation model (14a)–(14d)
and in the bottom boundary conditions (15a) to obtain a homogeneous
system of 4 equations with 4 unknowns. The vertical profiles 𝑈 (𝑧), 𝜌(𝑧)
nd 𝑝(𝑧) can eventually be expressed in terms of 𝑊 (𝑧) to obtain an
rdinary differential equation for 𝑊 (𝑧):

̃ ′′(𝑧) + 1
𝐷(𝑧)

𝑊 ′(𝑧) +

(

𝑘2𝑥
𝑁2 −𝛺2

𝛺2
+ 𝛺2

𝑐2𝑠
−

𝐷′(𝑧)
𝐷2(𝑧)

)

𝑊 (𝑧) = 0 (17)

ssuming for now that 𝛺2 ≠ 𝑐2𝑠𝑘
2
𝑥 (this particular case is studied in

ection 2.6), the following polarization relations must be satisfied:

̃(𝑧) = −𝑖𝑘𝑥
(𝑐2𝑠 − 𝑔𝐷(𝑧))𝑊 (𝑧) + 𝑐2𝑠𝐷(𝑧)𝑊 ′(𝑧)

𝐷(𝑧) (𝛺2 − 𝑐2𝑠𝑘2𝑥)
(18a)

𝜌(𝑧) = −𝑖
𝑘2𝑥 (𝑐

2
𝑠 − 𝑔𝐷(𝑧))𝑊 (𝑧) +𝛺2𝐷(𝑧)𝑊 ′(𝑧)

𝐷(𝑧)𝛺 (𝛺2 − 𝑐2𝑠𝑘2𝑥)
(18b)

𝑝(𝑧) = −𝑖𝛺
(𝑐2𝑠 − 𝑔𝐷(𝑧))𝑊 (𝑧) + 𝑐2𝑠𝐷(𝑧)𝑊 ′(𝑧)

𝐷(𝑧) (𝛺2 − 𝑐2𝑠𝑘2𝑥)
(18c)

oundary dispersion relations. The polarization relations must also be
ubstituted in the surface boundary condition (15b), leading to:

𝑖𝛺 𝑝(0) = 𝑔𝑊 (0) (19)

r, using (18),

̃ ′(0) +

(

1
𝐷(0)

−
𝑔𝑘2𝑥
𝛺2

)

𝑊 (0) = 0 (20)

Note that this differs from the surface boundary condition usually
ound in textbooks (e.g. Gill, 1982) is given by

̃ ′(0) −

(

𝑔𝑘2𝑥
𝛺2

)

𝑊 (0) = 0. (21)

Eq. (20) is identical to equation 71 of Dukowicz (2013) but is
btained in an Eulerian framework.

The boundary condition at the ocean floor is given by:

̃(−𝐻) = 0. (22)

hange of variables. First-order terms can be removed in the ordinary
ifferential equation (17) and further developments can be simplified
y making the following change of variable:

̃(𝑧) = 𝑊 (0)𝐹 (𝑧) 𝑒∫
0
𝑧

d𝑧′
2𝐷(𝑧′) (23)

ith 𝐹 (0) = 1. Substituting this relation in (17) leads to a second-order
rdinary differential equation for the unknown function 𝐹 (𝑧):

′′(𝑧) +

(

𝑘2𝑥
𝑁2 −𝛺2

𝛺2
+ 𝛺2

𝑐2𝑠
−

1 + 2𝐷′(𝑧)
4𝐷(𝑧)2

)

𝐹 (𝑧) = 0 (24)

(𝑧) differs from the vertical momentum profile 𝑊 (𝑧) by the atten-
ation factor exp

(

∫ 0
𝑧

d𝑧′
2𝐷(𝑧′)

)

. This factor reduces the vertical extent
of wave anomalies based on the length scale 𝐷(𝑧). The weaker the
tratification, the larger 𝐷(𝑧) and the closer to each other the vertical
elocities 𝑊 (𝑧) and 𝐹 (𝑧).

oundary dispersion relation. In terms of the unknown function 𝐹 (𝑧),
he surface and bottom boundary conditions ((20) and (22)) reads:

′(0) +

(

1
2𝐷(0)

−
𝑔𝑘2𝑥
𝛺2

)

𝐹 (0) = 0 (25a)

𝐹 (−𝐻) = 0 (25b)
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Constant brunt-väisälä frequency. In the remaining of the paper, the
Brunt-Väisälä frequency is assumed to be constant: 𝑁2(𝑧) = 𝑁2

0 , or
equivalently 𝐷(𝑧) = 𝐷0. Eq. (23) can then be rewritten:

𝑊 (𝑧) = 𝑊 (0) 𝑒−𝑧∕2𝐷0 𝐹 (𝑧) (26)

and 𝜌̂ℎ(𝑧) is given by 𝜌̂ℎ(𝑧) = 𝜌̂ℎ(0) 𝑒−𝑧∕𝐷0 . The general expression of the
ertical velocity perturbation profile for a constant scale height 𝐷0 is
hus:

(𝑥, 𝑧, 𝑡) = 1
𝜌̂ℎ(𝑧)

𝑊 (𝑧) 𝑒𝑖(𝑘𝑥𝑥−𝛺𝑡) =
𝑊 (0)
𝜌̂ℎ(0)

𝑒−𝑧∕2𝐷0 𝐹 (𝑧) 𝑒𝑖(𝑘𝑥𝑥−𝛺𝑡) (27)

Leaving aside for now the surface boundary condition, the vertical
profile 𝐹 (𝑧) has to satisfy the following system of equations:

′′(𝑧) +

≡ 𝑘2𝑧
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝑘2𝑥
𝑁2

0 −𝛺2

𝛺2
+ 𝛺2

𝑐2𝑠
− 1

4𝐷2
0

)

𝐹 (𝑧) = 0 (28a)

𝐹 (−𝐻) = 0 (28b)

The general solution of (28a)–(28b) with the normalization 𝐹 (0) = 1 is

𝐹 (𝑧) =
sin

(

𝑘𝑧(𝐻 + 𝑧)
)

sin(𝑘𝑧𝐻)
(29)

where the vertical wave-number 𝑘𝑧 is defined in (28a) and is a function
of 𝑘𝑥 and 𝛺. Note that 𝐹 (𝑧) is linear for 𝑘𝑧 = 0, this particular case will
be considered separately in Section 2.6.

2.5. Inner and boundary dispersion relations

The relation introduced in (28a) between the vertical wave-number
𝑘𝑧, horizontal wave-number 𝑘𝑥 and wave frequency 𝛺 constitutes the
first dispersion relation. It is rewritten as:

𝑘2𝑧 + 𝑘2𝑥

(

1 −
𝑁2

0

𝛺2

)

− 𝛺2

𝑐2𝑠
+ 1

4𝐷2
0

= 0 (30)

This relation does not account for surface or bottom boundary condi-
tions and thus only deals with the propagation of waves in the inner
ocean. It will now be referred to as the inner dispersion relation. The
bottom boundary condition is accounted for in the general solution
profile given by (29). Injecting this vertical profile 𝐹 (𝑧) into the surface
boundary condition (28a) then leads to the boundary dispersion relation:

𝛺2 =
𝑔𝑘2𝑥 tan(𝐻𝑘𝑧)

𝑘𝑧 +
tan(𝐻𝑘𝑧)

2𝐷0

=
𝑔𝑘2𝑥

1
2𝐷0

+ 𝑘𝑧 cotan(𝐻𝑘𝑧)
(31)

wave propagating in a ‘‘bounded ocean’’ must satisfy both the in-
er and boundary dispersion relations (30) and (31). Note that the
raditional inner and boundary dispersion relations for a Boussinesq,
ncompressible fluid (Gill, 1982, Table 1) can be recovered from (30)
nd (31) by setting 𝑐𝑠 → +∞ (incompressibility) and then 𝐷0 → +∞
incompressibility and Boussinesq approximations), leading to:

𝑘𝑧 = 𝑘𝑧,𝑖𝑚 = 𝑛𝜋
𝐻

and

𝛺2 = 𝛺2
𝑖𝑚 = 𝑁2 𝑘2𝑥

𝑘2𝑥 + 𝑘2𝑧
= 𝑔𝑘2𝑥

tan(𝐻𝑘𝑧)
𝑘𝑧

for 𝑛 ∈ N∗
(32)

Dimensionless dispersion relations. As in Dukowicz (2013), several pa-
rameters are now defined to obtain dimensionless dispersion relations:

𝜖2𝑖 = 𝑁2𝐻
𝑔

, 𝜖2𝑎 =
𝑔𝐻
𝑐2𝑠

and 𝜖2 =
𝜖2𝑖 + 𝜖2𝑎

2
= − 𝐻

𝜌̂ℎ(𝑧)
𝜕𝜌̂ℎ
𝜕𝑧

(33)

𝜖𝑖 is thus a small parameter related to gravity, defined as the ratio of the
order of magnitude of the first internal mode ‘‘𝑁𝐻 ’’ velocity to the
velocity of long surface waves

√

𝑔𝐻 . 𝜖 is a small parameter related
𝑎 i

5

to acoustics, defined as the ratio of the speed of long surface waves
√

𝑔𝐻 to that of sound waves 𝑐𝑠. Note that 𝜖𝑖 is defined based on Brunt-
Väisälä frequency 𝑁 (7) to which compressibility effects (𝑔2∕𝑐2𝑠 term)
have been subtracted whereas 𝜖 refers to an equivalent stratification
where the effects of compressibility are included. In a homogeneous
ocean, 𝜖𝑖 vanishes when 𝑁 ≈ 0. The depth scale can then be rewritten
as: 𝐷0 = 2𝐻∕𝜖2. This scale-depth does not include any compressibility-
induced correction. As a consequence the ratio 𝐻∕𝐷0 = 2𝜖2 gives an
idea of the relative strength of the ocean stratification.

Three dimensionless variables are also further defined:

𝜔 = 𝛺
√

𝐻
𝑔
, 𝛿𝑥 = 𝑘𝑥𝐻, 𝛿𝑧 = 𝑘𝑧𝐻 (34)

The inner (30) and boundary (31) dispersion relations can be written
in terms of the dimensionless parameters and variables as:

𝛿2𝑥 + 𝛿2𝑧 = 𝜖2𝑖
𝛿2𝑥
𝜔2

+ 𝜖2𝑎𝜔
2 − 𝜖4 (35a)

𝜔2 =
𝛿2𝑥 tan(𝛿𝑧)

𝛿𝑧 + 𝜖2 tan(𝛿𝑧)
(35b)

In a free-surface ocean, wave solutions must satisfy simultaneously
relations (35a) and (35b). This means that only one parameter among
the frequency 𝜔 and horizontal or vertical wave-numbers (𝛿𝑥 and 𝛿𝑧)
can be imposed. For short vertical wave numbers and far from the
bottom and surface boundaries, wave solutions only need to satisfy the
inner dispersion relation to be dynamically consistent. Pure acoustic
waves or pure internal-gravity waves are known to propagate in the
inner ocean as in an unbounded ocean.

The resulting set of two Eqs. (35a)–(35b) for the three variables
(𝛿𝑥, 𝛿𝑧, 𝜔) and the two parameters 𝜖𝑎, 𝜖𝑖 is nonlinear, and simple general
solutions cannot be found analytically.

2.6. Acoustic Lamb waves & depth-independent surface gravity waves

Acoustic lamb waves. The polarization relations (18) have been derived
after excluding the particular dispersion relation:

𝜖2𝑎𝜔
2 = 𝛿2𝑥 (36)

which is the dispersion relation for acoustic Lamb waves (for atmo-
spheric Lamb waves see for instance Apel, 1987). To be a solution of
the linear inviscid, non-rotating wave model (14a)–(14d) with bottom
boundary condition (15a), these waves must be of the form:
(

𝑊 (𝑧), 𝑝(𝑧), 𝑈 (𝑧), 𝜌(𝑧)
)

= 𝑝0
(

0, 1, 1∕𝑐𝑠, 1∕𝑐2𝑠
)

𝑒−𝑔𝑧∕𝑐𝑠
2 (37)

urface pressure must then vanish to satisfy the surface boundary
ondition (15b) which can only be obtained for the trivial null solution
𝑝0 = 0).

This does not mean that Lamb waves cannot propagate in the real
cean but just that they are not solutions of the present ocean model
Section 2.3) due to the surface and bottom boundary conditions:
ndeed to have non-zero amplitude, the pressure (or alternatively the
ertical velocity) must vanish simultaneously at the surface and at the
cean floor. A vanishing pressure both at the surface and at the ocean
loor can for instance be found in Jensen’s formulation of Pekeris wave
uide (Jensen et al., 2011) whereas a vanishing vertical velocity can
lternatively be specified by assuming that the present linear inviscid,
on-rotating wave model is also rigid lid: (15b) is then replaced by
(𝑧 = 0) = 0. In this case, the wave polarization is given by (37) with
0 the pressure at the surface of the ocean.

epth-independent surface gravity wave. A second interesting wave so-
ution has been identified in Section 2.4 for 𝛿𝑧 = 𝛿𝑧,0 = 0. Indeed 𝐹 (𝑧)
s then a linear function of 𝑧 which simplifies to 𝐹 (𝑧) = (𝑧 + 𝐻)∕𝐻
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to satisfy the bottom boundary condition (28b). The surface boundary
condition (35b) and the inner dispersion relation (35a) impose that:

𝜔2 = 𝜔2
0 =

𝛿2𝑥,0
1 + 𝜖2

,

𝛿2𝑥 = 𝛿2𝑥,0 =
(1 + 𝜖2)(𝜖2𝑖 + 𝜖2(𝜖2𝑖 − 𝜖2𝑎 )∕2)

1 + (𝜖2𝑖 − 𝜖2𝑎 )∕2
= 𝜖2𝑖 + 𝑂(𝜖4𝑖 , 𝜖

4
𝑎 )

(38)

This wave can only propagate at a well-defined long horizontal wave-
length 𝛿𝑥 = 𝛿𝑥,0 which vanishes in a homogeneous ocean (𝜖𝑖 = 0). It is
also depth-independent since if vertical wave-number vanishes.

This depth-independent surface gravity wave presents similarities
with Lamb waves (36). Both solutions are found as particular cases
while deriving the polarization relations for acoustic-gravity waves
and they are associated with a horizontally-propagating convergent-
divergent motion of the water column (a depth-independent motion of
this water column compensated by a displacement of the free-surface).
This motion is induced by gravity for depth-independent surface gravity
waves and by compressibility for Lamb waves.

2.7. Frequency is real & vertical wave-number is either real or imaginary

Based on (24) and on the boundary conditions (25a) and (25b), the
vertical wave-number 𝛿𝑧 can be shown to be either real or imaginary
and the frequency 𝜔 can be shown to be real (no damping in time)
when 𝜖𝑎 = 0 or max(𝜖𝑖, 𝜖𝑎) ≤

√

2. The proof of these properties is
etailed in Appendix A.1. It is important to note that 𝜔 is forced to
e real by the boundary dispersion relation, and that other solutions
re possible when considering the inner dispersion relation only. These
olutions will not be discussed in the following, even in Section 3 on
aves in an unbounded ocean.

This means that in physically realistic conditions (i.e. max(𝜖𝑖, 𝜖𝑎) ≤
√

2) waves are either propagating or evanescent (but not both) along
the vertical axis and that they are stable in time: real-𝛿𝑧 waves are
ropagating vertically while imaginary-𝛿𝑧 waves are evanescent vertically.
maginary vertical wave-numbers will be written:

𝑧 = 𝑖𝛿𝑧,𝑖 with 𝛿𝑧,𝑖 ∈ R (39)

he inner and boundary dispersion relations (35a) and (35b) write in
his case:

2
𝑥 − 𝛿2𝑧,𝑖 = 𝜖2𝑖

𝛿2𝑥
𝜔2

+ 𝜖2𝑎𝜔
2 − 𝜖4 (40a)

𝜔2 =
𝛿2𝑥 tanh(𝛿𝑧,𝑖)

𝛿𝑧,𝑖 + 𝜖2 tanh(𝛿𝑧,𝑖)
(40b)

When not explicitly mentioned, the standard values of the pa-
rameters used in the rest of the paper are listed in Table 2. The
rest of the paper is organized as follows: the inner dispersion rela-
tion corresponding to waves in an unbounded ocean is studied in
Section 3. Additional constraints related to the boundary dispersion
relation, i.e., in a bounded ocean, are added in Section 4.

3. Inner dispersion relation & waves in an unbounded ocean

The inner dispersion relation (35a) must be satisfied by any type
of ocean waves whether or not the ocean is considered as a locally
unbounded medium (far from surface and bottom and for wavelengths
small compared to ocean depth). We will show in the present section
that (i) in (𝛿𝑥, 𝛿𝑧, 𝜔) phase-space, the inner dispersion relation leads to
a dispersion surface that can be decomposed in three distinct regions
corresponding to acoustic, surface and internal waves, (ii) two acoustic
and stratification reference functions 𝜔𝑎(𝛿𝑥, 𝛿𝑧) and 𝜔𝑖(𝛿𝑥, 𝛿𝑧) are good
approximations of the acoustic and internal regions which in turn cor-
respond to acoustic and internal waves propagating in an unbounded
ocean, (iii) the upper and lower regions of the inner dispersion surface

(for respectively high and low frequencies) correspond to acoustic
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Table 2
Main parameters used to plot dispersion relations.

Gravity 𝑔 9.8 m s−2

Sound speed 𝑐𝑠 1500 m s−1

Depth 𝐻 4000 m

Brunt-V‘̀ais’́alä frequency 𝑁 =
√

− 𝑔
𝜌̂ℎ (𝑧)

𝜕𝜌̂ℎ
𝜕𝑧

− 𝑔2

𝑐2𝑠
10−3 s−1

Acoustic small parameter 𝜖𝑎 =

√

𝑔𝐻
𝑐𝑠

≈ 0.132

Internal small parameter 𝜖𝑖 =

√

𝑁2𝐻
𝑔

≈ 0.02020

Equivalent-stratification small parameter 𝜖 =

√

𝜖2𝑖 + 𝜖2𝑎
2

≈ 9.44x10−2

Depth scale 𝐷0 =
𝐻
2𝜖2

≈ 224 km

waves and internal waves propagating in an unbounded ocean and (iv)
the bounded central region of the inner dispersion surface corresponds
to vertically vanishing waves, which are referred to as surface waves
in Section 4.

3.1. Acoustic and stratification reference frequencies

Reference acoustic & stratification functions. Following Tolstoy (1963),
the inner dispersion relation (35a) can be reformulated in the simpler
form:

𝜔2

𝜔2
𝑎
+

𝜔2
𝑖

𝜔2
= 1 (41)

where 𝜔𝑖 and 𝜔𝑎 are functions of horizontal and vertical wave-numbers,
defined by:

𝜔2
𝑎(𝛿𝑥, 𝛿𝑧) =

1
𝜖2𝑎

(

𝛿2𝑥 + 𝛿2𝑧 + 𝜖4
)

(42a)

𝜔2
𝑖 (𝛿𝑥, 𝛿𝑧) =

𝛿2𝑥 𝜖2𝑖
𝛿2𝑥 + 𝛿2𝑧 + 𝜖4

(42b)

hese two reference functions are not roots of the inner dispersion
quation (41) but they are useful in their approximation and, more
pecifically, in their physical interpretation:

• If 𝜖2𝑎𝜔2 ≫
𝜖2𝑖 𝛿

2
𝑥

𝜔2 (high frequency) then (41) simplifies to 𝜔2 ≈ 𝜔2
𝑎,

relevant to a compressible, homogeneous (unstratified) ocean.
• If 𝜖2𝑎𝜔

2 ≪
𝜖2𝑖 𝛿

2
𝑥

𝜔2 (low frequency) then (41) simplifies to 𝜔2 ≈ 𝜔2
𝑖 ,

relevant to an incompressible, stratified ocean.

Therefore 𝜔𝑎 can be interpreted as a reference acoustic function account-
ing for the compressibility content of the inner dispersion relation, and
is a solution of the inner dispersion relation for an homogeneous ocean.
𝑖 plays an equivalent role for ocean stratification: it can be interpreted

as a reference stratification function and is solution of the inner dispersion
relation for an incompressible ocean.

Recall that for 𝜖𝑎 = 0 or 𝑚𝑎𝑥(𝜖𝑖, 𝜖𝑎) ≤
√

2 the frequency 𝜔 is real
and 𝛿𝑧 is either real or purely imaginary (Appendix A.1). In addition,
𝜔2
𝑎 and 𝜔2

𝑖 have the same sign, since their product is equal to 𝛿2𝑥
𝜖2𝑖
𝜖2𝑎

> 0.
herefore (41) implies that 𝜔2

𝑎 ≥ 0, 𝜔2
𝑖 ≥ 0, and that:

≤ 𝜔2
𝑖 (𝛿𝑥, 𝛿𝑧) ≤ 𝜔2(𝛿𝑥, 𝛿𝑧) ≤ 𝜔2

𝑎(𝛿𝑥, 𝛿𝑧) ∀(𝛿𝑥, 𝛿𝑧)

s a consequence, the frequency 𝜔 is always bounded by the reference
unctions 𝜔𝑖 and 𝜔𝑎.

.2. Roots of the inner dispersion relation (𝜔±)

Let us now define 𝑅(𝛿𝑥, 𝛿𝑧) the ratio of stratification to acoustic
eference functions:

2(𝛿𝑥, 𝛿𝑧) =
𝜔2
𝑖

𝜔2
=

𝜖2𝑎𝜖
2
𝑖 𝛿

2
𝑥

(

2 2 4
)2

(43)

𝑎 𝛿𝑥 + 𝛿𝑧 + 𝜖
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Fig. 1. Contours of 𝛿2𝑧 (𝛿𝑥 , 𝜔). Plain lines represent positive values (𝛿𝑧 ∈ R), and dashed
lines negative values (𝛿𝑧 ∈ 𝑖R). Background color: (light red) Modified Acoustic Waves
-MAW-, (light blue) Modified Surface Waves -MSW-, light (green) Modified Internal
Waves -MIW-. Black point: barotropic wave solution Section 2.6. Red Point: marginally
stable MSW Section 4.5. Red and green curves: acoustic and gravity transition lines
Section 3.3. For the values of the parameters listed in Table 2, 𝛿𝑥 = 1 corresponds to
a wave-number 𝑘𝑥 = 1∕𝐻 = 1∕4000 m−1 and 𝑙𝑜𝑔10(𝜔) = 0 to a frequency 𝛺 ≈ 20 s−1.
See text below for the definition of the different types of waves.

𝑅(𝛿𝑥, 𝛿𝑧) is an important parameter for locating the roots of the inner
dispersion relation. As shown in Appendix A.1, 𝜔, the roots of Eq. (41),
can only be real, a consequence is that 𝑅2 ≤ 1

4
. These roots can then

be formulated for the squared frequency:

𝜔2
± =

𝜔2
𝑎
2

⎛

⎜

⎜

⎝

1 ±

√

√

√

√1 − 4
𝜔2
𝑖

𝜔2
𝑎

⎞

⎟

⎟

⎠

=
𝜔2
𝑎
2

(

1 ±
√

1 − 4𝑅2
)

(44)

hen 𝑅2 is small, the two roots are close to the acoustic and stratifica-
ion reference functions: 𝜔+ ≈ 𝜔𝑎, 𝜔− ≈ 𝜔𝑖. Since their product 𝜔2

−𝜔
2
+

s always equal to 𝜔2
𝑎𝜔

2
𝑖 =

𝜖2𝑖
𝜖2𝑎

𝛿2𝑥, we further have:

0 ≤ 𝜔2
𝑖 (𝛿𝑥, 𝛿𝑧) ≤ 𝜔2

−(𝛿𝑥, 𝛿𝑧) ≤
𝜖𝑖
𝜖𝑎

𝛿𝑥 ≤ 𝜔2
+(𝛿𝑥, 𝛿𝑧) ≤ 𝜔2

𝑎(𝛿𝑥, 𝛿𝑧). (45)

Note also that for a weakly compressible ocean (𝜖𝑎 ≪ 1):

𝜔2
− − 𝜔2

𝑖 = −
256 𝜖4𝑎𝜖

6
𝑖 𝛿

2
𝑥

(𝛿2𝑥 + 𝛿2𝑧 + 𝜖4𝑖 )5
+ O(𝜖6𝑖 ), (46)

and for a weakly stratified ocean (𝜖𝑖 ≪ 1 𝑎𝑛𝑑 𝜖 ≪ 1):

𝜔2
+ − 𝜔2

𝑎 =
𝜖2𝑎𝜖

4
𝑖

(𝛿2𝑥 + 𝛿2𝑧 + 𝜖4𝑎∕4)3
+ O(𝜖6𝑎 ) (47)

3.3. Three regions in (𝛿𝑥, 𝛿𝑧, 𝜔) phase-space

Fig. 1 shows variations of the squared vertical wave-number 𝛿2𝑧 as
a function of (𝛿𝑥, 𝜔) for the values of 𝜖𝑖, 𝜖𝑎 given in Table 2. Negative
values are encountered for medium-range frequencies (10−1.7 < 𝜔 <
100.7) and large enough horizontal wave-numbers (𝛿𝑥 ≥ 0.1 − 0.2). This
region is surrounded by high and low frequency regions of positive 𝛿2𝑧 .
The transition lines between these regions are given by 𝛿𝑧 = 0:

• If 𝜔 ≫ 1 and 𝜖𝑎 ≠ 0 then 𝜔2 ≈ 𝜔2
𝑎 and the acoustic transition

line is given by 𝜖2𝑎𝜔
2 ≈ 𝛿2𝑥 + 𝜖4. This line is a parabola and the
frequency is not bounded when 𝛿𝑥 increases.
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• If 𝜔 ≪ 1 and 𝜖𝑖 ≠ 0 then 𝜔2 ≈ 𝜔2
𝑖 , the equation of the gravity

transition line is 𝜔2 ≈ 𝛿2𝑥𝜖
2
𝑖 ∕(𝛿

2
𝑥+𝜖4). This line has an upper bound

𝜔𝑐,𝑖 = 𝜖𝑖. This parabola crosses the 𝛿𝑥 = 0-axis for the acoustic
cut-off frequency 𝜔𝑐,𝑎 = 𝜖2∕𝜖𝑎. In dimensional form, this bound
can be rewritten 𝛺 ≤ 𝑁 and is related to the well-known cut-off
frequency for internal gravity waves.

For a real frequency 𝜔, Fig. 1 confirms that the vertical wave-number
can only be real or imaginary and that the inner dispersion relation
(35a) authorizes three types of wave solutions: two with real vertical
wave-numbers (𝛿2𝑧 ≥ 0) and one with purely imaginary wave-numbers
(𝛿2𝑧 < 0). In this latest region, the corresponding wave solution is
evanescent.

Separation of solutions. We prove in Appendix A.2 that, for a non-trivial
(non-vanishing) wave solution in a stratified ocean, 𝑅2(𝛿𝑥, 𝛿𝑧) can be
equal to 1∕4 only if 𝛿𝑧 is imaginary. In this case, 𝑅2(𝛿𝑥, 𝛿𝑧) = 1∕4 leads
to (A.19) and (A.20):

𝛿2𝑧 = −𝛿2𝑧,𝑖,∗ = −𝛿2𝑥 − 𝜖4 + 2𝜖𝑎𝜖𝑖𝛿𝑥 (48a)

𝜔2 = 𝜔2
− = 𝜔2

+ =
𝜖𝑖
𝜖𝑎

𝛿𝑥 =
𝜔2
𝑎
2

(48b)

A consequence is that wave solutions are well-separated when 𝛿𝑧 is
real (and does not vanish) or when 𝛿𝑧 is imaginary and 𝛿𝑧,𝑖 < 𝛿𝑧,𝑖,∗. Even
if (40a) has two roots in this case, the two corresponding branches are
always connected for (𝛿2𝑧 , 𝜔2) satisfying (48a)–(48b), and thus form a
single family of ocean waves.

3.4. Wave solutions in an unbounded ocean

For a real vertical wave-number (𝛿𝑧 ∈ R),2 the two roots are thus
always well-separated and given by:

𝜔−(𝛿𝑥, 𝛿𝑧) ≈ 𝜔𝑖(𝛿𝑥, 𝛿𝑧), 𝜔+(𝛿𝑥, 𝛿𝑧) ≈ 𝜔𝑎(𝛿𝑥, 𝛿𝑧) (49)

Modified internal waves (MIW). The traditional dispersion relation for
dispersive internal gravity waves in the context of a Boussinesq incom-
pressible fluid (Gill 1982; see also Table 1 above) is:

𝜔2 = 𝜔2
𝑖𝑔𝑟 = 𝜖2𝑖

𝛿2𝑥
𝛿2𝑥 + 𝛿2𝑧

(50)

A Taylor expansion of the gravity-wave root 𝜔2
− given by (44) with

respect to the small parameters 𝜖𝑎 and 𝜖𝑖 leads to:

𝜔2
−

𝜔2
𝑖𝑔𝑟

= 1 −

(

𝜖4

𝛿2𝑥 + 𝛿2𝑧
−

𝜖2𝑖 𝜖
2
𝑎𝛿

2
𝑥

(𝛿2𝑥 + 𝛿2𝑧 )2

)

+ O(𝜖8) (51)

= 1 −
𝜖4𝛿2𝑧 + 4(𝜖2𝑎 − 𝜖2𝑖 )

2𝛿2𝑥
(𝛿2𝑥 + 𝛿2𝑧 )2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
O(𝜖4)

+O(𝜖8), (52)

while the development of 𝜔2
𝑖 leads to

𝜔2
𝑖

𝜔2
𝑖𝑔𝑟

= 1 − 𝜖4

𝛿2𝑥 + 𝛿2𝑧
⏟⏟⏟

O(𝜖4)

+O(𝜖8).

Compared with 𝜔2
𝑖 , 𝜔2

− includes corrective terms confirming that the
two roots of the inner dispersion relation are not fully separated. The

corrective term
𝜖2𝑖 𝜖

2
𝑎𝛿

2
𝑥

4(𝛿2𝑥 + 𝛿2𝑧 )2
is naturally close to 𝑅2. Formulation (52)

hows that the combined effect of compressibility and stratification is
lways a reduction of the frequency, compared with the approximated
alue 𝜔𝑖𝑔𝑟: 𝜔2

− ≤ 𝜔2
𝑖𝑔𝑟.

Ocean waves satisfying (51) will now be referred to as Modified
nternal Waves (MIW).

2 Imaginary vertical wave-numbers (𝛿𝑧 ∈ 𝑖R) are treated in Section 4.4 for
a bounded ocean.
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Modified acoustic waves (MAW). The well-known dispersion relation
or acoustic waves in an homogeneous fluid is (Table 1):

2
𝑎𝑤 = 1

𝜖2𝑎

(

𝛿2𝑥 + 𝛿2𝑧
)

(53)

A Taylor development of the acoustic root (𝜔+) with respect to 𝜖𝑎 and
𝑖 leads this time to:

𝜔2
+

𝜔2
𝑎𝑤

= 1 +

(

𝜖4

2(𝛿2𝑥 + 𝛿2𝑧 )
−

𝜖2𝑖 𝜖
2
𝑎𝛿

2
𝑥

(𝛿2𝑥 + 𝛿2𝑧 )2

)

+ O(𝜖8) (54)

= 1 +
𝜖4𝛿2𝑧 + (𝜖2𝑎 − 𝜖2𝑖 )

2𝛿2𝑥
2(𝛿2𝑥 + 𝛿2𝑧 )2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
O(𝜖4)

+O(𝜖8), (55)

while the development of 𝜔2
𝑎 leads to

𝜔2
𝑎

𝜔2
𝑎𝑤

= 1 + 𝜖4

𝛿2𝑥 + 𝛿2𝑧
⏟⏟⏟

O(𝜖4)

+O(𝜖8).

Compared with 𝜔2
𝑎, 𝜔2

+ includes corrective terms due to the two roots
of the inner dispersion relation not being fully separated. Again, the
corrective term is small and close to 𝑅2. The combined effect of
compressibility and stratification is always an increase of the frequency,
compared with the approximated value 𝜔𝑎𝑤: 𝜔2

+ ≥ 𝜔2
𝑎𝑤.

Ocean waves satisfying (54) will be called Modified Acoustic Waves
(MAW) in the following. The modifications to usual internal and acous-
tic wave dispersion relations by compressibility and stratification ef-
fects are expressed by:

𝜔2
+𝜔

2
− =

𝜖2𝑖
𝜖2𝑎

𝛿2𝑥 = 𝜔2
𝑎𝑤𝜔

2
𝑖𝑔𝑟,

hich can explain the symmetry in the above developments for modi-
ied internal and acoustic waves.

.5. Homogeneous and/or incompressible unbounded ocean

Much insight can be gained on acoustic-gravity waves by a ge-
metrical investigation of surfaces (in phase space) that correspond
o the inner and boundary dispersion relations. These surfaces will
espectively be named inner and boundary dispersion surfaces.

Fig. 2 shows the inner dispersion surfaces in the (𝛿𝑥, 𝛿𝑧, 𝜔) space.
Each dispersion surface corresponds to a region of the wave solutions.
These surfaces are plotted for a homogeneous and incompressible
(2.a), a homogeneous and compressible (2.b), an incompressible and
stratified (2.c) and a compressible and stratified unbounded ocean.
The 𝑦-axis is constructed such that the (𝛿𝑧 > 0) positive half-space
corresponds to the real vertical wave-numbers whereas the (𝛿𝑧 < 0) neg-
ative half-space corresponds to the (imaginary part of) pure-imaginary
vertical wave-numbers (𝛿𝑧,𝑖).

Careful inspection of the (𝛿𝑧 > 0) half space in Figs. (2.b), (2.c) and
(2.d) confirms the presence of two regions of solutions with real posi-
tive vertical wave-numbers. For large frequencies (red branch), the up-
per region corresponds to acoustic wave solutions (MAW) (Figs. 2.b and
2.d). This region disappears under the assumption of incompressibility
(Figs. 2.a and 2.c). The lower region (light-green branch) corresponds
to internal wave solutions (MIW) (Figs. 2.c and 2.d) and disappears
under the assumption of homogeneous ocean (Figs. 2.a and 2.b).

The third region of wave-solution (light-blue surfaces in Fig. 2)
corresponds to pure-imaginary vertical wave-numbers. In a stratified,
compressible, unbounded ocean (Fig. 2.d), this region corresponds to
intermediate values of the .

In a homogeneous, incompressible and unbounded ocean, Fig. 2.(a)
shows that the unique dispersion surface is the (𝛿2 = −𝛿2) plane.
𝑥 𝑧
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3.6. Summary: waves solutions in an unbounded ocean

In the preceding analysis, three types of waves were identified. A
synthesis is given by Fig. 2.d showing the inner dispersion surfaces for
a stratified, compressible ocean and Fig. 2.a–c showing the limit cases
for respectively a homogeneous and incompressible, a homogeneous
and compressible and a stratified but incompressible ocean. Approx-
imate frequency values for modified internal and acoustic waves are
summarized in Tables 3 and 4 in dimensional form, for comparison
with introductory Table 1. Since the practical existence and charac-
terization of modified surface waves is totally dependent on boundary
conditions, they are not summarized here but will be detailed in the
next section.

In a more realistic bounded ocean, their existence is guaranteed only
if their vertical scale is (much) smaller than the ocean depth (|𝛿𝑧| ≫ 1)
and if they do not interfere with the bottom or the surface of the ocean.
The next section will investigate the impact of adding the boundary
dispersion relation (35b).

4. Waves in a bounded ocean

Acoustic-gravity waves propagating in a bounded ocean (i.e. con-
sidering both the free-surface and the bottom boundary of the ocean)
are studied in the present section. These wave solutions are first
shown to be organised in branches (i.e. in 1D curves parameterized by
(𝛿2𝑥(𝛿𝑧), 𝜔2(𝛿𝑧)). Each branch is located at the intersection of the inner
and boundary dispersion surfaces and is confined to a region of phase
space located between two poles of the dispersion relations.

Modified internal and acoustic modes and then modified surface
waves are studied before acoustic-gravity waves in the long wave
approximation are investigated.

4.1. Graphical investigation of Modified Surface Waves (MSW), Modified
Acoustic Modes (MAM) and Modified Internal Modes (MIM)

The compressible and stratified ocean is now assumed to be
bounded. Wave solutions must thus satisfy both the inner (35a) and
boundary (35b) dispersion relations. In phase space, they must lie at the
intersections of the inner and boundary dispersion surfaces, which are
now plotted simultaneously on Fig. 3. For real vertical wave-numbers
(𝑘𝑧 ∈ R, Fig. 3a), the boundary dispersion surface is a piecewise
surface. Several regions that are nearly vertical in (𝛿𝑥, 𝛿𝑧, log10(𝜔))
space at 𝛿𝑧 ≈ 𝑛𝜋 (small 𝜔) and at 𝛿𝑧 ≈ 𝜋∕2 + (𝑚 − 1)𝜋 (large 𝜔) with
𝑛 ∈ N∗ and 𝑚 ∈ N∗. The intersection of these surfaces with inner
dispersion relation surfaces result in a number of constrained vertical
wave-numbers (according to 𝑛 and 𝑚). We will show in the following
sections that the resulting wave solutions are ‘‘modes’’ and the two
intersections correspond more specifically to Modified Internal Modes
(MIM), 𝑛 ∈ N∗ and to Modified Acoustic Modes (MAM), 𝑚 ∈ N∗.

For purely imaginary wave-numbers, the (light blue) inner disper-
sion surface looks like an horizontal hyperbolic surface which intersects
the (light gray) boundary dispersion surface. The resulting wave solu-
tions correspond to Modified Surface Waves (MSW). Far from the origin
(𝛿𝑥, 𝛿𝑧) = (0, 0), at the intersection points, |𝛿𝑧| is close to 𝛿𝑥.

For long waves (𝛿𝑥 ≪ 1 & |𝛿𝑧| ≪ 1), the boundary dispersion
surfaces for real and purely imaginary 𝛿𝑧 are in the same plane. Indeed,
the development of the boundary relation is well approximated by 𝜔2 ≈
𝛿2𝑥 in both cases (a better approximation is given in Eq. (67)). Fig. 3b
shows the different solutions close to the origin (𝛿𝑥, 𝛿𝑧, 𝜔) = (0, 0, 0).
The acoustic-wave surface does not intersect the boundary dispersion
surface near the origin (as proven in Section 4.5) and is not present
close to the origin.

In the context of a bounded ocean, three types of wave solutions are
thus graphically identified, spreading on the three regions of the inner
dispersion surface, while satisfying the boundary dispersion relation:
internal gravity (in a stratified ocean), acoustic (in a compressible
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(
p

Fig. 2. Inner dispersion surfaces in (𝛿𝑥 , 𝛿𝑧 , 𝜔) space.
(a) homogeneous, incompressible ocean (𝜖𝑖 = 𝜖𝑎 = 0),
(b) homogeneous, compressible ocean (𝜖𝑖 = 0),
(c) stratified, incompressible ocean (𝜖𝑖 = 0),
(d) stratified, compressible ocean (𝜖𝑎 = 0).
Colors: (light red) acoustic wave region (𝛿2𝑧 ≥ 0&𝜔 large), (light blue) surface wave region (𝛿2𝑧 ≥ 0&𝜔 small), (light green) internal wave region (𝛿2𝑧 < 0). Gray curve: triplets
𝛿𝑥 , 𝛿𝑧 , 𝜔) satisfying (48b) and (48a). Negative values of the 𝛿𝑧 axis correspond to −𝛿𝑧,𝑖, i.e. minus the imaginary part of imaginary vertical wave-numbers. For the values of the
arameters listed in Table 2, 𝛿𝑥 = 1 (𝛿𝑧 = 1) corresponds to a wave-number 𝑘𝑥 = 1∕𝐻 = 1∕4000 m−1 (𝑘𝑧 = 1∕𝐻 = 1∕4000 m−1) and 𝑙𝑜𝑔10(𝜔) = 0 to a frequency 𝛺 ≈ 20 s−1.
Table 3
Modified Internal and Acoustic waves in an unbounded ocean.

Internal Waves Acoustic Waves

(a) (𝜖𝑖 = 𝜖𝑎 = 0) – –

(b) (𝜖𝑖 = 0, 𝜖𝑎 ≠ 0) –
𝜔2
+

𝜔2
𝑎𝑤

≈ 1 +
𝜖4𝑎

4(𝛿2𝑥 + 𝛿2𝑧 )

(c) (𝜖𝑖 ≠ 0, 𝜖𝑎 = 0)
𝜔2
−

𝜔2
𝑖𝑤𝑟

≈ 1 −
𝜖4𝑖

4(𝛿2𝑥 + 𝛿2𝑧 )
–

(d) (𝜖𝑖 ≠ 0, 𝜖𝑎 ≠ 0)
𝜔2
−

𝜔2
𝑖𝑤𝑟

≈ 1 −
(𝜖2𝑖 + 𝜖2𝑎 )

2𝛿2𝑧 + (𝜖2𝑎 − 𝜖2𝑖 )
2𝛿2𝑥

4(𝛿2𝑥 + 𝛿2𝑧 )2
𝜔2
+

𝜔2
𝑎𝑤

≈ 1 +
(𝜖2𝑖 + 𝜖2𝑎 )

2𝛿2𝑧 + (𝜖2𝑎 − 𝜖2𝑖 )
2𝛿2𝑥

4(𝛿2𝑥 + 𝛿2𝑧 )2
Table 4
Compressibility and stratification induced modifications to the usual dispersion relations given in table Table 1. 𝛺 is wave
frequency, 𝑘𝑥 and 𝑘𝑧 are the wavenumbers, 𝑔 is the acceleration of gravity, 𝑁 a reference Brunt-V‘̀ais’́alä frequency and 𝑐𝑠
the speed of sound. 𝐷0 is the background density vertical scale, given by 1∕𝐷0 = 𝑁2∕𝑔+𝑔∕𝑐2𝑠 . The orders of magnitude of the
modifications (last column) are computed for the values of the main parameters given in table Table 2 and 𝑘𝑥 = 𝑘𝑧 = 1∕𝐻 .
Waves Frequency (𝛺) Modification (%)

Modified Acoustic Waves (MAW) 𝛺2
𝑚𝑎𝑤 = 𝑐2𝑠 (𝑘

2
𝑥 + 𝑘2𝑧)

[

1 + 1
4(𝑘2𝑥 + 𝑘2𝑧)2

(

𝑘2𝑧
𝐷2

0

+
(

𝑔
𝑐2𝑠

− 𝑁2

𝑔

)2

𝑘2𝑥

)]

3.8x10−3

Modified Internal Waves (MIW) 𝛺2
𝑚𝑖𝑤 =

𝑁2𝑘2𝑥
𝑘2𝑥 + 𝑘2𝑧

[

1 − 1
4(𝑘2𝑥 + 𝑘2𝑧)2

(

𝑘2𝑧
𝐷2

0

+
(

𝑔
𝑐2𝑠

− 𝑁2

𝑔

)2

𝑘2𝑥

)]

−3.8x10−3
ocean) and surface waves (in a free-surface ocean). They are investi-

gated in the following using Taylor expansions of the general roots 𝜔±, t

9

with respect to small parameters (𝜖𝑖, 𝜖𝑎), leading to simple approxima-

ions of wave dispersion relations. When needed, asymptotic relations
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a

Fig. 3. Inner and boundary dispersion surfaces in (𝛿𝑥 , 𝛿𝑧 , 𝜔) space and wave solutions for short and intermediate wavelengths (a) and for long waves (b). Colors: (light red)
coustic wave region (𝛿2𝑧 ≥ 0&𝜔 large), (light blue) surface wave region (𝛿2𝑧 ≥ 0&𝜔 small), (light green) internal wave region (𝛿2𝑧 < 0), (white) boundary dispersion surface for

𝛿𝑧 ∈ R, (light gray) boundary dispersion surface for 𝛿𝑧 ∈ R. Blue curve: Modified Surface Waves (MSW). Red curves: Modified Acoustic Modes (MAM). Green curve: Modified
Internal Modes (MIM). Black point: depth-independent surface gravity wave Section 2.6.
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are derived with respect to 𝛿𝑥, 𝛿𝑧 or 𝜔. Taylor expansions will give
indications of how usual wave solutions can be modified by gravity
and stratification (𝜖𝑖), and/or by compressibility (𝜖𝑎).

4.2. Poles of the dispersion relations

The dispersion relations for acoustic-gravity waves in a bounded
ocean exhibit several discrete poles or singularities (for the vertical
wave-number) that lead to the existence of normal modes. To show this,
we can combine the dispersion relations (35a) and (35b) to express the
square of the horizontal wave-number and the frequency as functions
of the vertical wave number:

𝛿2𝑥(𝛿𝑧) =

(

𝜖2 sin(𝛿𝑧) + 𝛿𝑧 cos(𝛿𝑧)
) (

(𝛿2𝑧 + (𝜖4𝑖 − 𝜖4𝑖 )∕4) sin(𝛿𝑧) − 𝛿𝑧𝜖2𝑖 cos(𝛿𝑧)
)

(

(𝜖2𝑎 − 𝜖2𝑖 ) sin(𝛿𝑧)∕2 − 𝛿𝑧 cos(𝛿𝑧)
)

sin(𝛿𝑧)
(56a)

𝜔2
𝑥(𝛿𝑧) =

(𝛿2𝑧 + (𝜖4𝑎 − 𝜖4𝑖 )∕4) sin(𝛿𝑧) − 𝛿𝑧𝜖2𝑖 cos(𝛿𝑧)

(𝜖2𝑎 − 𝜖2𝑖 ) sin(𝛿𝑧)∕2 − 𝛿𝑧 cos(𝛿𝑧)
(56b)

The first relation (56a) has two poles (or singularities): 𝛿𝑧 = 𝛿𝑧,𝑛 =
𝑛𝜋 with 𝑛 ∈ N is indeed an approximate root of sin(𝛿𝑧) = 0 and
thus a pole of 𝛿2𝑥(𝛿𝑧) and 𝛿𝑧 = 𝛿𝑧,𝑚 ≈ 𝑟𝑚 = 𝜋∕2 + 𝑚𝜋 is a root of
𝛿𝑧∕ tan(𝛿𝑧) = 𝜖2𝑎−𝜖2𝑖 ≪ 1 and thus a pole of 𝛿2𝑥(𝛿𝑧). The second dispersion
relation (56b) only has one pole: 𝛿𝑧 = 𝛿𝑧,𝑚 ≈ 𝑟𝑚 = 𝜋∕2 + 𝑚𝜋. A more
accurate expression of 𝛿𝑧,𝑚 can be obtained as an infinite series:

𝛿𝑧,𝑚 = 𝑟𝑚 −
𝜖2𝑎 − 𝜖2𝑖
𝑟𝑚

−
(𝜖2𝑎 − 𝜖2𝑖 )

2(3 + 𝜖2𝑖 − 𝜖2𝑎 )
3𝑟3𝑚

−
(𝜖2𝑎 − 𝜖2𝑖 )

3 (3(𝜖2𝑎 − 𝜖2𝑖 )
2 − 20(𝜖2𝑎 − 𝜖2𝑖 ) + 30

)

15𝑟5𝑚
+ O( 1

𝑟7𝑚
) (57)

Note that 𝜔2(𝛿𝑧) is continuous in 𝛿𝑧 = 𝛿𝑧,𝑛. This set of poles confirms
and extends the poles found by Jensen et al. (2011) for a compressible,
homogeneous, rigid lid, ‘‘ideal ocean waveguide’’.

These poles are associated to the AG modes discussed in Section 2.
To show this, one can follow Jensen et al. (2011) and rewrite the wave
field emitted by a point source at frequency 𝜔 alternatively as a line
integral or as an infinite series in Fourier space. The poles are then
 b

10
the singularities of the line integral whereas the series is the infinite
sum of discrete modes. The equivalence of both expressions is given by
Cauchy’s residue theorem (Mei et al., 2005).

We further show in A.3 that the first type (𝛿𝑧,𝑚) corresponds to the
odified Acoustic Modes (MAM) identified graphically in Section 4.1

nd plotted with a red curve in Fig. 3. The second type (𝛿𝑧,𝑛) is
lso shown to correspond to the Modified Internal Modes (MIM) also
dentified graphically in Section 4.1 but plotted in green.

Fig. 4 shows that wave solutions are organized in branches con-
ined to the intervals 𝛿2𝑧 ∈ (−∞, 𝛿2𝑧,𝑚=1), 𝛿𝑧 ∈ (𝛿𝑧,𝑚=𝑛, 𝛿𝑧,𝑛) and 𝛿𝑧 ∈
𝛿𝑧,𝑛, 𝛿𝑧,𝑚=𝑛+1) for 𝑛 ∈ N∗. The 𝛿2𝑥 + 𝛿2𝑧 = 0 vertical plane, coloured in
ight gray, is the region where the induced effects of compressibility
nd stratification exactly compensate. Indeed, (35a) implies in this case
hat 𝜖2𝑎𝜔2 + 𝜖2𝑖 𝛿

2
𝑥∕𝜔

2 − 𝜖 = 0.
A study of the variations of 𝛿2𝑥(𝛿𝑧) and 𝜔2(𝛿𝑧) shows that these

unctions are monotonically decreasing at respectively the third and
irst order in (𝜖𝑎, 𝜖𝑖) (see Appendix A.7). When 𝛿𝑧 → 𝛿±𝑧,𝑚, 𝛿2𝑥(𝛿𝑧) → ±∞
nd 𝜔2(𝛿𝑧) → ±∞. When 𝛿𝑧 → 𝛿±𝑧,𝑛, 𝛿2𝑥(𝛿𝑧) → ±∞ but 𝜔2(𝛿𝑧) = ±𝜖2𝑖
ince 𝛿𝑧,𝑛 is not a pole of 𝜔(𝛿𝑧). In the interval (−∞, 𝛿𝑧,𝑚=0], the long-
ave branch extends to negative values of 𝛿2𝑧 (for an imaginary vertical
ave-number, blue curve in Fig. 4. Each branch of the acoustic gravity
ave solutions consequently extends both in the 𝛿2𝑥 ≥ 0 half space of
ropagating waves (green, red and blue curves in Fig. 4) and in the
2
𝑥 < 0 half space of vanishing waves (gray and black curves).

This study of the variations of 𝛿2𝑥(𝛿𝑧) further shows that for waves
ropagating both horizontally and vertically (𝛿2𝑥, 𝛿2𝑧 ≥ 0), 𝛿𝑧 remains
lose to either 𝛿𝑧,𝑚 or 𝛿𝑧,𝑛 in each interval of solutions except for
he very-long-wave branch (Fig. 4.c and 0 < 𝛿2𝑧 < 𝛿𝑧,𝑚=0 ≈ 𝜋∕2).
ndeed, in the case of ‘‘not-too-long’’ propagating waves, 𝛿2𝑥 + 𝛿2𝑧 is
ositive and at least larger than 𝛿2𝑧,𝑚=0 meaning that, whatever 𝛿𝑥,
ither 𝜖2𝑎𝜔2 = 𝜖2𝑎𝛿

2
𝑥∕

(

𝜖2 + 𝛿𝑧 cotan(𝛿𝑧)
)

or 𝜖2𝑖 𝛿
2
𝑥∕𝜔

2 = 𝜖2𝑖
(

𝜖2 + 𝛿𝑧 cotan(𝛿𝑧)
)

re significantly large. This is possible only if respectively 𝛿𝑧 ≈ 𝛿𝑧,𝑚
Section 4.3.2) or 𝛿𝑧 ≈ 𝛿𝑧,𝑛 (Section 4.3.1). Graphically, Fig. 4.a, b and
confirm that 𝛿𝑧 varies sharply only in regions where 𝛿2𝑥+𝛿2𝑧 ≈ 0 i.e. in

egions where the acoustic gravity wave solutions are close to the (gray)
ertical surface (𝛿2𝑥 + 𝛿2𝑧 = 0).

The study of the poles finally confirms the separation of the

ranches of the acoustic gravity wave solutions in agreement with the
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Fig. 4. (a, c) show the inner and boundary dispersion surfaces in (𝛿𝑥 , 𝛿𝑧 , 𝜔) space and wave solutions for long waves, (b, d) show 𝛿2𝑥(𝛿𝑧) and 𝜔2(𝛿𝑧). Coloured surfaces: (light
ed) acoustic wave region, (light blue) surface wave region, (light green) internal wave region, (light yellow) inner dispersion surface in half space 𝛿2𝑥 < 0, (light gray) 𝛿2𝑥 + 𝛿2𝑧 = 0
ertical plane. Acoustic gravity wave branches: MIM-0 (green curve), LMSW (blue curve) branch, MIM (green curves), MAM (red curves prolonged in gray when 𝛿2𝑥 < 0), MIM
green curves prolonged in black when 𝛿2𝑥 < 0). Note that wave solutions with imaginary horizontal wave-numbers (𝛿𝑥,𝑖 ∈ 𝑖R) or imaginary frequencies (𝜔 ∈ 𝑖R) are plotted to
learly identify wave branches. These solutions correspond to waves decaying respectively in the horizontal direction and in time and are not further discussed in the present
tudy.
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esults proved in Appendix A.2. Firstly, a clear separation has now
een brought to light in terms of their vertical wave-numbers since
he branches are confined to the interval regions locates between the
oles: 𝛿𝑧 ∈ (𝛿𝑧,𝑚=𝑛, 𝛿𝑧,𝑛) and 𝛿𝑧 ∈ (𝛿𝑧,𝑛, 𝛿𝑧,𝑚=𝑚+1) for 𝑛 ∈ N∗. Secondly,
n so far as the not-too-long wave solutions satisfy either 𝛿𝑧 ≈ 𝛿𝑧,𝑚 or
𝑧 ≈ 𝛿𝑧,𝑛, the relation (56b) further confirms that the solutions are also
ell-separated in terms of their frequency. Indeed, we have shown that
2
𝑥 > 0 imposes in this case that 𝛿𝑧 is close to either 𝛿𝑧,𝑚 or 𝛿𝑧,𝑛. Since (i)
𝑧,𝑚 is a pole of 𝜔2 and thus 𝜔2(𝛿𝑧 ≈ 𝛿𝑧,𝑚 𝑎𝑛𝑑 𝛿𝑧,𝑚 < 𝛿𝑧) is large and (ii)
2(𝛿𝑧) monotonic decreasing and 𝜔2(𝛿𝑧,𝑛) = 𝜖2𝑖 , we can conclude and
onfirm that 𝜔2(𝛿𝑧 ≈ 𝛿𝑧,𝑚) ≫ 𝜖2𝑖 ≥ 𝜔2(𝛿𝑧 ≈ 𝛿𝑧,𝑛 𝑎𝑛𝑑 𝛿𝑧,𝑛 < 𝛿𝑧).

.3. Real 𝛿𝑧: modified internal and acoustic waves

As shown in Section 3.3 and Section 4.2, upper (acoustic) and
ower (gravity) regions of the inner dispersion surface for real 𝛿𝑧 are
ell-separated: Modified Acoustic Modes (MAM) and Modified Internal
odes (MIM) solutions can thus be studied independently. We addi-

ionally showed that as long as 𝛿𝑧 is not close to zero, the acoustic
ravity wave solutions remain close to one of the poles. The case of

ong waves with 𝛿𝑧 ≈ 0 is discussed in Subsection Section 4.5.

11
.3.1. Development of internal-gravity modes modified by compressibility
MIM)

Waves can propagate horizontally between the bottom and surface
f the ocean as in a wave guide. Internal gravity modes are well-known
uch examples (Gill, 1982). In Section 4.1, graphical inspections of
ave solutions confirmed that gravity waves with constrained vertical
ave-numbers could be found at the intersection of inner and boundary
ispersion surfaces.

We have also shown in Section 3.3 that the root of the inner
ispersion relation corresponding to internal gravity waves is well-
pproximated by 𝜔2

𝑖 (46) and in Section 4.2 and Appendix A.3 that 𝛿𝑧
emains close to 𝛿𝑧,𝑛.

In order to refine the approximation and to parameterize this re-
lation in terms of the horizontal wave-number, we equate the squared
frequency given by the surface dispersion relation (35b) to 𝜔2

−, given by
the inner dispersion relation (44). This forms a non-linear equation for
𝛿𝑧 whose solution can be approximated using two passes of a Newton
algorithm starting from 𝛿𝑧 = 𝛿𝑧,𝑛. Finally a Taylor development in 𝜖𝑖, 𝜖𝑎
leads to:

𝛿𝑧(𝛿𝑥) = 𝛿𝑧,𝑚𝑖𝑚(𝛿𝑥) = 𝛿𝑧,𝑛

(

1 +
𝜖2𝑖

2 2
+

(𝛿2𝑥 − 𝛿2𝑧,𝑛)
2 2 3

𝜖4𝑖

)

+ O(𝜖6) (58)

𝛿𝑥 + 𝛿𝑧,𝑛 (𝛿𝑥 + 𝛿𝑧,𝑛)
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A development for the frequency 𝜔2 can be obtained by injecting
xpression (58) of 𝛿𝑧 in the general expression (51) in the unbounded
omain case. The usual dispersion relation given in Table 1 can be
ritten in dimensional form:

2(𝛿𝑥) = 𝜔2
𝑖𝑔𝑟

|

|

|𝛿𝑧=𝛿𝑧,𝑛
(𝛿𝑥) = 𝜖2𝑖

𝛿2𝑥
𝛿2𝑥 + 𝛿2𝑧,𝑛

(59)

onsidering only the first order correction to this relation, we can omit
ll terms of order 3 in 𝜖2 in (51) to get:

2(𝛿𝑥) = 𝜔2
𝑚𝑖𝑚(𝛿𝑥) = 𝜖2𝑖

𝛿2𝑥
𝛿2𝑥 + 𝛿2𝑧,𝑛

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜔2
𝑖𝑚

(

1 −
2𝜖2𝑖 𝛿

2
𝑧,𝑛

(𝛿2𝑥 + 𝛿2𝑧,𝑛)2

)

+ O(𝜖6) (60)

Therefore, the main correction to the usual dispersion relation
comes from the fact that 𝛿𝑧 is not exactly equal to (but remains close
to) 𝛿𝑧,𝑛 = 𝑛𝜋. MIM correspond to the green curve in (Fig. 3.a).

4.3.2. Development of acoustic modes modified by gravity (MAM)
To study modified acoustic modes at higher frequencies, we now

use the fact that the root of the inner dispersion relation corresponding
to acoustic waves is well-approximated by 𝜔2

𝑎 (47) and that 𝛿𝑧 remains
close to 𝛿𝑧,𝑚 Section 4.2 and A.3.

Again, in order to get a more accurate expression of 𝛿𝑧 parameterize
by the horizontal wave-number 𝛿𝑥, we equate the (inversed) squared
frequency given by the surface dispersion relation (35b) to the (in-
versed) 𝜔2

+, given by the inner dispersion relation (44), and perform
the nonlinear equation’s solution approximation followed by a Taylor
development in 𝜖𝑖, 𝜖𝑎 to obtain:

𝛿𝑧(𝛿𝑥) = 𝛿𝑧,𝑚𝑎𝑚(𝛿𝑥) = 𝛿𝑧,𝑚 −
(𝛿2𝑥 − 𝛿2𝑧,𝑚)

2𝛿𝑧,𝑚(𝛿2𝑥 + 𝛿2𝑧,𝑚)
𝜖2𝑎 +

𝜖2𝑖
2𝛿2𝑧,𝑚

−
𝛿6𝑥(𝜖

2
𝑎 − 𝜖2𝑖 )

2 + 3𝛿2𝑥(𝜖
2
𝑎 − 𝜖2𝑖 )

2𝛿2𝑧,𝑚 − 2𝛿2𝑥(5𝜖
2
𝑎 − 3𝜖2𝑖 )𝜖

2𝛿4𝑧,𝑚 + 2𝜖4𝛿6𝑧,𝑚
4(𝛿2𝑥 + 𝛿2𝑧,𝑚)3𝛿3𝑧,𝑚

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
O(𝜖4)

+ O(𝜖6) (61)

An expansion for the frequency 𝜔2 can be obtained by injecting the
expression (61) of 𝛿𝑧 in the general expression (54) in the unbounded
domain case. The main departure from to the usual acoustic wave
frequency, given in Table 1 in dimensional form, is given by the
second-order development:

𝜔2(𝛿𝑥) = 𝜔2
𝑚𝑎𝑚(𝛿𝑥) =

1
𝜖2𝑎

[

𝛿2𝑥 + 𝛿2𝑧,𝑚 −
(𝛿2𝑥 − 𝛿2𝑧,𝑚)

(𝛿2𝑥 + 𝛿2𝑧,𝑚)
𝜖2𝑎 + 𝜖2𝑖

]

+ O(𝜖2) (62)

Here, stratification has a first-order (in 𝜖2𝑖 ) contribution to the modifica-
tion of the homogeneous case frequency. This first-order modification
comes from the first-order modification on the vertical wave-number
itself (61). However, it is clear that the associated impact is small since
𝜖2𝑖 is negligible compared with 𝛿2𝑧,𝑚 in (61) and (62), because 𝛿𝑧,𝑚 ≥ 𝜋∕2.

similar conclusion was drawn in (Smith, 2015). MAM correspond to
he red curves in (3.a).

.4. Purely imaginary 𝛿𝑧: modified surface acoustic-gravity waves (MSW)

‘‘Surface waves’’ generally refer to waves propagating horizontally
s anomalies of the ocean free-surface (Gill, 1982). In the vertical
irection, these surface wave anomalies are ‘‘evanescent’’, meaning
hat, with the notation chosen in the present study, the vertical wave-
umber 𝛿𝑧 is a purely imaginary complex number. A Modified Surface
ave (MSW) defined by its triplet (𝛿𝑥, 𝛿𝑧, 𝜔) must satisfy both the inner

40a) and boundary (40b) dispersion relations for 𝛿 = 𝑖 𝛿 .
𝑧 𝑧,𝑖

12
omogeneous & incompressible ocean. In an homogeneous and incom-
pressible ocean (𝜖𝑖 = 𝜖𝑎 = 0, Fig. 2), the inner dispersion relation
(40a) implies 𝛿𝑧,𝑖 = 𝛿𝑥. This equality is often postulated in textbooks
to reduce the number of variables. Vertical polarization relations are
then functions of 𝛿𝑥 only (Gill, 1982) and, as a consequence, the
only remaining dispersion relation is the boundary dispersion relation
(40b) for purely imaginary vertical wave-number (𝛿𝑧 = 𝑖𝛿𝑥), or its
pproximation 𝜔2 = 𝛿𝑥 tanh 𝛿𝑥. In this case, 𝛿𝑧,𝑖 is reduced to a vertical
ength-scale of energy decay with increasing distance from the surface;
or very long waves (𝛿𝑥 ≫ 1), the surface wave (LSW) is approximately
epth-independent (Table 1).

ispersion relation. In the more general case (non homogeneous and
ompressible ocean), we prove in Appendix A.4 the existence of solu-
ions to ((40a), (40b)). When the parameters 𝜖𝑖 and 𝜖𝑎 are small, we
dditionally prove in Appendix A.5 that surface acoustic-gravity waves
ave approximately similar horizontal and vertical wave-numbers (𝛿𝑥 ≈
𝑧,𝑖).

This crude assumption 𝛿𝑥 ≈ 𝛿𝑧,𝑖 is sufficiently accurate to recover
sual swell-like approximations (Table 1), i.e., for sufficiently large 𝛿𝑥
or 𝛿𝑧). However a more accurate expression is given by:

2
𝑧,𝑖(𝛿𝑥) = 𝛿2𝑥 − 𝛿𝑥

(

𝜖2𝑖
tanh(𝛿𝑥)

+ 𝜖2𝑎 tanh(𝛿𝑥)

)

+ O(𝜖4). (63)

In order to obtain (63), we introduce the frequency given by the
boundary dispersion relation in the inner dispersion relation (40a) and
solve the resulting nonlinear equation by performing one pass of a
Newton algorithm. Note that the problem is formulated in terms of
𝛿2𝑧,𝑖(𝛿𝑥) since it can be shown (by looking at the error estimate of the
Newton algorithm) that a formulation in terms of 𝛿𝑧,𝑖(𝛿𝑥) is not accurate
when 𝛿𝑥 is relatively small. Note also that (63) requires 𝛿𝑥 ≥ 𝜖𝑖 for 𝛿2𝑧,𝑖
to be positive. This is consistent with the fact that 𝛿𝑥 must be greater
than 𝛿𝑥,0(≈ 𝜖𝑖) defined in (38), as shown in Appendix A.4. However (63)
does not allow us to recover the exact value 𝛿𝑥,0 of 𝛿𝑥 that cancels 𝛿𝑧,𝑖,
due to the first-order only approximation in terms of 𝜖2. The case of
long surface waves with 𝛿𝑧,𝑖 close to zero will be treated separately in
Section 4.5.

The frequency 𝜔2(𝛿𝑥) associated to the vertical wave-number 𝛿2𝑧,𝑖(𝛿𝑥)
given by (63) is well approximated by:

𝜔2(𝛿𝑥) = 𝛿𝑥 tanh(𝛿𝑥)

[

1 − 1
2

(

𝜖2𝑖
sinh2(𝛿𝑥)

+
𝜖2𝑎

cosh2(𝛿𝑥)

−
𝜖2𝑖

𝛿𝑥 sinh(𝛿𝑥) cosh(𝛿𝑥)

)]

+ O(𝜖4) (64)

For very short waves (𝛿𝑥 ≫ 1), these relations simplify to:

𝛿𝑧,𝑖 ≈ 𝛿𝑥 − 𝜖2, 𝜔2 ≈ 𝛿𝑥

and we recover the frequency of short non hydrostatic waves 𝜔2 = 𝛿𝑥
(or 𝛺 =

√

𝑔𝑘𝑥 in dimensional form) with a slightly modified vertical
wave-number. MSW correspond to the blue curve in (3.a).

Marginally stable surface gravity waves. We proved in Section 3.3 that
the ratio 𝑅2(𝛿𝑥, 𝛿𝑧) is maximum and equal to 1∕4 only when 𝛿𝑧 is
imaginary. The relations (48a) and (48b) are simultaneously satisfied
(gray curve in Fig. 2.d). Any triplet (𝛿𝑥, 𝛿𝑧, 𝜔) satisfying these two
relations is an acceptable wave solution only if it also satisfies the
boundary dispersion relation (40b). As a consequence, 𝛿𝑥(𝜔) and 𝛿𝑧,𝑖(𝜔)
an be obtained combining (48b) and (40b) (both relations are recalled
elow), then (48a) leads to the non-linear equation for 𝜔 given by
65a):

𝑥 =
𝜖𝑎
𝜖𝑖
𝜔2 (48b)

𝜔2 =
𝛿2𝑥 tanh(𝛿𝑧,𝑖)

𝛿𝑧,𝑖 + 𝜖2 tanh(𝛿𝑧,𝑖)
(40b)

𝛿2(𝜔) − 𝛿2 (𝜔) − 𝜖2
𝛿2𝑥(𝜔) − 𝜖2𝜔2 + 𝜖4 = 0 (65a)
𝑥 𝑧,𝑖 𝑖 𝜔2 𝑎
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Fig. 5. Inner and boundary dispersion surfaces in (𝛿𝑥 , 𝛿𝑧 , 𝜔) space and wave solutions
for long waves. Colors: (light red) acoustic wave region (𝛿2𝑧 ≥ 0&𝜔 large), (light blue)
urface wave region (𝛿2𝑧 ≥ 0&𝜔 small), (light green) internal wave region (𝛿2𝑧 < 0),
white) boundary dispersion surface for 𝛿𝑧 ∈ R, (light gray) boundary dispersion surface

for 𝛿𝑧 ∈ R. Blue curve: Modified Surface Waves (MSW). Gray curve: triplets (𝛿𝑥 , 𝛿𝑧 , 𝜔)
satisfying (48b) and (48a). Red Point: marginally stable MSW Section 4.5.

For the stratification and acoustic parameters 𝜖𝑖 and 𝜖𝑎 given in Ta-
ble 2, Eq. (65a) has a unique solution for 𝜔∗ ≈ 0.154. This wave solution
(red point in Fig. 5) is marginally stable (𝜔+ = 𝜔− and 𝑅2(𝛿𝑥, 𝛿𝑧) = 1∕4).
Further investigations of this peculiar region of surface-wave phase-
space must in particular take into account the consequences of earth
rotation and wave non-linearity.

4.5. Long waves

We now prove the existence of two sub-branches of long wave
solutions: mode-0 Modified Internal Modes (MIM-0) with horizontal
wave-numbers in the range 𝛿𝑥 ∈ [0, 𝛿𝑥,0] and Long Modified Surface
Waves (LMSW) in the range 𝛿𝑥 ∈ [𝛿𝑥,0,+∞).

Dispersion relations for long waves. Here, we perform specific devel-
opments for long waves where the vertical profile is almost depth-
independent |𝛿𝑧| ≈ 0, 𝛿𝑧 being either real or purely imaginary (Fig. 3b).
This corresponds to the long-wave part of the acoustic-gravity branch
located in the region 𝛿2𝑧 ∈ (−∞, 𝛿2𝑧,𝑚=1] of Fig. 4a.

Inserting the boundary dispersion relation (35b) into the inner
ispersion relation (35a) and making a second-order Taylor expansion
n 𝛿𝑧 leads to:

2
𝑧 (𝛿𝑥) = 𝛿2𝑧,𝑙𝑜𝑛𝑔(𝛿𝑥) =

(

𝛿2𝑥,0 − 𝛿2𝑥
) 1 + 𝜖2𝑖 ∕3 − 𝜖2𝑎
(1 + 𝜖2𝑖 ∕3)(1 + 𝜖2𝑖 ∕3) − 𝛿2𝑥𝜖2𝑎∕3

+ O(𝛿4𝑧 )

(66)

𝛿𝑥,0 is the value of 𝛿𝑥 for which 𝛿𝑧 = 0 is a solution of the inner and
oundary dispersion relations (Section 2.6). At first order in 𝜖2, 𝛿𝑥,0 is

equal to 𝜖𝑖. The corresponding frequency can be obtained by inserting
the approximation of the vertical wave-number given by (66) into the
boundary relation dispersion (35b). An approximation at second order
in 𝛿2𝑥 and 𝜖2 is:

𝜔2(𝛿𝑥) = 𝜔2
𝑙𝑜𝑛𝑔(𝛿𝑥) = 𝛿2𝑥

(

1 − 1
6
(

𝜖2𝑖 + 3𝜖2𝑎
)

+1
3
𝜖2𝑎𝜖

2 + 1
45

𝜖4𝑖 + O(𝜖6)
)

+ O(𝛿𝑥)4. (67)

We also define:

𝛿2𝑧,0(𝛿𝑥 = 0) =
𝛿2𝑥,0(1 + 𝜖2𝑖 ∕3 − 𝜖2𝑎 )
2 2 2 2

+ O(𝛿4𝑧 ) (68)

(1 + 𝜖𝑖 ∕3)(1 + 𝜖𝑖 ∕3) − 𝛿𝑥𝜖𝑎∕3 d

13
Fig. 6 shows the evolution of 𝛿2𝑧 , |𝛿𝑧| and 𝜔 as functions of 𝛿𝑥 for long
aves (6a, b and d) and for short and intermediate waves (6c).

𝒙 ≤ 𝜹𝒙,𝟎. For 𝛿𝑥 ≤ 𝛿𝑥,0 ≈ 𝜖𝑖, the vertical wave-number 𝛿𝑧 given
by (66) is real. This implies that 𝜔2 ≈ 𝛿2𝑥 ≤ 𝜖𝑖 𝛿𝑥 ≤ 𝜖𝑖

𝜖𝑎
𝛿𝑥 (since

𝑎 < 1) and, thus, using the bounds on 𝜔2
−, 𝜔

2
+ given by (45), that these

aves are always issued from the internal-wave region of the inner
ispersion surface (𝜔2

−), not from the acoustic-wave region (𝜔2
+). In

ther words, there is no intersection between the boundary dispersion
elation and the (real) acoustic-wave region for 𝛿𝑧 ∈ R close to zero
or the chosen boundary conditions . This is consistent with the fact
hat (acoustic) Lamb waves can only be solutions for different surface
r bottom boundary conditions in Section 2.6.

Dukowicz (2013) notes that this wave solution, like any higher
nternal modes, has its frequency 𝜔2 approximately bounded by 𝜖2𝑖
i.e. 𝛺 ≤ 𝑁), since 𝜔2 ≈ 𝛿2𝑥 ≤ 𝜖2𝑖 . We however avoid to refer to this n=0
nternal mode (MIM-0) as a barotropic wave. Indeed if 𝜖𝑖 = 𝜖𝑎 = 0, i.e. if
tratification and compressibility vanish in this sub-branch disappears.
ince 𝛿𝑧 ∈ R, MIM-0 propagates in the vertical direction but its vertical
ave-number remains small even in strongly-stratified regions (large
alues of 𝜖𝑖, see Table 6).

𝒙 ≥ 𝜹𝒙,𝟎. For 𝛿𝑥 ≥ 𝛿𝑥,0 (but still small), 𝛿𝑧 given by (66) is purely
maginary. These long waves originate from the surface-wave branch
SW and will here be named LMSW. When 𝛿𝑥 increases, 𝛿𝑧,𝑙𝑜𝑛𝑔 (66)

onverges to 𝛿𝑧,𝑙𝑚𝑠𝑤 (63), which is a better approximation for medium
nd short surface waves. Fig. 6.(a) shows 𝛿2𝑧 as a function of 𝛿𝑥 (for
𝑥 ≤ 2𝜖𝑖). The two approximations given by (66), accurate for long
aves, and (63), accurate for medium/short waves, are plotted. On
ig. 6.(b), the modulus of the vertical wave-number is shown on the
ame interval for 𝛿𝑥 (for 𝛿𝑥 ≤ 2𝜖𝑖).

Fig. 6.c and d present the frequency 𝜔 as a function of the horizon-
al wave-number 𝛿𝑥 according to different approximations for small,
ntermediate and long horizontal wave-numbers. 𝜔𝑙𝑜𝑛𝑔 and 𝜔𝑚𝑠𝑤 are
omputed by inserting the corresponding approximations (66) and (63)
f 𝛿𝑧 in the boundary dispersion relation (35b). 𝜔 = 𝛿𝑥 (resp. 𝜔 =

√

𝛿𝑥)
represents the classical long shallow-water waves (resp. short non-
hydrostatic surface waves) approximation. 𝜔 = 𝜔𝑠𝑤 =

√

𝛿𝑥 tanh(𝛿𝑥) is
he frequency of an homogeneous and incompressible (non hydrostatic)
cean. Unsurprisingly, this last approximation is accurate over the full
ange of horizontal wave-numbers, even for the set of compressible
tratified equations. Indeed, even if for long waves, 𝛿𝑧 is not directly
inked to 𝛿𝑥 (in particular 𝛿𝑧 does not vanish for 𝛿𝑥 ≈ 0), 𝛿𝑧 remains

small (less than 𝜖𝑖) and thus 𝛿𝑧∕ tan(𝛿𝑧) is close to 1.
Interestingly, and contrary to conclusions in Dukowicz (2013),

he MIM-0 frequency cannot saturate at the buoyancy frequency for
ncreasing horizontal wave-number 𝛿𝑥 but transforms into a vertically
vanescent surface wave, whereas its vertical wave-number switches
rom real to purely imaginary.

ydrostaticity and asymptotic behaviour. Surface edge waves are conse-
uently either MIM-0 Modes (𝛿𝑧 ∈ R and 𝛿𝑥 < 𝛿𝑥,0) or Modified Surface

Waves (MSW, 𝛿𝑧 ∈ 𝑖R and 𝛿𝑥 > 𝛿𝑥,0). For 𝛿𝑥 = 𝛿𝑥,0, a depth-independent
gravity surface wave studied in Section 2.6 separates these two sub-
branches. In the long wave approximation, the ‘‘long wave solution’’
(63) is an accurate approximation of both MIM-0 and LMSW.

We now further prove that in the long-wave, low- frequency limit :

• for 𝛿𝑥 < 𝛿𝑥,0, the MIM-0 is (quasi-) hydrostatic and converges
towards the

√

𝑔𝐻-phase-velocity shallow-wave solution (SHW)
when stratification loosens (i.e. when 𝜖𝑖 → 0),

• for 𝛿𝑥 > 𝛿𝑥,0, the LMSW solution remains non-hydrostatic and con-
verges towards the other

√

𝑔𝐻-phase-velocity long-swell solution
(LSW) when stratification loosens (i.e. when 𝜖𝑖 → 0).

he SHW and LSW asymptotic solutions are recalled in Table 1 and
iscussed in Section 2.6.



F. Auclair, L. Debreu, E. Duval et al. Ocean Modelling 168 (2021) 101900

(
(

(

𝑟

Fig. 6. Dispersion curves for (intermediate) and long wave-lengths 𝛿𝑧. Black point: depth-independent surface gravity wave. Section 2.6.
(a) square modulus of the vertical wave-number 𝛿2𝑧 as a function of the horizontal wave-number 𝛿𝑥. The exact solution can be numerically computed (not shown) and is visually
not distinguishable from the blue curve (accurate approximation). The vertical wave-number of an incompressible and homogeneous ocean would follow the straight line 𝛿𝑧 = 𝛿𝑥.
(b) modulus of the vertical wave-number |𝛿𝑧| as a function of the horizontal wave-number 𝛿𝑥. The exact solution can be numerically computed (not shown) and is visually not
distinguishable from the blue curve (accurate approximation). The vertical wave-number of an incompressible and homogeneous ocean would follow the straight line 𝛿𝑧 = 𝛿𝑥.
c) Frequency 𝜔 as a function of 𝛿𝑥 the horizontal wave-number for different approximations (short, intermediate and long waves).
d) Frequency 𝜔 as a function of 𝛿𝑥 but in the vicinity of the origin.
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Using the approximate solution for long waves (66) and for LMSW
63), we can compute their respective aspect-ratio:

2
𝑙𝑜𝑛𝑔(𝛿𝑥) =

𝛿2𝑥
𝛿2𝑧,𝑙𝑜𝑛𝑔

= 𝛿2𝑥
1 + 𝜖2𝑖 ∕3 − 𝜖2𝑎

(1 + 𝜖2𝑖 ∕3)(1 + 𝜖2𝑖 ∕3) − 𝛿2𝑥𝜖2𝑎∕3
+ O(𝛿4𝑧 ) (69a)

𝑟2𝑚𝑠𝑤(𝛿𝑥) =
𝛿2𝑥

𝛿2𝑧,𝑚𝑠𝑤
=

𝛿𝑥
𝜖2𝑎 tanh

2(𝛿𝑥) − 𝛿𝑥 tanh(𝛿𝑥) + 𝜖2𝑖
(69b)

Fig. 7 shows the evolutions of these aspect ratios as functions of the
horizontal wave-number. A study of the variations of 𝑟𝑙𝑜𝑛𝑔 shows that
this ratio increases monotonically from 0 to infinity when 𝛿𝑥 varies
from 0 to 𝛿𝑥,0 and decreases monotonically from infinity to 1 when 𝛿𝑥
varies from 𝛿𝑥,0 to infinity. In this latter range, 𝑟𝑚𝑠𝑤 remains close to
𝑟𝑙𝑜𝑛𝑔 . Except in the vicinity of 𝛿𝑥,0, the aspect ratio 𝑟𝑙𝑜𝑛𝑔 remains lower
than 1 and it decreases monotonically to 0 when 𝛿𝑥 approaches 0. In
this (very) long-wave range, the MIM-0 solution is thus hydrostatic and
the dispersion relations (66) and (64) are approximately given by:

𝛿2𝑧 = 𝛿2𝑧,0 ≈ 𝜖2𝑖 & 𝜔2 ≈ 𝛿2𝑥 (70)

This solution is also the long-wave approximation of the hydrostatic
wave solution (Appendix B).

The second branch is a monotonic function for 𝛿𝑥 ∈ [𝛿𝑥,0,+∞)
and it decreases to 1 when 𝛿𝑥 → +∞. As a consequence, it remains
superior to 1 in this range of wave-numbers, the corresponding wave
solution is non-hydrostatic and the dispersion relations (66) and (64)
are approximately given by:

𝛿2𝑧,𝑖 ≈ 𝛿2𝑥 − 𝜖2𝑖 & 𝜔2 ≈ 𝛿2𝑥 (71)

This solution is also the long-wave approximation of the non-
hydrostatic wave solution (Appendix B).
 n

14
Fig. 7. Modulus of the wave aspect ratios 𝑟𝑚𝑖𝑚0 (black-solid curve) and 𝑟𝑙𝑚𝑠𝑤 (black,
ashed curve). Colors: (light-green) internal wave region (𝛿𝑧 ∈ R),(light-blue) surface
ave (𝛿𝑧 ∈ 𝑖R).

.6. Summary: waves solutions in a bounded ocean

Unlike in an unbounded ocean, acoustic-gravity wave solutions in a
ounded, free-surface ocean must satisfy both the inner and boundary
ispersion relations. This induces the appearance of poles in these
ispersion relations for 𝛿𝑧 =

𝜋
2 +(𝑚−1)𝜋 (MAM) and for 𝛿𝑧 = 𝑛𝜋 (MIM)

ith (𝑚, 𝑛) ∈ N∗𝑥N+. For 𝛿𝑧 ∈ 𝑖R, the boundary dispersion relation does
ot exhibit any pole.
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Table 5
Compressibility and stratification induced modifications to the usual dispersion relations given in table Table 1. The orders of magnitude of the modifications of the frequency
and vertical wave-numbers (last column) are computed for the values of the main parameters given in table Table 2, 𝑘𝑥 = 𝑘𝑧 = 1∕𝐻 = 1∕4000 𝑚−1, 𝑚 = 0 and 𝑛 = 1. The vertical

ave-numbers of MIM-0 and LMSW are respectively compared to the vertical wave-numbers of SHW (0) and LSW (𝑘𝑥).
Waves frequency (𝛺) Vertical wave-number (𝑘𝑧) Modification (%)

Modified Acoustic Modes (MAM)
𝑘𝑧,𝑚 = 1

𝐻
(𝜋∕2 + 𝑚𝜋), 𝑚 ≥ 0

Section 4.3.2 𝛺2
𝑚𝑎𝑚 = 𝑐2𝑠 (𝑘

2
𝑥 + 𝑘2𝑧)

[

1 −
𝑔

𝐻𝑐2𝑠

𝑘2𝑥 − 𝑘2𝑧,𝑚
(𝑘2𝑥 + 𝑘2𝑧,𝑚)2

+ 𝑁2

𝑔𝐻
1

𝑘2𝑥 + 𝑘2𝑧,𝑚

]

𝑘𝑧,𝑚

[

1 −
𝑔

𝐻𝑐2𝑠

𝑘2𝑥 − 𝑘2𝑧,𝑚
2(𝑘2𝑥 + 𝑘2𝑧,𝑚)𝑘2𝑧,𝑚

+ 𝑁2

2𝑔𝐻2
1

𝑘3𝑧,𝑚

]

(61) (0.24, 0.16)

Modified Internal Modes (MIM)
𝑘𝑧,𝑛 =

1
𝐻
(𝑛𝜋), 𝑛 ≥ 1

Section 4.3.1 𝛺2
𝑚𝑖𝑚 =

𝑁2𝑘2𝑥
𝑘2𝑥 + 𝑘2𝑧,𝑛

[

1 − 2 𝑁2

𝑔𝐻

𝑘2𝑧,𝑛
(𝑘2𝑥 + 𝑘2𝑧,𝑛)2

]

𝑘𝑧,𝑛

[

1 + 𝑁2

𝑔𝐻
1

𝑘2𝑥 + 𝑘2𝑧,𝑛
+
(

𝑁2

𝑔𝐻

)3 (𝑘2𝑥 − 𝑘2𝑧,𝑛)

(𝑘2𝑥 + 𝑘2𝑧,𝑛)3

]

(−6.8x10−3 , 3.8x10−3)

Modified Surface Waves (MSW)
𝑘𝑥 ≥ 𝑘𝑥,0 ≈

𝑁2

𝑔

Section 4.4 𝛺2 = 𝑔𝑘𝑥 tanh(𝐻𝑘𝑥) (64) 𝑖𝑘𝑥

√

1 − 1
𝑘𝑥

(

𝑁2

𝑔 tanh(𝐻𝑘𝑥)
+

𝑔
𝑐2𝑠

tanh(𝐻𝑘𝑥)
)

Modified Internal Mode 0 (MIM-0)
𝑘𝑥 ≤ 𝑘𝑥,0 ≈

𝑁2

𝑔

Section 4.5 𝛺2 = 𝑔𝐻𝑘2𝑥
[

1 − 1
6

(

𝜖2𝑖 + 3𝜖2𝑎
)

]

(67)
√

𝑘2𝑥,0 − 𝑘2𝑥 (66) (−0.88, 2.5x10−2)

Long Modified
Surface Waves (LMSW)
𝑘𝑥 ≥ 𝑘𝑥,0 ≈

𝑁2

𝑔

Section 4.5 𝛺2 = 𝑔𝐻𝑘2𝑥
[

1 − 1
6

(

𝜖2𝑖 + 3𝜖2𝑎
)

]

(67) 𝑖
√

𝑘2𝑥 − 𝑘2𝑥,0 (66) (−0.88, −8.3x10−6)
𝑁

A stratified ocean can propagate two types of surface edge waves:

• for medium and short wave-lengths (𝛿𝑥 > 𝛿𝑥,0), MSW are non-
hydrostatic (𝑟𝑙𝑚𝑠𝑤 > 1), evanescent (𝛿𝑧,𝑠𝑤 ∈ 𝑖R) and converge
towards the

√

𝑔𝐻-phase-velocity, depth-dependent (𝛿𝑥 = 𝛿𝑧,𝑖)
wave solution (LSW) when both 𝜖𝑖 → 0 and 𝛿𝑥 → 𝛿𝑥,0. Vertical
variations of pressure are non-hydrostatic and in a homogeneous
ocean, LMSW solutions remain depth-dependent (𝛿𝑥 = 𝛿𝑧,𝑖 ≠ 0).

• for longer waves (𝛿𝑥 < 𝛿𝑥,0), MIM-0 are quasi-hydrostatic (𝑟𝑚𝑖𝑚0 <
1 if 𝛿𝑥 is not in the neighbourhood of 𝛿𝑥,0), vertically propagating
(𝛿𝑧 ∈ R) and converges towards the shallow-water

√

𝑔𝐻-phase-
velocity solution (SHW) when both 𝜖𝑖 → 0 and 𝛿𝑥 → 0. In this case,
vertical variations of pressure are hydrostatic and LMIW solutions
are depth-independent (𝛿𝑧 = 0). When the stratification loosens
(𝜖𝑖 → 0), the range of validity of MIM-0 solution (0 < 𝛿𝑥 < 𝛿𝑥,0 ≈
𝜖𝑖) shrinks to zero.

he frequency of acoustic wave solutions (modified by gravity) re-
ains larger than 𝜔𝑐,𝑎 = 𝜖2∕𝜖𝑎 whereas the frequency of gravity
aves (modified by compressibility) remains smaller than 𝜔𝑐,𝑖 = 𝜖𝑖

Section 3.3).
Table 5 summarizes the main approximations for the different type

f waves (acoustic, gravity and surface waves/modes) given in this
aper. These approximations are indicated in their dimensional form.
or sake of readability, some of the relations given in Table 5 are lower
rder versions of our derivations. They generally stem from first-order
orrection terms, compared with usual dispersion relations introduced
n Table 1. In that case, a red link to the higher approximation is given.

Table 6 gives orders of magnitude of various characteristics of these
coustic gravity waves for the reference set of (𝜖𝑎, 𝜖𝑖) parameters
Table 2) and for a shallow or a strongly stratified ocean.

For the 4000 m-deep reference ocean, the horizontal length scale
ssociated with the transformation of the MSW into the long MIM
𝜆𝑥,𝑙𝑚𝑠𝑤 = 2𝜋∕(𝛿𝑥,𝑙𝑚𝑠𝑤∕4000)) reaches 1367 km against 62 km for the
ame 10 m-deep ocean. When 𝛿𝑥 decreases below 𝛿𝑥,𝑙𝑚𝑠𝑤, 𝛿𝑧 increases
onotonically to a maximum value 𝛿𝑧,𝑙𝑚𝑠𝑤(𝛿𝑥 = 0). This vertical length

cale reaches 1379 km for the 4000 m-deep reference ocean and 62 km
for the same 10 m-deep ocean. A rule can be formulated as: the longer
the horizontal length scale of the oscillation, the shorter its vertical
length scale; and the weaker the stratification (vanishing 𝜖𝑖) the longer
its horizontal length-scale 𝜆 . This long MIM solution is a low-
𝑥,𝑙𝑚𝑠𝑤

15
Table 6
Orders of magnitude of various scales. Notations refer to non-dimensional variables
whereas orders of magnitude are given for dimensional quantities. Parameters for
the ‘‘Reference’’ ocean are given in table Table 2. ‘‘10-m-deep’’ ocean is a 10-m-
deep Reference ocean whereas a ‘‘𝑁 = 5x10−3 s−1 ’’ ocean is a reference ocean with

= 5x10−3 s−1.
Notation Reference 10-m-deep 𝑁 = 5x10−3 s−1

Parameters 𝜖𝑎 0.13 6.6x10−3 0.13
𝜖𝑖 2.0x10−2 1.0x10−3 0.1

Acoustic cut-off 2𝜋
√

𝐻∕𝑔∕𝜔𝑐,𝑎 31.3 min 31.3 min 20 min

Internal cut-off 2𝜋
√

𝐻∕𝑔∕𝜔𝑐,𝑖 1.7 h 1.7 h 21 min

Depth-independent surface 2𝜋𝐻∕𝛿𝑥,0 1367 km 62 km 247 km
gravity wave 2𝜋

√

𝐻∕𝑔∕𝜔0 1.9 h 1.7 h 21 min

MIW, 𝛿𝑧(0) 2𝜋𝐻∕𝛿𝑧,0 1380 km 62 km 250 km

2𝜋
√

𝐻∕𝑔∕𝜔𝑧,0 ∞ ∞ ∞

MSW, marginally-stable 2𝜋𝐻∕𝛿𝑥,∗ 162 km 408 m 25 km

wave 2𝜋𝐻∕𝛿𝑧,∗ 164 km 408 m 25 km

2𝜋
√

𝐻∕𝑔∕𝜔∗ 13.7 min 41.6 s 2.4 min

frequency oscillation of the ocean due to gravity and associated with
ocean stratification. It disappears when stratification vanishes and the
ocean becomes an homogeneous layer of water. It does persist in an
incompressible ocean but is slightly modified by compressibility.

5. Discussion, conclusion

An Eulerian, analytical model for acoustic gravity waves propagat-
ing in a compressible, stratified, free-surface, non-rotating ocean has
been derived and investigated with several objectives: recover acoustic
waves and modes in a unified dispersion model, describe analytically
the modifications of the characteristics of these waves and modes for
small changes in compressibility or stratification and, finally, anticipate
the impact of compressibility in the new generation of non-hydrostatic,
compressible, ocean models (Auclair et al., 2018).

An original investigation (at least to the authors’ knowledge) based
on 3D graphics in (𝛿𝑥, 𝛿𝑧, 𝜔) phase-space has been carried out to sup-
port and illustrate the analytical developments. Well-known acoustic
and internal modes (MAM and MIM) have in particular been recovered
and have been associated to the infinite number of discrete poles of the
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inner and boundary dispersion relations. A least two peculiar regions
of the phase space have been investigated in more detail. Firstly, the
long acoustic gravity wave branch has indeed been decomposed in
two sub-branches: one associated to a modified mode-0 internal mode
(MIM-0) with a real vertical wave-number, the other to a modified long
surface gravity wave (LMSW) with imaginary vertical wave-number.
Secondly, modified surface gravity waves (MSW) have been shown to
be marginally stable for intermediate wave-numbers in a region of
phase space where compressibility and stratification induced effects
approximately compensate.

Analytical solutions are given in dimensional form in Appendix C,
such solutions can conveniently be used to validate non-hydrostatic,
compressible, free-surface ocean models (Auclair et al., 2018).
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Appendix A. Mathematical demonstrations

A.1. 𝛿𝑧 real or purely imaginary

In this section, we prove that under the condition of smallness of
parameters 𝜖𝑖 and 𝜖𝑎, 𝛿𝑧 is either real or imaginary and thus that
the frequency 𝜔 is real.

Polarization function in s-coordinates. The eigenvalue problem (28) and
the surface boundary condition (28b) are rewritten in non-dimensional
form as:

𝐺′′(𝑠) + 𝛿2𝑧𝐺(𝑠) = 0 (A.1)

𝐺(1) = 1 (A.2)

𝐺(0) = 0 (A.3)

𝐺′(1) +

(

𝜖2𝑖 + 𝜖2𝑎
2

−
𝛿2𝑥
𝜔2

)

𝐺(1) = 0 (A.4)

where 𝑠 = 𝑧 +𝐻
𝐻

, 𝐺(𝑠(𝑧)) = 𝐹 (𝑧) and 𝜖2𝑖 = 𝑁2𝐻
𝑔

, 𝜖2𝑎 =
𝑔𝐻
𝑐2𝑠

, 𝛿𝑥 =

𝑥𝐻, 𝛿𝑧 = 𝑘𝑧𝐻,𝜔 = 𝛺
√

𝐻
𝑔

.

Energy equation. 𝛿𝑧 is linked to 𝛿𝑥 and 𝜔 by the inner dispersion
relation

𝛿2𝑧 =

(

𝛿2𝑥
𝜖2𝑖 − 𝜔2

𝜔2
+ 𝜖2𝑎𝜔

2 −
(𝜖2𝑖 + 𝜖2𝑎 )

2

4

)

(A.5)

Multiplying (A.1) by 𝐺(𝑠) and integrating over [0, 1] we get:

∫

1

0
𝐺′′(𝑠)𝐺(𝑠)d𝑠 + 𝛿2𝑧 ∫

1

0
|𝐺(𝑠)|2d𝑠 = 0

ntegration by parts leads to:
1
|𝐺′(𝑠)|2d𝑠 + 𝛿2

1
|𝐺(𝑠)|2d𝑠 + 𝐺′(1)𝐺(1) − 𝐺′(0)𝐺(0) = 0
∫0 𝑧 ∫0

16
and using (A.2), (A.3), (A.4)

𝛿2𝑧 ∫

1

0
|𝐺(𝑠)|2d𝑠 +

(

𝛿2𝑥
𝜔2

−
𝜖2𝑖 + 𝜖2𝑎

2

)

= ∫

1

0
|𝐺′(𝑠)|2d𝑠

sing the Poincaré inequality ∫

1

0
|𝐺(𝑠)|2d𝑠 ≤ ∫

1

0
|𝐺′(𝑠)|2d𝑠 and 1 =

𝐺(1)|2 ≤ ∫

1

0
|𝐺′(𝑠)|2d𝑠, we obtain:

2
𝑧𝜇 +

(

𝛿2𝑥
𝜔2

−
𝜖2𝑖 + 𝜖2𝑎

2

)

𝜈 = 1 (A.6)

with 0 ≤ 𝜇 ≤ 1 and 0 ≤ 𝜈 ≤ 1.

Imaginary part of the energy equation. Taking the imaginary part of
(A.6) and using (A.5)

𝜇
(

𝜖2𝑎ℑ[𝜔2] + 𝛿2𝑥𝜖
2
𝑖 ℑ[1∕𝜔2]

)

+ 𝜈𝛿2𝑥ℑ[1∕𝜔2] = 0

or, using ℑ[1∕𝜔2] = −ℑ[𝜔2]∕|𝜔|4,

ℑ[𝜔2]

(

𝜇

(

𝜖2𝑎 − 𝜖2𝑖
𝛿2𝑥
|𝜔|4

)

− 𝜈
𝛿2𝑥
|𝜔|4

)

= 0 (A.7)

et us assume that 𝜔 is neither real or imaginary. This implies ℑ[𝜔2] ≠ 0
nd (A.7) leads to:
(

𝜖2𝑎
|𝜔|4

𝛿2𝑥
− 𝜖2𝑖

)

− 𝜈 = 0 (A.8)

e will show below that, in this case, solutions can exist only for non
hysical values of 𝜖𝑖, 𝜖𝑎 satisfying max(𝜖𝑖, 𝜖𝑎) >

√

2.

eal part of the energy equation. Taking the real part of (A.6)

𝜇

(

−𝛿2𝑥 + 𝛿2𝑥𝜖
2
𝑖 ℜ[1∕𝜔2] −

(𝜖2𝑖 + 𝜖2𝑎 )
2

4
+ 𝜖2𝑎ℜ[𝜔2]

)

+ 𝜈

(

𝛿2𝑥ℜ[ 1
𝜔2

] −
𝜖2𝑖 + 𝜖2𝑎

2

)

= 1 (A.9)

or, using ℜ[1∕𝜔2] = ℜ[𝜔2]∕|𝜔|4,

𝜇

(

−𝛿2𝑥 −
(𝜖2𝑖 + 𝜖2𝑎 )

2

4
+ (

𝛿2𝑥𝜖
2
𝑖

|𝜔|4
+ 𝜖2𝑎 )ℜ[𝜔2]

)

+ 𝜈

(

𝛿2𝑥
|𝜔|4

ℜ[𝜔2] −
𝜖2𝑖 + 𝜖2𝑎

2

)

= 1. (A.10)

A.8) allows to simplify in:
(

−𝛿2𝑥 −
(𝜖2𝑖 + 𝜖2𝑎 )

2

4
+ 2𝜖2𝑎ℜ[𝜔2]

)

− 𝜈

(

𝜖2𝑖 + 𝜖2𝑎
2

)

= 1 (A.11)

Energy-based system of equations. Eqs. (A.8) and (A.11) can be summa-
rized in
𝛼𝜇 − 𝛽𝜈 = 1
𝛾𝜇 − 𝜈 = 0

(A.12)

ith

= −𝛿2𝑥 −
(𝜖2𝑖 + 𝜖2𝑎 )

2

4
+ 2𝜖2𝑎ℜ[𝜔2], 𝛽 =

𝜖2𝑖 + 𝜖2𝑎
2

, 𝛾 = 𝜖2𝑎
|𝜔|4

𝛿2𝑥
− 𝜖2𝑖

Using 𝛽 > 0, it is easy to check that (A.12) has solutions (𝜇, 𝜈) positive
and with magnitude less than one only if

𝛾 > 1 and 𝛼 > (1 + 𝛽)𝛾

or

0 ≤ 𝛾 ≤ 1 and 𝛼 ≥ 1 + 𝛽𝛾

The conditions above immediately exclude the cases 𝜖𝑎 = 0 (which
leads to 𝛾 < 0) and ℜ[𝜔2] ≤ 0 (which leads to 𝛼 < 0). They will not
be considered below.
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First case: 0 ≤ 𝛾 ≤ 1. This implies:

|𝜔|4 ≤
𝛿2𝑥
𝜖2𝑎

(1 + 𝜖2𝑖 ) (A.13)

𝛼 ≥ 1 + 𝛽𝛾 writes:

ℜ[𝜔2] ≥ 1
2𝜖2𝑎

[

1 + 𝛿2𝑥 +
(𝜖2𝑎 + 𝜖2𝑖 )

2

4
+

𝜖2𝑖 + 𝜖2𝑎
2

(

𝜖2𝑎
|𝜔|4

𝛿2𝑥
− 𝜖2𝑖

)]

Now using the inequalities |ℜ[𝜔2]|2 ≤ |𝜔|4 and (A.13), we get

𝛿2𝑥
𝜖2𝑎

(1 + 𝜖2𝑖 ) ≥ |𝜔|4

≥

(

1
2𝜖2𝑎

[

1 + 𝛿2𝑥 +
(𝜖2𝑎 + 𝜖2𝑖 )

2

4
+

𝜖2𝑖 + 𝜖2𝑎
2

(

𝜖2𝑎
|𝜔|4

𝛿2𝑥
− 𝜖2𝑖

)])2

(A.14)

Using a computing algebra software to simplify the technical exercice,
we can prove that (A.14) has solutions if and only if

𝜖2𝑖 >
√

4 + 𝜖4𝑎

which requires 𝜖𝑖 >
√

2.

Second case: 𝛾 > 1. This implies:

|𝜔|4 >
𝛿2𝑥
𝜖2𝑎

(1 + 𝜖2𝑖 ) (A.15)

𝛼 > (1 + 𝛽)𝛾 can be written as:

𝛾 < 𝛼
1 + 𝛽

or

|𝜔|4 <
𝛿2𝑥
𝜖2𝑎

⎡

⎢

⎢

⎢

⎣

𝜖2𝑖 +
1

1 +
𝜖2𝑎+𝜖2𝑖

2

(

−𝛿2𝑥 −
(𝜖2𝑖 + 𝜖2𝑎 )

2

4
+ 2𝜖2𝑎ℜ[𝜔2]

)⎤

⎥

⎥

⎥

⎦

Now using 0 ≤ ℜ[𝜔2] ≤ |𝜔|2 and adding (A.15), we get:

𝛿2𝑥
𝜖2𝑎

(1 + 𝜖2𝑖 ) < |𝜔|4 <
𝛿2𝑥
𝜖2𝑎

⎡

⎢

⎢

⎢

⎣

𝜖2𝑖 +
1

1 +
𝜖2𝑎+𝜖2𝑖

2

(

−𝛿2𝑥 −
(𝜖2𝑖 + 𝜖2𝑎 )

2

4
+ 2𝜖2𝑎 |𝜔|

2

)⎤

⎥

⎥

⎥

⎦

which has non trivial solutions if and only if

𝜖2𝑎 > 2 + 𝜖2𝑖

which requires 𝜖𝑎 >
√

2.

onclusion. This concludes the proof. If 𝜖𝑎 = 0 or max(𝜖𝑖, 𝜖𝑎) ≤
√

2, then
[𝜔2] is zero. This also leads to ℑ[𝛿2𝑧 ] = 0 and we conclude that, under

these conditions, 𝛿𝑧 is either real or purely imaginary. Eq. (A.10) with
𝜇 and 𝜈 positive further show that 𝑅𝑒[𝜔2] ≥ 0 implying that 𝜔 can only
e real and the amplitude of the wave solution does not diverge in time.

.2. Vanishing ratio 𝑅2(𝛿𝑥, 𝛿𝑧)

We now show that the two roots 𝜔± are well-separated except
when

(i) 𝛿𝑧 is imaginary and close to 𝛿𝑧 = 𝑖𝛿𝑧,𝑖,∗ = 𝑖
(

𝜖2𝑎 − 𝜖2𝑖
)

∕2,
(ii) 𝛿𝑧 is real and 𝜖𝑖 = 𝜖𝑎&𝛿𝑧 = 0

𝛿𝑧 Real. The ratio of reference functions 𝑅2(𝛿𝑥, 𝛿𝑧), defined by (43),
depends indeed on two variables (𝛿𝑥, 𝛿𝑧) and two parameters (𝜖𝑖, 𝜖𝑎). A
study of its variations for 𝛿𝑥 ∈ R shows that, for non-vanishing (𝜖𝑖, 𝜖𝑎),
t has an upper bound:

2
𝑚𝑎𝑥(𝛿𝑧) = max𝑅2(𝛿𝑥, 𝛿𝑧) =

1 𝜖2𝑎𝜖
2
𝑖

2 4
(A.16)
𝛿𝑥 4 𝛿𝑧 + 𝜖

17
and this maximum value is attained for

𝛿2𝑥 = 𝛿2𝑧 + 𝜖4. (A.17)

Since for 𝑚𝑎𝑥(𝜖𝑖, 𝜖𝑎) ≤
√

2 or 𝜖𝑎 = 0 the roots (44) are real (Ap-
endix A.1), 𝑅𝑚𝑎𝑥(𝛿𝑧) must remain bellow 1∕4 but approaches 1∕4

for both a near depth-independent vertical profile (i.e. 𝛿𝑧 ≈ 03) and
𝑎 ≈ 𝜖𝑖 (or in dimensional form 𝑁 = 𝑔∕𝑐𝑠). This last equality is true
hen the stratification and the compressibility effects have an identical

ontribution to the vertical variation of background stratification 𝜌̂ℎ(𝑧).
n all other cases, the vast majority, the two roots are well separated
nd given by:

−(𝛿𝑥, 𝛿𝑧) ≈ 𝜔𝑖(𝛿𝑥, 𝛿𝑧), 𝜔+(𝛿𝑥, 𝛿𝑧) ≈ 𝜔𝑎(𝛿𝑥, 𝛿𝑧) (A.18)

𝑧 Imaginary. When horizontal and vertical wavenumbers are close
ogether, the left-hand side and right-hand side of (40a) both vanish,
.e., the influence of stratification (𝜖2𝑖 𝛿

2
𝑥∕𝜔

2) and compressibility (𝜖2𝑎𝜔
2
𝑎)

ancel out. In other words, differences between horizontal and vertical
avenumbers are indication of the influence of ocean stratification
nd/or compressibility. In an incompressible, homogeneous (unstrat-
fied) ocean, 𝜖𝑖 = 𝜖𝑎 = 0 and vertical and horizontal wave-numbers
re equal. The developments of 𝜔2

−, 𝜔
2
+ for small 𝜖𝑖, 𝜖𝑎 are identical

o those for real vertical wavenumbers (51), (54) just replacing 𝛿2𝑧 by
𝛿2𝑧,𝑖. The remaining question is that of root separation when 𝛿𝑧 ∈ 𝑖 R.
nlike when 𝛿𝑧 ∈ R (previous sub-section), the ratio 𝑅2(𝛿𝑥, 𝑖 𝛿𝑧,𝑖) can
e equal to 1∕4 even when 𝛿𝑧 is not small. Relation (40a) imposes
≤ 𝛿2𝑧,𝑖 ≤ 𝛿2𝑥 +

(𝜖2𝑎+𝜖
2
𝑖 )

2

4 and in this range of values, 𝑅2 is an increasing
function of 𝛿2𝑧,𝑖. The value of 𝑅2 = 1∕4 is attained for 𝛿2𝑧,𝑖 = 𝛿2𝑧,𝑖,⋆ given
by

𝛿2𝑧,𝑖,⋆ = 𝛿2𝑥 +
(𝜖2𝑎 + 𝜖2𝑖 )

2

4
− 2𝜖𝑎𝜖𝑖𝛿𝑥, (A.19)

for which the inner dispersion relation has a double root

𝜔2
+ = 𝜔2

− =
𝜖𝑖
𝜖𝑎

𝛿𝑥 (A.20)

When 𝛿𝑧,𝑖 is less than 𝛿𝑧,𝑖,⋆, the two roots become separated. Again,
since we have proved in appendix that only solutions with real fre-
quency can exist (when the domain is bounded), the case 𝛿2𝑧,𝑖 > 𝛿2𝑧,𝑖,⋆,
which would lead to 𝑅2 > 1∕4 can be excluded. Note that 𝜔−, 𝜔+ as
functions of 𝛿𝑧,𝑖 are not differentiable at the neutral point 𝛿𝑧,𝑖 = 𝛿𝑧,𝑖,⋆.

A.3. Internal and acoustic modes (MIM & MAM)

MIM solutions: we have shown in Section 3.4 that the root of the inner
dispersion relation corresponding to internal gravity waves is well-
approximated by 𝜔2

𝑖 . Making 𝜔2(𝛿𝑥) ≈ 𝜔2
𝑖 in the boundary dispersion

relation (35b) leads to

1

𝛿𝑧∕ tan(𝛿𝑧) +
𝜖2𝑖 +𝜖

2
𝑎

2

≈
𝜖2𝑖

𝛿2𝑥 + 𝛿2𝑧 +
1
4

(

𝜖2𝑖 + 𝜖2𝑎
)2

(A.21)

f we assume here that 𝛿𝑧 is not close to 0, the right-hand side of (A.21)
s always small and thus 𝛿𝑧∕ tan(𝛿𝑧) has to be large, i.e., the vertical
avenumber 𝛿𝑧 is close to 𝛿𝑧,𝑛 ≈ 𝑛𝜋 with 𝑛 a non-zero integer. This
grees with the internal gravity wave solution found graphically in
ection 4.2.

AM solutions: we can now use the fact that the root of the inner dis-
ersion relation corresponding to acoustic waves is well-approximated

3 We use the term depth-independent even if 𝐹 (𝑧) is a linear function of
𝑧 when 𝛿𝑧 is close to 0 (see (29)), so that the vertical profile of 𝑊 (𝑧)
is approximately linear while the vertical profile of 𝑈 (𝑧) is approximately
constant.



F. Auclair, L. Debreu, E. Duval et al. Ocean Modelling 168 (2021) 101900

l

𝛿

h
𝜋

A

b

t

t

A

w

A

w

𝐽

𝐽

d

(
v
o

by 𝜔2
𝑎. Making 𝜔2(𝛿𝑥) ≈ 𝜔2

𝑎 in the boundary dispersion relation (35b)
eads to:

𝑧∕ tan(𝛿𝑧) +
𝜖2𝑖 + 𝜖2𝑎

2
≈

𝜖2𝑎

1 +
(

𝛿2𝑧 +
1
4

(

𝜖2𝑖 + 𝜖2𝑎
)2
)

∕𝛿2𝑥
(A.22)

Since the right-hand side of (A.22) is small (bounded by 𝜖2𝑎), 𝛿𝑧∕ tan(𝛿𝑧)
as to be small and thus the vertical wavenumber 𝛿𝑧 is close to 𝛿𝑧,𝑚 ≈
∕2 + 𝑚𝜋, with 𝑚 ∈ N.

.4. Surface waves existence

In the more general case of a stratified and compressible ocean,
we now show the existence of solutions to (40a) and (40b) the
dispersion relations for 𝛿𝑧 ∈ 𝑖R.

Let us define 𝑓 (𝛿𝑥, 𝛿𝑧,𝑖) by:

𝑓 (𝛿𝑥, 𝛿𝑧,𝑖) = 𝛿2𝑥 − 𝛿2𝑧,𝑖 −

(

𝜖2𝑖
𝛿2𝑥
𝜔2

+ 𝜖2𝑎𝜔
2 −

(𝜖2𝑎 + 𝜖2𝑖 )
2

4

)

,

with 𝜔2 =
𝛿2𝑥

𝛿𝑧,𝑖
tanh(𝛿𝑧,𝑖)

+
𝜖2𝑎+𝜖2𝑖

2

The inner boundary relation translates into 𝑓 (𝛿𝑥, 𝛿𝑧,𝑖) = 0. We can check
that, for a given 𝛿𝑧,𝑖, 𝑓 (𝛿𝑥, 𝛿𝑧,𝑖) is an increasing function of 𝛿𝑥.4 Let 𝛿𝑥,0
e the value of 𝛿𝑥 defined by 𝑓 (𝛿𝑥,0, 𝛿𝑧 = 0) = 0 (𝛿𝑥,0 will be given in

(66), and is close to 𝜖𝑖). In particular, we have 𝑓 (𝛿𝑥, 0) ≤ 𝑓 (𝛿𝑥,0, 0) = 0
for 𝛿𝑥 ≤ 𝛿𝑥,0. We can also verify that for a given 𝛿𝑥 such that 𝛿𝑥 ≤ 𝛿𝑥,0,
the maximum of 𝑓 (𝛿𝑥, 𝛿𝑧) is attained in 𝛿𝑧,𝑖 = 0. This proves that if
𝛿𝑥 < 𝛿𝑥,0, 𝑓 (𝛿𝑥, 𝛿𝑧,𝑖) < 0 ∀𝛿𝑧,𝑖. Therefore, modified surface waves can
only exist under the condition 𝛿𝑥 ≥ 𝛿𝑥,0.

A.5. Surface waves: 𝛿𝑧,𝑖 ≈ 𝛿𝑥

For small parameters 𝜖𝑎 and 𝜖𝑖, we show in the present section
that 𝛿2𝑧,𝑖 is close to 𝛿2𝑥 for any MSW solution.

We can show that 1 ≤
𝛿𝑧,𝑖

tanh(𝛿𝑧,𝑖)
≤ 𝛿2𝑧,𝑖+1, ∀𝛿𝑧,𝑖 ∈ R. Injecting these

wo inequalities in the surface dispersion relation leads to:

𝛿2𝑥
𝜔2

≤ 𝛿2𝑧,𝑖 + 1 +
𝜖2𝑎 + 𝜖2𝑖

2
, and 𝜔2 ≤ 𝛿2𝑥

Since the inner dispersion relation implies −
(𝜖2𝑎 + 𝜖2𝑖 )

2

4
≤ 𝛿2𝑥 − 𝛿2𝑧,𝑖 ≤

𝜖2𝑖
𝛿2𝑥
𝜔2

+ 𝜖2𝑎𝜔
2, we finally get:

−
(𝜖2𝑎 + 𝜖2𝑖 )

2

4
≤ 𝛿2𝑥 − 𝛿2𝑧,𝑖 ≤ 𝜖2𝑖 𝛿

2
𝑧,𝑖 + 𝜖2𝑎𝛿

2
𝑥 + 𝜖2𝑖

(

1 +
𝜖2𝑎 + 𝜖2𝑖

2

)

Using the smallness of the parameters 𝜖𝑎 and 𝜖𝑖, we can then conclude
hat 𝛿2𝑧,𝑖 is indeed close to 𝛿2𝑥.

.6. MIM-0 long-wave sub-branch

In the present section of the appendix, we show that the
horizontal wave-number of the MIM-0 solution
(𝛿𝑥,𝑚𝑖𝑚0(𝛿𝑧), 𝜔𝑚𝑖𝑚0(𝛿𝑧)) is a decreasing function of 𝛿𝑧. It satisfies
𝛿𝑥,𝑚𝑖𝑚0(0) = 𝛿𝑥,0 ≥ 0 and 𝛿𝑥,𝑚𝑖𝑚0(𝛿𝑧,0) = 0 for 𝛿𝑧,0 ∈ [0, 𝛿𝑧,𝑚=0 ≈ 𝜋∕2[.

4 This simple demonstration requires the assumption 𝜖2𝑎 ≤ 2 + 𝜖2𝑖 , i.e., the
same used in appendix to prove that the imaginary part of 𝛿2 is zero.
𝑧 i
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Wave solutions of MIM-0 type must satisfy both the inner and
boundary dispersion relation ((35a) and (35b)) with 𝛿𝑧 ∈ R. We
have also shown that MIM-0 is part of the internal branch and as
a consequence approximately satisfies (42b). Substituting then (35b)
into (42b) leads to a relation between the horizontal and vertical
wave-numbers:

𝛿2𝑥 = 𝛿2𝑥,𝑚𝑖𝑚0(𝛿𝑧) = −𝛿2𝑧 − 𝜖4 + 𝜖2𝑖
(

𝜖2 + 𝛿𝑧 cotan(𝛿𝑧)
)

(A.23)

ith 𝛿2𝑥,𝑚𝑖𝑚0(0) = 𝛿2𝑥,0 = −𝜖4 + 𝜖2𝑖
(

𝜖2 + 1
)

. When 𝛿2𝑥,0 < 0, this depth-
independent solution does not propagate horizontally and we will
assume in the following that 𝛿2𝑥,0 = −𝜖4+ 𝜖2𝑖

(

𝜖2 + 1
)

≥ 0. In Section 4.2,
𝛿𝑧,𝑚=0 has been defined as a root of 𝜖2 + 𝛿𝑧 cotan(𝛿𝑧) and when 𝛿𝑧 →

𝛿(−)𝑧,𝑚=0, 𝛿
2
𝑥(𝛿𝑧) → −∞. This means that there must exist 𝛿𝑧,0 ∈ [0, 𝛿𝑧,𝑚=0[

such that 𝛿𝑥,𝑚𝑖𝑚0(𝛿𝑧,0) = 0 and 𝛿𝑧,0 satisfies:

−𝛿2𝑧 − 𝜖4 + 𝜖2𝑖
(

𝜖2 + 𝛿𝑧 cotan(𝛿𝑧)
)

= 0 (A.24)

We can additionally show that 𝛿𝑥,𝑚𝑖𝑚0(𝛿𝑧) is monotonic (decreasing) for
𝛿𝑧 ∈ [0, 𝛿𝑧,0]. Indeed, its derivative

𝑑𝛿𝑥,𝑚𝑖𝑚0
𝑑𝛿𝑧

(𝛿𝑧) = 2𝛿2𝑧 + 𝜖2𝑖
(

𝛿𝑧 − cotan(𝛿𝑧)
)

(A.25)

is positive for 𝛿𝑧 ∈ [0, 𝛿𝑧,0] since it satisfies 𝑑𝛿𝑥,𝑚𝑖𝑚0
𝑑𝛿𝑧

(0) = 0 and is an
increasing function of 𝛿𝑧 over this interval. The monotonicity of the
derivative can be proven by computing the second order derivative

𝑑2𝛿𝑥,𝑚𝑖𝑚0
𝑑𝛿2𝑧

(𝛿𝑧) = 2 + 2𝜖2𝑖
1 − 𝛿𝑧 cotan(𝛿𝑧)

sin2(𝛿𝑧)
(A.26)

and using the Taylor series of cotan(𝑧), we can further show that (1 −
𝛿𝑧 cotan(𝛿𝑧)) ≥ 0 and thus 𝑑2𝛿𝑥,𝑚𝑖𝑚0

𝑑𝛿2𝑧
(𝛿𝑧) ≥ 0.

.7. Monotonicity of the branches of wave solutions ?

In the present section of the appendix, we show that the branches
of acoustic wave solutions are monotonic and decreasing if 𝜖𝑎 and
𝜖𝑖 remain small.

To do so, the derivatives of 𝛿2𝑥 and 𝜔2 with respect to 𝛿𝑧 given
respectively by (56a) and (56b) are computed:

(

𝜖2 − 𝐽 (𝛿𝑧)
)2 𝑑𝛿2𝑥

𝑑𝛿𝑧
(𝛿𝑧) = − 2𝛿𝑧𝐽 2(𝛿𝑧)

+ 2𝜖2𝛿2𝑧𝐽
′(𝛿𝑧) + 𝜖2𝑖 𝐽

2(𝛿𝑧)𝐽 ′(𝛿𝑧)

+ 2𝜖4𝛿𝑧 − (𝜖4𝑖 + 𝜖2𝑖 𝜖
2
𝑎 )𝐽 (𝛿𝑧)𝐽

′(𝛿𝑧)

+ 1
4
(𝜖6𝑎 − 2𝜖6𝑖 − 3𝜖4𝑖 𝜖

2
𝑎 )𝐽

′(𝛿𝑧) (A.27a)
(

𝜖2 − 𝐽 (𝛿𝑧)
)2 𝑑𝜔2

𝑑𝛿𝑧
(𝛿𝑧) = 𝛿2𝑧𝐽

′(𝛿𝑧) − 2𝛿𝑧𝐽 (𝛿𝑧) (A.27b)

+ (𝜖2𝑎 − 𝜖2𝑖 )𝛿
2
𝑧

+ 1
4
(𝜖4𝑎 − 3𝜖4𝑖 − 2𝜖2𝑎𝜖

2
𝑖 )𝐽

′(𝛿𝑧)

here

(𝛿𝑧) = 𝛿𝑧 cotan(𝛿𝑧) (A.28a)

′(𝛿𝑧) =
sin(2𝛿𝑧) − 2𝛿𝑧
2 sin2(𝛿𝑧)

≤ 0 (A.28b)

Note that the relations above are not Taylor expansions of the
erivatives with respect to 𝜖𝑎 and 𝜖𝑖, they are exact relations. The

derivative of 𝛿2𝑥 given by (A.27a) is negative at third order in (𝜖𝑎, 𝜖𝑖)
whereas the derivative of 𝜔2 (A.27b) is negative only at first order in
𝜖𝑎, 𝜖𝑖). At higher order, (A.27a) and (A.27b) additionally show the
alues of 𝛿𝑧 for which 𝛿2𝑥 and 𝜔2 are monotonic depending of the values
f this two parameters.
𝛿2𝑥(𝛿𝑧) and 𝜔2(𝛿𝑧) are thus monotonously decreasing functions of 𝛿𝑧

f 𝜖 and 𝜖 remains small.
𝑎 𝑖
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Fig. B.1. Inner and boundary dispersion surfaces in (𝛿𝑥 , 𝛿𝑧 , 𝜔) space and wave solutions for an incompressible ocean:
(a) hydrostatic assumption,
(b) non-hydrostatic assumption.
Colors: (light red) 𝛿2𝑧 ≥ 0&𝜔 ≥ 1, (light green) 𝛿2𝑧 ≥ 0&𝜔 < 1, (light blue) 𝛿2𝑧 < 0, (white) boundary dispersion surface for 𝛿𝑧 ∈ R, (light gray) boundary dispersion surface for 𝛿𝑧 ∈ 𝑖R,
light yellow) 𝜔2 = 𝛿2𝑥 barotropic wave.
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ppendix B. Incompressible hydrostatic model & non-hydrostatic
odels

ydrostatic & incompressible model. Under the hydrostatic assumption,
he propagation relation (17) in a uniformly stratified, incompressible
cean turns to:

̃ ′′(𝑧) +
𝑔

𝐷0 𝜔
𝑊̃ (𝑧) = 0 (B.1)

ssociated to the surface and bottom boundary conditions:

̃ ′(0) −
𝑔𝑘2𝑥
𝜔2

𝑊̃ (0) = 0, 𝑊̃ (−𝐻) = 0 (B.2)

The inner and boundary dispersion relations are then:

𝛿2𝑧 −
𝜖2𝑖 𝛿

2
𝑥

𝜔2
= 0 (B.3a)

2 =
𝛿2𝑥 tan(𝛿𝑧)

𝛿𝑧
(B.3b)

n the long wave-approximation (𝛿𝑧 → 0), (B.3a) and (B.3b) are
pproximately given by (𝛿𝑧 = 𝜖𝑖, 𝜔 = 𝛿𝑥) and tends to the shallow-
ater solution (𝛿𝑧 = 0, 𝜔 = 𝛿𝑥) (SHW, Table 1) for a homogeneous
cean (𝜖𝑖 → 0).

on-hydrostatic & incompressible model. In an incompressible (non-
ydrostatic) ocean, the propagation relation (17) in a uniformly strati-
ied, incompressible ocean turns to:

̃ ′′(𝑧) + 𝑘𝑥2
(

𝑔
𝐷0 𝜔

− 1
)

𝑊̃ (𝑧) = 0 (B.4)

associated to the surface and bottom boundary conditions:

𝑊̃ ′(0) −
𝑔𝑘2𝑥
𝜔2

𝑊̃ (0) = 0, 𝑊̃ (−𝐻) = 0 (B.5)

The inner and boundary dispersion relations are then:

𝛿2𝑥 + 𝛿2𝑧 −
𝜖2𝑖 𝛿

2
𝑥

𝜔2
= 0 (B.6a)

2 =
𝛿2𝑥 tan(𝛿𝑧)

𝛿𝑧
(B.6b)

n the long wave-approximation (𝛿𝑧 → 0), (B.6a) and (B.6b) are
pproximately given by (𝛿𝑧 = 𝛿𝑥 + 𝜖2𝑖 , 𝜔 = 𝛿𝑥) and tends to the long-
well solution (𝛿𝑧 = 𝛿𝑥, 𝜔 = 𝛿𝑥) (LSW, Table 1) in a homogeneous ocean
𝜖 → 0).
𝑖
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ispersion surfaces. Fig. B.1 shows the inner and boundary disper-
ion surfaces for an incompressible ocean under the assumptions of
ydrotaticity (a) and non-hydrostaticity (b).

• Under the hydrostatic assumption, all wave solution have real,
positive vertical number 𝛿𝑧. Fig. B.1.(a) shows two types of solu-
tions, MIM for 𝛿𝑧 ≈ 𝜋 and barotropic-like mode for small 𝛿𝑧 which
converge to barotropic mode when 𝜖𝑖 → 0.

• Under the non-hydrostatic assumption, Fig. B.1.(b) shows also
two types of solutions, MIM for 𝛿𝑧 ≈ 𝜋 and MSW for 𝛿𝑧 ∈ 𝑖R.

ppendix C. Analytical solutions and vertical profiles of vertical
elocity under constant Brunt-Väisälä frequency

nalytical solutions. We define in Section 2 the vertical velocity profile
̃(𝑧) for a constant and uniform Brunt-Väsälä frequency by

̃(𝑧) = 𝑒−𝑧∕(2𝐷0)𝐹 (𝑧) = 𝑒−𝑧∕2𝐷0
sin(𝑘𝑧(𝐻 + 𝑧))

sin(𝑘𝑧𝐻)
(C.1)

nd a vertical pressure profile 𝑝(𝑧)

𝑝(𝑧) = 𝛺2

𝑔2𝑘2𝑥(1 − (𝛺∕(𝑐𝑠𝑘𝑥))2)

(

𝑁2
0𝑊 (𝑧) + 𝑔𝑊 ′(𝑧)

)

.

ith 1
𝐷0

=
𝑁2

0
𝑔

+
𝑔
𝑐2𝑠

, and where, for a given horizontal wave-number 𝑘𝑥,

𝑧 and 𝛺 are solutions of the inner and boundary dispersion relations.
ighly accurate approximations of them can be found in Table 5.

Note that by construction (and using the boundary dispersion rela-
ion), we have 𝑊 (0) = 𝑝(0) = 1.

The real analytical solutions of Eqs. ((14a), (14b), (14c), (14d))
hich satisfy the bottom and surface conditions ((15a), (15b)) are given
y:

𝜂(𝑥, 𝑡) = 𝜂0 cos(𝑘𝑥𝑥) cos(𝛺𝑡) (C.2)

𝑢(𝑥, 𝑧, 𝑡) = 𝜂0
𝑔𝑘𝑥
𝛺

sin(𝑘𝑥𝑥) sin(𝛺𝑡)
𝜌̂ℎ(0)
𝜌̂ℎ(𝑧)

𝑝(𝑧) (C.3)

(𝑥, 𝑧, 𝑡) = −𝜂0𝛺 cos(𝑘𝑥𝑥) sin(𝛺𝑡)
𝜌̂ℎ(0)
𝜌̂ℎ(𝑧)

𝑊 (𝑧) (C.4)

𝑝(𝑥, 𝑧, 𝑡) = 𝜂0 𝑔𝜌̂ℎ(0) cos(𝑘𝑥𝑥) cos(𝛺𝑡)𝑝(𝑧) (C.5)

𝜌(𝑥, 𝑧, 𝑡) = 𝜂0𝜌̂ℎ(0) cos(𝑘𝑥𝑥) cos(𝛺𝑡)

(

𝑁2
0
𝑔

𝑊 (𝑧) +
𝑔
𝑐2𝑠

𝑝(𝑧)

)

(C.6)
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𝑤

V
c
a

Fig. C.1. vertical profiles of vertical velocity 𝑊 (𝑧). Green curves: MIM solutions. Red
curves: MAM solutions. Blue curves: MSW solutions.

with 𝜌̂ℎ(𝑧) = 𝜌̂ℎ(0) 𝑒−𝑧∕𝐷0 and 𝜂0 a constant.
For an homogeneous 𝑁2

0 → 0 and incompressible (𝑐𝑠 → ∞, and thus
𝐷0 → ∞) non hydrostatic ocean, the Airy’s solutions are recovered (see
e.g. Gill 1982, section 5.3). Indeed 𝑘𝑧 = 𝑖𝑘𝑥, 𝛺2 = 𝑔𝑘𝑥 tanh(𝐻𝑘𝑥) and

𝑊Airy(𝑧) = 𝐹Airy(𝑧) =
sinh(𝑘𝑥(𝐻 + 𝑧))

sinh(𝑘𝑥𝐻)
,

𝑝Airy(𝑧) =
𝛺2

𝑔𝑘2𝑥
𝑊 ′

Airy(𝑧) =
𝛺2

𝑔𝑘𝑥

cosh(𝑘𝑥(𝐻 + 𝑧))
sinh(𝑘𝑥𝐻)

,

leading to

𝜂Airy(𝑥, 𝑡) = 𝜂0 cos(𝑘𝑥𝑥) cos(𝛺𝑡) (C.7)

𝑢Airy(𝑥, 𝑧, 𝑡) = 𝜂0𝛺 sin(𝑘𝑥𝑥) sin(𝛺𝑡)
cosh(𝑘𝑥(𝐻 + 𝑧))

sinh(𝑘𝑥𝐻)
(C.8)

Airy(𝑥, 𝑧, 𝑡) = −𝜂0𝛺 cos(𝑘𝑥𝑥) sin(𝛺𝑡)
sinh(𝑘𝑥(𝐻 + 𝑧))

sinh(𝑘𝑥𝐻)
(C.9)

𝑝Airy(𝑥, 𝑧, 𝑡) = 𝜌̂ℎ(0)𝑔𝜂0 cos(𝑘𝑥𝑥) cos(𝛺𝑡)
cosh(𝑘𝑥(𝐻 + 𝑧))

cosh(𝑘𝑥𝐻)
(C.10)

𝜌Airy(𝑥, 𝑧, 𝑡) = 0 (C.11)

ertical profiles. Fig. C.1 shows the several vertical profiles of the verti-
al velocity for several propagating MSW, MIM-0 and MIM-1 solutions
nd vanishing MIM-0 solutions (𝜔2 < 0 and 𝛿2𝑥 < 0).
20
For short-length MSW (𝛿𝑥 > 𝛿𝑥,0), the vertical profile of the vertical
(blue curves) is concave, it is linear for 𝛿𝑥 = 𝛿𝑥,0 and convex for
long-waves (𝛿𝑥 < 𝛿𝑥,0). the vertical profiles of MIM-1 and MAM-1
(MIM-2 and MAM-2) show one (respectively two) extrema in the water
column.
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