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Changes in natural sand beaches induced by variations in incident waves were predicted by techniques 
of linear statistical estimation and empirical eigenfunction analysis. A 5-year set of measured beach pro- 
files and wave statistics from southern California constituted the data base for this two-faceted statistical 

study. First, daily beach profile changes were predicted using four different spectral representations of 
the wave field. These profile changes were predictable using spectral representations of wave energy, ra- 
diation stress, energy flux, and wave steepness. Because of constraints on statistical reliability, a longer 
data set is required to select one of these as an optimal wave parameterization. Second, weekly beach 
profile changes were predicted using weekly averaged wave characteristics. Weekly beach changes were 
predictable using weekly mean and maximum values of wave energy and wave height. The best predictor 
of those tested was the weekly mean wave energy. When combined with a longshore transport model, 
this onshore/offshore transport estimator should be applicable to other coastal regions with different 
beach and wave characteristics. 

INTRODUCTION 

Predictions of the magnitude and direction of nearshore 
sediment transport suffer from the complexity of nearshore 
dynamics. The theory of nearshore sediment transport is not 
refined to a degree that enables the magnitude and direction 
of all sediment motion to be predicted, given a knowledge of 
the driving function. In addition it is not possible to predict 
what the exact nearshore driving force will be given deep- 
water conditions because of the lack of understanding of the 
interaction and shoaling of nearshore waves and currents. 
Thus even if a proven nearshore sediment transport model ex- 
isted, the knowledge of nearshore driving forces would be in- 
adequate to apply that model to predict sediment transport if 
only deepwater wave conditions are known. Since the dynam- 
ics of the nearshore zone are not adequately understood, sta- 
tistical or empirical methods can be gainfully applied to the 
prediction of nearshore sediment transport. This paper de- 
scribes one predictive technique and its application to near- 
shore sand level changes. 

In the past, net changes in nearshore sediment distribution 
have been monitored by beach profiling techniques. The 
beach profile (elevation as a function of distance offshore) is 
sampled at a given rate over a period of time. The beach pro- 
file technique is important because it represents the one avail- 
able technique for measuring net nearshore changes. It will 
lose its utility only when the theoretical advances have been 
made which will enable one to extrapolate large-scale ero- 
sional and depositional patterns from point measurements of 
sediment transport. The net profile changes may result from 
any combination of onshore/offshore sediment transport and 
divergences in longshore sediment transport. Although this 
study assumes that the dominant beach changes result from 
onshore/offshore sand transport, the model can be general- 
ized by combining it with a longshore transport model. 

Sediment movement in the nearshore is characterized by a 
wide variety of time scales. On the finest scales, sediment mo- 
tion is associated with the turbulent fluctuations within the 
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wave boundary layer. Daily and weekly beach fluctuations are 
associated with longer-period fluctuations in the wave condi- 
tions due to tidal or climatological phenomena. Seasonal 
beach changes arise from seasonal patterns in the wave field 
related to changes in meteorological forcing of the waves. 
Beach fluctuations with periods of I year or more can be asso- 
ciated with long-term climatic conditions or interrru'ptions in 
the sediment supply, for example. In this study the statistical 
prediction of daily and weekly changes in the beach configu- 
ration is examined. The data sets were not long enough to 
consider yearly changes and were not adequately sampled to 
look at changes with scales finer than 1 day or I week. Linear 
statistical estimation was applied to both daily and weekly 
beach changes (as represented by empirical eigenfunction 
analysis) in hindcast and forecast modes. (A hindcast is a re- 
gression estimate which determines the optimal relationship 
between known beach changes and the driving force. A fore- 
cast is an estimate of future beach changes derived from a 
known driving force and a predetermined statistical relation 
between beach changes and driving forces.) Beach changes 
were predicted, using different parameterizations of the in- 
cident wave field. 

STATISTICAL TECHNIQUES 
Linear Statistical Predictors 

The simplest predictor relates the data in a linear fashion to 
the quantity to be predicted (the predictand): 

P--AD (1) 

where P is the (m x N) matrix of the rn quantities to be pre- 
dicted, D is the (n x N) matrix of n data parameters, and A is 
an (rn x n) coefficient matrix. N is the total number of obser- 
vations used in the prediction. Although this predictor is lin- 
ear, the data themselves, D, can be complicated nonlinear 
functions of the measured quantities, which are then related 
linearly to the predictand. 

To form a minimum error variance estimator, the diagonal 
elements of the error covariance matrix C e are minimized: 
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C e "- ((P--" P)(P- P)r) (2) 

where T denotes the matrix transpose, and the angle brackets 
denote an ensemble average. Given this criterion the Gauss- 
Markov theorem defines the form of the optimal estimate: 

P = C•,oCoo-' D (3) 

where C•,o is the covariance matrix between the predictand 
and the data and Coo is the autocovariance matrix of the data. 
No other linear estimator of the form (1) yields a smaller 
mean square error [Liebelt, 1967; Davis, 1976, 1977]. 

This linear estimator is used in both a hindcast and a fore- 

cast sense. For our purposes a hindcast is a prediction that 
generates its own optimal coefficient matrix A. A forecast is a 
prediction based on an independent prediction matrix A. 

A measure of prediction utility is the hindcast skill, which is 
related to the ratio of the error covariance diagonal elements 
and the diagonal terms of the predictand covariance matrix. 
The hindcast skill for one element Pi of the predictand is 

S, = 1 - (•' - P') (•' - e,) • (4) 
( PiPi r ) 

By combining (2) and (4), S• is shown to be dependent upon 
the square of the sample mean products, so any chance con- 
nection between the predictand and the data will increase the 
hindcast skill. Finite record lengths and sampling errors also 
affect the artificial predictability of the estimator. Davis [1976, 
1977] shows the artificial predictability to be a function of the 
ratio of the number of data parameters, n, and the number of 
observations, N. This artificial skill, proportional to n/N, re- 
duces the forecast skill by approximately the same amount as 
the hindcast skill is increased due to artificial predictability 
[Davis, 1977]. 

A useful measure of prediction skill is the mean-square- 
forecast error (MSFE), obtained by summing the errors of 
each forecast element P•: 

N 

(MSFE)i--- • (P•7- P0.) 2 (5) 
j,•l 

This is the MSFE for the ith row of the predictand. To obtain 
an estimate of the 'goodness' of fit, (5) is normalized by the 
mean square value (MSV) of the ith predictand quantity: 

N 

(MSV),= • (P0')'- (6) 
j•l 

The new 'normalized' error estimate is the basis for judging 
the predictor. If the normalized error is greater than one, then 
the predictor performs more poorly than an estimate based 
solely on the mean. If the normalized error is less than 6ne, 
the new predictor out performs that predictor based on the 
mean. Suitable tests. must be made to calculate confidence 
limits for the predig•ion. 

One way to reduce the degradation in forecasting ability is 
to reduce artificial predictability by ensemble averaging over 
all available realizations of the process (providing the data 
sets have the same size, sampling interval, etc.). Unfortu- 
nately, in geophysics, observations are generally so scarce this 
is rarely possible. Another method is to increase the number 
of observations, N, of each sample to approximate better the 
true covariances by the sample mean products. A third 
method is to reduce the number of data parameters to a few 
more relevant measures and thereby reduce the artificial hind- 

cast skill. In this study, objective ranking with empirical ei- 
genfunction analysis was used to reduce the number of data 
variables. 

Empirical Eigenfunctions 

Lorenz [1959], Davis [1976], and others have applied empir- 
ical eigenfunction analysis to some geophysical problems. 
Resio et al. [1974] and Winant et al. [1975] have successfully 
applied this technique to beach data (see also numerous sub- 
sequent articles by the same authors). Vincent and Resio [1977] 
applied the technique to time series of wind wave spectra. The 
empirical eigenfunction solution represents an expansion of 
the data with two sets of orthonormal functions: 

N 

h(x, t) = • Cl(t)el(x)(•lnxnt) 1/2 (7) 
1-----I 

where c•O are functions of time only, e•x) are functions of 
space only, hi are the eigenvalues of the data sum of squares 
and cross products matrix, and nx and n, represent the number 
of points in space and time, respectively. The elements h(x, t) 
could represent time series of beach profiles or wave spectra, 
for instance. By forcing the functions to be orthonormal, and 
requiring the functions to be ordered to explain best the varia- 
bility of the data in a least squares sense, all hi, c•t), and e•x) 
can be easily determined [e.g., Aubrey, 1978, 1979]. 

These functions have the following useful properties: 
1. Empirical eigenfunctions provide the most efficient 

method of compressing the data. That is, they provide the 
most dense representation of a data set in the sense that the 
first n terms in the expansion explain more of the data varia- 
bility than the first n terms of any other expansion. 

2. Since both the spatial and the temporal eigenfunctions 
are orthogonal sets, each corresponding set (hi, el, Cl) may be 
regarded as representing a mode of variability which is un- 
correlated with any other mode. 

3. The eigenfunction representation is conveniently ap- 
plied to minimum mean square error estimation by providing 
a useful a priori method for reducing the number of variables 
and also providing a way to remove the noise (or less predict- 
able part of the data) from the data set. 

Aubrey [1978, 1979] presented examples of the application 
of this analysis to beach profile data, where a (100 x 44) data 
matrix was efficiently represented by a (5 x 44) matrix of ei- 
genfunctions. Vincent and Resio [1977] show a similar reduc- 
tion in data size and complexity for wave spectra. Although 
difficult to interpret physically in some cases, the eigenfunc- 
tion representation is a valuable tool in estimation theory. 

THE DATA 

The data analyzed consist of measurements of beach pro- 
files and surface gravity waves at Torrey Pines Beach, Califor- 
nia. This site was selected both for its accessibility and be- 
cause it is a long, relatively straight stretch of sandy beach 
with uncomplicated offshore bathymetry (it is located far 
enough north that the Scripps-La Jolla submarine canyon sys- 
tem does not significantly affect the local gravity wave field). 

Three primary range lines (North range (NR), Indian Can- 
yon range (IC), and South range (SR)) were established in 
June 1972 and were measured on at least a monthly basis until 
1978 (Figure 1) [Nordstrom and Inman, 1975; Aubrey et al., 
1976]. Four additional range lines (ranges A, B, C, and D) 
were established in February 1977 and were monitored only 
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Fig. 1. Map of range line locations and reference rod locations at Torrey Pines Beach. 

during that spring. The range lines are referenced to a U.S. 
Coast and Geodetic Survey benchmark [Aubrey, 1978, 1979]. 

Beach profiles were measured by using techniques de- 
scribed by lnman and Rusnak [ 1956] and ,4 ubrey [ 1978]. On- 
shore surveys to mean approximately lower low water were 
done at low tide, using a surveyor's level and rod to determine 
elevation at 10-foot horizontal intervals. The offshore surveys 
combined several techniques. An offshore profile was first 
made with a fathometer out to depths of 20 m on the same 
day as the onshore survey, but at high tide. Since the errors in 
a fathometer survey are often 30 cm or more [e.g., lnman and 
Rusnak, 1956], an accurate method for correcting the offshore 
fathometer survey was used. Arrays of brass reference rods 
approximately 1.25 m long, installed at known locations along 
each profile (Figure 1), were measured each month by divers, 
yielding a relative change in sand level from month to month. 
With these measurements, which have a potential accuracy of 
I or 2 cm, the fathometer records were corrected [,4ubrey, 
1978, 1979]. 

Measurements of surface gravity waves were made along 
Indian Canyon range at a depth of approximately 9.3 m (Fig- 
ure 1), using a linear array of pressure sensors with a tele- 
metering link to the Shore Processes Laboratory at Scripps In- 
stitution of Oceanography [Lowe et al., 1972]. Since extensive 
linear wave refraction tests indicated that the offshore bath- 

ymetry produces no major differences in wave refraction 
along this limited coastline, the same wave data was used for 
all range lines. In this study, only frequency spectral estimates 
were used, although directional estimates could be derived 
from these data [Pawka et al., 1976]. The spectral estimates 
had 32 degrees of freedom, with a record length of 2048 s, a 
sample rate of 0.5 s, and a frequency resolution of 0.0078125 
cps. Frequencies above 0.25 Hz were suppressed in the analy- 
sis because of the depth attenuation of waves in 9.3 m of wa- 
ter; this helped reduce spectral aliasing. The reliability of the 

estimates was increased by averaging the estimates from each 
of the sensors, in an ensemble sense, assuming homogeneity of 
the wave field. 

When the array data were not available, daily visual esti- 
mates of the significant wave period and wave height, or spec- 
tral estimates made from a single pressure sensor at the end of 
the SIO pier [Seymour and Sessions, 1976] were used instead 
[,4ubrey, 1978]. Although neither of these latter sources is as 
desirable as the linear array data, they do provide rough esti- 
mates of wave energy. 

The prediction study examined two major time scales of 
beach change. The first data set was a month-long series of 
beach profiles sampled at daily intervals, while the second was 
a l«-year series of profiles, sampled at approximately weekly 
intervals. The wave statistics were well known for the month- 

long sample; for the longer sample only certain averages of 
the wave statistics were used as input. This two-faceted 
scheme was designed to determine (1) what the best spectral 
estimators of beach changes are, and (2) what averaged wave 
statistics yield the best predictions. 

The predictands always consisted of a representation of the 
beach profile time series (Figure 2), while the data parameters 
consisted of various wave parameterizations. To characterize 
beach profile changes efficiently and concisely, the profiles 
were represented by their empirical eigenfunctions, which 
retain spatial covariance information. The predictand is 
formed from the temporal dependence c•t) of the first few 
dominant eigenfunctions, here called beach eigenfunctions 
(BEF). 

The mean beach profile was removed from the profile data 
before calculating the eigenfunctions to improve the predic- 
tion results in three ways: (1) The data matrix need not con- 
rain a constant to predict the mean profile time variation. (2) 
Less artificial variation is introduced into the higher eigen- 
function modes. (3) Predictor skill is increased since a small 
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Fig. 2. Description of the elements and methodology used in the minimum error variance estimate of beach profile 
changes. 
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Fig. 4. Temporal structure of the wave eigenfunctions for (a) wave energy and (b) radiation stress, for the March 1977 
wave data. 

error in forecasting the time dependence of the first eigenfunc- 
tion represents a large error in the variance [Aubrey, 1978]. 
The mean beach profile was obtained from the entire 5-year 
sample of profile data [Aubrey, 1978, 1979] which showed no 
net accretion or erosion over the period of the study. 

•lubrey et al. [1976] showed that distinct beach forms corre- 
late well with different types of waves. When storm waves act 
on a berm profile, erosion occurs on the foreshore; yet, if the 
same waves act on a bar profile, little modification of the pro- 
file results. This factor complicates the prediction problem, 
since the covariation between the waves and the previous pro- 
file configuration becomes an important parameter. There- 
fore, any attempt to predict beach profile changes must in- 
volve a knowledge of not just the waves but also of the prior 
history of the beach. In this study the important prior history 
of the beach was assumed to be the preceding profile configu- 
ration. That is, the profile of the previous week (or the appro- 
priate previous time period) was combined with the recent 
wave information to predict the new beach profile. This does 
not pose a problem in hindcasting, where the time history of 
the beach is already known and one is testing the maximum 
expected predictability of the process. The previous profile 
(which has been measured) is used as input data for comput- 
ing the next profile. If the predictands are the eigenfunctions 
of the beach profiles, then the lead values of those same eigen- 
functions are used. A problem arises when forecasting, how- 
ever, since the time history of the profile variation is assumed 
to be unknown. The only profile which can be specified is the 
initial profile configuration. To apply the lead BEF concept, 
the computed profile configuration at each time step must be 
used as a data value for the next estimate. This can cause seri- 

ous error propagation since errors in the profile estimate will 
be used as input data for the next estimate, thereby trans- 
reitting and amplifying the error continuously. If the forecast 
skill is low in the first place, this will deteriorate it even fur- 
ther. 

RESULTS AND DISCUSSION 

Prediction of Daily Beach Profile Changes 

The first part of this study examined a series of beach pro- 
files measured during an intensive field program in March 
1977. Measurements of the incident wave field were collected 

generally 8 hours a day, from 0900 to 1700 hours, varying 
slightly according to the demands of the field experiments. 
Beach profiles were measured along seven range lines (Figure 
1), generally extending to -1 m (MLLW) depth. Wave fre- 
quency spectral estimates were calculated for 34-min lengths 
of record and were transformed into either estimates of mo- 

mentum flux, energy flux, or wave steepness. These estimates 
were averaged over periods corresponding to the time interval 
between beach profiles. These averaged estimates were 
formed into an array of time series of spectral estimates, con- 
sisting of 35 frequency bands and 17 time periods, with a fre- 
quency resolution of about 0.0078 cps. 

To represent concisely and e•ciently their variability, the 
empirical eigenfunctions of the wave data were calculated 
from a sum of squares and cross products matrix Cf [e.g., Vin- 
cent and Resio, 1977]: 

Cf = S(f, t). S(f, 0 r (8) 

where S(f, t) is the array of spectral time series of different fre- 
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Fig. $. Two examples of wave frequency spectra from March 
1977. The two spectra represent a high-energy wave field and a low- 
energy wave field. 

quency bands and the superscript T refers to the transpose op- 
erator. The eigenvalues and eigenfunctions of the above ma- 
trix were then calculated to examine the empirical structure of 
the wave field. The temporal dependence of these functions, 

c•t), were used as data parameters in the linear prediction of 
beach profile changes and are called wave eigenfunctions 
(WEF). 

The four wave parameterizations examined were the on- 
shore component of the radiation stress [Longuet-Higgins and 
Stewart, 1964; Bowen et aL, 1968], the energy flux, the wave 
steepness, and the energy spectrum. Each has been used in the 
past with varying degrees of success to describe some aspect of 
nearshore forcing and were obtainable from the available 
wave data. In this study the radiation stress was approximated 
as the onshore flux of onshore directed momentum, for the 
case of normal wave incidence 

Sxx(f, t) ,-• S(f, t) -(2n - 1) (9) 

Here $(f, t) is the portion of the variance associated with fre- 
quency f, and n is the ratio of group to phase velocity. The en- 
ergy flux was represented by 

ECn(f , t) ,-• S(f , t) . C ' n (10) 

where C is the phase velocity. The wave steepness was repre- 
sented by 

H/L(f, t) .-. IS(f, t)]V:/L(f, t) (11) 

where L is the wavelength. The wave energy is represented by 
S(f, t). The true value of the parameter can be found from the 
representation in all four cases simply by multiplying by a 
constant. Since the absolute magnitude is not important in the 
prediction process (all data parameters are normalized), the 
deletion of the constant has no effect on the prediciton. 

The wave field underwent significant changes over the pe- 
riod of the study (Figures 3-5), as is reflected in the wave ei- 
genfunctions for the different wave parameterizations. For all 
four wave parameterizations, the first WEF dominates the 
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other WEF (Table 1) and represents a mean spectral shape for 
the month-long period. Higher-order WEF represent varia- 
tions between different frequency bands. These higher-order 
modes differ significantly for the different wave parameter- 
izations, so one would expect the prediction capabilities to dif- 
fer between them. The radiation stress and energy flux esti- 
mates tend to enhance low frequencies and suppress high 

frequencies. The wave steepness estimate emphasizes the high 
frequencies [Aubrey, 1978]. 

The raw frequency spectra varied markedly during the ex- 
periment as well (Figure 5). The high and low wave condi- 
tions during this period can be compared to the WEF as a 
more physical feeling of the wave eigenfunctions (Figures 3 
and 5). 

Since only 18 profiles at each location were measured dur- 
ing the March field experiment, statistical reliability is low. To 
increase reliability, two profile sequences were formed from 
the beach eigenfunctions. Temporal eigenfunctions for ranges 
IC, A, and B were merged end-to-end to form a time series of 
profiles, representing three realizations of profiles responding 
to the same forcing function. The second profile sequence 
consisted of C, D, and North ranges. The temporal BEF for 
each of these ranges were calculated separately and then 
placed into their proper sequence (Figure 6). Figure 7 shows 
the spatial structure of the BEF for one of the groups. In these 
figures the mean profile was removed to characterize only de- 
viations from the mean. Removal of the sample mean in- 
troduces some errors since the population mean is not well 
known for ranges A, B, C, and D. Because of the preliminary 
nature of this study, this error will not seriously affect the ma- 
jor results; however, it does limit comparison with similar pre- 
dictions elsewhere. Since the mean profile was removed from 
the data set prior to this eigenfunction analysis, the lowest-or- 
der eigenfunction is analogous to the seasonal function, or 
BEF 2. This lowest-order eigenfunction is labeled 2nd' (solid 
curve) to preserve the similarity between eigenfunctions of the 
sum of squares and cross products matrix and the covariance 
matrix. 

The first few B EF for all six profiles exhibit similar spatial 
structures (e.g., Figure 7). The first BEF (2nd') dominates the 
other eigenfunctions, in terms of explained variance (Table 2), 
so efforts are concentrated on predicting this quantity. The 
spatial structure of the higher-order eigenfunctions are not 
consistent for all six ranges, so one should not expect any sig- 
nificant skill in predicting these functions. 

To obtain estimates of the predictand, hindcasts were made 
by using the WEF and the lead BEF as data values. For vari- 
ous combinations of the number of WEF and lead BEF, the 
coefficient matrix A was obtained. Then a forecast was made 

on that profile grouping not used to estimate A. For example, 
hindcasts were first made on the profile grouping consisting of 
ranges IC, A, and B, and matrix A was calculated. This matrix 
was then used to forecast the profile changes for the profile 
grouping consisting of C, D, and North ranges. The forecast in 
this case involved different profiles; however, the same wave 
data used to form the hindcast was used in the forecast. In this 

TABLE 1. Percent of the Mean Square Value of the Data Explained by the Characteristic Wave 
Functions for Four Wave Parameterizations 

Energy Radiation Stress Energy Flux Steepness 

WEF 
1 87.7 89.6 89.8 94.8 

2 4.6 (37.6) 3.5 (33.4) 3.5 (33.9) 3.9 (76.0) 
3 3.2 (26.2) 2.8 (27.2) 2.8 (27.1) 0.5 (9.7) 
4 2.0 (16.0) 1.7 (16.5) 1.7 (16.4) 0.21 (4.0) 
5 1.0 (8.1) 0.9 (9.0) 0.9 (9.1) 0.2 (3.6) 

Total 98.5 98.6 98.6 99.7 

Numbers in parentheses are percents of residual mean square value explained after removing the first 
WEF; nx = 35, ttt --'-- 17. 
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TABLE 2. Percent of Variance Explained by the Second Through the Sixth Beach Eigenfunctions 

Indian North 

Canyon A B C D Range 

BEF 

2' 67.5 73.2 
3' 12.1 13.2 
4' 7.1 5.5 
5' 3.8 3.2 
6' 3.5 2.1 

Total 94.0 97.2 
Variance without 1st BEF, m 2 0.0179 0.0230 
Percent of total mean square value of 

data accounted for by 1st BEF 98.21% 97.95% 

52.8 72.7 67.8 74.9 
18.3 15.2 21.1 14.3 
14.0 4.2 4.7 5.0 
5.1 2.5 2.3 2.7 

4.7 2.1 1.6 1.0 
94.9 96.7 97.5 97.9 

0.0195 0.0457 0.0101 0.0425 

98.90% 96.19% 99.36% 98.53% 

The mean beach profile has been removed from the data, nx = 44, rt t = 18. 

sense the forecast is not a totally independent test of the fore- 
cast ability. It is useful, however, in an intercomparison of the 
different wave parameterizations and to demonstrate the ab- 
sence of serious error propagation through time. 

The results of this analysis demonstrate a trade off between 
the amount of information necessary for the forecast and the 
increase in artificial predictability. Once the number of data 
functions increases markedly, artificial predictability becomes 
important and reduces the forecast skill. The best predictor in 
each case is one which retains information only about the pri- 
mary beach variability (the second BEF) but which also re- 
tains information on the fine structure of the wave field. For 

instance, by using the energy flux the best estimate of the 
mean beach function has five WEF and only one BEF. 

Comparisons of the estimation results with predictand mea- 
surements show prediction trends (Figures 8 and 9). Extremes 
were poorly predicted, but mean trends were predicted well. 
Figure 8 is a hindcast estimate, with a low mean square error 
of 0.006 m 2. Figure 9 is a forecast estimate, with a higher 
mean square error of 0.010 m 2. The total mean square value of 
the predictand in both figures in 0.024 m 2. Table 3 lists the co- 
efficient matrix A for the two cases, showing the weightings of 
each normalized WEF and lead BEF. The most important 
WEF is the second one, representing a high-frequency, low- 
frequency trade off (Figure 3b). 

Table 3 can be used to evaluate the effect of wave steepness 
on beach profile changes. The second WEF, which is the most 
heavily weighted in both examples, is positively weighted in 
predicting the second BEF. A positive weighting of the second 
WEF for wave steepness corresponds to an increase in high- 
frequency wave steepness and a decrease in low frequency. 
This fact (combined with the weighting) suggests that low-fre- 
quency waves erode the beach and high-frequency waves ac- 
crete the beach, contrary to many laboratory results. The con- 
tradiction might be resolved when a longer data set becomes 
available for scrutiny or may indicate the seriousness of scal- 
ing problems in laboratory tests. 

The primary result of this section is that daily beach pro- 
files are predictable from a knowledge of the incident waves 
alone. The actual trends in prediction, such as the one men- 
tioned in the previous paragraph, must be viewed as tentative 
since the data set is limited. A longer data set, spanning at 
least I year, is required before a useful coefficient matrix A is 
generated. 

For the forecast only the initial value of the lead BEF is 
used as data. The new value of the predictand computed from 
this and the wave data is then used as a data value to calculate 

the next estimate. As was discussed previously, this provides 
an excellent means for error propagation. In fact, the esti- 
mates show no such trend in error growth, indicating that the 
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Fig. 8. A hindcast of the temporal beach eigenfunctions (BEF) at C, D, and North ranges for the March 1977 beach 
profiles. The input data consisted of the first two lead BEF and the first four WEF for the wave steepness estimates. The 
mean profiles have been removed from the beach data. 
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Fig. 9. A forecast of the temporal BEF for C, D, and North ranges for the March 1977 beach profiles. The input data 
consisted of the first two lead BEF and the first four WEF for the wave steepness estimates. The mean profiles have been 
removed from the beach data. 

processes may not be unpredictable so much as coarsely pre- 
dictable because of the limited data sample. 

Prediction of Weekly Beach Profile Changes 

The previous section considered the prediction of daily 
beach profile changes by using a spectral representation of the 
incident waves. It is rare that either daily profiles or daily 
spectral wave information are available over any great length 
of time, so the predictability of weekly profile changes by us- 
ing some averaged wave parameters was evaluated. 

From the 5-year data set of profiles at Torrey Pines, a pe- 
riod of 1« years (over which weekly beach surveys and daily 
wave estimates exist) was selected for study, using profiles 
from North range and South range. The profile sample was 
divided into two sections. The first was a 1-year-long section 
from December 1975 through January 1977; the second was a 
6-month section from March 1975 through September 1975. 
The optimal predictor was calculated for both North range 
and South range for the 1-year-long sample and then used to 
forecast the changes for the 6-month-long data sample, as a 
measure of forecasting ability on an independent sample. In 
addition, the predictability could be examined between ranges 
to get an idea of the coherence of beach changes longshore. 
Then to increase the statistical reliability of the estimate, the 
1-year and «-year samples from North range were merged and 
were used to forecast changes at South range. 

Four different input wave parameters were used to examine 
the weekly beach predictability: weekly estimates of the maxi- 
mum weekly variance Em; the square root of this quantity; the 
weekly mean energy variance E; and the square root of this 
quantity, that is, the root-mean-square wave height. The max- 
imum value of the variance Em was chosen since observations 
have shown that a single storm can change the profile drasti- 
cally, and any averaging would smear this single event 
[Aubrey et. al., 1976]. The square root of the maximum weekly 
variance was used to test the hypothesis that it is not the en- 
ergy but the wave height which is the dominant forcing quan- 
tity in the nearshore. The third quantity was the mean weekly 
energy variance E, consisting of equally weighted averages of 

all the wave records measured in the interval between two 

beach surveys. This quantity was selected to test whether av- 
erage conditions, not extreme events, determine beach re- 
sponse. One might expect that the combination of the mean 
value and the extreme value of the variances would be a good 
predictor. The square root of the mean weekly variance (or 
the root-mean-square wave height) was chosen to test the idea 
again that it is the first power of the wave height, not the sec- 
ond, which is responsible for beach variability. Aubrey [1978, 
Appendix 2] lists the values of these different parameters used 
as data for the predictor. 

The spatial structure of the BEF for North range for each of 
the two time periods is similar (Figure 10). The mean profiles 
were removed before the eigenfunctions were calculated for 
reasons previously mentioned. The dominant eigenfunction is 
still the seasonal beach function (Table 4). 

The prediction proceeded by calculating the coefficient ma- 
trix A for one particular profile data set, using various combi- 
nations of wave parameters, and applying this result to fore- 
cast the changes for the other profile data sets. The forecast 
skills in all cases are significant (i.e., MSFE < MSV), in- 
dicating that beach profiles can be predicted from weekly esti- 
mates of the wave statistics, even over the period of 1 year. If 
the forecast were made only over shorter lengths of time, and 
the forecast were occasionally updated, then a better predictor 
would result. It is significant that in this forecasting method 
the errors did not propagate through the prediction; that is, 

TABLE 3. Coefficient Matrices for Figures 8 and 9 

Figure 8 Figure 9 

BEF 2' BEF 3' BEF 2' BEF 3' 

1st lead BEF 
2nd lead BEF 
WEF 1 
WEF 2 

WEF 3 

WEF 4 

1.22 0.128 0.918 0.552 
0.0187 1.01 -0.138 0.705 
0.157 -0.0477 -0.0251 -0.181 
0.326 -0.0393 0.464 -0.458 
0.107 -0.151 0.315 0.0681 
0.126 -0.0468 0.216 -0.0052 
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Fig. 10. The spatial structure of the beach eigcnfunctions for North range for the periods of (a) March-September 1975 

and (b) December 1975 through January 1977. The mean profiles have been removed from the data sets. 

the prediction does not gradually deteriorate as the forecast 
progressed. 

The results show that the best predictors represent a bal- 
ance between adequate information about previous profile 
history and wave behavior and artificial predictability. The 
best forecaster appears to be the mean energy parameter, 
combined with the lead eigenfunction for the first BEF (2'). 
The higher-order BEF are not predictable and are better esti- 
mated by using the mean value of their time behavior, leading 

to a lesser mean square forecast error than the linear predictor 
estimate. Plots of the time dependence of the eigenfunctions 
ct(t) for different data sets compared with the prediction esti- 
mates display trends in the prediction (Figures 11 and 12). Ex- 
trema in the predictand are not well predicted, but trends are 
well predicted. 

The total mean square value of the data for North range 
over the period March-September 1975 is 0.0114 m 2. The 
forecast in Figure 11 has a mean square forecast error of 

TABLE 4. Percent of Variance Explained by the Second Through the Sixth Beach Eigenfunctions 

North Range South Range 

n t = 50 n t = 21 n t: 50 n t = 21 

BEF 

2' 75.2 (85.2) 75.2 (84.1) 
3' 13.0 (6.4) 10.4 (7.0) 
4' 4.1 (2.8) 4.4 (3.2) 
5' 2.9 (1.9) 4.0 (2.3) 
6' 1.7 (1.6) 1.6 (1.1) 

Total 96.9 97.9 95.6 97.7 
Variance without 1st BEF, m 2 0.0279 0.0134 0.0565 0.0827 
Percent of total mean square value 

of data accounted for by 1st BEF 99.13% 99.48% 95.82% 97.1% 

The numbers in parentheses are for the period March-September 1975. Other numbers are for the pe- 
riod December 1975 through January 1976; n,, -- 44. 
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Fig. 11. A forecast of the temporal BEF for North range during 
the period of March-September 1975. The data consisted of one lead 
BEF and the square root of the mean energy value. The mean profile 
has been removed from the beach profile data set. 

0.0037 m 2. The total mean square value of the input data for 
North range over the period of December 1975 through Janu- 
ary 1977 is 0.021 m 2. The data in Figure 12 has a mean square 
forecast error of 0.0039 m •. 

Table 5 shows the trends in the prediction. The second lead 
BEF is positively weighted for predicting the second BEF, so 
there is a positive correlation between the previous profile and 
the current profile. The second lead BEF is negatively weigh- 
ted for the third BEF, so there is a negative correlation be- 
tween the second lead BEF and the current value of the third 

B EF. The square root of the mean weekly energy (the rms 
wave height) is negatively weighted with respect to the second 

TABLE 5. Coefficient Matrices for Figures 11 and 12 

Figure 11 Figure 12 

BEF 2' BEF 3' BEF 2' BEF 3' 

1st lead BEF 0.703 -0.169 0.842 -0.108 
•'1/2 -0.332 0.0014 -0.238 -0.435 

BEF. This means that a large positive value of the wave 
height will correspond to a negative value of the second BEF 
or an erosional profile. Similarly, a negative (i.e., smaller than 
the mean) value of the wave height will yield a positive value 
of the second B EF, indicating that the beach is at an accreting 
stage. 

As a more physical illustration, three measured profiles, 
spaced throughout the prediction period (Figure 12), are com- 
pared to estimates (Figure 13) derived from the linear predic- 
tor model (using (7) to recreate the profiles). Seasonal changes 
between measured profiles range up to 1 m or more for the 
profiles of February 27, 1976, and November 5, 1976. The 
predicted profile for all three cases is extremely close to the 
measured profile (always within 15 cm). Considering this a 
forecast and the measured profile was assumed to be un- 
known in the analysis, the predictor does a remarkable job at 
forecasting seasonal beach changes. 

To show the importance of the forcing term in the predic- 
tion, hindcasts and forecasts were made by using only the lead 
BEF's as data, with no wave forcing. Although hindcast skill 
was comparable, forecast skill was considerably reduced, with 
the mean square forecast error more than doubled when the 
wave forcing was omitted. Similar results were obtained when 
random noise was added to the wave measurements. This nu- 

merical experiment reinforces the interpretation of the predic- 
tion results. 

Application to Other Beaches 

These prediction techniques must be applied to other 
beaches to evaluate better the matrix of coefficients, A, as well 
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Fig. 12. A forecast of the temporal BEF for North range over the period of December 1975 through January 1977. The 
input data consisted of one lead BEF and the square root of the mean weekly energy value. The mean profile was removed 
from the beach profile data set. 
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Fig. 13. A comparison of three measured beach profiles with the 
profile forecast using the linear predictor analysis. 

as increase the statistical reliability of the estimators. The pri- 
mary requirements for this type of statistical study are good 
wave estimates and profile data taken on at least a weekly 
basis to preserve predictability. Prediction of monthly beach 
changes is hampered by too great a smearing of wave infor- 
mation resulting from averaging wave characteristics over 
such a time scale. Beach sampling on a daily basis would be 
desirable and should be done eventually to improve this 
model, but it is seldom possible because of high costs and 
manpower requirements. 

The wave data should consist of high-frequency samples of 
some characteristic wave parameters. At this time the statisti- 
cal model is not sufficiently tuned to merit high-resolution di- 
rectional spectral estimates, but frequency spectra can be ap- 
plied to the model. Wave energy and frequency information 
must serve as inputs to the model, on both experimental and 
physical bases at least. The observations of these quantities 
should be made frequently enough to avoid aliasing. Visual 
wave observations can serve to form a crude estimate but are 

less desirable than spectral estimates. 
Since it is known that other physical factors play a domi- 

nant role in beach response to incident waves, these factors 
can be examined once the statistical model is ready for fine 
scale interpretation. Other factors, such as grain size and 
beach slope, have to be examined for their role in the seasonal 
beach movement. One advantage of using the eigenfunction 
representation of beach data is that parameters such as grain 
size and beach slope are efficiently incorporated into the anal- 
ysis; the spatial eigenfunctions directly reflect the influence of 
these parameters. 

CONCLUSIONS 

Daily beach changes were predicted by spectral wave char- 
acteristics to a significant degree. Spectral representations of 
wave energy, radiation stress, energy flux, and wave steepness 
forecasted beach changes equally well. A longer data set is re- 
quired to select one of the parameterizations over the others, 
because statistical reliability is low for the case studied. The 
lack of error propagation in the prediction is thought to reflect 
the inherent predictability of the beach change process. Only 
the second eigenfunction (BEF) representing seasonal beach 
changes is significantly predictable. 

Weekly beach changes were predicted to a significant de- 
gree by weekly averaged wave characteristics. The mean en- 
ergy between profile measurements and its square root were 
the best predictors of those tested; the other parameterizations 
worked well also. A large value of the energy predicts an ero- 
sional or bar profile; a low value predicts an accretionary or 
berm profile. A longer data set would increase the predict- 
ability and decrease the mean square forecast error. In addi- 
tion, a longer data set would allow for a better determination 
of the 'optimal' beach forcing parameter. 

The method of linear statistical estimation is applicable to 
predictions of beach profile changes for other beaches. Wave 
and weekly profile data from at least 1 year are required to 
determine the coefficient matrix to a high degree of accuracy. 
It is hoped that a data set consisting of daily profile measure- 
ments combined with spectral estimates of the wave field will 
be available in the future to test more rigorously this statistical 
technique. 

The three dimensionality of the nearshore zone places an 
upper limit on the predictability of the beach profile changes. 
Comparison of profile changes at different ranges along a 
straight stretch of beach indicate that even here a longshore 
variation in beach response exists. This longshore variation 
may be due, in part, to minor convergences and divergences 
of the wave field alongshore. Despite the three-dimensional 
nature, beach profile changes were significantly predictable at 
Torrey Pines Beach, California. The influence of beach slope, 
grain size, etc. needs to be properly evaluated in the future. 
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