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ABSTRACT 
 
A non-linear coupled-mode system of equations on the horizontal plane is derived with the aid 
of  Luke’s (1967) variational principle, which models the evolution of nonlinear water waves in 
intermediate depth and over a general bathymetry. The vertical structure of the wave field is 
exactly represented by means of a local-mode series expansion of the wave potential, 
Athanassoulis & Belibassakis (2002). This series contains the usual propagating and evanescent 
modes, plus two additional modes, the free-surface mode and the sloping-bottom mode, 
enabling the consistent treatment of the non-vertical end-conditions at the free-surface and the 
bottom boundaries. The coupled-mode system fully accounts for the effects of non-linearity and 
dispersion.  The main features of the present approach are the following: (i) various standard 
models of water-wave propagation are recovered by appropriate simplifications of the coupled-
mode system, and (ii) a small number of modes are enough for a precise numerical solution, 
provided that the two new modes (the free-surface and the sloping-bottom ones) are included in 
the local-mode series. In the present work, the coupled-mode system is applied to the numerical 
derivation and investigation of families of steady travelling wave solutions in constant depth 
regions, corresponding to various water depths, ranging from intermediate to shallow wave 
conditions. 
  
 
1 INTRODUCTION 
 
The nonlinear water-wave problem is a difficult and interesting free-boundary  problem, for 
which a broad class of mathematical models and approximation techniques have been 
developed. An important feature of this problem is that propagation phenomena take place in 
horizontal directions, and non-local couplings (wave-wave and seabed-wave) exist through the 
vertical structure of the flow field. Various equivalent reformulations of the fully nonlinear-
nonlocal  water-wave problem have been obtained, as e.g., by means of  Hamilton’s principle 
and the Dirichlet to Neumann (DtN) map, Craig & Sulem (1993),  and by means of Lagrange 
equations of fluid dynamics and analyticity of the wave potential in the liquid domain, Craig 
(1985), Wu (1999) and others; see also Groves & Toland (1997). 
 
In the present work, we consider the problem of non-linear gravity waves propagating over a 
general bathymetry. An essential feature of this problem is that the wave field is not spatially 
periodic. Extra difficulties are introduced by the fact that no asymptotic assumptions concerning 
the free-surface and bottom slope are made.  Using Luke’s (1967) variational principle, in 
conjunction with an enhanced local-mode series expansion of the wave potential, Athanassoulis 
& Belibassakis (2002),  we first present a new non-linear coupled-mode system of equations on 
the horizontal plane modelling the evolution of nonlinear water waves in intermediate depth and 
over a general bathymetry. Then, the above coupled-mode system is applied to the numerical 
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investigation of families of steady travelling wave solutions in constant depth regions, 
corresponding to a wide range of water depths, ranging from intermediate to shallow wave 
conditions. The derivation of the latter solutions is important for comparison with known 
theories and validation of the present model, as well as for the consistent initialization of the 
coupled-mode system in the case of time evolution problems in non-homogeneous 
environments. 
 

2 VARIATIONAL FORMULATION  
 
We restrict ourselves to the two-dimensional problem corresponding to normally incident 
waves. However, all the analysis presented in this work can be generalised to three spatial 
dimensions, i.e. the two horizontal dimensions associated with the propagation space and the 
vertical (cross space) dimension.  The liquid domain is a generally-shaped (non-uniform) strip 

, bounded below by the seabed D ( )z h x= − , and above  by the free surface ( ),z xη= t . The 
function ( )h x  represents the local depth, measured from the mean water level. The functions  
( )h x  and ( , )x tη    are assumed bounded and smooth functions of x . Moreover, the function 
( , )x tη  is continuously dependent on time t , ranging over the half-line ( )0t ≥ . These functions 

satisfy the inequality , ensuring the connectedness of .    ( ) ( ),h x x tη− < D

A main feature of the water-wave problem is that the propagation space does not coincide with 
the physical space. While the latter is the whole liquid domain (an irregularly shaped horizontal 
strip), the former is only the horizontal direction(s). This fact, leads to the reformulation of the 
propagation problem as a non-local wave equation in the propagation (horizontal) space. Under 
the assumptions of incompressibility and irrotationality, the problem of evolution of water 
waves, propagating over a variable bathymetry region, can be reformulated as a variational 
equation by means of Luke's (1967) variational principle. According to this formulation, the 
admissible fields are free of essential conditions, except, for smoothness and completeness 
(compatibility) prerequisites. Luke's functional, modelling the homogeneous, nonlinear water-
wave problem, is  
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where x is the horizontal and z is the vertical (positive upwards) co-ordinates, ( ), ,x z tΦ = Φ  is 
the velocity potential, and ( , )x tη η=  is the free surface elevation. In this case, the Lagrangian 
density is just the pressure. The nonlinear water-wave problem is then expressed by the 
variational equation 

[ ],Fδ ηΦ = 0 ,                                                                                                                                (2) 

where the first variation of [ ],F ηΦ  can be obtained as the sum of its partial variations with 
respect to the fields ( , , )x z tΦ = Φ  and ( ),x tη η= , i.e. [ ] [ ] [ ], ,F F Fη ,δ η δ η δ ηΦΦ = Φ + Φ .                            
On the basis of the above it is directly seen that the condition of stationarity of functional 
[ ],F ηΦ  is equivalent to the non-homogeneous, nonlinear water-wave problem; see, e.g., 

Witham (1974). More precisely, the variational equation  models the water-wave 
kinematics, 

0FδΦ =

( ) ( )
2 2

1 22 2 0, , ;x x x h x z x t
x z

η∂ Φ ∂ Φ
+ = < < − < <

∂ ∂
   ,                                                                  (3a) 
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while the variational equation  models the water-wave dynamics (Bernoulli's integral) 0Fηδ =
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3 LOCAL-MODE SERIES EXPANSION 
 
In this section a new local-mode series expansion of the wave potential ( ), ,x z tΦ  in variable 
bathymetry regions, derived by Athanasoulis & Belibassakis (2002), is presented.  This 
expansion has the general form  
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represents the vertical structure of  the term 2 2Zϕ− − , which is called the free-surface mode, 
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represents the vertical structure of  the term 1 1Zϕ− − , called the sloping-bottom mode, and 

( )
( )
( )

0
0

0

cosh
, ,

cosh
k z h

Z z h
k h

η
η

+⎡ ⎤⎣ ⎦=
+⎡ ⎤⎣ ⎦

,    ( )
( )
( )

cos
, ,

cos
n

n
n

k z h
Z z h

k h
η

η

+⎡ ⎤⎣ ⎦=
+⎡ ⎤⎣ ⎦

,  1,2,3,...n =                                    (7) 

 
are corresponding functions associated with the rest of the terms, which are called  the 
propagating  ( 0 0Zϕ ) and the  evanescent ( ., 1, 2,..n nZ nϕ = )  modes. The (numerical) parameters 

0 0, h 0μ >  are positive constants, not subjected to any a-priori  restrictions. Moreover, the -
independent quantities  appearing in Eqs. (7), are defined as the 
positive roots of the transcendental equations, 

z

( ), , 0,1,2...,n nk k h nη= =

( )0 0 0 0k tanh k hμ η− +⎡ ⎤⎣ ⎦ = ,       ( )0 tan 0n nk k hμ + +⎡ ⎤⎣ ⎦η = .                                                           (8) 

A detailed proof about the above expansion can be found in Belibassakis & Athanassoulis 
(2005). The usefulness of the above local-mode representation is that, substituted in the 
variational equation (2), it leads to a non-linear coupled-mode system of differential equations 
on the horizontal plane, with respect to unknown modal amplitudes ( ),n x tϕ  and the unknown  
elevation  ( ),x tη . The coupled-mode system greatly facilitates the numerical solution of the 
present problem and will be presented in the next section.  

A similar modal-type series expansion has been earlier introduced by Nadaoka et al (1997) for 
the development of a fully dispersive, weakly nonlinear, multiterm-coupling model for water 
waves, with application to slowly varying bottom topography. In that work, the vertical modes 
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( )( ) (have been selected to have the form: )1
n

−cos , where the parameters  
are independent from the upper surface elevation 

h coshnk z h k h+ 0nk >

( )x, tη . The major part of the present set of 

vertical modes ( ) }{  is obtained by solving a Sturm-Liouville problem, 
formulated at the local vertical interval 

, , , 0,1,2,...nZ z h nη =

( ) ( ),x tηh x z < L− < , ensuring 2 − completeness. This set 
contains both hyperbolic and trigonometric functions, dependent both on the local depth ( )h x  
and the (instantaneous) free surface elevation ( ),x tη .  However, the boundary conditions 
satisfied by these local vertical eigenfunctions are not compatible with the boundary conditions 
of the problem at the bottom surface, if the bottom is not horizontal or mildly sloping, and at the 
upper (free) surface. In order to overcome the mild-slope bottom approximation and to 
consistently satisfy the free-surface boundary conditions, the present set has been enhanced by 
including the two additional modes ( ) ( ){ }2 1, , , , ,Z z h Z z hη η− −  with unknown amplitudes  

( ) ( ){ }2 1, , ,x t x tϕ ϕ− − . The latter are the additional degrees of freedom required for the consistent 
satisfaction of the free-surface and the sloping-bottom boundary conditions, respectively. The 
idea of the sloping-bottom mode has been presented by Athanassoulis & Belibassakis (1999) for 
the propagation of linearised waves in general bathymetry regions. The latter work has been 
extended to second-order Stokes waves (in the frequency domain) by Belibassakis & 
Athanassoulis (2002), where also the necessity of a free-surface additional mode has been 
discussed for the satisfaction of the (second-order) free-surface boundary condition.  
 
 
3 THE COUPLED MODE SYSTEM OF EQUATIONS (CMS) 

The series expansion (4)  permits us to obtain corresponding expansion of the variation δ Φ  of  
the wave potential,  in terms of the variations of the modal amplitudes nδ ϕ  and the free surface 
elevation δη . Then, it can be shown that the examined hydrodynamic problem in the variable 
bathymetry region reduces to the following nonlinear Coupled-Mode System (see, e.g.,  
Athanassoulis & Belibassakis, 2002, Belibassakis & Athanassoulis 2005) with respect to the 
mode amplitudes ( ),n x tϕ  and the free-surface  elevation  ( ),x tη : 
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. The matrix-coefficients ( ) ( ) ( ), ,mn mn mnA B Cη η η , and ( ) ( ) ( ) ( )0,2 1,1, ,mn mna aη η   

( ) ( ),mn mnb cη η , appearing  in the above equations are expressed in terms of the local vertical 
modes { } 2, 1,0,1,..n n

Z
=− −

 and their derivatives, and can be found in Athanasoulis & Belibassakis 
(2002) and in Belibassakis Athanassoulis (2005). Also, in the latter works numerical 
applications of the CMS (9) to various shoaling environments are presented, clearly demonstra-
ting the rapid decay of the modal amplitudes and the fast convergence of the modal series (4). 

The non-linear CMS, Eqs. (9), has been obtained without any assumptions concerning the 
vertical structure of the wave potential. Thus, this system, being equivalent with the complete 
formulation, fully accounts for wave non-linearity and dispersion. Detailed results concerning 
the dispersion characteristics of the linearised system are presented in Belibassakis & 
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Athanassoulis (2005, Sec.7), where it is shown that retaining the first few terms in the series (up 
to 5 modes) is sufficient for numerical convergence to the exact result, for an extended range of 
wave frequencies, ranging from shallow to deep water-wave conditions.    

Moreover, a distinctive feature of the present CMS is that no simplifications have been 
introduced for its derivation. Thus, in principle, various simplified models can be recovered as 
appropriate limiting forms of Eqs. (9). For example, keeping only the propagating mode ( )0Z z  
in the expansion (4) and linearising the coupled-mode equations, the classical mild-slope model 
is obtained, see, e.g., Dingemans (1997). If the evanescent modes ( ) , 1, 2,...nZ z n = , are also 
retained, an extended mild-slope model is obtained, see, e.g., Massel (1993). If we keep only the 
quadratic vertical mode ( )2Z z− , defined by Eq. (5), in the vertical expansion of the wave 
potential  and retain up to second-order terms in the present CMS, a  Boussinesq-type  model is 
obtained, see, e.g., Liu (1995). On the other hand, if we keep in the local-mode series only the 
propagating mode ( ) ( )( ) ( )( )1

0 0 0cosh coshZ z k z h k η−= + h+

1,0,1,...m = − 2m = − / t

 and again retain up to second-order 
terms, a two-equation, nonlinear, mild-slope model is derived, quite similar as the time-
dependent, nonlinear, mild-slope equation by Beji & Nadaoka (1997). 

A convenient reformulation of the CMS can be obtained by subtracting by parts Eqs. (10a, for 
) from Eq. (10a, for ). Thus, it is possible to eliminate the η∂ ∂

),

 term from 
the left-hand side of the former equations. Moreover, by introducing the function 
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the CMS  (10) is equivalently reformulated as a set of two evolution  equations  on  { },ϕ η : 
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where  N  is defined as follows: 
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Furthermore, the two-equation system (10) is subjected to the constraints imposed by the 
equations:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
2

2 2 22
2

0, 1,0,1,2..n n
n mn n mn n mn n

n
A A B B C C m

xx
ϕ ϕ

η η η η η η ϕ
∞

− − −
=−

∂ ∂
− + − + − = = −

∂∂∑ ,  (11a) 

( ) (
2

;n
n

);x t xϕ ϕ
=−

=∑ t ,                                                                                                                 (11b) 

which are shown to be equivalent to the kinematical subproblem materializing the DtN map, 
associated with the calculation of the wave potential in the whole domain D, given the 
instantaneous values of the free-surface potential and the free-surface elevation, and satisfying 
the bottom boundary condition. In Eq. (10a),  the coefficients ( ) ( ) (ˆ ˆˆ, ,mn mn mnA B C )η η η  are 
defined as follows 

 5



( ) ( ) ( )( )
( )

( );

ˆ 1 ; , ; ,
z x t

mn n m
z h x

A Z z h Z z h dz
η

η η η
=

=−

= − +∫ ( ), [ ]ˆ 2 , 1n
mn m n m z h

Z hB Z Z Z
x x

η
=−

∂ ∂
= + − +

∂ ∂

( )

, (12a,b) 

ˆ , n n n n
mn n m m m

z h z

Z Z Z ZhC Z Z Z Z
x x z x x z

ηη
⎡ ∂ ∂ ⎤ ⎡ ∂ ∂ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= Δ + + + −

η=− =
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

2/

,                                  (12c) 

where 2 2 2/n n nZ Z x Z zΔ = ∂ ∂ + ∂ ∂ .  Moreover, the matrix-coefficients ( ) ( )0,2 ,mna η ( ) ( ),mn mnb cη η ,  
in Eq. (10c), are also dependent on the free-surface elevation, and are defined as follows: 
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4 DERIVATION OF STEADY TRAVELLING SOLUTIONS  IN CONSTANT  DEPTH 
 
Looking for steady travelling wave solutions in constant but arbitrary depth , characterised by 
the (unknown) wave celerity c,  we  use the transformation 

h

( ) (;x tϕ ϕ ξ= ,    ( ) (;n nx t )ϕ ϕ ξ= ,    ( ) ( ), ,x tη η ξ ξ x ct= = −   (and thus, ). / /t c∂ ∂ = − ∂ ∂x

Consequently, the CMS (10) is put in the following equivalent (time independent) form: 

                                            ( ) ( ) ( )1 0c L L N+ =u u u
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 ,                                                          (14) 
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⎨  ,  and the components of the nonlinear 

operator ( )N u  are defined by the right-hand side of Eqs. (10a) and (10b), with simplified 
coefficients due to the fact that in the present (flat bottom) case , and thus, the 
sloping-bottom mode vanishes,  .   

/dh dx =0

1 0ϕ− =
 
Given  the length of the  periodic cell  (the wavelength)  λ and  the depth   h  (or  the flow rate  
Q  under the waves), steady travelling wave solutions of Eq. (14) are numerically constructed by 
calculating  the free-surface elevation ( )xη , the modes ( ) , 2,0,1, 2...n x nϕ = − , the wave potential 
( , )x zΦ , and the wave speed c.   We remark here that a nontrivial solution should contain (at 

least) one crest. In order to obtain solution of mode type I (one crest and one trough per periodic 
cell) we need to specify the location of the crest. Without loss of generality, we suppose that  

          ( )* 0
d x x

dx
η =

= ,    at  a  given  point  *x   within the periodic cell.                                 (15) 

The above condition introduces an additional algebraic constraint, that can be considered to be 
equivalent  to a “nonlinear dispersion” relation.  The system (12) is  iteratively solved by: (i) 
guessing initial (e.g., from a linear model), (ii) calculating 0 0,c u ( ) ( )1

1 1 0k kc L L N
−

+ = +u uk  from 
Eq. (14), and 1kc +  from Eq. (15), and (iii) iterating until   convergence: 

1 1 tolerancek k k kc c+ +− + − <u u .   

Numerical results are presented in Figs. 1, 2, for two different cases corresponding to shallow 
water (λ/h=20, Fig.1),  and  intermediate  (λ/h=5, Fig.2)  water-depth  conditions,  respectively, 
and relatively  strong  wave  nonlinearity. The initial guess, based on the linearised (time-
harmonic) solution, is plotted in the left part of these figures, as well as the consecutive 
iterations. We observe that in all cases the rate of convergence is very fast and 8-10 iterations 
suffice for convergence. In the right part of Fig. 1 the final (convergent) solution from the 
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present model is compared with results from nonlinear cnoidal theory (Fenton, 1990), and in 
Fig. 2 with 5th-order  Stokes theory (Fenton, 1985), and the agreement is found to be excellent. 
Moreover, in Fig. 3 corresponding results are presented for a case characterised by balanced 
nonlinearity and dispersion, in the regime of Ursell number ( )( )2 2/ / 8U H h hλ π= ≈  (where H is 
the waveheight), where Boussinesq equation(s) are applicable. In this case, the present CMS 
provides reasonable results, in agreement with cnoidal theory, while the Stokes expansion fails.  

 

convergent solution 

convergent solution 

initial guess 

Fig 1. Steady travelling solution in the long-wave regime, characterized by moderate 
nonlinearity (λ/h=20, H/h=0.3, c/c0=1.054).  Right: Comparison of present CMS (solid line) 
with nonlinear cnoidal theory (Fenton 1990), shown by dashed line. 

 
Fig 2. Steady travelling solution in the intermediate-wave regime, characterized by strong 
nonlinearity (λ/h=5, H/h=0.52, c/c0=1.089).  Right: Comparison of present CMS (solid line)  
with 5th-order  Stokes theory (Fenton, 1985), shown by dashed line. 

 
Fig 3. Steady travelling solution in the Boussinesq regime (U=75), characterized by balanced 
non-linearity and dispersion (λ/h=13, H/h=0.3, c/c0=1.033).  Right: Comparison of present 
CMS (solid line) with 5th-order  Stokes theory (Fenton, 1985) shown by dash-dotted line, and 
nonlinear cnoidal theory (Fenton 1990) shown by dashed line. 
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5 CONCLUSIONS 
 
The present non-linear CMS has been obtained without any assumptions concerning the 
nonlineariry and the vertical structure of the wave potential, being thus, equivalent with the 
complete water-wave formulation. The theoretical value and practical effectiveness of the 
present model, except of its universal character, is that a small number of modes is found to be 
enough for numerical convergence, even in cases of very steep free-surface elevation and for 
arbitrary depth. Extensive numerical evidence suggests that the rate of decay of the mode 
amplitudes is very fast and thus, truncation of the modal series to its first few terms (up to 5 
modes) is found to be sufficient for an accurate numerical solution. The present system is 
applied to the numerical investigation of steady travelling waves over horizontal bottom, 
corresponding to various water depths, and its  results at intermediate and shallow water depth, 
respectively, are found to be consistent with Stokes 5th-order and nonlinear cnoidal wave theory. 
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