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Abstract. In a previous letter, D.A.Gurnert [1995] discussed the
remarkable fact that atmospheric whistlers propagate under the
same emission cone relative to the earth’s magnetic field as bow
waves do with respect to the ship’s velocity — namely under 19°28'.
The present contribution is a comment on Gurnétt’s letter and con-
siders a prerequisite for the occurence of the simiilarity of both phe-
nomena: the independence of the wave features of parameters such
as the ship’s speed or the earth’s magnetic field. It is found that
media with dispersion relations of the form w ~ &k show such
independence; a more general solution is also given.

1. Introduction

D.A. Gurnett discussed, in a previous letter, a nice ex-
ample of two phenomena which, at first glance, seem to be
quite different but are commonly described in the framework
of linear waves propagating through a dispersive mediuin.
They are atmospheric whistlers and ship waves which both
propagate under an emniisson cone of arcsin % with respect
to the earth’s magnetic field respectively to the ship’s veloc-
ity. More remarkably, their emission cones do not depend on
the special parameters such as the magnetic field strength or
the ship speed.

Both phenomena are linear waves and their characteristic
features originate from the dispersion relations. We shall
therefore concentrate on dispersion and assume the medium
to be excited by a (moving) point source.

The lack of dependence of the emission cone on the medium
parameters restricts the form of the dispersion relation; but
this does not lead to simple statements if only the aperture
angle is prescribed. Nevertheless, simple statements become
possible if we demand that the wavepatterns keep spatially
similar under a change of parameters. Spatial similarity is a
sufficient (although not necessary) condition for equal emis-
sion cones and it leads in a natural way to the consideration
of scaling properties of waves in dispersive media.

Historically, a famous example of scaling laws goes back
to O. Reynolds and provides a similarity condition for the
streaming of viscous fluids. Related concepts were used
in magnetohydrodynamics or in mechanical similarity. We
shall come back to general scaling later and start with an ex-
ample remarkable in itself: the independence of the Kelvin
wedge on the ship’s speed.
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2. Independence of the source speed

The independence of the Kelvin wedge on the ship’s speéd
is astonishing and contradictory to intuition which usually
refers to a Mach cone whose aperture angle depends on the
source speed. Is water just a very particular medium or is in-
dependence of the source- respective strearning speed quite
common? To answer this, we must look closer at the general
mathematical description of waves.

We assume that the wave can be représented as a superpo-
sition of plane waves satisfying the medium’s dispersion:

B(x,t) = / dk &(k) efx—iw()t

If a norm pulse ®(x,0) = (2r)%™ §(x) is applied, & = 1
and the response to the pulse is for ¢ > 0:

g(x, t) — /dkeikx—-'iw(k)t . (1)

By linearity, the wave pattern of a moving source can be
written as superposition of responses to pulses emitted along
the trajectory xo (o) of the source:

/_t dtog(x—x(],t—to)

t
/ dto /dl(eik(x—xo)—iw(t—to) )
-0

Let us assume that the source moves with constant velocity,
Xp = vitp. For an observer fixed to the source frame of
reference (x' = x — vt), the wave pattern takes the form

/dk/ dto eik(X’+Vt‘Vto)—iw(t—to)
-0

/dk / dr eikx’—H’(kv—w)T ) )
0

We recognize that the expression (2) does not contain ¢, in-
dicating that the wave pattern is stationary. Note that this is
a consequence of the uniform source motion.

We shall now come to the question under which circum-
stances the wave field remains similar under a change of the
source speed. More precisely, we ask if a change in v = |v|
can be compensated by scaling all spatial and time coordi-
nates. Let us denote the scaling by

F(x,t)

F'(x',t)

v—=Av and x—x/€ resp. k—¢&k

and look what happens with equation (2). The first phase
term 7kx’ remains invariable due to the reciprocal scaling
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of x- and k-spaces. But the second phase term (vk — w)
changes. However, if this change just multiplies the whole
term by a positive constant 3, this can be compensated by a
new integration variable 7' = 7/, contributing only a fac-
tor 3 to the wave amplitude and thereby conserving its sim-
ilarity. So the condition for similar wavepatterns at differ-
ent source speeds demands that the second phase term keeps
proportional to itself when the source speed changes, imply-
ing that

A w(k) = w(ék) ©)
for a given value of A. This functional equation has the so-
lution

w = k* f(k) £ =\/(e1) 4)

where k = |k|, k is a unit vector in the direction of k, a is an
(almost) arbitrary power law index and f(k) is an arbitrary
function of the direction of the wave vector. Thus, a scal-
ing of the velocity by a factor A can be compensated by the
scaling of the space coordinates by a factor A'/(~1) Note
the singularity at o = 1. Dispersionless wave patterns must
depend on the source speed as the Mach cone does.

3. The group épeed approach

We shall now build the connection to the group speed
approach used by Gurnett [1995] and see that this concept
leads to a simple geometrical classification of the wave be-
haviour. Let us return to the wave field created by a moving
source, i.e. to Equation (2). For most values of k and 7, the
integrand exhibits strong oscillations. Contributions to the
integral come only from those parts where the oscillation
vanishes, i.e. where the exponent’s derivatives with respect
to k and 7 vanish:

x’:(%‘i{i—v)'r and w=vk. Q)

This is the concept of stationary phase approximation in-
troduced by Kelvin (Thomson [1910]). It demonstrates the

Whistler

b)

Figure 1. Construction of the emission cone in the stationary
phase approximation (see text). Source frame of reference.
a) General power law w = k%. The solid circle, drawn for
a = %, corresponds to the square bracket in Eq. 7. b) The
equal emission cones of whistlers and ship waves.
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Figure 2. The aperture angle of the emission cone in depen-
dence of the power law index.

physical meaning of the group speed as seen from an ob-
server moving with the source: the vector
Ow
V; = 'éi -V (6)
points to those positions for which a stationary phase contri-
bution to the integral (2) exists. The range of v; is obtained
from (6) by inserting all values of k which satisfy the second
stationarity condition in Eq. (5). This is Gurnett’s approach.
If a power law medium is isotropic, w = k%, and the pat-
tern anisotropy is due to the miovement of the source, Eq.
(6) gives a simple geometrical construction of the allowed
directions of v;. In this case, we have

/_a_w_“
9 Ok

The square brackets describe a circle of radius |a|/2 with
center at —v(1 — «/2) (see Fig. 1a). For any v; (and hence
x') within the shaded cone (Fig. 1a), contributions of the
stationary phase approximation to the integral in Eq. (2) ex-
ist; outside they vanish. For a < 1, the cone half angle is
(see Fig. 2)

v v=vla@ -Kk-¥]. (7

Iw::vk -

¥ = arcsin

-

For bow waves, we have a = % and ¥ = 19.5°.

The graphical picture may also be used to explain the
equal emission cones of ship waves and whistlers. Whistlers
are excited by a lightning at a fixed position in the earth’s
atmosphere. Consequently, we have to consider the pulse
response and the second condition in Eq. (5) does not ap-
ply. The whistler dispersion can be approximated in the form

w o< k(k - B) (Gurnett [1995]) and the group speed is

Ow A oao o
Vo= 5 o kB{ (B kk+B} .
Due to the special dependence of the azimuthal coordinate,
the group speed lies again on a circle, but shifted by +B.
Fig. 1b shows how the different shifts of whistlers and ship

waves lead to the same emission cone.

4. Simulated Examples

After having established the power law dispersions, Fig.3
gives some examples. The plots were obtained by numeri-



Figure 3. Examples of power law wave patterns. Sources
(crosshair) moving to the left.

cal superposition of two-dimensional pulse responses (Eq.1)
computed within the stationary phase approximation. A
damping term —ek was added to the exponent of the integral
(Eq.1) which supports numerical convergence and filters out
high spatial frequencies which could not be resolved by the
printing device.

For power law media (w ~ k%) of arbitrary dimension, the
stationary phase approximation contains terms of the form
exp {iCr(r/t)/(>=D} with r the radius and ¢ the time. The
stationary points travel with r ~ 1/,

Fig.3 shows the wavepatterns created by a moving source
in power law media with o = 2, % and —1. These cases were
chosen since they demonstrate the qualitative behaviour in
the different regimes and since the integrals in the two-
dimensional pulse responses (Eq. 1) are analytically solv-
able (see Appendix). This allows to control the validity of
the stationary phase approximation used in Fig. 3. It turns
out that the stationary phase approximation fits the analytical
curves astonishingly well.

The case o = 2 gives no emission cone and the medium
dams up in front of the moving source. In nature, the disper-
sion w ~ k? is realized e.g. in the Schrodinger Equation or
in bending waves in elastic rods and plates. The case o = %
is the well-known water wave; an emission cone exists. The
case o = —1, although provided by an emission cone, shows
a somewhat different behaviour since 7 ~ t~! (see above)
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and the group speed is opposite to the phase speed. As a
consequence, the wave crests of the pulse response travel in-
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a = —1. Note that by coincidence, the aperture angle of the
emission cone is again ¥ = 19°28’
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w=wlk,p).

The bbdllﬂg proper[y rcqu1res that the wave patiern un-
dergoes only a scaling transformation if the parameters are
changed. Therefore, the dispersion relation must satisfy

w(k,p) = nw(ék,p’) ®)

for suitable, positive £ and 7. In other words: it must always
be possible to compensate the effect of a parameter change
by re-scaling the spatial and time coordinates as described
in Sect. 2. A physically interesting solution of the scaling
Equation (8) is

w” = A(p)¥ 4 k* + B(p)¥pk’ )

where ¥ 4 and ¥ p are arbitrary functions of the direction R,

a # (3 and

[A(p)B(p’)] B (10)

A(p")B(p)

R [C RO N

with A # B, A # 0 and B # 0. The presence of two
independent terms in the solution (9) is due to the fact that
in general, there are two variables to be adjusted, namely &
and 7. Note that in general, the singularity occurs if o =
and not if o = 1 as it was the case for a moving source.

6. Physical Realizations

The physical interest of the scaling solution (9) comes
from the possibility to describe composed effects of the form
w? = w? + w2. This situation arises when two backacting
forces are present. Among the numerous examples, we men-
tion the following:

Il

gk +Tk3/p
2
k? +w?

e Capillary-gravity waves: w?
e Light waves in a plasma: w? =

e Waves within a fluid, emitted from a moving source:
w=wpsinf — v -k.
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For the first example, see Lighthill [1978]. As a con-
sequence of the scaling solution (9) the capillary-gravity
wavepattern remains similar when, for instance, only the sur-
face tension T is changed. In the last example (see Landau-
Lifshitz [1986]), 6 is the angle between the gravity accel-
eration and the wave vector. These waves are the oscillat-
ing counterpart of convective instability; they occur when
an adiabatically rising bubble cools, contracts and becomes
restored by the less dense ambient fluid.

Appendix: Analytical pulse responses

Here we summarize the analytical, two-dimensional pulse
responses (Eq. 1) of power law media:

w=Ek?:

w=k"2: Re[g(r,t)] = Y25 [, (u)J_y (u)
—2uJ4; (u)J% (u) + 2uJ_%(u)J_% (u)}

G(r,t) = 2L Jy (V2itr) K1 (V2itr)

2 . .
where u = st7’ Jy and K, are Bessel functions (notation

w=k"1:
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according to Gradshteyn and Ryzhik [1980]). The case w =
k? is elementary; for the case w = k/2 see Wehausen and
Laitone [1960].
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