A Triangle Based Finite Volume

Method for the Integration of

Lubrication’s Incompressible Bulk
winai Arghir 8 Flow Equations

e-mail: mihai.arghir@Ims.univ-poitiers.fr

Jean Frene It is well known that for a reduced Reynolds numiee* =pVH/u-H/L) greater than

e-mail: jean.frene@Ims.univ-poitiers.fr unity, inertia forces have a dominant effect in the transport equations, thus rendering the

classical lubrication equation inapplicable. The so called “bulk flow” system of equa-

LMS, Universite de Poitiers, tions is then the appropriate mathematical model for describing the flow in bearing and

URF Sciences SP2MI, Téleport 2, seals operating at Re=1. The difficulty in integrating this system of equations is that

Blvd. Pierre et Marie Curie, BP 30719, one has to deal with coupled pressure and velocity fields. Analytic methods have a very
86962 Futuroscope Ghasseneuil Cedex, narrow application range so a numerical method has been proposed by Launder and
France Leschziner in 1978. It represents a natural extrapolation of the successful SIMPLE algo-

rithm applied to the bulk flow system of equations. The algorithm used rectangular,
staggered control volumes and represented the state of the art at that moment. In the
present work we introduced a method using triangular control volumes. The basic advan-
tage of triangles versus rectangles is that non rectangular domains can be dealt without
any a priori limitation. The present paper is focused on the description of the discretized
equations and of the solution algorithm. Validations for bearings and seals operating in
incompressible, laminar and turbulent flow regime are finally proving the accuracy of the
method. [DOI: 10.1115/1.1326444

Introduction velocity profile unmodified by inertia forces injected in these
Usual incompressible lubrication flows are characterized bnt:atl(;)ipfzrzgs ;herogiﬁ%ﬁeogtgmnth'fﬁgi?maevigggf' ?nu:tpi)gr?sr_
zero or negligible convective inertia effects. The first result of th y pp 9 g

two length scale dimensional analysis performed on the flow m%olved during the last two decades and its presentation can be

tion governing equations is that convective inertia terms have tl nd in th? work Of.Ch'lds[S]' Fo_IIowmg thls_denvatlon, the_

order of magnitude of the reduced Reynolds number OW governing equations are obtained by writing a conservation
balance for an infinitesimal control volume extending from the

( pVH) upper to the lower wall, all flow variables being considered con-

H
Re* =Re—

0 Re= —— (1) stant across the film thickness. Known as the bulk flow system of

M equations, this set is not different from the previous one. By tak-

whereH and L are the characteristic length scales, the former Y into_account the velocity profile, Constantinescu obtained

being based on the film thickness and the second on the firgme correction terms in the equations but without changing their

length. For usual systems/L is of the order of 10° or less and nature. It is difficult to appreciate which set of equations is better.

the R Id ber i l h. sd RE Most of For laminar flow, it is clear that taking into account the form of
€ Reynoids num ?r IS not large enough, SO RE MOSt of g velocity profile is rigorously correct but for turbulent flow the
classical Lubrication’s applications satisfy this limit but recen

high power density machinery show a need of lubrication or se pproach can be questioned. The velocity profile in turbulent flow

ing devi ing far b d the limit of 'Rel. The incl > very blunt, almost constant if one discards the very rapid varia-
Ing devices operating far beyond the limit o - 1NEINCIU- 4inn close to the walls, so directly considering an averaged value
sion of inertia forces in the flow governing equations is then @, 4 pe 4 good hypothesis. This and the fact that most inertia

must and obtaining a solution IS & more difficult task due_to theHominated flows are also highly turbulent lead to a widespread use
nonlinear character. An overview of the problem was given bgf the bulk flow equations
Constantinesc{il]. '

The first solutions of the complete system of equations us The best general solution was given by Launder and Leschziner

small perturbation approaches applied to the boundary layer tyga They dgal;] with t;he for31 %f the equatl?nls given _by lConTtau-
of flow equationg2,3]. Their application to general cases bein nescu_and they observed that a powerful numerical tool, the
difficult, development activities became focused on full numeric IMPLE algorithm, developed in the seventies for the complete
solutions. First, the equations were adapted to flows between t 8V|er-Stokes equgtlor(ﬁqr Wh.'Ch a presentation is given i),
closely spaced walls by making a film thickness average of roWu'OI ‘?"SO be a_pplled to inertia dominated lubrication ﬂOWS' Th?
variables. This approach, which borrows something from the deﬂymerlcal solution they p_roposed “Sed a rectangular .g“d and in
vation of the classical Reynolds lubrication equation, was first d@&der to ensure the coupling of velocity and pressure fields, stag-
to Slezkin and Tar§4] and was subsequently used by Constantf€reéd control volumes were used for each of the flow variables.
nescu some three decades ago to deduce the system of equati@?ﬁ'“ty was preserved by using a first order upwind approach for
visco-inertial flow in thin layers. His approach was to start fror'® Convective derivatives although more accurate approaches be-

the boundary layer type of equations, to suppose a laminar likéMe lately available. Under this form the algorithm represented
the state of the art at that moment and was successfully used by
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regular geometries because the interior boundaries of the discretiSymmetry boundary conditions imply,=0 and d=/dn=0
zation must coincide with the discontinuities of the analysis dder any other variable.
main. The analysis of bearings or seals with arbitrarily shaped
pockets and grooves is then excluded.
Substantial progress have been made in the field of numeriddimerical Solution

analysis since Launder and Leschziner proposed their solution tWorhe sojution domain for Lubrication problems can be either a
decades ago. Unstructured grids became widely used not only fgtangle(if one deals with two dimensional pads or with the
e!astlcny problem_s but for convection dom_lnated flows also. Fb‘eveloped surface of cylindrical bearings and annular seala

nite element solution of the transport equations started to cOMpgfgylar sector(for thrust bearings and face seal§he list could
finite volume oneg8,9]. The main cause that delayed the introg|sq include conical or spherical bearings but, in any case, a gen-
duction of uns@ructured grids in conjunction with the finite YOlum%raIized rectangle would be an enough accurate representation.
SIMPLE algorithm was the necessity to stagger the velocity con-The domain is discretized using unstructured triangular grids.
trol volumes in its first formulation. Solutions to overcome thisrne control volumesor cell§ are considered to coincide with the
problem were given by Rhie and Chdwo0] and by Perid11]. triangles of the discretization. So each cell has three edges and
Once this problem passed by, SIMPLE based solutions for tigee vertices that coincide with the nodes of the mesh. Internal
Navier-Stokes equations on unstructured grids were proposedgﬁges have two cells on either side while boundary edges have
Mathur and Murthy[12] and Lai[13]. The goal of the present onjy one. Figure 1 presents an internal discretization cell with its
work is the development of such of a triangular based numeriGaee neighbors and Fig. 2 presents two different grids.
procedure for the solution of Lubrication’s “bulk flow” incom- * one must distinguish internal edges from boundary edges, the
pressible and isothermal system of equations. It is the first stgpa, having the important role of carrying boundary conditions.
towards the analysis of arbitrarily shaped bearing and seals t@fges carrying pressure or symmetry boundary conditions are

cannot be tackled with rectangular control volumes. grouped in the boundary edges category while periodicity edges
are treated as internal ones.
Governing Equations All transport variables are defined at triangle’s center. When

cpeeded, variables are also defined on edges at characteristic
Q_oints. For internal edges, these points represent the intersection
of the segment joining two adjacent cell centers with the corre-
sponding edgéFig. 1). For boundary edges, characteristic points

div(pVHE) =Sz (2) lye at edge’s midpoint.

The source terms are presented in Table 1. The viscous parDiscretization of the General Transport Equation. The
lumped in the source terms is expressed under the form propogederal transport equation is integrated on the triangular control

The system of bulk flow equations for incompressible, isoth
mal flow can be written under the form of three convective tran
port equations.

by Hirs [14]. volume.
1, 1, R
7s=5pfsVs TrR=5pfRVR 3) div(pVHE)d9= | Szdo (6)
2 2 9 o
Vs= W2+ U2?,  Vg=W?+(U-Rw)? (4) Using the Gauss-Ostrogradski theorem for the left hand side

. ) and the midpoint rule for the right hand side yields
where friction factors can be expressed by Blasius’ law for a

laminar flow or by one of the several laws that exist for turbulent - e
regime (Blasius, Moody, Colebrooke, ejc. LPVH:‘”d?’_Z m=i=Sz 9, )

In the following, the circumferential directioRé will be as-
signed byx (soRd#=9x) and will be associated with any relativewherem;=pV,H;y; is the mass flow rate across the edge, posi-
velocity such aRw. tive if the flow leaves the control volume. The transported vari-

. " able is interpolated at the characteristic point of the edge by taking
Boundary Conditions. Three types of boundary conditions,

namely pressure, symmetry and periodicity, are sufficient for de-
scribing any incompressible, isothermal Lubrication problem. In
the most general form, the stagnation pressure and the conce
trated inertia coefficients are given on a pressure boundary

2
pV
5 (5)

PO=P+(1+¢)

where the plus sign holds for an inlet bounddpyessure drop
effec) and the minus sign for an exit on@ressure recovery
effect).

Table 1 Source terms of the incompressible and isothermal
bulk flow equations

g S. I
1 0 (continuity equationy | O N\_ - o
w éP w U
—HE_+Z.S:+TR: (Ts::TsV_Svrse—TsVs)
U P w U-Rw
—HEEé_+TSH+TR9 (TR::TRZ)le:TR v )

Fig. 1 Triangular control volume and its neighbors
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SIGN(1V,)—1
I_mi¥- ap= a, (12)
I=AB,C

where the high order precision of the edge value is included ex-
plicitly using a blending factor. First order solutions obtained with

b==0 are very stable in terms of convergence while a blending
factorb=z=1 means that the final converged solution will have a

high order precision. Values between 0 and 1 of the blending
factor are used when high order precision solution are difficult to
obtain, generally with coarse grids.

Boundary conditions are readily implemented and need no spe-
cial treatment. A pressure boundary edge can work either as an
inlet (V,;<0) or as an exitY,;>0). For an inlet edge, the trans-
ported variableZ is either imposed as a boundary condition
(namely the tangential component of the velocity vector or any
scalar variablgor calculated from a mass balance equatitre
normal component of the velocity vecjoiFor an exit edge, the
coefficienta; is zero and the transported variable is extrapolated
from the interior domain to the edge. For a symmetry boundary
edgeV,;=0 som; anda, are zero and the transported variable is
calculated from a zero gradient extrapolation.

Finally, all coefficients are kept constant being known from a
previous level and the linear system is iteratively solved using a
Gauss-Seidel relaxation procedure up to a reasonable reduction of
the initial error.
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Discretization of the Continuity Equation. The discrete
continuity equation is written as

(@) {b) R
pVH -fidy= > ;. (13)
Fig. 2 Triangular grids employed (a) for a one-dimensional r i

pad and (b) for the developed surface of circular bearings and . .
annular seals It is known that when velocity components and pressure are

stored at cells centers, computing the face velodityby simply

interpolating between the two adjacent cell values is prone to

checkerboard instability15]. A special momentum interpolation
into account the direction of the normal velocity. The first ordegcheme introduced by Rhie and ChfW] is used to avoid this.
precision is obtained by taking the value from the “upwind”

triangle? VE = Vr _Hede (ﬁ) _(f)
ot tap(l+ry)| [ \an). \an).
—10p_ mupwing_ = SIGNLVy)+1 _ SIGN(LVy)—1 p(LHTv); i i
i TR — =P 2 =1 2 ry —
(8) + 1+rV[Vm—(V)rni] (14)

The higher order approximation can be considered in many
ways. The most simple way is to consider the interpolated val

obtained from edge’s two adjacent cdlls5)].
g ) i) ues. The same underrelaxation coefficigpis used folW andU
o HOP_ d; _ dp transport equations. The values in the last term are estimated from
=i T APy tEii d © a previous iteration level and are introduced in order to avoid an
Pl Pl -
) ) o _ underrelaxation factor dependence of the converged solltign
A better approach in terms of numerical stability is the upwind The central point of the SIMPLE algorithm is the coupling

ereW* andU* are velocity components obtained after solving
the discrete transport equations ane are edge interpolated val-

interpolated edge valud.2]. between the velocity and the pressure field. It is supposed that
EiHoP: Supwine- (grads Yupuinc api’ (10) these variables can be written as a prediction plus a correction
cell cell value.
where (gra&)ggﬁvinu is the reconstruction gradient at the upwind W=W*+W' U=U*+U’'P=P*+P’ (15)

cell andapi is the vector directed from the center of the upwind
cell to the characteristic point of the edge. Ensuring stability ne-
cessitates the use of the flux limiter proposed by Venkatakrishn
[16] for the estimation of the reconstruction gradient.

Including an under-relaxation factor the discretized transpd?
equation yields

The prediction values for velocities are obtained from solving
momentum equations while the first value for the pressure is
estimated from an informed guess. Corrections are calculated by
pforcing the continuity equations as in the following.
By using the decomposed field values, the mass flux and the
discrete continuity equation can be written as follows:

ap(l+rz)Ep= ZBC =+ (Sz)pdptapr=Ep

- > (i +))=0 (16)
|
i, (5 1OP_ =z HO . .
+b5i:;,b,c (=== (11) mf=pViHiyi, ™ =pVyHiy. (17)
It is supposed that the correction of the normal velocity depends
1SIGN(a,b) =a*sign(b) is the standard Fortran function only on the corrected pressure gradient yielding
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In the above estimation of the pressure gradient it was
assumed that directions and ¢ are very close. The assumption - /—\
is well verified for a Delauney triangulation and can be furtherg /
sustained by observing that the accepted error is of the orde2 02 /
of (gradP’);-(n—¢); and tends to zero for a converged solu- =
tion [15].

Finally, the discrete continuity equation yields a linear systen~
for pressure corrections.

2/{m

t*t

)

01 4—1 ¢ 1| =-===- 64 cells

128 cells \
_pBiHiy — ® analytic
a a E a (20) Yy

’ P
dPI li=A,B,C

apPp= zscalpll_ E m* (19)

i=a,b,c

(P-Pref)*Hex

On a pressure boundary edd¥, is zero. On a symmetry edge 0.0
dP’/an=0 so the corresponding will be zero and the pressure
will be obtained from a zero gradient extrapolation. The linear 0.0 0.2 ~0-4_ 0.6 0.8 10
system is iteratively solved using a Gauss-Seidel relaxation prc axial distance, x/L
cedure up to a reasonable reduction of the initial error. ! o . . .

L. . . Fig. 3 Pressure distribution in a shear driven one-dimensional

OnceP’ is available, the pressure, the velocity components aragg

the normal velocity are corrected.

Pp=Pi+rpP’, WP:W’;,—BP('%) ,
' P (21) and 4 are considered along the midsection parallel to thc'e.long
9P’ _ PP}, edge of the rectangle. Due to symmetry boundary conditions,
Up= UE*BP(W) , vnizvﬁi—Bid— pressures in the transversal direction are constant.
P PI Figure 3 presents a shear driven flow for which*Reas cal-

The iterative algorithm proceeds with a new solution of thgulated with the relative surface velocity and the exit film thick-
momentum equations. A good convergence index of the iterati}€SS- The inlet and the exist pressures were the same and equal to
procedure is the cell mass flow balance that appears as the soG¢gference value. The analytic solution of the problem can be

term of the pressure correction equat®n., , ;M and governs expressed as
the order of magnitude of all corrections.

Finally, one should mention that a good initial guess for the ,
pressure field can'be made from the solution of Reynolds equa- nVL Hinett 1 [Hinet— (Hiner— 1)X]2
tion. High flow regimes (Re10®. .. 2-10°) provoke a turbulent _
flow and one may argud 8] that a better definition of the reduced X=x/L, H=H/Hg (23)
Reynolds number is

[P(X) = Pres] Hezaxit -6 ﬁinlet_ 1 X—%

C Lk SRE
. T

which gives a lower value thafl) becausek,,>12 but, never- '\l\ | |

theless, operating conditions are beyond the limit of R&. Be- < ;

ing of elliptic type, Reynolds equation can be cast in a form simi- \

lar to the pressure correction equation for which the solutior 08 \

framework (grid topology, interpolations, resistance coefficients,= ! A

linear solver, etg.is available.
0.6 \
The first validations concern one dimensional pads with lineax
variation of the film thickness. Itis only for these simplified casesg ¢ 4 E '

Validations

Pinlet-Pexi

that bulk flow equations have analytic solutidi®. Figure 3and @ I L

Fig. 4 present the results obtained for a radige/Hexy=2 and a4 - ) .

flow regime corresponding to Re-1. The one dimensional pad ™~ | first grid (32 cells) \‘

was modeled as an elongated rectanfy. 2(@)). Pressure 02 4 ... second grid (64 cells) !
boundary conditions were considered on the short edgits no \
concentrated inertia effects &= 1 — &exie=0) and symmetry T ] analytic

boundary conditions on the long ones. Both short edges wer X . : S —

divided in two segments and both long edges in 8 segments. | 0.0 ! I ‘ i ' 1 ‘ |

order to have triangular grids of good quality all segments divid- 0.0 02 04 06 0.8 1.0
ing the boundary have the same lenftB]. Grid refinement was axial distance, x/L

made by increasing the length of the elongated rectangle and add-
ing discretisation segment&6, 32, etg, while the short edge of Fig. 4 Pressure distribution in a pressure driven one-
the rectangle remained unchanged. Pressures presented in Figm&nsional pad
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020 uy T T 1 I .
----- Reynolds eq.

bulk flow eq.

0.10 3 <+  anaiytic #‘)

0.00

010 v

non dimensional pressure

circumferential direction, x/(2*pi*R)

-0.20

0.0 0.2 04 06 0.8 1.0 Wi & 5
circumferential direction, x/(pi*D) 00701 02 03 04'05 06 OoF 08109 1.0

Fig. 5 Pressure variation in the midsection of a short bearing axial direction, z/L

Fig. 6 Superposed pressure field  (light colors—high pressure
zones, dark colors—low pressure zones ) and unscaled velocity
vectors in a short bearing
Figure 4 presents a pressure driven flow. The reduced Reynolds
number was calculated with the mass flow rate. The analytic so-

lution used for comparison was that the circumferential velocity is properly convected in and out

of the bearing and proves the correct behavior of the numerical

P—Pgi HZe H2-1 boundary conditions.
=— = (24) Figures 7 and 8 present results obtained for turbulent annular
Pinet™ Pexit ~ H?2 Hﬁﬂel—l seals. The employed meshes were similar to the grid in Flg. 2

and boundary conditions were of the same type with those used

The continuousgfirst grid) and the dashetsecond gridl curves for the short bearing.
on Fig. 3 and Fig. 4 are superposed thus proving grid independenthe first seal is a test case taken from the work of Ampag}.
results. They both show a close agreement with the correspondifite geometric and operating characteristic Rre140.2 mm, L
analytic solution. =110mm, H=1.8mm (centeredf w=104.72rad/s, P{

A second example is the “short bearing” solution. This calcu=2 38 bar, £,6=0.59, V, e/ @R=0.35 (prerotation, P,
lation is not intended to be a proper validation case but one i1 y5r and no exit pressure recoverp=998.5 kg/m3,u
tends to investigate the limit of the bulk flow equations and the 133 pa 5 The seal operates at 40 percent eccentricity. A grid

proper behavior of pressure boundary conditions. There is 0 Ypgenendence study is carried out in Table 2. The differences
per validity limit (in terms of R&) for the employment of the bulk peqyeen calculated results and Amoser's measurements are only

flow equations but, due to the fact that*Reppears as the coef- gpparent. They are explained by the axial distributed forces in Fig.
ficient of convective inertia termg&he only ones containing de-

rivatives, an inferior limit should exist. Following this idea, the
“short bearing” calculation [/D=0.25) was made for Re
=0.1 ande=0.1. Results are presented on Figs. 5 and 6. Low
underrelaxation coefficients used for convergengesrp=0.1,
proved that the lower validity limit of the bulk flow equations was 4048 cells
approached. The grid corresponding to the developed bearing we— SE+004 o 21

of the type presented in Fig(l®. Periodicity boundary conditions E [21]
were imposed on the short edges of the rectangles and consta=
pressure ones on the long edgesth no concentrated inertia 8
effect9. Pressure variation in the midsection of the bearing is S

3E+004

presented in Fig. 5. Superposed on the same figure is the solutico 1E+004

obtained solving Reynolds equation on the same triangular grid a5 2\ [radial forcel

well as the analytic solution taken frof20]. All solutions are in 2 T ’

good agreement. Figure 6 presents the velocity vectors superpos(a wﬁ‘*e‘_@_

on the contours of the pressure field. As cavitation wasn't taker™ OE+000 ~ %,,Q’ﬁ_
into account, the bearing presents a pressure zone and a sucti e {\_,,@1—@——?‘(

zone. Consequently, pressure boundaries will behave as in th > -

case of a gagcompressiblebearing: the fluid will enter the bear- ‘E@m

ing in the neighborhood of the suction zone and will be ejected  -1E+004 T

when approaching the pressure one. In terms of numerical mod 0.0 0.2 04 06 0.8 1.0

eling it means that control volume edges carrying pressure bounc
ary conditions must be able to change from inlet to exit behavior
in a continuous manner. The absence of discontinuities in thgy. 7 Radial and tangential force components in an eccentric
velocity vectors distribution close to pressure boundaries shoamsnular seal

axial distance, z/L
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Nomenclature

1.4E+004 T T T
1 2E+004 AN 1600 cells ol anpcs = terms of the linear system
: 400 cells 7 B = pressure gradient coefficient
1 % [23] d = distance(m)
1.0E+004 -— — - — [24] 7 f = friction coefficient
z H = film thickness(m)
g 8.0E+003 /L ke .= (frReg+fsRe)/2 = resistance coefficients
5 L = characteristic lengtlim)
S 6.0E+003 % M = mass flow rateékg/s)
k<] n = edge normal direction
/1 P = pressurgPa
4.0E+003 7 R = rotor (journa) radius(m)
r = underrelaxation coefficient
2.0E+003 = 8 Re = Reynolds number
> S = source term
0.0E+000 U = circumferential velocity(m/s)
0.0 0.2 0.4 0.6 0.8 1.0 _ V= resultant velocity(m/s)
relative eccentricity Vh=V-i = edge normal velocitym/s)
W = axial velocity (m/9)
Fig. 8 Total force in a straight annular seal x=R# = circumferential direction
z = axial direction
v = edge lengthm)
I'=Uy; = control volume boundary
Table 2 Grid independence study of an annular seal i . .
e = relative eccentricity
Amoser |254 1024 14048 | 16166 ¢ = concentrated inertia coefficient
(1995) |cells |cells |cells jcells { = direction between centers of two
- e adjacent cells
Radial 380 298 1302 |303 {303 9 = angular coordinatérad)
force [N] u = dynamic viscosity (Pas)
Tangential |-318  |-303 |-309 |-312 |-313 p = density(kg/m)
7 = shear strestN/m°)
force [N] w = rotation speedrad/9
& = control volume surfacém?)
= = generic field variable
Indices
7 and are due to the inlet effects that cannot be modeled by the i, 1 = indices associated with edgés b,
thin film approach. The problem was extensively argued else- ¢) and adjacent volume@, B, C)
where[22)]. P = current control volume
The second test case is taken from some of Kanki and R, S = rotor (journa), stator(bearing
Kawakami’'s [23] experimental results. The geometric and n, t = normal and tangential direction
operating conditions were taken from the work of San ABdreExponents
[24]: R=100mm, L=200mm, H=0.5mm (centered ) o
w=209.44rad/s, P%,=14.7bar, £ne=0.3, Viine/wR=0.2 10P = first order precision
(prerotation, P2,=4.9bar and no exit pressure recovery, HO(I;’ _ gggﬁ;&:ﬂe\:aﬁzgswn

p=10°kg/m?, ©=0.9-10 % Pas. The calculated mass flow rate
for e=0 was 4.79 kg/s showing a small discrepancy with the 4.61
kg/s measured value. The variation of the total force with eccen-

tricity is presented in Figure 8. It shows a good agreement with
measurements and with San Anglréheoretical results obtained References
on a rectangular staggered grid.
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