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A Triangle Based Finite Volume
Method for the Integration of
Lubrication’s Incompressible Bulk
Flow Equations
It is well known that for a reduced Reynolds number~Re* 5rVH/m•H/L! greater than
unity, inertia forces have a dominant effect in the transport equations, thus renderin
classical lubrication equation inapplicable. The so called ‘‘bulk flow’’ system of eq
tions is then the appropriate mathematical model for describing the flow in bearing
seals operating at Re* >1. The difficulty in integrating this system of equations is th
one has to deal with coupled pressure and velocity fields. Analytic methods have a
narrow application range so a numerical method has been proposed by Launder
Leschziner in 1978. It represents a natural extrapolation of the successful SIMPLE
rithm applied to the bulk flow system of equations. The algorithm used rectang
staggered control volumes and represented the state of the art at that moment.
present work we introduced a method using triangular control volumes. The basic ad
tage of triangles versus rectangles is that non rectangular domains can be dealt wi
any a priori limitation. The present paper is focused on the description of the discre
equations and of the solution algorithm. Validations for bearings and seals operatin
incompressible, laminar and turbulent flow regime are finally proving the accuracy o
method. @DOI: 10.1115/1.1326444#
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Introduction
Usual incompressible lubrication flows are characterized

zero or negligible convective inertia effects. The first result of
two length scale dimensional analysis performed on the flow m
tion governing equations is that convective inertia terms have
order of magnitude of the reduced Reynolds number

Re* 5Re
H

L S Re5
rVH

m D , (1)

where H and L are the characteristic length scales, the form
being based on the film thickness and the second on the
length. For usual systemsH/L is of the order of 1023 or less and
the Reynolds number is not large enough, so Re*!1. Most of
classical Lubrication’s applications satisfy this limit but rece
high power density machinery show a need of lubrication or s
ing devices operating far beyond the limit of Re*51. The inclu-
sion of inertia forces in the flow governing equations is then
must and obtaining a solution is a more difficult task due to th
nonlinear character. An overview of the problem was given
Constantinescu@1#.

The first solutions of the complete system of equations u
small perturbation approaches applied to the boundary layer
of flow equations@2,3#. Their application to general cases bein
difficult, development activities became focused on full numeri
solutions. First, the equations were adapted to flows between
closely spaced walls by making a film thickness average of fl
variables. This approach, which borrows something from the d
vation of the classical Reynolds lubrication equation, was first
to Slezkin and Targ@4# and was subsequently used by Constan
nescu some three decades ago to deduce the system of equa
visco-inertial flow in thin layers. His approach was to start fro
the boundary layer type of equations, to suppose a laminar

Contributed by the Tribology Division for publication in the ASME JOURNAL OF
TRIBOLOGY. Manuscript received by the Tribology Division March 6, 2000; revis
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velocity profile unmodified by inertia forces injected in the
equations and then to make a film thickness average. An ap
ently different approach for obtaining the same set of equati
evolved during the last two decades and its presentation ca
found in the work of Childs@5#. Following this derivation, the
flow governing equations are obtained by writing a conservat
balance for an infinitesimal control volume extending from t
upper to the lower wall, all flow variables being considered co
stant across the film thickness. Known as the bulk flow system
equations, this set is not different from the previous one. By t
ing into account the velocity profile, Constantinescu obtain
some correction terms in the equations but without changing t
nature. It is difficult to appreciate which set of equations is bet
For laminar flow, it is clear that taking into account the form
the velocity profile is rigorously correct but for turbulent flow th
approach can be questioned. The velocity profile in turbulent fl
is very blunt, almost constant if one discards the very rapid va
tion close to the walls, so directly considering an averaged va
would be a good hypothesis. This and the fact that most ine
dominated flows are also highly turbulent lead to a widespread
of the bulk flow equations.

The best general solution was given by Launder and Leschz
@6#. They dealt with the form of the equations given by Consta
tinescu and they observed that a powerful numerical tool,
SIMPLE algorithm, developed in the seventies for the compl
Navier-Stokes equations~for which a presentation is given in@7#!,
could also be applied to inertia dominated lubrication flows. T
numerical solution they proposed used a rectangular grid an
order to ensure the coupling of velocity and pressure fields, s
gered control volumes were used for each of the flow variab
Stability was preserved by using a first order upwind approach
the convective derivatives although more accurate approache
came lately available. Under this form the algorithm represen
the state of the art at that moment and was successfully use
San Andre`s and coworkers in numerous high Reynolds num
applications. The main drawback of this numerical solution is
lack of flexibility. Rectangular control volumes can deal only wi

d
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regular geometries because the interior boundaries of the disc
zation must coincide with the discontinuities of the analysis
main. The analysis of bearings or seals with arbitrarily sha
pockets and grooves is then excluded.

Substantial progress have been made in the field of nume
analysis since Launder and Leschziner proposed their solution
decades ago. Unstructured grids became widely used not onl
elasticity problems but for convection dominated flows also.
nite element solution of the transport equations started to com
finite volume ones@8,9#. The main cause that delayed the intr
duction of unstructured grids in conjunction with the finite volum
SIMPLE algorithm was the necessity to stagger the velocity c
trol volumes in its first formulation. Solutions to overcome th
problem were given by Rhie and Chow@10# and by Peric@11#.
Once this problem passed by, SIMPLE based solutions for
Navier-Stokes equations on unstructured grids were propose
Mathur and Murthy@12# and Lai @13#. The goal of the presen
work is the development of such of a triangular based numer
procedure for the solution of Lubrication’s ‘‘bulk flow’’ incom
pressible and isothermal system of equations. It is the first
towards the analysis of arbitrarily shaped bearing and seals
cannot be tackled with rectangular control volumes.

Governing Equations
The system of bulk flow equations for incompressible, isoth

mal flow can be written under the form of three convective tra
port equations.

div~rVW HJ!5SJ (2)

The source terms are presented in Table 1. The viscous
lumped in the source terms is expressed under the form prop
by Hirs @14#.

tS5
1

2
r f SVS

2, tR5
1

2
r f RVR

2 (3)

VS5AW21U2, VR5AW21~U2Rv!2, (4)

where friction factors can be expressed by Blasius’ law fo
laminar flow or by one of the several laws that exist for turbule
regime~Blasius, Moody, Colebrooke, etc.!

In the following, the circumferential directionRu will be as-
signed byx ~soR]u5]x! and will be associated with any relativ
velocity such asRv.

Boundary Conditions. Three types of boundary conditions
namely pressure, symmetry and periodicity, are sufficient for
scribing any incompressible, isothermal Lubrication problem.
the most general form, the stagnation pressure and the con
trated inertia coefficients are given on a pressure boundary

P05P1~16j!
rVn

2

2
, (5)

where the plus sign holds for an inlet boundary~pressure drop
effect! and the minus sign for an exit one~pressure recovery
effect!.

Table 1 Source terms of the incompressible and isothermal
bulk flow equations
Journal of Tribology
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Symmetry boundary conditions implyVn50 and ]J/]n50
for any other variable.

Numerical Solution
The solution domain for Lubrication problems can be eithe

rectangle~if one deals with two dimensional pads or with th
developed surface of cylindrical bearings and annular seals! or a
circular sector~for thrust bearings and face seals!. The list could
also include conical or spherical bearings but, in any case, a
eralized rectangle would be an enough accurate representatio

The domain is discretized using unstructured triangular gr
The control volumes~or cells! are considered to coincide with th
triangles of the discretization. So each cell has three edges
three vertices that coincide with the nodes of the mesh. Inte
edges have two cells on either side while boundary edges h
only one. Figure 1 presents an internal discretization cell with
three neighbors and Fig. 2 presents two different grids.

One must distinguish internal edges from boundary edges,
later having the important role of carrying boundary condition
Edges carrying pressure or symmetry boundary conditions
grouped in the boundary edges category while periodicity ed
are treated as internal ones.

All transport variables are defined at triangle’s center. Wh
needed, variables are also defined on edges at characte
points. For internal edges, these points represent the interse
of the segment joining two adjacent cell centers with the cor
sponding edge~Fig. 1!. For boundary edges, characteristic poin
lye at edge’s midpoint.

Discretization of the General Transport Equation. The
general transport equation is integrated on the triangular con
volume.

E
q

div~rVW HJ!dq5E
q
SJdq (6)

Using the Gauss-Ostrogradski theorem for the left hand s
and the midpoint rule for the right hand side yields

E
G
rVW HJ•nW dg5(

i
ṁiJ i5SJq, (7)

whereṁi5rVniHig i is the mass flow rate across the edge, po
tive if the flow leaves the control volume. The transported va
able is interpolated at the characteristic point of the edge by tak

Fig. 1 Triangular control volume and its neighbors
JANUARY 2001, Vol. 123 Õ 119
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into account the direction of the normal velocity. The first ord
precision is obtained by taking the value from the ‘‘upwind
triangle.1

J i
1OP5J i

upwind5JP

SIGN~1,Vni!11

2
2J I

SIGN~1,Vni!21

2
(8)

The higher order approximation can be considered in m
ways. The most simple way is to consider the interpolated va
obtained from edge’s two adjacent cells@15#.

J i
HOP5JP

dIi

dPI
1J I i

dPi

dPI
(9)

A better approach in terms of numerical stability is the upwi
interpolated edge value@12#.

J i
HOP5J

cell
upwind1~gradJ!

cell
upwind•dW Pi , (10)

where (gradJ)
cell
upwind is the reconstruction gradient at the upwin

cell anddW Pi is the vector directed from the center of the upwi
cell to the characteristic point of the edge. Ensuring stability
cessitates the use of the flux limiter proposed by Venkatakrish
@16# for the estimation of the reconstruction gradient.

Including an under-relaxation factor the discretized transp
equation yields

aP~11r J!JP5 (
I 5A,B,C

aIJ I1~SJ!PqP1aPr JJP

1bJ (
i 5a,b,c

ṁi~J i
1OP2J i

HOP! (11)

1SIGN(a,b)5a* sign(b) is the standard Fortran function

Fig. 2 Triangular grids employed „a… for a one-dimensional
pad and „b… for the developed surface of circular bearings and
annular seals
120 Õ Vol. 123, JANUARY 2001
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aI5ṁi

SIGN~1,Vni!21

2
, aP5 (

I 5A,B,C
aI , (12)

where the high order precision of the edge value is included
plicitly using a blending factor. First order solutions obtained w
bJ50 are very stable in terms of convergence while a blend
factor bJ51 means that the final converged solution will have
high order precision. Values between 0 and 1 of the blend
factor are used when high order precision solution are difficul
obtain, generally with coarse grids.

Boundary conditions are readily implemented and need no s
cial treatment. A pressure boundary edge can work either a
inlet (Vni,0) or as an exit (Vni.0). For an inlet edge, the trans
ported variableJ is either imposed as a boundary conditio
~namely the tangential component of the velocity vector or a
scalar variable! or calculated from a mass balance equation~the
normal component of the velocity vector!. For an exit edge, the
coefficientai is zero and the transported variable is extrapola
from the interior domain to the edge. For a symmetry bound
edgeVni50 somi andaI are zero and the transported variable
calculated from a zero gradient extrapolation.

Finally, all coefficients are kept constant being known from
previous level and the linear system is iteratively solved usin
Gauss-Seidel relaxation procedure up to a reasonable reducti
the initial error.

Discretization of the Continuity Equation. The discrete
continuity equation is written as

E
G
rVW H•nW dg5(

i
ṁi . (13)

It is known that when velocity components and pressure
stored at cells centers, computing the face velocityVni by simply
interpolating between the two adjacent cell values is prone
checkerboard instability@15#. A special momentum interpolation
scheme introduced by Rhie and Chow@10# is used to avoid this.

Vni* 5Vni* 2F HPqP

aP~11r V!G
i
F S ]P

]n D
i

2S ]P

]n D
i
G

1
r V

11r V
@Vni2~VW ! i•nW i # (14)

whereW* andU* are velocity components obtained after solvin
the discrete transport equations and« » are edge interpolated va
ues. The same underrelaxation coefficientr V is used forW andU
transport equations. The values in the last term are estimated
a previous iteration level and are introduced in order to avoid
underrelaxation factor dependence of the converged solution@17#.

The central point of the SIMPLE algorithm is the couplin
between the velocity and the pressure field. It is supposed
these variables can be written as a prediction plus a correc
value.

W5W* 1W8, U5U* 1U8, P5P* 1P8 (15)

The prediction values for velocities are obtained from solvi
the momentum equations while the first value for the pressur
estimated from an informed guess. Corrections are calculate
enforcing the continuity equations as in the following.

By using the decomposed field values, the mass flux and
discrete continuity equation can be written as follows:

(
i

~ṁi* 1ṁi8!50 (16)

ṁi* 5rVni* Hig i , ṁi85rVni8 Hig i . (17)

It is supposed that the correction of the normal velocity depe
only on the corrected pressure gradient yielding
Transactions of the ASME
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Vni8 52Bi S ]P8

]n D
i

'2Bi S ]P8

]z D
i

52Bi

PI82PP8

dPI
. (18)

In the above estimation of the pressure gradient it w
assumed that directionsnW and zW are very close. The assumptio
is well verified for a Delauney triangulation and can be furth
sustained by observing that the accepted error is of the o
of (gradP8) i•(nW 2zW ) i and tends to zero for a converged sol
tion @15#.

Finally, the discrete continuity equation yields a linear syst
for pressure corrections.

aPPP8 5 (
I 5A,B,C

aI PI82 (
i 5a,b,c

ṁi* (19)

aI5
rBiHig i

dPI
, aP5 (

I i 5A,B,C
aI (20)

On a pressure boundary edge,P8 is zero. On a symmetry edg
]P8/]n50 so the correspondingaI will be zero and the pressur
will be obtained from a zero gradient extrapolation. The line
system is iteratively solved using a Gauss-Seidel relaxation
cedure up to a reasonable reduction of the initial error.

OnceP8 is available, the pressure, the velocity components
the normal velocity are corrected.

PP5PP* 1r PP8, WP5WP* 2BPS ]P8

]z D
P

,

(21)

UP5UP* 2BPS ]P8

]x D
P

, Vni5Vni* 2Bi

PI82PP8

dPI

The iterative algorithm proceeds with a new solution of t
momentum equations. A good convergence index of the itera
procedure is the cell mass flow balance that appears as the s
term of the pressure correction equation( i 5a,b,cṁi* and governs
the order of magnitude of all corrections.

Finally, one should mention that a good initial guess for t
pressure field can be made from the solution of Reynolds eq
tion. High flow regimes (Re.103 . . . 2•103) provoke a turbulent
flow and one may argue@18# that a better definition of the reduce
Reynolds number is

Re* 5
rVH

m

H

L

12

kx,z
(22)

which gives a lower value than~1! becausekz,x.12 but, never-
theless, operating conditions are beyond the limit of Re*51. Be-
ing of elliptic type, Reynolds equation can be cast in a form sim
lar to the pressure correction equation for which the solut
framework ~grid topology, interpolations, resistance coefficien
linear solver, etc.! is available.

Validations
The first validations concern one dimensional pads with lin

variation of the film thickness. It is only for these simplified cas
that bulk flow equations have analytic solutions@2#. Figure 3 and
Fig. 4 present the results obtained for a ratioH inlet /Hexit52 and a
flow regime corresponding to Re*51. The one dimensional pa
was modeled as an elongated rectangle~Fig. 2~a!!. Pressure
boundary conditions were considered on the short edges~with no
concentrated inertia effects, 11j inlet512jexit50! and symmetry
boundary conditions on the long ones. Both short edges w
divided in two segments and both long edges in 8 segments
order to have triangular grids of good quality all segments div
ing the boundary have the same length@19#. Grid refinement was
made by increasing the length of the elongated rectangle and
ing discretisation segments~16, 32, etc.!, while the short edge of
the rectangle remained unchanged. Pressures presented in F
Journal of Tribology
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and 4 are considered along the midsection parallel to the l
edge of the rectangle. Due to symmetry boundary conditio
pressures in the transversal direction are constant.

Figure 3 presents a shear driven flow for which Re* was cal-
culated with the relative surface velocity and the exit film thic
ness. The inlet and the exist pressures were the same and eq
a reference value. The analytic solution of the problem can
expressed as

@P~ x̄!2Pref#Hexit
2

mVL
56

H̄ inlet21

H̄ inlet11

x̄2 x̄2

@H̄ inlet2~H̄ inlet21!x̄#2
,

x̄5x/L, H̄5H/Hexit (23)

Fig. 3 Pressure distribution in a shear driven one-dimensional
pad

Fig. 4 Pressure distribution in a pressure driven one-
dimensional pad
JANUARY 2001, Vol. 123 Õ 121
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Figure 4 presents a pressure driven flow. The reduced Reyn
number was calculated with the mass flow rate. The analytic
lution used for comparison was

P2Pexit

Pinlet2Pexit

5
H̄ inlet

2

H̄2

H̄221

H̄ inlet
2 21

(24)

The continuous~first grid! and the dashed~second grid! curves
on Fig. 3 and Fig. 4 are superposed thus proving grid indepen
results. They both show a close agreement with the correspon
analytic solution.

A second example is the ‘‘short bearing’’ solution. This calc
lation is not intended to be a proper validation case but one
tends to investigate the limit of the bulk flow equations and
proper behavior of pressure boundary conditions. There is no
per validity limit ~in terms of Re* ! for the employment of the bulk
flow equations but, due to the fact that Re* appears as the coef
ficient of convective inertia terms~the only ones containing de
rivatives!, an inferior limit should exist. Following this idea, th
‘‘short bearing’’ calculation (L/D50.25) was made for Re*
50.1 and«50.1. Results are presented on Figs. 5 and 6. L
underrelaxation coefficients used for convergence,r V5r P50.1,
proved that the lower validity limit of the bulk flow equations wa
approached. The grid corresponding to the developed bearing
of the type presented in Fig. 2~b!. Periodicity boundary conditions
were imposed on the short edges of the rectangles and con
pressure ones on the long edges~with no concentrated inertia
effects!. Pressure variation in the midsection of the bearing
presented in Fig. 5. Superposed on the same figure is the sol
obtained solving Reynolds equation on the same triangular gri
well as the analytic solution taken from@20#. All solutions are in
good agreement. Figure 6 presents the velocity vectors superp
on the contours of the pressure field. As cavitation wasn’t ta
into account, the bearing presents a pressure zone and a su
zone. Consequently, pressure boundaries will behave as in
case of a gas~compressible! bearing: the fluid will enter the bear
ing in the neighborhood of the suction zone and will be ejec
when approaching the pressure one. In terms of numerical m
eling it means that control volume edges carrying pressure bo
ary conditions must be able to change from inlet to exit behav
in a continuous manner. The absence of discontinuities in
velocity vectors distribution close to pressure boundaries sh

Fig. 5 Pressure variation in the midsection of a short bearing
122 Õ Vol. 123, JANUARY 2001
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that the circumferential velocity is properly convected in and o
of the bearing and proves the correct behavior of the numer
boundary conditions.

Figures 7 and 8 present results obtained for turbulent ann
seals. The employed meshes were similar to the grid in Fig. 2~b!
and boundary conditions were of the same type with those u
for the short bearing.

The first seal is a test case taken from the work of Amoser@21#.
The geometric and operating characteristic areR5140.2 mm,L
5110 mm, H51.8 mm ~centered!, v5104.72 rad/s, Pinlet

0

52.38 bar, j inlet50.59, Vt inlet /vR50.35 ~prerotation!, Pexit
0

51 bar and no exit pressure recovery,r5998.5 kg/m3,m
51023 Pa•s. The seal operates at 40 percent eccentricity. A g
independence study is carried out in Table 2. The differen
between calculated results and Amoser’s measurements are
apparent. They are explained by the axial distributed forces in

Fig. 6 Superposed pressure field „light colors—high pressure
zones, dark colors—low pressure zones … and unscaled velocity
vectors in a short bearing

Fig. 7 Radial and tangential force components in an eccentric
annular seal
Transactions of the ASME
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7 and are due to the inlet effects that cannot be modeled by
thin film approach. The problem was extensively argued e
where@22#.

The second test case is taken from some of Kanki
Kawakami’s @23# experimental results. The geometric an
operating conditions were taken from the work of San And`s
@24#: R5100 mm, L5200 mm, H50.5 mm ~centered!,
v5209.44 rad/s, Pinlet

0 514.7 bar, j inlet50.3, Vt inlet /vR50.2
~prerotation!, Pexit

0 54.9 bar and no exit pressure recover
r5103 kg/m3, m50.9•1023 Pa•s. The calculated mass flow rat
for «50 was 4.79 kg/s showing a small discrepancy with the 4
kg/s measured value. The variation of the total force with ecc
tricity is presented in Figure 8. It shows a good agreement w
measurements and with San Andre`s’ theoretical results obtaine
on a rectangular staggered grid.

Conclusions
The present work introduced a numerical method for the so

tion of Lubrication’s bulk flow equations. A collocated version
the SIMPLE algorithm was presented and the central point of
approach was the unstructured triangular grid. The advantag
such grids is their flexibility to deal with irregular domains. In th
context, the present work is the first step towards the analysi
bearings with arbitrarily shaped pockets and grooves that ca
be tackled with rectangular control volumes.

The work is focused on the description of the discretized
compressible bulk flow equations and of the solution algorith
Validations are made by comparison with analytic results~one
dimensional pad, short journal bearing! or experimental ones~tur-
bulent annular seals! and show its accuracy.

Fig. 8 Total force in a straight annular seal

Table 2 Grid independence study of an annular seal
Journal of Tribology
the
se-

nd
d
e

y,
e
61
en-
ith

lu-
f

the
e of
is

of
not

in-
m.

Nomenclature

aA,B,C,S 5 terms of the linear system
B 5 pressure gradient coefficient
d 5 distance~m!
f 5 friction coefficient

H 5 film thickness~m!
kx,z5( f R ReR1fSReS)/2 5 resistance coefficients

L 5 characteristic length~m!
ṁ 5 mass flow rate~kg/s!
nW 5 edge normal direction
P 5 pressure~Pa!
R 5 rotor ~journal! radius~m!
r 5 underrelaxation coefficient

Re 5 Reynolds number
S 5 source term
U 5 circumferential velocity~m/s!
V 5 resultant velocity~m/s!

Vn5VW •nW 5 edge normal velocity~m/s!
W 5 axial velocity ~m/s!

x5Ru 5 circumferential direction
z 5 axial direction
g 5 edge length~m!

G5ø
i

g i 5 control volume boundary

« 5 relative eccentricity
j 5 concentrated inertia coefficient
zW 5 direction between centers of two

adjacent cells
u 5 angular coordinate~rad!
m 5 dynamic viscosity (Pa•s)
r 5 density~kg/m3!
t 5 shear stress~N/m2!
v 5 rotation speed~rad/s!
q 5 control volume surface~m2!
J 5 generic field variable

Indices

i, I 5 indices associated with edges~a, b,
c! and adjacent volumes~A, B, C!

P 5 current control volume
R, S 5 rotor ~journal!, stator~bearing!
n, t 5 normal and tangential direction

Exponents

1OP 5 first order precision
HOP 5 higher order precision

0 5 stagnation values
‘‘ * ’’ 5 prediction values
‘‘ 8’’ 5 correction values
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