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Abstract

The generalized Langrangian mean theory provides exact equations for general wave–turbulence–mean flow interac-
tions in three dimensions. For practical applications, these equations must be closed by specifying the wave forcing terms.
Here an approximate closure is obtained under the hypotheses of small surface slope, weak horizontal gradients of the
water depth and mean current, and weak curvature of the mean current profile. These assumptions yield analytical expres-
sions for the mean momentum and pressure forcing terms that can be expressed in terms of the wave spectrum. A vertical
change of coordinate is then applied to obtain glm2z-RANS equations with non-divergent mass transport in cartesian
coordinates. To lowest order, agreement is found with Eulerian mean theories, and the present approximation pro-
vides an explicit extension of known wave-averaged equations to short-scale variations of the wave field, and vertically
varying currents only limited to weak or localized profile curvatures. Further, the underlying exact equations provide a
natural framework for extensions to finite wave amplitudes and any realistic situation. The accuracy of the approximations
is discussed using comparisons with exact numerical solutions for linear waves over arbitrary bottom slopes, for which the
equations are still exact when properly accounting for partial standing waves. For finite amplitude waves it is found that
the approximate solutions are probably accurate for ocean mixed layer modelling and shoaling waves, provided that an
adequate turbulent closure is designed. However, for surf zone applications the approximations are expected to give only
qualitative results due to the large influence of wave nonlinearity on the vertical profiles of wave forcing terms.
� 2007 Published by Elsevier Ltd.
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1. Introduction

From wave-induced mixing and enhanced air–sea interactions in deep water, to wave-induced currents and
sea level changes on beaches, the effects of waves on ocean currents and turbulence are well documented (e.g.

1463-5003/$ - see front matter � 2007 Published by Elsevier Ltd.

doi:10.1016/j.ocemod.2007.07.001

* Corresponding author.
E-mail address: ardhuin@shom.fr (F. Ardhuin).

1 Present address: Technological Educational Institute of Athens, Athens 12210, Greece.

Available online at www.sciencedirect.com

Ocean Modelling 20 (2008) 35–60

www.elsevier.com/locate/ocemod



Author's personal copy

Battjes, 1988; Terray et al., 1996). The refraction of waves over horizontally varying currents is also well
known, and the modifications of waves by vertical current shears have been the topic of a number of theoret-
ical and laboratory investigations (e.g. Biesel, 1950; Peregrine, 1976; Kirby and Chen, 1989; Swan et al., 2001),
and field observations (e.g. Ivonin et al., 2004). In spite of this knowledge and the importance of the topic for
engineering and scientific applications, ranging from navigation safety to search and rescue, beach erosion,
and de-biasing of remote sensing measurements, there is no well established and generally practical numerical
model for wave–current interactions in three dimensions.

Indeed the problem is made difficult by the difference in time scales between gravity waves and other
motions. When motions on the scale of the wave period can be resolved, Boussinesq approximation of near-
shore flows has provided remarkable numerical solutions of wave–current interaction processes (e.g. Chen
et al., 2003; Terrile et al., 2006). However, such an approach still misses some of the important dynamical
effects as it cannot represent real vertical current shears and their mixing effects (Putrevu and Svendsen,
1999). This shortcoming has been partly corrected in quasi-three-dimensional models (e.g. Haas et al.,
2003), or multi-layer Boussinesq models (e.g. Lynett and Liu, 2004).

The alternative is of course to use fully three-dimensional (3D) models, based on the primitive equations.
These models are extensively used for investigating the global, regional or coastal ocean circulation (e.g. Bleck,
2002; Shchepetkin and McWilliams, 2003). An average over the wave phase or period is most useful due to
practical constraints on the computational resources, allowing larger time steps and avoiding non-hydrostatic
mean flows. Wave-averaging also allows an easier interpretation of model or experimental result (Swan et al.,
2001). A summary of wave-averaged models in 2 or 3 dimensions is provided in Table 1.

1.1. Air–water separation

In 3D, problems arise due to the presence of both air and water in the region between wave crests and
troughs. Various approaches to the phase or time averaging of flow properties are illustrated in Fig. 1 (see
also Ardhuin et al., accepted for publication, hereinafter AJB2007). For small amplitude waves, one may sim-
ply take a Taylor expansion of mean flow properties (e.g., McWilliams et al. (2004) hereinafter MRL04).
Using a decomposition of the nonlinear advection term in the equations of motion u � $u ¼ $u2 þ u� $u,
McWilliams et al. (2004), see also Lane et al. (2007) obtained a relatively simple set of equation for conserva-
tive wave motion over sheared currents, for a given choice of small parameters. These parameters include the
surface slope e1 = k0a0 and the ratio of the wavelength and scale of evolution of the wave amplitude. Further,
these equations were derived with a scaling corresponding to a non-dimensional depth k0 h0 of order 1, with
k0, a0 and h0 typical values of the wavenumber, wave amplitude and water depth, respectively. These authors
also assumed that the current velocity was of the same order as the wave orbital velocity, both weaker than the

Table 1
Essential attributes of some general wave–current coupling theories

Theory Averaging Momentum variable Main limitations

Phillips (1977) Eulerian Total (U) 2D, d�u=dz ¼ 0
Garrett (1976) Eulerian Mean flow (U �Mw/D) 2D, d�u=dz ¼ 0, kh� 1
Smith (2006) Eulerian Mean flow (U �Mw/D) 2D, d�u=dz ¼ 0
GLM (Andrews and McIntyre, 1978a) GLM Mean flow (�uL � P) None (exact theory)
aGLM (Andrews and McIntyre, 1978a) GLM Total (�uL) None (exact theory)
Leibovich (1980) Eulerian Mean flow (�uL � P) Second order, m constant
Jenkins (1987) GLM Mean flow (�uL � P) Second order, horizontal uniformity
Groeneweg (1999) GLM Total (�uL) Second order
Mellor (2003) Following n3 Total (�uL) Second order, flat bottom
MRL04 Eulerian Mean flow (�uÞ Below troughs, �u� C; m ¼ 0
NA07 Eulerian Mean flow (�uÞ Below troughs, 2nd order, kH� 1
Present paper GLM Mean flow (�uL � P) Second order

See list of symbols for details (Table 2).
Although Mellor (2003) derived his wave-averaged equations with spatially varying wave amplitudes, his use of flat-bottom Airy wave
kinematics is inconsistent with the presence of bottom slopes (see ARB07). MRL04 stands for McWilliams et al. (2004) and NA2007
stands for Newberger and Allen (2007).
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phase speed by a factor e1. That latter assumption may generally be relaxed since the equations of motion are
invariant by a change of reference frame, so that only the current vertical shear may need to be small com-
pared to the wave radian frequency, provided that the current, water depth and wave amplitudes are slowly
varying horizontally.

For waves of finite amplitude, a proper separation of air and water in the averaged equations of motion
requires a change of coordinates that maps the moving free surface to a level that is fixed, or at least slowly
varying. This is usual practice in air–sea interaction studies, and it has provided approximate solutions to
problems such as wind-wave generation or wave–turbulence interactions (e.g. Jenkins, 1986; Teixeira and Bel-
cher, 2002) but it brings some complications. The most simple change of coordinate was recently proposed by
Mellor (2003), but it appears to be impractical in the presence of a bottom slope because its accurate imple-
mentation requires the wave kinematics to first order in the bottom slope (Ardhuin et al., accepted for
publication, hereinafter AJB07).

1.2. Separation of wave and current momentum fluxes

Another approach is to use one of the two sets of exact averaged equations derived by Andrews and
McIntyre (1978a). Groeneweg (1999) successfully used the second set, the alternative generalized Lagrangian
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Fig. 1. Averaging procedures (left) and examples of resulting velocity profiles (right) in the case of (a) Eulerian averages (e.g. Rivero and
Arcilla, 1995; McWilliams et al., 2004), (b) the Generalized Lagrangian Mean (Andrews and McIntyre, 1978a), and (c) sigma transform
(Mellor (2003), AJB07). The thick black bars connect the fixed points x where the average field is evaluated, to the displaced points x + n
where the instantaneous field is evaluated. For averages in moving coordinates the points x + n at a given vertical level n are along the gray
lines. The drift velocity is the sum of the (quasi-Eulerian) current and the wave-induced mass transport. In the present illustration an Airy
wave of amplitude 3 m and wavelength 100 m in 30 m depth, is superimposed on a hypothetical current of velocity u(z) = �0.5 � 0.01z m/s
for all z < f(x). The current profile is not represented in (c) since it is not directly given in Mellor’s theory, although it can obviously be
obtained by taking the difference of the other two profiles.
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mean equations (aGLM), approximated to second order in wave slope, for the investigation of current
profile modifications induced by waves (see also Groeneweg and Klopman, 1998; Groeneweg and Battjes,
2003). This work was also loosely adapted for engineering use in the numerical model Delft3D (Walstra
et al., 2001).

However, aGLM equations describe the evolution of the total flow momentum, which includes the wave
pseudo-momentum per unit mass P. That vector quantity is generally close to the Lagrangian Stokes drift
�uS (see below), and it is not mixed by turbulence2, unlike the mean flow momentum. Further, P is carried
by the wave field at the group velocity, which is typically one order of magnitude faster than the drift
velocity. Thus bundling P with the rest of the momentum may lead to large errors with the turbulence
closure. Other practical problems arise due to the strong surface shear of P and �uS (e.g. Rascle et al.,
2006) whereas the quasi-Eulerian current is relatively uniform in deep water (e.g. Santala and Terray,
1992). Thus solving for the total momentum (including P) requires a high resolution near the surface.
Finally, a consistent expression of the aGLM equations with a sloping bottom and wave field gradients
is difficult due to the divergence of vertical fluxes of momentum (vertical radiation stresses) that must
be expressed to first order in all the small parameters that represent the slow wave field evolution (bottom
slope, wave energy gradients, current shears, etc.). This same problem arises with Mellor (2003) equations
and is discussed in AJB07.

The first set of GLM equations describes the evolution of the quasi-Eulerian current only, and, just like the
decomposition of u � $u used by MRL04, it does not require the evaluation of these vertical radiation stresses.
These equations were used by Leibovich (1980) to derive the Craik–Leibovich equations that is the basis of
theories for Langmuir circulations. However, in that work he did not attempt an explicit integration of the
GLM set, and thus did not express the wave forcing terms from wave amplitudes or spectra. The general
mathematical structure of the GLM equations and their conservation properties are also well detailed in Holm
(2002) and references therein.

Further, the GLM flow is generally divergent as the averaging operator introduces an implicit change of the
vertical coordinate. This question has been largely overlooked by previous users of GLM theory (Leibovich,
1980; Groeneweg, 1999). Finally, in order to be implemented in a numerical model, the wave-induced forcing
terms must be made explicit using approximate solutions for wave-induced motions and pressure. We will
assume that the slowly varying spectrum is known, typically provided by a wave model. Given the degree
of accuracy attained by modelled wave spectra in a wide variety of conditions this is generally appropriate
(e.g. Herbers et al., 2000; Ardhuin et al., 2003, 2007a; Magne et al., 2007). We note in passing that no explicit
and satisfying theory is available for the transport of the wave action spectrum over vertically and horizontally
sheared currents. Indeed, the exact theory of Andrews and McIntyre (1978b) is implicit and would require an
explicit approximation of the wave action from known wave kinematics, similar to the approximation of the
wave pseudo-momentum performed here.

The goal of the present paper is to provide a practical and accurate method for wave–current coupling that
is general enough for applications ranging from the ocean mixed layer to, possibly, the surf zone. GLM equa-
tions, for the reasons listed above, are a good candidate for this application. Although not as simple as an
Eulerian average, the GLM operator is capable of properly separating air and water in the crest to trough
region, leading to physically understandable definitions of mean properties on either side of the air–sea inter-
face. The practical use of GLM requires some approximations and transformations. We provide in Section 2
a derivation of explicit and approximate glm2z-RANS equations. Given the large literature on the subject, we
explore in Section 3 the relationships between GLM, aGLM and other forms of wave-averaged 3D and
depth-integrated 2D equations. A preliminary analysis of the expected errors due to the approximations
are provided in Section 4, and conclusions follow in Section 5. Full numerical solutions using the glm2z-
RANS equations (55) and (57) will be reported elsewhere, in particular in the doctorate thesis of Nicolas
Rascle.

2 The Stokes drift is a residual velocity over the wave cycle, its mixing is not possible without a profound modification of the wave
kinematics.
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2. glm2-RANS equations

2.1. Generalities on GLM and linear wave kinematics

We first define the Eulerian average /ðx; tÞ of /(x, t), where the average may be an average over phase, real-
izations, time t or space. We now take this average at displaced positions x + n, with n = (n1,n2,n3) a displace-
ment vector, and we defining the velocity v at which the mean position is displaced when the actual position
moves at the fluid velocity u(x + n). One obtains the corresponding GLM of /

/ðx; tÞL ¼ /ðxþ n; tÞ ð1Þ
by choosing the displacement field n so that

� the mapping x ? x + n is invertible,
� nðx; tÞ ¼ 0,
� vðx; tÞ ¼ vðx; tÞ, which gives v ¼ uðx; tÞL.

Such a mapping is illustrated in Fig. 1c for linear waves. Lagrangian perturbations are logically defined as
the field minus its average, i.e.,

/ðx; tÞl ¼ /ðxþ n; tÞ � /ðx; tÞL ¼ /ðxþ n; tÞ � /ðxþ n; tÞ: ð2Þ
Here we shall take our Eulerian average to be a phase average.3 Given any Eulerian flow field u(x, t), one may
define a first displacement by

n0ðx; t;DtÞ ¼
Z tþDt

t
uðxþ n0ðx; t; t0 � tÞ; t0Þdt0: ð3Þ

The mean drift velocity is defined as vðx; tÞ ¼ limDt!0n
0ðx; t;DtÞ=ðDtÞ. The GLM displacement field is then

given by n ¼ n0 � vt � n0 � vt. This construction of v and n guarantees that the required properties are
obtained, provided that the limit Dt ? 0 commutes with the averaging operator. For periodic motions one
may also take v ¼ ðn0ðt þ T LÞ � n0ðtÞÞ=ðT LÞ, with TL the Lagrangian wave period (the time taken by a water
particle to return to the same wave phase). This definition will be used for Miche waves in Section 4.2.

Clearly GLM differs from the Eulerian mean. The difference between the two is given by the Stokes correc-
tion (Andrews and McIntyre, 1978a). Below the wave troughs, the Stokes correction for the velocity is the
Stokes drift, by definition,

�uS � �uL � �u: ð4Þ
More generally, for a continuously differentiable field / the Stokes correction is given by (Andrews and
McIntyre, 1978a, Eq. (2.27)),

�/L � �/þ �/S ¼ �/þ nj
o/
oxj
þ 1

2
njnk

o
2 �/

oxjoxk
þO max

i;j;k

o
3 �/

oxioxjoxk

� �
jnj3

� �
; ð5Þ

with an implicit summation over repeated indices.
The GLM average commutes with the Lagrangian derivative, thus the GLM velocity �uL is the average drift

velocity of water particles. One should however be careful that the GLM average does not commute with most
differential operators, for example the curl operator. Indeed the GLM velocity of irrotational waves is rota-
tional, which is clearly apparent in the vertical shear of the Stokes drift (see also Ardhuin and Jenkins (2006)
for a calculation of the lowest order mean shears oua=ozL and ou3=oxL).

3 For uncorrelated wave components the phase average is obtained by the sum of the phase averages of each component. In the presence
of phase correlations, such as in the case of partially standing waves or nonlinear phase couplings, the sum has to be averaged in a coherent
manner.
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One of the interesting aspects of GLM theory is that it clearly separates the wave pseudo-momentum P

from the quasi-Eulerian mean momentum û ¼ �uL � P. This is a key aspect for numerical modelling since P

is transported by the wave field at the group velocity, of the order of 5 m s�1 in deep water, while û is trans-
ported at the much slower velocity �uL. P is defined by (Andrews and McIntyre, 1978a, Eq. (3.1)),

P i ¼ �nj;iðul
j þ �jklfknl=2Þ; ð6Þ

where �i j kAjBk is the i-component of the vector product A � B, and fk/2 is the k-component of the rotation
vector of the reference frame. In the applications considered here the effect of rotation can be neglected in (6)
due to the much larger rotation period of the Earth compared to the wave period. We will thus take

P i ¼ �nj;iul
j: ð7Þ

For practical use, the GLM equations have to be closed by specifying the wave-induced forcing terms. In order
to give explicit approximations for the wave-induced effects, we will approximate the wave motion as a sum of
linear wave modes, each with a local wave phase w giving the local wave number k ¼ ðk1; k2Þ ¼ $w, radian
frequency x = �ow/ot, and an intrinsic linear wave radian frequency r = [gk tanh(kD)]1/2 = x � k � UA, where
UA is the phase advection velocity, D is the local mean water depth, and g the acceleration due to gravity and
Earth rotation. Defining h(x1,x2) as the local depth of the bottom and f(x1,x2, t) as the free surface elevation,
one has D ¼ �fþ h. We assume that the wave slope e1 = max(j$fj) is small compared to unity (this will be our
first hypothesis H1), with $ denoting the horizontal gradient operator. We also restrict our investigations to
cases for which the Ursell number is small Ur = (a/D)/(kD)2 < 1 (this is hypothesis H2). We further restrict
our derivations to first order in the slow spatial scale e2. That small parameter may be defined as the maximum
of the slow spatial scales j(oa/ox)/(k a)j, jðo�u=oxÞ=ðrÞj, j(oD/ox)j, and time scales j(oa/ot)/(ra)j, jkðoû=otÞ=ðrÞ2,
and j(oD/ot)k/rj (hypothesis H3). It will also appear that the current profile may cause some difficulties. Since
we have already assumed a small wave steepness we may use Kirby and Chen (1989) results, giving the
dispersion relation

x ¼ rþ ka

Z �f

�h
ûa

2k cosh 2kðzþ hÞ½ 	
sinhð2kDÞ dzþOðe3Þ; ð8Þ

where a is a dummy index representing any horizontal component 1 or 2, and the summation is implicit over
repeated indices. The index 3 will represent the vertical components positive upwards, along the direction
z = x3. In particular we shall assume that their correction to the lowest order stream function (their
Eq. (23)) is relatively small, which may be obtained by requiring that the curvature of the current is weak
or concentrated in a thin boundary layer, i.e. e3� 1 (hypothesis H4) with

e3 ¼
1

x sinhðkDÞ

Z f

�h

o2�u
oz2

���� ���� sinh 2kðzþ hÞ½ 	dz: ð9Þ

For simplicity we will further require that a2½o3�ua=oz3=ðrÞ	 6 e3 (hypothesis H5), which may be more restric-
tive than H4. Finally, we will neglect the vertical velocity ŵ in the vertical momentum equation for the mean
flow momentum (i.e. we assume the mean flow to be hydrostatic, this is our hypothesis H6).

In the following we take e = max ei, 1 6 i 6 3. The wave-induced pressure and velocity are given by

~p ¼ qwga½F CC cos wþOðeÞ	; ð10Þ

~ua ¼ ar
ka

k
½F CS cos wþOðeÞ	; ð11Þ

~u3 ¼ ar½F SS sin wþOðeÞ	; ð12Þ

where a is the local wave amplitude, qw is the water density, taken constant in the present paper. We have
used the short-hand notations FCC = cosh (kz + kD)/cosh(kD), FCS = cosh(kz + kD)/sinh(kD), and
FSS = sinh(kz + kD)/sinh(kD).

From now on, only the lowest order approximations will be given unless explicitly stated otherwise. In
order to estimate quantities at displaced positions, the zero-mean displacement field is given by

40 F. Ardhuin et al. / Ocean Modelling 20 (2008) 35–60



Author's personal copy

ul
i � uðxþ nÞ � �uL

i ’ ~ui þ nj
o�ui

oxj
þ nj

o~ui

oxj
� nj

o~ui

oxj

� �
þ 1

2
ðn2

j � n2
j Þ

o2�ui

ox2
j
: ð13Þ

Thanks to the definition of �uL, we also have

ul
i ¼

oni

ot
þ �uL

j

oni

oxj
’ oni

ot
þ �uL

a

oni

oxa
; ð14Þ

in which the vertical velocity has been neglected. The greek indices a and b stand for horizontal components
only.

To lowest order in the wave amplitude, the displacements ni and Lagrangian velocity perturbations ul
i are

obtained from (13) and (14),

ul
3 ¼ ~u3; ð15Þ

n3 ¼ am F SS cos w½ 	; ð16Þ

ul
a ¼ ~ua þ n3

o�ua

oz
þ nb

o�ua

oxb
þOðrka2Þ cos 2wþO a3 o2�ua

oz3

� �
; ð17Þ

’ a r
ka

k
F CS þ mF SS

o�ua

oz

� �
cos w; ð18Þ

na ¼ �am
ka

k
F CS þ

m
r

o�ua

oz
F SS

� �
sin wþO

a2

r
o

2�ua

oz2

� �
sin 2w

þO
a
r

o�ua

oxb

� �
cos wþO

a3

r
o2�ua

oz3

� �
; ð19Þ

The shear correction parameter m, arising from the time-integration of (14), is given by

mðx; k; z; tÞ ¼ r
x� k � �uLðx; z; tÞ : ð20Þ

Based on (8) m differs from 1 by a quantity of order r�1o�u=oz.
Using our assumption (H5) the last term in Eq. (19) may be neglected. The last two term in Eq. (17) have

been neglected because they will give negligible O(e3) terms in P, �fL or other wave-related quantities, when
multiplied by other zero-mean wave quantities.

Using the approximate wave-induced motions, one may estimate the Stokes drift

�uS � �uL � �u ’ n � $~uþ 1

2
n2

3

o
2�ua

oz2

¼ ma2

4sinh2ðkDÞ
2rk coshð2kzþ 2khÞ þ km sinhð2kzþ 2khÞ k

k
� o�u

oz

�
þ o

2�u

oz2
sinh2ðkzþ khÞ

�
; ð21Þ

the horizontal wave pseudo-momentum

P a ¼ �
onb

oxa
ul

b �
on3

oxa
wl ’ ma2

4sinh2ðkDÞ

"
2rka coshð2kzþ 2khÞ þ 2kam sinhð2kzþ 2khÞ ka

k
� o�u

oz

þ 2m2 ka

r
sinh2ðkzþ khÞ o�u

oz

� �2
#
; ð22Þ

and the GLM position of the free surface

�fL ¼ �fþ �fS ¼ �fþ of
oxa

najz¼�f ¼ �fþ ma2

2

k
tanh kD

þ mk

r
� o�u

oz

����
z¼�f

" #
: ð23Þ

Thus the GLM of vertical positions in the water is generally larger than the Eulerian mean of the position of
the same particles (see also McIntyre, 1988). This is easily understood, given that there are more particles
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under the crests than under the troughs (Fig. 1c). As a result, the original GLM equations are divergent
($ � �uL 6¼ 0) and require a coordinate transformation to yield a non-divergent velocity field. That transforma-
tion is small, leading to a relative correction of order e2

1. That transformed set of equation is a modified prim-
itive equation that may be implemented in existing ocean circulation models.

The horizontal component of the wave pseudo-momentum Pa differs from the Stokes drift �uS
a due to the

current vertical shear. Therefore the quasi-Eulerian mean velocity ûa ¼ �uL
a � P a also differs from the Eulerian

mean velocity �ua ¼ �uL
a � �uS

a

ûa ¼ �ua þ
1

2
n2

3

o2�ua

oz2
þOðe3Þ: ð24Þ

The vertical wave pseudo-momentum P3 is, at most, of order re3/k. Although it may be neglected in the
momentum equation, it plays an important role in the mass conservation equation, and will thus be estimated
from Pa. In particular, for m = 1 and in the limit of small surface slopes, it is straightforward using (7) to prove
that P is non-divergent and such that P � n = 0 at z = �h, with n the normal to the bottom. This gives,

P 3 ¼ �P að�hÞ oh
oxa
�
Z z

�h

oP aðz0Þ
oxa

dz0: ð25Þ

Although this equality is not obvious for m 6¼ 1 and nonlinear waves, corrections to (25) are expected to be
only of higher order, in particular once P is transformed to z coordinates. Indeed, in the absence of a mean
flow P ¼ �uL and it is non-divergent (see Section 2.1.1).

2.1.1. glm2-RANS equations

The velocity field is assumed to have a unique decomposition in mean, wave and turbulent components
u ¼ �uþ ~uþ u0, with hu0i = 0, the average over the flow realizations for prescribed wave phases. The turbulence
will be assumed weak enough so that its effect on the sea surface position is negligible. We note X the diver-
gence of the Reynolds stresses, i.e. X i ¼ ohu0iu0ji=oxj, and we apply the GLM average to the Reynolds-average
Navier–Stokes equations (RANS). We shall now seek an approximation to the GLM momentum equations by
retaining all terms of order qwge3 and larger in the horizontal momentum equation, and all terms of order
qwge2 in the vertical momentum equation. The resulting equations, that may be called the ‘‘glm2-RANS”

equations, are thus more limited in terms of wave nonlinearity than the Eulerian mean equations of
MRL04. At the same time, random waves are considered here and the mean current may be larger than
the wave orbital velocity. Indeed we make no hypothesis on the current magnitude, but only on the horizontal
current gradients and on the curvature of the current profile. The present derivation differs from that of
Groeneweg (1999) by the fact that we use the GLM instead of the aGLM equations (see Table 1). The name
for these equations is loosely borrowed from Holm (2002) who instead derived an approximate Lagrangian to
obtain the momentum equation, and did not include turbulence.

In order to simplify our calculations we shall use the form of the GLM equations given by Dingemans
(1997, Eq. (2.596)), with qw constant, which, among other things, removes terms related to the fluid thermo-
dynamics. The evolution equation for the quasi-Eulerian velocity û is,

DLûi þ �i3jf3�uL
j þ

o

oxi

�pL

qw

�
ul

ju
l
j

2

 !
� bX i þ gdi3 ¼ P j

o�uL
j

oxi
; ð26Þ

where the Lagrangian derivative �DL is a derivative following the fluid at the Lagrangian mean velocity �uL, p is
the full dynamic pressure, d is Kronecker’s symbol, and the viscous and/or turbulent force bX is defined by

bX i ¼ X L
i þ

onj

oxi
ðX L

j � X jÞ: ð27Þ

These exact equations will now be approximated using (10)–(16). We first evaluate the wave forcing terms
in (26) using monochromatic waves, with a surface elevation variance E = a2/2. The result for random waves
follows by summation over the spectrum and replacing E with the spectral density E(k).
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Table 2
Table of symbols

Symbol Name Where defined

1 and 2 Indices of the horizontal dimensions After (8)
3 Index of the vertical dimension After (8)
a Wave amplitude After (12)
D ¼ hþ �f Mean water depth After (7)
f = (f1, f2, f3) Coriolis parameter vector (twice the rotation vector) After (6)
FCC, FCS, FSC and FSS Vertical profile functions After (12)
g Acceleration due to gravity and Earth rotation After (7)
h Depth of the bottom (bottom elevation is z = �h) Before (8)
J Jacobian of GLM average After (44)
k = (k1,k2) Wavenumber vector After (7)
K1 Depth-integrated vertical vortex force (33)
K2 Shear-induced correction to Bernoulli head (29)
Kz Vertical eddy viscosity (43)
( � )l Lagrangian perturbation (2)
�ð�ÞL Lagrangian mean (1)

m Shear correction parameter (20)
M Depth-integrated momentum vector (77)
Mw Depth-integrated wave pseudo-momentum vector (81)
Mm Depth-integrated mean flow momentum vector After (81)
n Unit normal vector (63)
p Full dynamic pressure After (26)
~p Wave-induced pressure (10)
pH Hydrostatic pressure After (35)
P = (P1,P2,P3) Wave pseudo-momentum (6)
t Time Before (1)
u = (u1,u2,u3) Velocity vector
~u Wave-induced velocity (11) and (68)
�uL Lagrangian mean velocity After (1)
uA Advection velocity for the wave action (80)
ûa ¼ �uL

a � P a Quasi-Eulerian horizontal velocity Before (24)
s ¼ zþ �nL

3 GLM to z transformation function (48)
�ð�ÞS Stokes correction (5)

Sij Stress tensor (62)

SJ Wave-induced kinematic pressure (39)
SShear Shear-induced correction to SJ (40)
w = u3 Vertical velocity Before (30)
ŵ ¼ �uL

3 � P 3 Quasi-Eulerian vertical velocity Before (30)
W GLM vertical velocity in z coordinates (54)
x = (x1,x2,x3) Position vector Before (1)
X Diabatic source of momentum After (24)bX Diabatic source of quasi-Eulerian mean momentum (27)
z = x3 Vertical position After Eq. (8)
a and b Dummy indices for horizontal dimensions
dij Kronecker’s symbol, zero unless i = j After (26)
e Generic small parameter After (8)
e1 Maximum wave slope After (7)
e2 Maximum horizontal gradient parameter After (7)
e3 Maximum current curvature parameter (9)
�i j kAjBk Component i of the vector product A � B After (6)
f Free surface elevation Before (8)
k Wavelength Section 4.2
m Kinematic viscosity of water After (62)
n = (n1,n2,n3) Wave-induced displacement Before (1)
qw Density of water (constant) After (12)
r Relative radian frequency After (7)
sij Mean stress tensor (61)
w Wave phase After (7)

(continued on next page)
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We first consider the vertical momentum balance, giving the pressure field. It should be noted that the
Lagrangian mean Bernoulli head term ul

ju
l
j=2 differs from its Eulerian counterpart u0ju

0
j=2 by a term K2, which

arises from the correlation of the mean current perturbation at the displaced position x + n, with the wave-
induced velocity, i.e. the second term in (17). Eqs. (10)–(16) give

1

2
ðul

ju
l
jÞ ¼

gkE
2
½F CCF CS þ F SCF SS	 þ K2; ð28Þ

with

K2 ¼ ~uan3

o�ua

oz
þ n2

3

2

o�u

oz

���� ����2 ¼ E
r
k

k � oû

oz
mF CSF SS þ

E
2

o�u

oz

���� ����2m2F 2
SS: ð29Þ

The vertical momentum equation (26) for ŵ ¼ û3 is,

oŵ
ot
þ ŵ

oŵ
oz
þ P 3

oŵ
oz
þ ðûb þ P bÞ

oŵ
oxb
þ 1

qw

o�pL

oz
þ g

¼ o

oz
½ð~ua~ua þ ~w2Þ=2þ K2	 þ P b

o

oz
ðûb þ P bÞ þ P 3

o

oz
ðû3 þ P 3Þ; ð30Þ

For small bottom slopes we may neglect the last term, but we re-write it in order to compare with other sets of
equations. Now using the lowest order wave solution (11)–(16), (30) transforms to

1

qw

o

oz
�pL þ qwgz� qw

r2E
2
ðF 2

CS þ F 2
SSÞ � qwK2

� �
¼ � oŵ

ot
� ŵ

oŵ
oz
� ðûb þ P bÞ

oŵ
oxb
þ P b

o

oz
ðûb þ P bÞ þ P 3

o

oz
ðŵþ P 3Þ: ð31Þ

We add to both sides the depth-uniform term �r2EðF 2
CC � F 2

SSÞ=2, and integrate over z to obtain

pðzÞL
qw

¼ �g½ðz� zsÞ � kEF CCF CS	 þ K2 þ K1 �
gkE

4 sinhð2kDÞ ; ð32Þ

where the hydrostatic hypothesis (H6, see above) has be made for the mean flow. The depth-integrated vertical
component of the vortex-like force K1 is defined by

K1 ¼ �
Z �fL

z
P b

o

oz0
ðûb þ P bÞdz0 þ

Z �fL

z
P 3

o

oxb
ðP bÞdz0; ð33Þ

where Eq. (25) has been used. The integration constant zs is given by the surface boundary condition

pðfÞL ¼ �qwgð�fL � zs � kEF CCF CS � K2ð�fLÞ=gÞ ¼ �pa: ð34Þ

Using (23) we find that zs ¼ �fþ �pa=ðqwgÞ � K2ð �ðfÞLÞ=g and (32) becomes

�pL

qw

¼ �pH

qw

þ gkEF CCF CS þ K1 þ K2 � K2ð�fLÞ; ð35Þ

with pH the hydrostatic pressure defined equal to the mean atmospheric pressure at the mean sea surface,
pH ¼ qwgð�f� zÞ þ �pa.

Table 2 (continued)

Symbol Name Where defined

x Absolute radian frequency After (7) and (8)
X3 Depth-weighted vertical vorticity of the mean flow (83)
$ Horizontal gradient operator After (7)
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Below the wave troughs the Stokes correction for the pressure (5) gives the Eulerian mean pressure

�p ¼ �pL � qwgkmE F CSF CC þ F SSF SC þ
k

kr
� o�u

oz
mF SSF CC

� �
: ð36Þ

Thus Eq. (32) gives the following relationship, valid to order e2
1 below the wave troughs, between the Eulerian

mean pressure �p and �pL,

�p ¼ pH � qwgkEF SSF SC þ qw K1 � K2ð�fLÞ þ E
2

o�u

oz

���� ����2m2F 2
SS

 !
þ qwgkð1� mÞEF CCF CS: ð37Þ

For a spectrum of random waves, the modified pressure term that enters the horizontal momentum equation
may be written as

p̂ � �pL �
qwul

ju
l
j

2
� P j

o�uL
i

oz
¼ pH þ qwSJ þ qwSshear; ð38Þ

with the depth-uniform wave-induced kinematic pressure term

SJ ¼ g
Z

k

kEðkÞ
sinh 2kD

dk ð39Þ

and a shear-induced pressure term, due to the integral of the vertical component of the vortex force K1, and
K2ð�fLÞ,

Sshear ¼ �
Z

k

EðkÞ r
k

kbm
oûbð�fLÞ

oz
tanhðkDÞ þ m2

2

oû

oz
ð�fLÞ

���� ����2
 !

dk

þ
Z

k

Z �fL

z
P 3ðkÞ

oP bðz0; kÞ
oxb

� P bðkÞ
o½ûbðz0Þ þ P bðkÞ	

oz0

� �
dz0dk: ð40Þ

Now considering the horizontal momentum equations, we re-write (26) for the horizontal velocity,

oûa

ot
þ ðûb þ P bÞ

oûa

oxb
þ ŵ

oûa

oz
þ �a3bf3ðûb þ P bÞ þ

1

qw

opH

oxa

¼ � o

oxa
ðSJ þ SshearÞ þ P b

oûb

oxa
� P 3

oûa

oz
þ bX a: ð41Þ

Grouping all Pb terms, as in Garrett (1976, Eqs. (3.10) and (3.11)), leads to an expression with the ‘vortex
force’ �a3bx3 Pb. This force is the vector product of the wave pseudo-momentum P and mean flow vertical
vorticity x3. Eq. (41) transforms to

oûa

ot
þ ûb

oûa

oxb
þ ŵ

oûa

oz
þ �a3b f3ûb þ ðf3 þ x3ÞP b

	 

þ 1

qw

opH

oxa
¼ � o

oxa
SJ þ Sshear
� �

� P 3

oûa

oz
þ bX a: ð42Þ

The vortex force is a momentum flux divergence that compensates for the change in wave momentum flux due
to wave refraction over varying currents, and includes the flux of momentum resulting from û momentum
advected by the wave motion (Garrett, 1976).

The turbulent closure is the topic of ongoing research and will not be explicitly detailed here. We only note
that it differs in principle from the closure of the aGLM equations of Groeneweg (1999), which could be
extended to include the second term in Eq. (27). A proper closure involves a full discussion of the distortion
of turbulence by the waves when the turbulent mixing time scale is larger than the wave period (e.g. Walmsley
and Taylor, 1996; Janssen, 2004; Teixeira and Belcher, 2002). One should consider with caution the rather
bold but practical assumptions of Groeneweg (1999) who used a standard turbulence closure to define the vis-
cosity that acts upon the wave-induced velocities, or the assumption of Huang and Mei (2003) who assumed
that the eddy viscosity instantaneously adjusts to the passage of waves. These effects may have consequences
on the magnitude of wave attenuation through its interaction with turbulence, and the resulting vertical profile

F. Ardhuin et al. / Ocean Modelling 20 (2008) 35–60 45



Author's personal copy

of bX a. Here we only note that any momentum lost by the wave field should be gained by either the atmo-
sphere, the bottom or the mean flow. Thus a possible parameterization for the diabatic source of momentum
is

bX a ¼
oRab

oxb
þ o

oz
Kz

oûa

oz

� �
� T wc

a � T turb
a � T bfric

a ; ð43Þ

with Rab the horizontal Reynolds stress, and Kz a vertical eddy viscosity, while the last three terms correspond
to the dissipative momentum flux from waves to the mean flow, through whitecapping, wave–turbulence inter-
actions, and bottom friction. Although the momentum lost by the waves via bottom friction was shown to
eventually end up in the bottom (Longuet-Higgins, 2005), the intermediate acceleration of the mean flow, also
known as Eulerian streaming, is important for sediment transport, and should be included with a vertical
profile of T bfric

a concentrated near the bottom, provided that the wave boundary layer is actually resolved in
the 3D model (e.g. Walstra et al., 2001).

The GLM mass conservation writes

oðJÞ
ot
þ oðJ�uL

a Þ
oxa

þ oðJ �wLÞ
oz

¼ 0; ð44Þ

where the Jacobian J is the determinant of the coordinate transform matrix (dij + oni/oxj) from Cartesian
coordinates to GLM (Andrews and McIntyre, 1978a, Eq. (4.2)–(4.4) with qn = qw).

2.2. glm2-RANS equations in z-coordinates

Eqs. (42) and (44) hold from z = �h to z ¼ �fL, which covers the entire ‘GLM water column’. All terms
in (42) are defined as GLM averages, except for the hydrostatic pressure pH which does correspond to the
Eulerian mean position.

For practical numerical modelling, it is however preferable that the height of the water column does not
change with the local wave height. We will thus transform Eq. (42), except for pH, by correcting for the
GLM-induced vertical displacements. This will naturally remove the divergence of the GLM flow related
to J 6¼ 1. The GLM vertical displacement �nL

3 is a generalization of Eq. (23)

�nL
3 ðx; z; tÞ ¼

Z
k

EðkÞm k
sinh½2kðzþ hÞ	

2sinh2ðkDÞ
þ m

sinh2½kðzþ hÞ	
sinh2ðkDÞ

k

r
� o�ua

oz

" #
dk ð45Þ

and the Jacobian is J ¼ 1þ J 2 þOðe3
1Þ. Because the GLM does not induce horizontal distortions, a vertical

distance dz
0
= Jdz in GLM corresponds to a Cartesian distance dz, giving,

J 2 ¼ �
o�nL

3

oz
: ð46Þ

One may note thatZ �fL

�h
J dz ¼ �fL þ h� �nL

3 ð0Þ ¼ D: ð47Þ

We now implicitly define the vertical coordinate zw with

s ¼ zH þ �nL
3 : ð48Þ

Any field /(x1,x2,z, t) transforms to /HðxH

1 ; x
H

2 ; z
H; tHÞ with

o/
ot
¼ o/H

otH
� st

sz

o/H

ozH
; ð49Þ
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o/
oxa
¼ o/H

oxH
a

� sa

sz

o/H

ozH
; ð50Þ

o/
oz
¼ 1

sz

o/H

ozH
; ð51Þ

with st, sz and sa the partial derivatives of s with respect to tw, zw and xH

a , respectively. The coordinate
transform was built to obtain the following identity:

szJ ¼ 1þOðe3
1Þ: ð52Þ

Removing the w superscripts from now on, the mass conservation (44) multiplied by sz may be written as

oð�uL
a Þ

oxa
þ oðW Þ

oz
¼ 0; ð53Þ

where the vertical velocity,

W ¼ J ½�wL � �uL
a sa � st	 ¼ ŵ

1þOðeÞ
o�nL

3 =oz
ð54Þ

is the Lagrangian mass flux through horizontal planes.
Neglecting terms of order e3

1 and higher, the product of (42) and szJ is re-written as

oûa

ot
þ ûb

oûa

oxb
þ ŵ

oûa

oz
þ �a3b f3ûb þ f3 þ x3ð ÞP b

	 

þ opH

oxa
¼ � o

oxa
SJ þ Sshear
� �

� P 3

oûa

oz
þ bX a; ð55Þ

with

ŵ ¼ J ½�wL � ûasa � st	 � P 3 ¼ W � P 3 þ JP asa ¼ W � P 3 þOðre4
1e2=kÞ; ð56Þ

the quasi-Eulerian advection velocity through horizontal planes. From now on we shall use exclusively these
glm2z-RANS equations in z coordinate, with a non-divergent GLM velocity field �uL.

Using Eq. (25), we may re-write (53) as

oûa

oxa
þ oŵ

oz
¼ 0: ð57Þ

2.2.1. Surface boundary conditions

Taking an impermeable boundary, the kinematic boundary condition is given by Andrews and McIntyre
(1978a), Section 4.2,

o�fL

ot
þ �uL

a

o�fL

oxa
¼ �wL at z ¼ �fL: ð58Þ

It is transformed to z coordinates as

o�f
ot
þ �uL

a

o�f
oxa
¼ W ¼ ŵþ P 3 at z ¼ �f: ð59Þ

When the presence of air is considered, it should be noted that the GLM position is discontinuous in the
absence of viscosity, because the Stokes corrections for f have opposite signs in the air and in the water. This
discontinuity arises from the discontinuity of the horizontal displacement na (air and water wave-induced
motions are out of phase). A proper treatment would therefore require to resolve the viscous boundary layer
at the free surface. This question is left for further investigation. However, we note that due to the large wind
velocities and possibly large surface currents unrelated to wave motions, a good approximation is given by
neglecting the Stokes corrections for the horizontal air momentum,

ûþa ¼ û�a þ P�a ; ð60Þ
where the � and + exponents refer to the limits when approaching the boundary from below and above,
respectively.
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For the mean horizontal stress, we use the results of Xu and Bowen (1994),

sa ¼ Snnna þ Snsn3 at z ¼ �f; ð61Þ
with S the stress tensor, with normal Snn and shear Sns stresses on the surface, generally defined by

Sij ¼ �pdij þ qwm
oui

oxj
þ ouj

oxi

� �
; ð62Þ

with m the kinematic viscosity, and the local unit vector normal to the surface, to first order in e1,

n ¼ ð0; 0; 1Þ � of
ox1

;
of
ox2

; 0

� �
: ð63Þ

Taking the Lagrangian mean of (61), one obtains,

sa
a ¼ sa

L ¼ sw
a þ qwm

oûa

oz
þ qwm

oP a

oz
at z ¼ �f; ð64Þ

where sa
a is the total air–sea momentum flux (the wind stress), as can be measured above the wave-perturbed

layer (e.g. Drennan et al., 1999). sw
a is the a component of the wave-supported stress due to surface-slope

pressure correlations,

sw
a ¼ p

of
oxa

L: ð65Þ

The second viscous term qwmoPa/oz was estimated using the GLM average of wave orbital shears (Ardhuin
and Jenkins, 2006), it is the well-known virtual wave stress (e.g., Xu and Bowen, 1994, Eq. 18). That stress
corresponds to wave momentum lost due to viscous dissipation, and it can be absorbed into the boundary
conditions because it is concentrated within a few millimeters from the surface (Banner and Peirson, 1998).
At the base of the viscous layer of thickness ds, (64) yields, using an eddy viscosity Kz,

sa
a � sw

a � qwm
oP a

oz
¼ qwKz

oûa

oz
at z ¼ �ds: ð66Þ

2.2.2. Bottom boundary conditions

The same approach applies to the bottom boundary conditions. The kinematic boundary condition writes

o�hL

ot
þ ðûa þ P aÞ

o�hL

oxa
¼ ðŵþ P 3Þ at z ¼ ��hL: ð67Þ

If an adherence condition is specified at the bottom, which shall be used below, the bottom boundary condi-
tion further simplifies as �hL ¼ h. It may also simplify under the condition that the wave amplitude is not
correlated with the small scale variations of h, which is not generally the case (e.g. Ardhuin and Magne,
2007). For the dynamic boundary conditions, pressure-slope correlations give rise to a partial reflection of
waves, that may be represented by a scattering stress (e.g. Hara and Mei, 1987; Ardhuin and Magne,
2007). This stress modifies the wave pseudo-momentum without any change of wave action (see also Ardhuin,
2006).

The effect of bottom friction is of considerable interest for sediment dynamics and deserves special atten-
tion. For the sake of simplicity, we shall here use the conduction solution of Longuet-Higgins for a constant
viscosity over a flat sea bed as given in the appendix to the proceedings of Russell and Osorio (1958). We shall
briefly consider waves propagating along the x-axis, and we assume that the mean current in the wave bottom
boundary layer (WBBL) is at most of the order of the wave orbital velocity outside of the WBBL. Instead of
(11)–(16) the orbital wave velocity and displacements near the bottom take the form,

u1 ¼ u0½cos w� e�ẑ cosðw� ẑÞ	; ð68Þ

w ¼ u0kdf

2
½2ẑ sin w� sinðw� ẑÞe�ẑ þ sin wþ cosðw� ẑÞe�ẑ � cos w	; ð69Þ
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n1 ¼ �
u0

x
½sin w� sinðw� ẑÞe�ẑ	; ð70Þ

n3 ¼
u0kdf

2x
½2ẑ cos w� cosðw� ẑÞe�ẑ þ cos wþ sinðw� ẑÞe�ẑ � sin w	; ð71Þ

where w = k x � xt is the wave phase, df = (2m/x)1/2 is the depth scale for the boundary layer, ẑ ¼ ðzþ hÞ=df is
a non-dimensional vertical coordinate, u0 = ar/sinh(kD) is the orbital velocity amplitude outside the boundary
layer.

Based on these velocities and displacements, the wave pseudo-momentum P, is

P 1 ¼ �n1;1u1 � n3;1w ¼ u2
0

2C
½1þ e�2ẑ cosð2ẑÞ � 2 cos ẑe�ẑ	: ð72Þ

This is equal to the Stokes drift �uS ¼ u1;1n1 þ u1;3n3 computed by Longuet-Higgins. Besides, the rate of wave
energy dissipation induced by bottom friction is Sbfric ¼ qwxu2

0=2 giving a bottom friction stressR1
�h T bfric

a dz ¼ kaSbfric=ðqwrÞ.
Generalizing this approach to a turbulent bottom boundary layer (e.g. Longuet-Higgins, 2005) one may

replace the constant viscosity with a depth-varying eddy viscosity. If the wave bottom boundary layer (WBBL)
is resolved, �sb

a will also include the momentum lost by waves through bottom friction, as given by the depth-
integral of T bfric

a . One may estimate P from the vertical profiles of the wave orbital velocities ~ua and ~w, and the
modified pressure (38) has to be corrected for the change in wave orbital velocities in the WBBL. Many WBBL
models are available for estimating these wave-induced quantities.

If the bottom boundary layer is not resolved, on may take the lowest model level at the top of the wave
boundary layer. The bottom stress may then be computed from a parameterization of the bottom roughness
z0a0 (e.g. Mathisen and Madsen, 1996, 1999), which relates the bottom stress

�sb
a ¼ �qwu2

Hc

ûa

û
; ð73Þ

to the current velocity ûa at the lowest model level z,

ûa ¼ juHc ln
zþ h
z0a0

� �
for zþ h < df : ð74Þ

Then the near-bottom velocity ûa should be taken equal to the Eulerian streaming velocity 
1.5Pa (see e.g.,
Marin, 2004, for turbulent cases with rippled beds). Further, in this case the bottom stress �sb

a should not
include the depth integral of T bfric

a . This latter remark also applies to depth-integrated equations. Indeed,
swb

a ¼
R�hþdf

�h T bfric
a dz is a flux of momentum into the bottom due to wave bottom friction, swb

a does not partic-
ipate in the momentum balance that gives rise to a sea level set-down and set-up (Longuet-Higgins, 2005).

3. Relations between the present theory and known equations

3.1. Depth-integrated GLM for a constant density qw

Using (59) the mass conservation equation in z coordinates (53) classically gives (e.g. Phillips, 1977)

o

ot

Z �f

�h
qw dz ¼ � o

oxa

Z �f

�h
qw�uL

a dz; ð75Þ

which is exactly the classic shallow-water mass conservation for constant density,
oD
ot
¼ � oMa

oxa
; ð76Þ

with the depth-integrated volume flux vector4 M defined by

M ¼
Z �f

�h

�uL dz: ð77Þ

4 Phillips (1977) uses the notation fM instead of M, and M instead of Mw.
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In the momentum equation, the advection terms may be transformed in flux form using mass conservation.
However, because some of the original GLM advection terms are included in the vortex force, the remaining
terms do not simplify completely. Using (57) one has,

qw

oûa

ot
þ ûb

oûa

oxb
þ ŵ

oûa

oz

� �
þ P 3

oûa

oz
¼ o

ot
ðqwûaÞ þ

o

oxb
qwûbûa

� �
þ o

oz
½qwðŵþ P 3Þûa	 � ûa

oP 3

oz
: ð78Þ

Using (59), (67), (25), and after integration by parts, these advection terms integrate to

oMm
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þ o

oxb

Z �f
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qwûaûb dz

 !
þ uAa

oMw
b

oxb
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oxb
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b �
Z �f

�h
P b

oûa

oxb
dz; ð79Þ

where the zeroth order wave advection velocity uA is defined by,

uAaMw
b �

Z �f

�h
ûaP b dz; ð80Þ

which is equal, at lowest order, to the second term in (8). The wave-induced mass transport is the depth-
integrated pseudo-momentum,

Mw ¼
Z �f

�h
Pdz: ð81Þ

Finally, the quasi-Eulerian volume flux is defined by Mm = M �Mw.
For terms uniform over the depth (opH/oxa and oSJ/oxa) the integral is simply the integrand times the

depth.
It should be noted that the depth-integrated vortex force involves the advection velocity uA,Z �fL

�h
�a3bðf3 þ x3ÞP b dz ¼ �a3bðf3 þ X3ÞMw

b ; ð82Þ

with

X3 ¼ �3abðouAb=oxa � ouAa=oxbÞ: ð83Þ
The vertical integration of (55) thus yields
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dzþ X int: ð84Þ

The source of momentum Xint is simply the sum of the mean momentum fluxes at the top and bottom, and the
source of momentum due to diabatic wave–mean flow interactions (i.e. breaking and wave–turbulence
interactions).

These equations are very similar to those of Smith (2006, Eq. (2.29)), our term SJ is simply termed J in
Smith (2006), and Xint corresponds to Smith’s kiD

W. The only differences are due to the vertical shear in
the current. The advection velocity uAa replaces Smith’s mean flow velocity. Since uAa is the proper lowest
order advection velocity for the wave action (Andrews and McIntyre, 1978b), this is a simple extension of
Smith’s result to depth-varying currents. The term involving Sshear is also obviously absent from Smith’s equa-
tions. The last differences in (84) are the last two terms on the second line, but they also cancel for a depth-
uniform current ûa.
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3.2. Equations of McWilliams et al. (2004)

The approach of MRL04 is in the line of perturbation theories presented by Mei (1989) for Eulerian vari-
ables and monochromatic waves. Although the result of MRL04 corresponds to a particular choice of the
relative ordering of small parameters, it is given to a high enough order so that it does cover most situations
at a lower order. In particular MRL04 have pushed the expansion to order e4

1 for some terms because they
assumed a ratio r/f3 of order e4

1, with e1 the wave slope. This ratio, in practice, may only be attained for
relatively steep wind waves (developed wind seas and swells generally have slopes of the order of 0.05). They
also assumed that e2

1 
 e2 (the wave envelope varies on a scale relatively larger than the wavelength compared
to the present theory in which e1 
 e2 is possible). These authors also separated the motion into waves, long
waves and mean flow, and considered in detail the rotational part of the wave motion caused by the vertical
shear of the current.

MRL04 thus obtained Eulerian mean equations that only correspond to measurable Eulerian averages
under the level of the wave troughs. Because they use an analytic continuation of the velocity profiles across
the air–sea interface, the physical interpretation of their average is unclear between the crests and troughs of
the waves. We shall neglect here their terms of order e4

1 (i.e. terms that involve the wave amplitude to the power
of four), which amounts to choosing a slightly different scaling. Since we shall consider here random waves,
this avoids cumbersome considerations of the wave bispectrum.

The Eulerian mean variables of MRL04 should be related to the Lagrangian mean values by the Stokes
corrections (5), so that their horizontal Eulerian mean velocity q corresponds to �uL � �uS. Because they have
subtracted the hydrostatic pressure with the mean water density qw0, their mean pressure hpi should be equal
to the Eulerian mean pressure �p þ qw0gz, with �p related to the GLM pressure via Eq. (37).

Absorbing the long waves in the mean flow (i.e. allowing the mean flow to vary on a the wave group scale,
see also Ardhuin et al., 2004), MRL04 equations for the ‘Eulerian’ mean velocity ðq1; q2; �wÞ can be written as
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oxb
þ �w
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� �
qa þ �a3bf3qb þ
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oxa
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K1 þK2ð Þ þ J a; ð85Þ
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oz
¼ ðqw � qw0Þg �

o

oz
ðK1 þK2Þ þ K; ð86Þ

oqb

oxb
þ o�w

oz
¼ 0; ð87Þ

hpi ¼ qwgð�f� kEF SCF SSÞ �P0 at z ¼ 0; ð88Þ
�w ¼ �wSt at z ¼ 0; ð89Þ

with

K1 ¼
~uj~uj

2
¼ � 1

2
F CCF CS þ F SSF SC½ 	gkE; ð90Þ
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; ð92Þ
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rkbE
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o
2qbðz0Þ
oz2

F CSðz0ÞF SSðz0Þdz0; ð93Þ

P0 ¼ Oðg
k

e4
1Þ: ð94Þ

The original notations of MRL04 (see also Lane et al., 2007) have been translated to the notations used above
and order e4

1 terms have been neglected.
These equations are clearly analogue to the glm2z-RANS equations presented here. In particular the

vertical vortex force term K corresponds to our K1 that gets into Sshear, the dynamically relevant kinematic
pressure pressure hpi þK1 þK2 corresponds to our pressure p̂ defined by (38), and the vertical Stokes
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velocity wSt corresponds to our P3. There are only two differences. One is between the surface boundary con-
ditions for these two pressures, with a difference only due to K2ðz ¼ 0Þ 6¼ �K2ð�fLÞ. Integrating by parts to
estimate K2ðz ¼ 0Þ, this difference is found to be of the order of gkEe3. Such a difference is of the same order
as extra terms that would arise when using wave kinematics to first order in the current curvature (Kirby and
Chen, 1989), and properly transforming û in �u. The second difference between MRL04 and the present equa-
tions is that the wave pseudo-momentum P differs from the Stokes drift �uS when the current shear is large, and
both generally differ from the expression for �uS given by MRL04. Since MRL04 took the current and wave
orbital velocity to be of the same order, in that context the difference P� �uS is of higher order and thus
the two sets of equations are consistent in their common range of validity.

A general comparison of 2D depth-integrated equations is discussed by Lane et al. (2007). The present
work therefore brings a further verification of their 3D form of the equations, and an extension to relatively
strong currents, possibly as large as the phase velocities. As expected, the Eulerian averages of McWilliams
et al. (2004) are identical to the quasi-Eulerian fields in GLM theory, because they obey the same equations,
except for current profile curvature effects, which were partly neglected here. The ‘‘Eulerian” mean current of
MRL04 can thus be physically interpreted as a quasi-Eulerian average, defined as the GLM average minus the
wave pseudo-momentum. Except for a Jacobian that introduces relative corrections of second order in the
wave slope, this averaging is identical to the procedure used by Swan et al. (2001). Above the trough level,
this average should not be confused with a truly Eulerian average, as obtained from in-situ measurements
for example. In such measurements the Stokes drift would be recorded in the trough-to-crest region (Fig. 1a).

4. Limitations of the approximations

The glm2z-RANS equations have been obtained from the exact GLM equations, under six restricting
hypotheses related to the wave slope and Ursell number (H1 and H2), the horizontal scales of variation of
the wave amplitude (H3), the current profile (H4 and H5) and the vertical mean velocity (H6). These hypoth-
eses essentially allowed us to use the linear wave-induced quantities given by Eqs. (11)–(19). In practical
conditions, these hypotheses may not be verified and the resulting glm2z-RANS equations may have to be
modified. Here we investigate the importance of H3, H2 and H1, using numerical solutions from an accurate
coupled mode model for irrotational wave propagation over any bottom topography, and an accurate analyt-
ical solution for incipient breaking waves, respectively.

4.1. Bottom slope and standing waves

In absence of dissipation and given proper lateral boundary conditions the flow in wave shoaling over a
bottom slope is irrotational and can thus be obtained by a numerical exact solution of Laplace’s equation with
bottom, surface, and lateral boundary conditions. For waves of small amplitudes this can be provided by a
solution to this system of equations to second order in the wave slope. Belibassakis and Athanassoulis
(2002) have developed a second order version of the National Technical University of Athens numerical model
(NTUA-nl2) to solve this problem in two dimensions. Here we apply their model to the simple case of mono-
chromatic, unidirectional waves propagating along the x axis, with a topography uniform along the y axis.
The topography h(x) varies only for 0 < x < L and is constant h(x) = h1 for x < 0 and h(x) = h2 for x > L.
In that case the Eulerian mean current $/0ðxÞ is irrotational, and uniform over the vertical as x approaches
±1 (e.g. Belibassakis and Athanassoulis, 2002, Table 1 and Fig. 5). We shall further restrict our investigation
to the case of a monochromatic wave train of known radian frequency x and incident amplitude a, giving rise
to reflected and transmitted wave trains of amplitudes Ra and Ta. Numerical calculations are given for a
bottom profile as given by Roseau (1976) for which the reflection coefficient R is known analytically, thus
providing a check on the quality of the numerical solution.

The bottom is defined here by x and z coordinates given by the real and imaginary part of the complex
parametric function of the real variable x0,

Zðx0Þ ¼ xþ iz ¼ h1ðx0 � ia0Þ þ ðh2 � h1Þ lnð1þ ex0�ia0Þ
a0

: ð95Þ
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We choose h1 = 6 m and h2 = 4 m and a wave frequency of 0.19 Hz (x = 1.2 rad s�1). For a0 = 15p/180 the
maximum bottom slope is e2 = 2.6 � 10�2 (Fig. 1), and the reflection coefficient for wave amplitude is
R = 1.4 � 10�9 (Roseau, 1976), so that reflected waves may be neglected in the momentum balance. Due to
the shoaling of the incident waves, the mass transport induced by the waves increases in shallow water,
and thus the mean current must change in the x direction to compensate for the divergence in the wave-
induced mass transport. We shall further take a zero-mean surface elevation as x ? �1. The second order
mean elevation is obtained as a result of the model. We also verified that the vertical wave pseudo-momentum
compensates for the divergence of the horizontal component so that in this case for linear waves the wave
pseudo-momentum is non-divergent (Fig. 3). For mild bottom slopes, the reflection coefficient is small as pre-
dicted by Roseau (1976). The NTUA-nl2 model used here generally gives accurate reflection coefficients, but it
tends to overestimate very weak reflections. In the first case investigated here, the numerical reflection is
R = 1 � 10�3, with no significant effect on the wave dynamics. The NTUA-nl2 model is used to provide
the Fourier amplitudes of the mean, first and second harmonic components of the velocity potential, over
a grid of 401 (horizontal) by 101 (vertical) points. From these discretized potential fields, the mean, first
and second harmonic velocity components are obtained using second order centered finite differences. As ex-
pected, the numerical solution gives a horizontal mean flow �u that compensates the divergence of the wave
mass transport and is thus of order r/ke2. Further �u is almost uniform over the vertical and is irrotational
(Fig. 2b). The vertical mean velocity is of higher order. The GLM momentum balance is thus dominated
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Fig. 2. (a) Instantaneous pressure perturbation ðp � �pÞ=ðqwgÞ given by the NTUA-nl2 model (Belibassakis and Athanassoulis, 2002),
including the second order Stokes component, in waves with amplitude a = 0.12 m, over the bottom given by Eq. (95). (b) Mean current
�û, and (c) horizontal wave pseudo-momentum P1 estimated from Eq. (7), and verified to be equal to the Stokes drift. Arrows indicate the
flow directions.
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by the hydrostatic and dynamic pressure terms pH and SJ. Although these two terms are individually of the
order of 0.01 m2 s�2, their sum is less than 2 � 10�16 m2 s�2 in the entire domain, at the roundoff error level. It
thus appears that this part of the momentum balance is much more accurate than expected from the asymp-
totic expansion. Indeed, for any bottom slope, in the limit of small surface slopes and for irrotational flow and
periodic waves, the Stokes correction (5) for the pressure and the time average of the Bernoulli equation give
the following expression for the modified kinematic pressure (38)

p̂ ¼ pL

qw

�
ul

ju
l
j

2
¼ �p

qw

þ 1

qw

nj
o~p
oxj
� ~uj~uj

2
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oxjot

� o enj
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o~/
oxj

¼ �gz� o

ot
nj~uj ¼ �gz; ð96Þ

where the equalities only hold to second order in the surface slope. Thus the kinematic modified pressure p̂ has
no dynamical effect to second order in the wave slope, as already discussed by McWilliams et al. (2004) and
Lane et al. (2007). For irrotational flow, this remains true for any bottom topography and even for rapidly
varying wave amplitudes, including variations on scales shorter than the wavelength.

Thus the only wave effect is the static change in mean water level (set-up or set-down), and dynamic con-
sequences in the WBBL, where SJ goes to zero, leaving the hydrostatic pressure gradient to drive a mean flow
that can only be balanced by bottom friction. For slowly varying wave amplitudes the mean sea level is given
by Longuet-Higgins (1967, Eq. (F1))

�fðxÞ ¼ � kE
sinhð2kDÞ þ

k0E0

sinhð2k0Þ
; ð97Þ

where the 0 subscript correspond to quantities evaluated at any fixed horizontal position, the choice of which
being irrelevant to the estimation of horizontal gradients of �f.

Eq. (97) is well verified by the NTUA-nl2 result for the case considered so far (Fig. 4a). However, this is no
longueur true for rapid variations in the wave amplitude a(x), i.e. due to partially standing waves. In that case
one should use (Longuet-Higgins, 1967, Eq. (D))

�fðxÞ ¼ � ~ub~ub � ~u2
3

2g

" #
z¼0

þ ~ub~ub � ~u2
3

2g

" #
z¼0;x¼x0

; ð98Þ

with ~ub and ~u3 given by linear wave theory. Eq. (98) is a generalization of Miche (1944a) mean sea level solu-
tion under standing waves. Contrary to propagating wave groups, for which the mean sea level is depressed
under large waves, here the depression occurs at the nodes of the standing wave, where the horizontal velo-
cities are largest and amplitudes are smallest (Fig. 4c).

Eq. (98) is well verified in the presence of partially standing waves. To illustrate this, we have modified the
bottom topography, adding a sinusoidal bottom perturbation for x > 180 m with an amplitude of 5 cm and a

z
 

 

-200 -150 -100 -50 0 50 100 150 200

-5

-4

-3

-2

-1

0

-3 -2 -1 0 1 2 3
x 10 -5

P3 (m/s)

Fig. 3. Vertical wave pseudo-momentum for the same case as Fig. 2, estimated from Eq. (7), and verified to satisfy (25).

54 F. Ardhuin et al. / Ocean Modelling 20 (2008) 35–60



Author's personal copy

bottom wavelength half of the local waves’ wavelength, which maximizes wave reflection (Kreisel, 1949). This
yields a wave amplitude reflection R = 0.03, for x = 1.2 rad s�1, of the order of observed wave reflections over
gently sloping beaches (e.g. Elgar et al., 1994). The bottom is shown in Fig. 4b. Although the standing wave
pattern is hardly noticeable in the surface elevation (the amplitude modulation is only 6%, Fig. 4c), the small
pressure modulation occur at much smaller scales, so that the associated gradient can overcome the large scale
gradients of the hydrostatic pressure (Fig. 4d). As a result small partial standing waves can dominating the
momentum balance in the WBBL (see Longuet-Higgins, 1953; Yu and Mei, 2000 for solutions obtained with
constant viscosity). In the presence of such standing waves, and in the absence of strong wave dissipation, the
hydrostatic pressure on the scale of the standing waves (e.g. given by Miche, 1944a) drives the flow in the
WBBL towards the nodes of the standing wave (Longuet-Higgins, 1953), and is balanced by bottom friction.
This WBBL flow drives an opposite flow above, closing a secondary circulation cell. This secondary circula-
tion is important for nearshore sediment transport just outside of the surf zone (Yu and Mei, 2000). If these
sub-wavelength circulations are to be modelled, the present glm2z-RANS theory should be extended to resolve
the momentum balance on the scale of partial standing waves.

This extension is relatively simple as it only introduces additional standing wave terms in all quadratic
wave-related quantities, arising from phase couplings of the incident and reflected waves. This extension
provides a generalization of Eq. (98) in the presence of other processes. For example, Eq. (39) now becomes
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Fig. 4. (a) Mean sea level obtained with the NTUA-nl2 model (Belibassakis and Athanassoulis, 2002) and the theory of Longuet-Higgins
(1967, Eq. (F1)): without standing waves using conservation of the wave energy flux along the profile. (b) Modified bottom profile resulting
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gradient (d).
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SJ ¼ g
Z

kI

kEðkÞ
sinh 2kD

½ð1þ R2ðKÞÞ � 2R2ðkÞ cosð2w0ðkÞÞ	dk; ð99Þ

with R(k) the amplitude reflection coefficient and 2w0(k) is the phase of the partial standing waves defined by
$w0 ¼ k and ow0/ot = �k � UAt such that it is zero at the crest of the incident waves. Note that the integral is
over the incident wave numbers only (e.g. for wave propagation directions from 0 to p). Similar expressions
are easily derived for the other wave forcing terms.

4.2. Effects of wave nonlinearity

Deep or intermediate water waves do not break very often in most conditions (e.g. Banner et al., 2000;
Babanin et al., 2001), thus the particular kinematics of breaking or very steep waves likely contributes little
to the average forcing of the current. However, most of the waves break in the surf zone and deviations from
Airy wave kinematics may introduce a systematic bias when the glm2z-RANS equations are applied in that
context. Many wave theories have been developed that are generally more accurate than the Airy wave theory
(e.g. Dean, 1970). However, they may lack some realistic features found in breaking waves, such as sharp
crests. In order to explore the magnitude of this bias, we shall use the kinematics of two-dimensional incipient
breaking waves as given by the approximate theory of Miche (1944b).

Miche’s theory is based on the asymptotic expansion of the potential flow from the triangular crest of
a steady breaking wave, extending Stokes’ 120� corner flow to finite depth. From this Miche obtained his
criterion for the maximum steepness of a steady breaking wave, i.e. H/k = 0.14 tanh(kD) with H the breaking
wave height and k the wavelength, which favorably compares with observations. The Miche wave potential /
and streamfunction ~w are expressed implicitly as a function G of the coordinates x � xc + i (z�zc), with origin
on the wave crest (xc,zc). The coefficients in the series representing the reciprocal function G0 are obtained
from the boundary condition at the surface and bottom. Unfortunately, these are imposed only under the
wave crest and trough, so that the bottom streamline may not be horizontal away from the crest. This is par-
ticularly true for small values of kD. Due to the expansion of G0 in powers of /þ i~w, the shape of the wave is
nevertheless accurate near the crest, and since the overall drift velocities are dominated by the corner flow near
the crest (see also Longuet-Higgins, 1979), the approximations of Miche have little consequence on the drift
velocities. The function G0 was modified here to make the bottom actually flat, and the vertical under the
trough an equipotential. This deformation adds a weak rotational component to the motion and the wave
streamlines are weakly modified at the bottom under the wave trough.5 The resulting wave for kD = 0.58 (cor-
responding to b = 1 in Miche, 1944b) is shown in Fig. 5a. A numerical evaluation of that solution is obtained
at 201 equally spaced values of w and 401 equally spaced values of / (Fig. 5b). The GLM displacement field n
is computed as described in Section 2.1. Since the streamlines are known in the frame of reference of the wave,
Lagrangian positions of 201 particles initially placed below the crest at xi(0) = 0, were tracked over four
Eulerian wave periods. The positions (xi(t),zi(t)) are given by the potential /i(t) and streamfunction wi. The
Lagrangian period for each particle T L

i is determined by detecting the first time when the particles pass under
the crest again. The Lagrangian mean velocity of each particle is then xiðT L

i Þ=T L
i , and it corresponds to a vertical

position �zi ¼
R T L

i
0

ziðtÞdt. This defines the Lagrangian mean velocity �uLð�ziÞ in GLM coordinates. Following
the coordinate transformation in Section 2, we further transform the GLM velocity profile to z coordinate
(Fig. 5c). The resulting profile of �uL has a horizontal tangent at z = 0, as discussed by Miche (1944b).

Contrary to Miche (1944b) who defined the phase speed C of his wave by imposing a zero mass transport,
we have defined C so that P ¼ �uL with the pseudo-momentum P estimated from Eq. (7) using finite differences
applied to the displacement field. The two profiles of P, estimated from Eq. (7), and �uL, estimated by time-
integration of particle positions coincide almost perfectly. Thus the estimation of P provides a practical
method for separating the mean current from the wave motion. Starting from any value of C, the difference
between �uL and P is the mean current velocity û. Here C was corrected to have û ¼ 0.

From n, Bernoulli’s equation can be used to obtain the GLM of velocities and pressure. Compared to linear
wave theory, the Stokes drift in a Miche wave is much more sheared. It should be noted that in the cnoidal

5 This correction leads to negligible differences compared to the exact solution as verified with streamfunction theory to 60th order.
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theory investigated by Wiegel (1959) this drift velocity is depth-uniform. Thus cnoidal wave theories may
produce inaccurate results for 3D wave–current interactions when extrapolated to breaking waves. This
marked difference in the 3D mean flow forcing due to breaking waves compared to linear waves calls for a
deeper investigation of this question. Investigating such kinematics, may provide a rationale for the parame-
terization of nonlinearity in the glm2z-RANS equations proposed here. Such a parameterization is proposed
by Rascle and Ardhuin (manuscript in preparation for the Journal of Geophysical Research).

5. Conclusion

We have approximated the exact generalized Lagrangian mean (GLM) wave-averaged momentum equa-
tions of Andrews and McIntyre (1978a), to second order in the wave slope, allowing for strong and sheared
mean currents with limited curvature in the current profile. These approximated equations were then trans-
formed by a change of the vertical coordinate, giving a non-divergent GLM flow in z coordinates. The result-
ing conservation equations for horizontal momentum (55) and mass (57), with boundary conditions ((59)–(74)
may be solved using slightly modified versions of existing primitive equations models, forced with the results
of spectral wave models. Although the Stokes drift introduces a source of mass at the surface for the quasi-
Eulerian flow, this is does not pose any particular problem, and such mass source have long been introduced
for the simulation of upwellings. The HYCOM model (Bleck, 2002) was modified by R. Baraille to solve a
simplified set of the present equations, retaining only the wave-induced mass transport in both the mass
and momentum equations, and the tracer equation (in which the advection velocity is simply �uL, see also
MRL04). This work was applied to the a hindcast of the trajectories of sub-surface oil pellets released by
the tanker Prestige–Nassau, which sank off Northwest Spain in November 2002 (presentation at the 2004
WMO-JCOMM ‘Oceanops’ conference held in Toulouse, France). The full equations derived here have also
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been implemented in the ocean circulation model ROMS (Shchepetkin and McWilliams, 2003), and results
will be reported elsewhere. The equations presented here have also been applied for the modelling of the ocean
mixed layer in horizontally uniform conditions (Rascle et al., 2006).

Although a general expression for the turbulent closure has been given, it has not been made explicit in
terms of the wave and mean flow quantities beyond a heuristic closure that combines an eddy viscosity mixing
term with the known sources of momentum due to wave dissipation. A proper turbulent closure is left for
further work, possibly extending and combining the approaches of Groeneweg and Klopman (1998), with
those of Teixeira and Belcher (2002). Further, some wave forcing quantities have been expressed in terms
of the Eulerian mean current �u instead of the quasi-Eulerian mean current û. The conversion from one to
the other, can be done using Eq. (24), to the order of approximation used here. However, it would be more
appropriate, in particular for large current shears, to start from quasi-Eulerian wave kinematics, instead of
Eulerian solutions of the kind given by Kirby and Chen (1989), our Eqs. (10)–(12).

Beyond the turbulence closure, there are essentially two practical limitations to the approximate glm2z-
RANS equations derived here. First, the expansion of wave quantities to second order in the surface slope is
only qualitative in the surf zone. Although this was acceptable in two dimensions (see Bowen, 1969 and most
of the literature on this subject), it is expected to be insufficient in three dimensions due to a significant difference
in the profile of the wave-induced drift velocity P, which exhibits a vertical variation with surface values exceed-
ing bottom values by a factor of 3, even for kh < 0.2 in which case linear wave theory predicts a depth-uniform
P. This conclusion is based on both the approximate theory of Miche (1944b), and results of the streamfunction
theory of Dalrymple (1974) to 80th order. Such numerical results can be used to provide a parameterization of
these effects. Further investigations using more realistic depictions of the kinematics of breaking waves will be
needed. Second, the vertical profile of the mean current in the surf zone may be such that the wave kinematics
are not well described by the approximations used here. A strong nonlinearity combined with a strong current
shear and curvature can lead to markedly different wave kinematics (e.g. da Silva and Peregrine, 1988).

With these caveats, the equations derived here provide a generalization of existing equations, extending
Smith (2006) to three dimensions and vertically sheared currents, or McWilliams et al. (2004) to strong cur-
rents. Of course, mean flow equations can be obtained, at least numerically, using any solution for the wave
kinematics with the original exact GLM equations, as illustrated in Section 4.2. The wave forcing on the mean
flow is a vortex force plus a modified pressure, a decomposition that allows a clearer understanding of the
wave–current interactions, compared to the more traditional radiation stress form. This is most important
for the three-dimensional momentum balance and/or in the presence of strong currents, e.g. when a rip current
is widened by opposing waves, as observed by Ismail and Wiegel (1983) in the laboratory. Such a situation was
also recently modelled by Shi et al. (2006).
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décroissante. Annal. Ponts Chaussées Tome 114 (131–164), 270–292.

Miche, A., 1944b. Mouvements ondulatoire de la mer en profondeur croissante ou décroissante. forme limite de la houle lors de son
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