
CORRESPONDENCE

Comments on ‘‘A Combined Derivation of the Integrated and Vertically
Resolved, Coupled Wave–Current Equations’’

FABRICE ARDHUIN AND NOBUHIRO SUZUKI

Laboratoire d’Océanographie Physique et Spatiale, Univ. Brest, CNRS, Ifremer, IRD, Plouzané, France

JAMES C. MCWILLIAMS

Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los, Angeles, California

HIDENORI AIKI

Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi, Japan

(Manuscript received 3 April 2017, in final form 28 June 2017)

ABSTRACT

Several equivalent equations for the evolution of the wave-averaged current momentum have been pro-

posed, implemented, and used. In contrast, the equation for the total momentum, which is the sum of the

current and wave momenta, has not been widely used because it requires a less practical wave forcing. In an

update on previous derivations, Mellor proposed a new formulation of the wave forcing for the total mo-

mentum equation. Here, the authors show that this derivation misses a leading-order term that has a zero

depth-integrated value. Corrected for this omission, the wave forcing is equivalent to that in the first paper by

Mellor. When this wave forcing effect on the currents is approximated it leads to an inconsistency. This study

finally repeats and clarifies that the vertical integration of several various forms of the current-only mo-

mentum equations are consistent with the known depth-integrated equations for the mean flow momentum

obtained by subtracting the wave momentum equation from the total momentum equation. Several other

claims in prior Mellor manuscripts are discussed.

1. Introduction

Themass andmomentum conservation equations for the

ocean circulation involve the effects of ocean surface

gravity wave properties. An exact formulation of this

problem is provided by Andrews and McIntyre (1978a).

For practical applications, the wave-induced forcing can be

obtained from an asymptotic expansion of the wave effects

to some order in wave steepness «15 ka, where k and a are

a typical wavenumber and amplitude of surface elevation,

normalized amplitude gradient «2 5 (ka)21 3 ›a/›x, and

current vorticity.

One family of these equations is for the current mo-

mentum (see Table 1). Members of this family have

been derived by different methods, with different ref-

erence frames for the wave averaging and for different

asymptotic regimes (e.g., Craik and Leibovich 1976;

Leibovich 1980; McWilliams et al. 2004; Ardhuin et al.

2008b; Aiki and Greatbatch 2014). Such current mo-

mentum equations have been implemented (e.g., Rascle

2007; Uchiyama et al. 2009; Bennis et al. 2011) and used

for various applications (e.g., Uchiyama et al. 2010;Weir

et al. 2011; Michaud et al. 2012; Delpey et al. 2014).

Somemembers of this family express the wave effects on

the current momentum in the form of the vortex force

introduced by Craik and Leibovich (1976). The same

wave effects can be cast in a different form [e.g., Holm

1996; Andrews and McIntyre 1978a, their (3.8)],

allowing a different physical interpretation and analysis

of energy fluxes (Suzuki and Fox-Kemper 2016).

For dynamical and material completeness, these

wave-averaged current momentum equations need to

be augmented by concentration advection and internal

energy equations that contain additional Stokes drift

advection as well as by incompressible mass balance and

the equation of state.Corresponding author: Fabrice Ardhuin, ardhuin@ifremer.fr
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A second family of wave-averaged momentum

equations, following (8.7a) in Andrews and McIntyre

(1978a), is for the total momentum: the sum of mean

current and wave momenta (see Table 1). This family

involves a wave forcing in the form of the three-

dimensional radiation stress (3DRS) term. In a verti-

cally Lagrangian and horizontally Eulerian coordinate

system, the 3DRS term is written as the sum of the

horizontal Reynolds stress term and the negative of the

form stress term (Mellor 2003; Ardhuin et al. 2008a;

Aiki and Greatbatch 2012). Recently Aiki and

Greatbatch (2013, 2014) have shown that, if terms at

higher order in an asymptotic expansion are retained,

the wave-averaged momentum equations with the

3DRS term may be transformed to the wave-averaged

momentum equations with the vortex force term.

However, Mellor (2015) claimed to have found a

practical 3DRS expression by considering only leading-

order wave quantities in terms of an asymptotic ex-

pansion. In a follow-up paper, Mellor (2016) discussed

the consistency/inconsistency of the two families of

equations, concluding that one must be incorrect if not

consistent with the other. Here, in section 2, we show

that it is Mellor’s (2015) 3DRS that is incorrect because

of a derivation error. When inferring his (30) from his

(28), one can add any term that has a depth-integrated

value of zero but can be very large locally. In fact, a

vertical flux is missing that makes his new 3DRS

equivalent to the form given in Mellor (2003). This

omitted vertical flux involves the vertical profile of

the perturbation pressure ~p. If taken proportional to

cosh(kz 1 kh), as appropriate for a flat bottom with h

the mean water depth, ~p is not accurate enough for

3DRS at the leading order, as shown by Ardhuin et al.

(2008a). This is recalled and clarified in section 3.

Since Mellor (2015, 2016) also claimed that the cur-

rent momentum equations with the vortex force were

inconsistent with classical depth-integrated equations

with the radiation stress term, we take this opportunity

to reaffirm their consistencies in section 4. Conclusions

and recommendations on future work on wave–current

theory follow in section 5.

Finally, it is important to note that there are two types

of wave effects: one depends only on wave properties,

and the other depends both on wave and current prop-

erties. A typical example of the former is the wave setup/

setdown effect, and a typical example of the latter are

Langmuir circulations. As the former is independent of

current properties, it is possible to compute such an ef-

fect with a lower-order wave solution that does not

consider modifications of the wave solution because of

an underlying current. In contrast, computing the latter

effect requires knowledge of a higher-order wave solu-

tion that does reflect the influences of the underlying

current. Therefore, it is impossible for a theory based on

the lower-order wave solution such as Mellor (2003,

2015, 2016) to find the latter effect. On the other hand, a

theory that includes the wave modifications by the cur-

rent can find both the former and latter effects. Indeed,

the setup/setdown effect is detailed in section 9.2 of

McWilliams et al. (2004) and section 4.1 of Ardhuin

et al. (2008b).

TABLE 1. List of previous studies for the effect of surface waves on mean flows.

Horizontal Vertical Prognostic quantity of momentum equations

coordinate coordinate Lagrangian mean velocity Eulerian mean velocity

Euler Integrated Longuet-Higgins and Stewart (1962) Garrett (1976)

Phillips (1977) Smith (2006)

Weber et al. [2006, their (15)] Weber et al. [2006, their (19)]

Euler Euler Craik and Leibovich (1976) Rivero and Arcilla (1995)

Skyllingstad and Denbo (1995) Zou et al. (2006)

McWilliams et al. (2004)

Alternative momentum equations Standard momentum equations

Lagrange Lagrange Lagrange [1788, his (C), p. 445] Lagrange [1788, his (D), p. 447]

Lamb [1932, his (2), p. 13]

Pierson [1962, his (5), (9)] Pierson [1962, his (4), (10)]

Generalized Lagrange Andrews and McIntyre [1978a, their (8.7a)] Andrews and McIntyre [1978a, their (3.8)]

Lagrange Leibovich (1980)

Ardhuin et al. (2008b)

Direct momentum equations Transformed momentum equations

Euler Lagrange Mellor (2003, 2005),

Ardhuin et al. (2008a)

Aiki and Greatbatch (2012, 2013) Aiki and Greatbatch (2013, 2014)

Mellor (2015, main text) Mellor (2015, his appendix B)

Mellor (2016)
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2. Near equivalence of Mellor (2015) and Mellor
(2003)

a. The correct part in Mellor (2003)

In a seminal paper, Mellor (2003) proposed a very el-

egant and insightful derivation of the 3DRS based on the

momentum equation averaged in a control volume that

moves up and down with the wave motion. The resulting

wave-averaged equation for the total horizontal mo-

mentum contains the divergence of the 3DRS tensor S,

›

›x
b
*
(DS2003

ab )2
›

›§
(S2003

az ) , (1)

where D is the wave-averaged water depth, a, b are

dummy indices for the horizontal directions, and § is

the vertical coordinate equal to 21 at the bottom and

0 at the wave-averaged free surface. The horizontal and

vertical components of the 3DRS in (1) have been de-

fined in (34c) and (34f), respectively, of Mellor (2003) as

S2003
ab [ ~u

a
~u
b
1

d
ab

D

›~s

›§
~p5 ~u

a
~u
b
1

d
ab

D
~s
§
~p, and (2)

S2003
az [

›~s

›x
a
*
~p5 ~s

a
~p , (3)

where ~s5 ~s(xa*, §, t*) is the vertical displacement of the

surfaces of constant §. The symbol p represents the com-

binednonhydrostatic andhydrostatic pressure (hereinafter

dynamic pressure) for which normalization by mean den-

sity is understood. The symbol ~p[ p2 p̂5 p1 g(z2 ĥ) is

the Eulerian perturbation of p where p̂5 g(ĥ2 z).

Namely, ~p is the perturbation measured at a given depth

z. To be useful later in the manuscript, the vertically

Lagrangian (VL) perturbation of p may be written

using a Taylor expansion as ~p1 ~s ›p̂/›z5 ~p2 g~s.

Namely, ~p2 g~s is the perturbation measured along the

surfaces of constant §. In the absence of wind forcing, the

Eulerian perturbation of dynamic pressure becomes
~p5 g~h at the sea surface, where z5 h and p5 0 (relative

to a constant atmospheric surface pressure). On the

other hand, the VL perturbation of dynamic pressure

becomes (~p2 g~s)5 0 at the sea surface where z5 h and

p 5 0.

The expressions of 3DRS in Mellor (2003) are correct

up to his (34a) and (34c) if the tilde variables in (2)–(3)

above contain all fluctuations. Difficulties arise when
~p and ~s are approximated.

b. The inconsistent part in Mellor (2003)

In evaluating the right-hand sides of (2)–(3) of the

present manuscript, Mellor (2003) used vertical profiles

of ~p and ~s given by Airy theory; namely, for a

monochromatic wave train of radian frequency s and

phase c 5 kaxa 2 st and amplitude a, the Eulerian

perturbation of dynamic pressure is

~p(x
a
, z, t)5 ga

coshk(z1 h)

cosh(kD)
cosc , (4)

and the vertical velocity field is

~w(x
a
, z, t)5sa

sinhk(z1h)

sinh(kD)
cosc , (5)

giving the vertical displacement of water parcels

~s(x
a
*, §, t*)5 a

sinhkD(11 §)

sinh(kD)
cosc , (6)

where z1h5 z1D2 ĥ5D(11 §)1 ~s.

It is crucial to note that (2)–(3) are correct only

when ~p represents the exact perturbation pressure

(including higher-order terms in terms of an asymptotic

expansion) induced by both the wave motion and the

wave–current nonlinear advection. However, (4)–(6)

are approximations, strictly valid only for a flat bottom,

a constant amplitude, and a uniform current, that is, all

the assumptions of Airy wave theory. Most impor-

tantly, the influence of the wave–current interactions is

not included in these approximations. As a result, this

neglect of the wave–current interactions unavoidably

results in inconsistency with the investigation of wave

forcing effects on the wave-averaged current. This

point will be discussed more in section 3.

c. The missing term in Mellor (2015)

One way to understand the result of Mellor (2015) is

to rewrite (1) in the present manuscript as

›

›x
b
*
(DS2003

ab )2
›

›§
(S2003

az ) , (7)

5
›

›x
b
*
(DS2003

ab 2 d
ab
g~s

§
~s)2

›

›§
(S2003

az 2 g~s
a
~s) ,

5
›

›x
b
*
[D~u

a
~u
b
1 d

ab
~s
§
(~p2 g~s)]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

[DS2015
ab

2
›

›§
[~s

a
(~p2 g~s)]|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

missing inM15

.

Mellor (2015) continues to evaluate ~p, ~w, and ~s in the same

way as Mellor (2003). Namely, they are taken as the

leading-order approximations of (4)–(6) in the §-coordinate

system [i.e., (20a), (20b), and (20c) ofMellor (2015)].When

these equations together with the linear dispersion relation

s2 5 gk tanh(kD) are substituted for ~p, ~w, and ~s, we see

that (›~p/›§)~s/D5 ~w2. Substitution of the Airy wave solu-

tion equations (4)–(6) to S2015
ab in (7) yields
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S2015
ab 5 ~u

a
~u
b
2 d

ab
~w2 1

d
ab

D

›

›§
(~p~s2 g~s2/2) . (8)

This is the 3DRS given by (29) of Mellor (2015), re-

moving theD subscripts for clarity and correcting for the

missing 1/D factor in the last term. This expression

corresponds to the S2003
ab of Mellor [2003, his (34)] di-

vided by D, with this D due to a different definition of

the radiation stress between Mellor (2003, 2015).

So what has become of the vertical flux term ~sa~p in

(34a) of Mellor (2003)? This term is ~sa(~p2 g~s) with the

Mellor (2015) notations used here. The vertical flux in

the second term on the last line of (7) may be interpreted

as the VL perturbation of dynamic pressure ~p2 g~s,

acting on the top- or bottom-tilted material surface with

its vertical displacement ~s induced by the waves (Fig. 1

of Ardhuin et al. 2008a).1 Without relying on the wave

average (denoted by the overbar), the vertical flux

~sa(~p2 g~s) is zero at the surface, where ~p5 g~s is at the

lowest order, and bottom, where ~s is zero. Thus, the

depth integral of ›~sa(~p2 g~s)/›§ vanishes, but this term

can be very large in the water column, and it is indeed a

leading term in the example shown in Fig. 1. If evaluated

using the Airy wave solution (4)–(6), the wave average

of the vertical flux ~sa(~p2 g~s) vanishes, owing to the

phase relationship (cosc sinc5 0) at all surfaces of

constant §, but it is not zero when using a proper wave

solution. For these reasons, the last term on the last line

of (7) has been forgotten by Mellor (2015).

3. Necessary accuracy of the vertical flux in 3DRS

Although radiation stresses in (34a) and (34c) in Mellor

(2003) are correct, the approximation of his (34e), using

Airy wave theory [e.g., our (4) and (6)], is not consistent.

For simplicity of the argument we consider the case of

waves propagating in the x direction, with all parameters

uniformalong the ydirection. This is easily generalized to a

full three-dimensional setting. The horizontal momentum

balance contains the body forces Fxx coming from the

divergences of the horizontal radiation stress tensor

F
xx
5
›S

xx

›x
, (9)

and Fxz from the vertical radiation stress tensor in (3),

the missing term mentioned above:

F
xz
5
›S

xz

›§
. (10)

The term Sxx is easily approximated to order «02«
2
1 using

Airy wave theory, and thus the force Fxx is of order «2«
2
1

thanks to the horizontal gradient, which is thus the

leading order of the momentum balance. For consis-

tency, we need to have Fxz at the same order. Because

the vertical derivative ›/›§ does not change the order in

«2, it means that p›s/›x must be obtained at order «2«
2
1;

hence, both ~p and ~smust be evaluated to first order in «2,

meaning that the approximations such as (6) are in-

sufficient for a consistent estimation of the 3DRS.

This inconsistency occurs at the leading order in all

cases that have vertical fluxes of wavemomentum. It was

exposed by Ardhuin et al. (2008a) for the particular case

of waves propagating over varying topography. In that

case, it was shown that a numerical solution of the full

Laplace equation valid for any bottom slope (this

requires a specific non-Airy model; e.g., Chandrasekera

and Cheung 1997; Athanassoulis and Belibassakis 1999)

could provide consistent estimates of the 3DRS, as il-

lustrated in Fig. 1 for the case of waves shoaling over a

slope without any dissipation.

However, if the vertical flux is ignored, as is the case in

Mellor (2015), the force Fxx cannot be balanced at all

depths by the hydrostatic pressure gradient associated

with the free-surface slope. Using Airy wave theory

approximation for Fxz increases that imbalance. As an

alternative, we used the National Technical University

of Athens Coupled Mode Model (NTUA-CMM), im-

plemented here with n 5 10 modes.

This model expands the velocity potential f on

a basis of solutions with different vertical profiles.

These include a flat-bottommode f05 cosh(kz1 kh), a

FIG. 1. Illustration of the profile of forces Fxx and 2Fxz for the

case of waves shoaling over a slope proposed by Ardhuin et al.

(2008a) using two different approximations for the wave motion,

that is, Airy wave theory keeping the «2 terms from the horizontal

gradients of a and the NTUACoupledModeModel with 10 modes

(Athanassoulis and Belibassakis 1999).

1 Note that Mellor (2003) uses a slightly different notation,

namely, ~p in Mellor (2003) is equal to p 1 gD§ in Mellor (2015).
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sloping-bottom mode f21 (the only one with nonzero

vertical velocity at the bottom), and n evanescent

modes fn 5 cos(knz 1 knh) that decay exponentially

with horizontal distance, with kn as the solutions to

(2pfw)
2 5 gk tan(kD). All these modes are coupled

through the surface and boundary conditions. In the

limit n/‘, the coupled solution is a solution to Laplace
and both bottom and surface boundary conditions.

Such a model provides a better approximation of Fxz,

but spurious oscillations remain in the vertical profile

of Fxz, due to the finite number of modes (Fig. 1).

The alternative use of a momentum equation for the

current only (e.g., McWilliams et al. 2004) removes this

difficulty because the derivation includes effects of the

currents on the waves en route to deriving the effects of

the waves on the currents; the result is that the latter can

be evaluated from the solutions of usual phase-averaged

spectral models, which themselves do not include this

more complete representation of the wave–current

interaction.

This is because the problematic flux Saz is a flux of

wave momentum, which adjusts the vertical profile of

wave properties to their waveguide as determined by

the current and depth variations and has no dynamical

effect on the mean flow. For example, as shown in

Fig. 2, the momentum that is located at x 5 2200m,

z525m, is progressively pushed up the water column

as waves propagate over the slope, giving a different

profile at x5 200m. This change in profile is due to the

combination of Saz and the hydrostatic pressure gra-

dient associated with the setdown; the transport is in-

creased by 22%, but the surface Stokes drift increases

by 69%.

4. Consistency of depth-integrated equations and
current-only equations and related issues

On his last page, Mellor (2015, p. 1463) writes ‘‘in

L-HS and Phillips, WS 5 0, [the vertical component of

Stokes drift] as discussed in section 10. Conversely, after

vertical integration of the equation of McWilliams and

Restrepo (1999), Ardhuin et al. (2008[b]), or Bennis

et al. (2011) and use of (B3), there seems to be no way

to bring them into agreement with those of Phillips

[(1977)] or Smith (2006).’’ We beg to disagree, and it is

essentially a question of asymptotic assumptions. In-

deed, the depth-integrated equations of Longuet-

Higgins and Stewart (1962) and Smith (2006) neglect the

effect of vertical current shear on the wave kinematics.

This statement in Mellor (2015) is related to two other

claims on the vertical Stokes drift and the existence of

consistent 3D theories on which we do not agree with

Mellor (2015).

a. Consistency of the total and current-only form of
the momentum equations

Mellor (2016, p. 4475) wrote, ‘‘If the ‘radiation stress’

and ‘vortex force’ theories are both correct, then one

should be able to derive one from the other.’’ We fully

agree, and indeed, this was done by Andrews and

McIntyre (1978a), with a very general definition of the

Stokes drift as the wave pseudomomentum. As men-

tioned in the previous section, there is no known ana-

lytical form for the vertical fluxes of wave momentum,

and hence we cannot express simply the 3DRS tensor.

However, we can see that the same 3DRS tensor shows

up in the total momentum equation [(8.7a) in Andrews

and McIntyre 1978a] and the 3D wave momentum

equation given in Andrews and McIntyre (1978b).

Hence, subtracting the wave momentum equation from

the total momentum equation yields the current-only

momentum equation.

b. Consistency with depth-integrated equations

The relationship between the two families of equa-

tions, one for the current momentum and the other for

the total momentum, is summarized in Table 1.

The agreement of (9.15) ofMcWilliams et al. (2004) or

(55) of Ardhuin et al. (2008b) with (3.11) of Garrett

(1976) or (2.29) of Smith (2006) was shown in (47) of

Lane et al. (2007) and (84) of Ardhuin et al. (2008a), the

only difference being the additional terms due to the

vertical current shear because Garrett (1976) and Smith

(2006) neglected the effect of vertical shear on ~u, ~w, and
~p. Recall that Smith (2006) is an extension to finite depth

of Garrett (1976) and that the total momentum equation

of Longuet-Higgins and Stewart (1962) is obtained by

adding the current-only equation and the wave mo-

mentum equation (Smith 2006; Ardhuin 2006).

We also recall that Ardhuin et al. (2008a) is consistent

withMcWilliams et al. (2004) to first order in the vertical

current shear, but they differ when the curvature of the

current profile or finite current shears are considered.

Hence, once the effects of vertical shear are ignored,

the 3D momentum equation can be simplified from (1)

in Uchiyama et al. (2010) or (11) in Bennis et al. (2011).

For the x component, of the quasi-Eulerian current

(û, ŷ, ŵ), it is

›û

›t
1 û

›û

›x
1 ŷ

›û

›y
1 (ŵ1W

s
)
›û

›z
2 f ŷ1

1

r

›pH

›x

’
�
f 1

�
›ŷ

›x
2

›û

›y

��
V

s
2

›J

›x
1 F̂

x
1 F̂w

x , (11)

where f is the Coriolis parameter, pH is a hydrostatic

pressure, (Us, Vs, Ws) are the 3D components of the
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Stokes drift velocity, F̂x is the nonwave nonconservative

force, F̂w
x is the wave-induced nonconservative force

(e.g., due to wave breaking), and J is the Jerry form of

the Bernoulli head, as used with the same notation by

Smith (2006):

J5 g

ð ​2p
0

ð ​‘
0

kE(f
w
, u)

sinh(2kD)
df

w
du . (12)

Here, D5 h1 z is the mean water depth, k is the

wavenumber related to the wave frequency fw5 s/2p by

the surface gravity wave dispersion relation, andE(fw, u)

is the spectrum of the surface elevation variance asso-

ciated with waves, distributed across frequencies fw and

propagation direction u. The vertical integration of (11)

from z 5 2h to z5 z gives, with a careful manipulation

of the vertical Stokes drift component as in section 3 of

Ardhuin et al. (2008a), (2.28) of Smith (2006), with the

addition of the Coriolis force.

c. The vertical Stokes drift component

Starting from (78) in Ardhuin et al. (2008a), the first

four terms of (11) recombine to give

›

›t
(rû)1

›

›x
(rû2)1

›

›y
(rûŷ)1

›

›z
[rû(ŵ1W

s
)]2 û

›W
s

›z
.

(13)

In these, the last term can be rewritten as

2û
›W

s

›z
5 û

�
›U

s

›x
1

›V
s

›y

�
. (14)

Hence, the vertical Stokes drift component is a key

term to recover depth-integrated equations from the 3D

equations, with the vertical integral of (14) giving

the U(= �Mw) in (2.29b) of Smith (2006), in which U

is the surface current and Mw is the depth-integrated

Stokes drift.

So what is this vertical Stokes drift, and why is it so

little discussed?

In McWilliams et al. (2004), Ws was defined to be

compatible with 3D incompressibility for Stokes drift,

as a complement to 3D incompressibility of û. The term

Ws is small compared to the horizontal Stokes drift by a

factor of «2; that is, it is associated with Stokes drift

variations on a horizontal scale larger than the wave

FIG. 2. Example of (a) snapshot of nonhydrostatic pressure field in waves shoaling over a slope and (b) associated

Stokes drift. The Stokes drift profile adjusts from (left panel) the blue profile to the red profile, as the water depth

changes from 6 to 4m, as waves propagate from x52200 to 200m. This adjustment is made possible by both vertical

and horizontal fluxes of wave momentum and by the setdown of the wave-averaged surface elevation.
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scale. A physical interpretation follows from Ardhuin

et al. (2008b), who found that this Ws agreed, at the

lowest order, with the vertical component of the wave

pseudomomentum vector defined by (3.1) of Andrews

and McIntyre (1978a). Neglecting the Coriolis effect on

wave kinematics has each component pi given by

p
i
52

›j
j

›x
i

ul
j , (15)

where jj is the j component of the generalized

Lagrangian mean (GLM) displacement vector, and ul
j is

the Lagrangian perturbation of the velocity component.

This pseudomomentum is a priori different from the

Stokes drift velocity component, given by (2.27) of

Andrews and McIntyre (1978a):

U
si
5 j

j

›u0
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›x
j

1
1

2
j
j
j
k

›2u
i

›x
j
x
k

1O(a3) , (16)

where u0
i is the Eulerian perturbation of the velocity

component. Since (16) is based on a Taylor expansion, the

partial differentiation should read u0
i,j [ ›u0

i/›Jj, whereJj

represents the Eulerian coordinates in Andrews and

McIntyre (1978a). A related and detailed manipulation

appears in appendix D of Aiki and Greatbatch (2013). In

the GLM framework, the Eulerian perturbation is esti-

mated from the Lagrangian perturbation using an ap-

proximation u0
i 5 ul

i 2 jjui,j 1O(a2).

In many simple cases the pseudomomentum vector

and the Stokes drift velocity do coincide, as discussed in

Phillips (2001) and Phillips et al. (2010). This co-

incidence holds to fourth order in the wave steepness for

irrotational waves, but it is not true in general. When

they coincide, the vertical component of p is equal toWs

and this wave-induced drift of water particles, hence a

vertical Stokes drift component that has the same in-

terpretation as the horizontal Stokes drift component.

For example, Fig. 3 in Ardhuin et al. (2008a) shows that

component for waves shoaling over a slope. In the ab-

sence of such a vertical drift, water particles would cross

the bottom, a clearly unphysical situation.

It is interesting to note that, in general, the 3D non-

divergent (Us, Vs, Ws) defined by McWilliams et al.

(2004) may not always correspond to the pseudomo-

mentum p, which may itself differ from a true drift. See

also the discussion on the quasi-Stokes velocity in Aiki

and Greatbatch (2012).

5. Conclusions and recommendations

The wave-averaged total momentum equation by

Mellor (2015) formulated as a function of the wave-

induced pressure ~p and vertical displacement ~s was

shown to be inconsistent because of a missing term that

is the divergence of vertical flux (~p2g~s)~sa, which in-

tegrates to zero over the depth. That term was missed

because of an incorrect inference of an equality of in-

tegrands [(30)] from an equality of integrals [(28)], and it

is in general a leading-order term in the total momentum

(Ardhuin et al. 2008b; Aiki andGreatbatch 2013).When

this term is added, the wave-induced forcing is consis-

tent with Mellor (2003). The radiation stresses in Mellor

(2003) are correct if his wave variables represent all

wave-induced fluctuations. However, both in Mellor

(2003) and Mellor (2015), these fluctuations are ap-

proximated with wave-induced pressure proportional to

cosh(kz 1 kh), as given by Airy theory. This neglects

important nonhydrostatic pressure perturbations. As a

result, the radiation stresses are incorrectly evaluated.

The fundamental problem with the three-dimensional

radiation stresses (3DRS) is that a consistent estimation

of the vertical momentum flux (~p2g~s)~sa requires a

wave-induced forcing that must be accurate to first order

in the normalized amplitude gradient «2 5 ka 3 ›a/›x.

Such a forcing cannot be determined from the wave

spectrum alone and generally requires a solution of

an elliptic wave equation (e.g., Athanassoulis and

Belibassakis 1999; Chandrasekera and Cheung 1997).

This makes the use of equations for the total momentum

much less practical than the equations for the current

momentum only (e.g., McWilliams et al. 2004; Ardhuin

et al. 2008b; Aiki and Greatbatch 2013). A similar re-

mark can be made about the need to sufficiently include

the effects of the currents on the waves to fully represent

the consequences in the 3DRS. We have read or re-

viewed papers by many different authors over the last 15

years that have attempted to derive analytical 3DRS

expressions, and Mellor (2015) is the latest in the series.

Until somebody finds an analytical solution to the wave

motion to order «2, these attempts are bound to fail.

Whatever the wave–current coupling approach, for

the full momentum or the current momentum, there is a

clear need for a hierarchy of reference solutions. As

insisted upon by Mellor (2015), the depth-integrated

equations of Smith (2006), both for the total momentum

or current-only momentum, are important guidelines,

but they provide no constraint on the vertical profile of

the wave-induced forcing nor do they account for effects

of vertical current shear. The adiabatic shoaling case of

Ardhuin et al. (2008a) is a first test of vertical profiles.

For other adiabatic effects, there is a clear value in de-

fining test cases for vertical current shears, modulation

on the scale of wave groups (e.g., McWilliams et al.

2004), or subwavelength modulations introduced by

partially standing waves (Ardhuin et al. 2008a, their

section 4.1). A second class of cases should consider
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turbulent closures in the presence of waves (e.g.,

Olabarrieta et al. 2010; Sullivan and McWilliams 2010).
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